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Amajor problem resulting from the massive use of social media is the poten-
tial spread of incorrect information. Yet, very few studies have investigated
the impact of incorrect information on individual and collective decisions.
We performed experiments in which participants had to estimate a series
of quantities, before and after receiving social information. Unbeknownst
to them, we controlled the degree of inaccuracy of the social information
through ‘virtual influencers’, who provided some incorrect information.
We find that a large proportion of individuals only partially follow the
social information, thus resisting incorrect information. Moreover, incorrect
information can help improve group performance more than correct infor-
mation, when going against a human underestimation bias. We then
design a computational model whose predictions are in good agreement
with the empirical data, and sheds light on the mechanisms underlying
our results. Besides these main findings, we demonstrate that the dispersion
of estimates varies a lot between quantities, and must thus be considered
when normalizing and aggregating estimates of quantities that are very
different in nature. Overall, our results suggest that incorrect information
does not necessarily impair the collective wisdom of groups, and can even
be used to dampen the negative effects of known cognitive biases.
1. Introduction
The digital revolution has changed the way people access and share infor-
mation. In particular, the past few decades have seen an exponential increase
of media sources and amount of available information [1]. Moreover, a growing
distrust in traditional media has given an increasing share of news consumption
to social networks and other pathways to relay information. This facilitated and
more diverse access to information may arguably enhance people’s ability to
make informed decisions, but at the same time such an information overload
dramatically increases the difficulty to verify information, understand an
issue, or make efficient decisions [2,3]. In certain cases, it has also disrupted
the relationship between citizens and the truth [4,5], leading to polarized com-
munities unable to listen to each other [6]. Recently, the effects of large scale
diffusion of incorrect information and fake news on the behaviour of crowds
have gained increasing interest, because of their major social and political
impact [7]. The propagation of false information is also reinforced by the use
of social bots simulating the behaviour of Internet users [8]. In particular,
there has been recent evidence that fake news can propagate faster and affect
people deeper than true information on Twitter, especially when they carry pol-
itical content [9]. In this context, there is a strong need to understand how the
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diffusion of incorrect information among group members
affects individual and collective decisions.

To address this issue, we use the experimental framework
of estimation tasks, which is highly suitable for quantitative
studies on social influenceability [10–16]. We performed
experiments in which subjects had to estimate a series of
quantities with varying levels of demonstrability, before
and after having received social information. The demonstr-
ability of a quantity can be interpreted as the amount of
prior information a group has about it. To put it in simple
terms, it represents the ‘difficulty’ to determining the actual
value of a quantity. We first show that this quantity is closely
related to the dispersion of estimates, and must be taken into
account when normalizing estimates, which has hitherto lar-
gely been neglected [11,12,16–19]. We provide an adequate
normalization procedure, and discuss its implications in
terms of distributions of estimates.

We then investigate how incorrect social information
affects estimation accuracy. Participants estimated each quan-
tity sequentially, i.e. one after another. By introducing virtual
influencers, providing either the true value or some incorrect
information (without the subjects being aware of it) in the
sequence of estimates, we controlled the quality of the infor-
mation provided to the subjects, allowing us to quantify its
resulting impact on individual and collective accuracy. We
demonstrate that providing incorrect information that overes-
timates the truth compensates the underestimation bias—a
pervasive bias in estimations of large quantities [20–23]—
and thereby improves individual and collective accuracy,
the so-called wisdom of crowds [24,25].

Finally, we use a modified version of an agent-based
model developed in [18] to better understand the present
results, and to analyse the collective response of human
groups to information of which levels of inaccuracy go
beyond the values tested in our experiments. The model quan-
titatively reproduces the experimental results, and confirms
the counterintuitive observation that incorrect information
can improve a group’s performance more than correct infor-
mation, in particular when the group underestimates the
true value and the social information overestimates it.
2. Experimental design
One-hundred and eighty subjects participated in our exper-
iment. Twenty sessions were organized, in each of which
nine subjects were asked to estimate 32 quantities. Each quan-
tity was estimated twice: subjects first provided their
personal/prior estimate Ep. Next, they received as social
information the geometric mean G of the τ previous esti-
mate(s) in the sequence (τ = 1 or 3), and were then asked to
provide a second/final estimate Es. The choice of the geo-
metric mean is consistent with humans perceiving numbers
roughly as their order of magnitude [26–28]. The value of τ
was unknown to the subjects and so was the exact nature
of the mean provided. Moreover, this second estimate Es

was used to update the social information for the correspond-
ing subject in the next session. Hence, our experiment
produced 9 × 32 × 20 = 5760 personal and second estimates,
adding up to a total of 11 520 estimates.

We controlled the quality of the social information pro-
vided to the subjects, without them being aware of it. To
that end, we inserted in the sequence of 20 final estimates
given by the subjects—unbeknownst to them—n = 0, 5 or 15
artificial estimates. These additional estimates correspond to
a fraction r ¼ n=(20þ n) ¼ 0%, 20% or 43% of virtual influen-
cers. Each sequence thus consisted of N = 20 + n = 20, 25 or 35
estimates overall, among which 20 were estimates given by 20
actual participants, one per session. The influencers’ esti-
mates were introduced at random locations in the
sequences. The value TI of the influencers’ estimates provided
to the participants was controlled through a parameter α,
which represents a normalized distance to the true value
quantifying the (in)correctness of the influencers’ estimates
(α =−2, −1, −0.5, 0.5, 1, 1.5, 2, 3), and which will be defined
in the Results section. In each session and for each question, a
subject was thus assigned a value of ρ, τ and α, and his/her
second estimate was a single step in a sequence of 20, 25 or
35 estimates. Figure 1 below provides a graphic represen-
tation of the protocol. Note that the estimates of the virtual
influencers are also used to update the social information
which is then provided to the next subjects in the sequence.

The quantities to estimate were grouped into four cat-
egories: visual perception (number or length of objects in
an image); population of large cities in the world; daily life
facts; extreme astronomical, biological or geological events.
As we will see, the separation into these loosely defined cat-
egories is reflected in the collected data. Three additional
questions were asked, which cannot be assigned to any of
these categories (see the list of questions in the electronic
supplementary material). All experimental details are given
in the electronic supplementary material, Material and
methods.
3. Results
3.1. Comparing quantities of very different nature
Because humans perceive numbers roughly as their order of
magnitude [26–28], the logarithm of estimates is the natural
quantity to consider in estimation tasks, especially for large
quantities, rather than the actual estimates themselves. Dis-
tributions of estimates have indeed often been found
highly right-skewed, while the distribution of their
common logarithm is generally much more symmetric
[11,13,17,28]. An important issue in estimation tasks is to
find a proper way to normalize and aggregate estimates aris-
ing from questions with very different quantitative answers.
Within studies, how can one aggregate estimates of quan-
tities that differ by several orders of magnitude? Between
studies, how can one compare findings coming from differ-
ent sets of quantities?

In line with other works [29,30], we find that the median
log-estimate scales linearly with the logarithm log(T ) of the
true value (figure 2a), which leads to the natural normaliza-
tion: Xp = log(Ep/T ). Xp represents the deviation of an
estimate from the true value in orders of magnitude, and is
often used as the quantity of interest in estimation tasks
[11,12,17,18]. However, this normalization does not take
into account the dispersion of the log-estimates 〈|log(Ep)−
Median(log(Ep))|〉 (where 〈x〉 refers to the mean of x)
which can vary considerably for different questions
(figure 2b). In the following, we simply refer to X as the
‘estimates’, dropping the ‘log-’ prefix.

Figure 3a presents the median mp and figure 3b the dis-
persion σp = 〈|Xp−mp|〉 of the personal estimates Xp, for
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Figure 2. (a) Median and (b) dispersion 〈|log(Ep)− median(log(Ep))|〉 of the logarithms of the personal estimates Ep, for the 32 questions asked in the experiment.
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all questions asked in this experiment (sorted by category of
questions). One can note the extreme variation of both quan-
tities depending on the question, suggesting that including
mp and σp in the normalization process is crucial to compare
quantities of a different nature. Figure 3b shows that the cat-
egory of a question is clearly identifiable by the dispersion of
estimates σp (but not by the median mp, see figure 3a). The
natural classification that we have chosen a priori is thus
reflected in the experimental data. Moreover, we see that
the less demonstrable a question is, the higher the dispersion
of estimates. This is further supported by the three unclassi-
fied questions (30–32): one could have predicted that they
had a low demonstrability (i.e. that people have little prior
information about them), and that they would therefore be
closer to the ‘extreme events’ category than to the other cat-
egories, as observed.
3.2. Full normalization of estimates
In a previous study, we found and justified that the estimates
Xp for low demonstrability questions have a probability dis-
tribution function (PDF) close to the Cauchy distribution
[18]. This property can be explained by a simple probabilistic
argument: if two people provide estimates X1 and X2 of a
quantity about which they have no information at all, then
the average (X1 +X2)/2 of both estimates cannot be a statisti-
cally better estimation of the correct answer T. Hence, this
average has necessarily the same probability distribution as
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X1 and X2, and the only distribution that satisfies such a
property is the Cauchy distribution (see also electronic sup-
plementary material, Material and methods). Our model
based on Cauchy distributions convincingly reproduced
the experimental data, and in particular, the experimental
distribution of personal estimates Xp [18].

However, as we pointed out above, both mp and σp have to
be considered to compare estimates for questions with answers
spanning several orders ofmagnitude. Hence, for each question
characterized by its intrinsic median mp and dispersion σp,
we normalize the estimate as Zp = (Xp−mp)/σp. Figure 4
shows that the normalized estimates Zp follow the standard
Laplace distribution (i.e. with centre 0 and width 1),
f(Z) = exp(−|Z|)/2, implying that the Xp are also Laplace
distributed for individual questions. It is only when different
questions with arbitrary dispersions σp are aggregated without
our normalization that an overall Cauchy-like distribution for
the Xp emerges. Similarly, note that after social influence
(red dots), the Zs = (Xs−ms)/σs, with ms =median(Xs) and
σs = 〈|Xs−ms|〉 also follow the standard Laplace distribution,
implying that the Xs also follow a Laplace distribution for
each question. We will, therefore, slightly modify the model
developed previously [18], to replace Cauchy distributions by
Laplace distributions (see Model section).

By measuring mp and σp and using them in the normali-
zation process, we fix the quantity 〈|Zp|〉 = 1, and therefore
have some information about the distribution, instead of
none for the Cauchy distributions argument presented
above. As shown in the electronic supplementary material,
Material and methods, by exploiting the principle of maxi-
mum entropy, the most likely distribution satisfying such a
constraint is indeed the Laplace distribution.

This constraint on the dispersion of estimates can be
understood as an intrinsic property of the system {group of
individuals, question}: the dispersion is characteristic of a
given group of individuals estimating a given quantity, and
gives the typical range of answers that would seem reason-
able to most people in the group for that question. The
lower the demonstrability of a question (i.e. the lower the
amount of prior information held by individuals in a group
about that question), the larger this range. This is intuitive
when considering the following example: an estimate three
orders of magnitude away from the true value would seem
absurd if one considers the age of death of a celebrity,
while it would seem perfectly plausible if one considers the
number of stars in the universe. While the normalization by
mp is somewhat trivial (it simply shifts the centre of the dis-
tribution of X to 0 for every question), the normalization by
σp is therefore crucial in order to be able to properly compare
and aggregate estimates from different questions (and poss-
ibly, from different studies). We wish to insist on the fact
that this prescription is not a mere methodological detail
and that it should be adopted by future works in the field.

In the electronic supplementary material, figure S1, we
show the distribution of Z for the four categories of questions.
One can note that for very large quantities (electronic sup-
plementary material, figures S1c and S1d), the left side of
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the distribution collapses faster than the right side,
suggesting that people have an intuition that such quantities
must be large, even though they know little about them, such
that very small estimates are less frequent. Such asymmetric
Laplace distributions can also be derived from the principle
of maximum entropy, by adding a constraint that penalizes
small or large estimates (see electronic supplementary
material, Material and methods).
3.3. Model
In [18], we have introduced an agent-based model to better
understand the effects of individual sensitivity to social influ-
ence, and of the quantity of information delivered to the
individuals, on collective performance and accuracy observed
at the group level in estimation tasks. The model uses as basic
variables the log-transformed estimates X = log(E/T ), called
‘estimates’ for simplicity.

Personal estimates Xp are drawn from Laplace distri-
butions, the centre and width of which are, respectively, the
median mp and dispersion σp = 〈|Xp−mp|〉 of the exper-
imental personal estimates Xp for each question. Figure 5a
presents the distribution of estimates X for all questions com-
bined, before (blue) and after social influence (red), as well as
the corresponding distributions generated by our model,
when the Xp are generated from Cauchy distributions (as in
our previous research [18], dashed lines) and Laplace
distributions (full lines).

The Laplace distribution is able to capture the estimates
far from the truth (Xp,s . 5) better than the Cauchy distri-
bution. It is important to mention that in our previous
study [18], the range of possible answers were limited to
plus or minus 3, 5 or 7 orders of magnitude from the true
value, depending on the question. By not allowing extreme
answers, we probably increased artificially the probability
of estimates in the interval [5,7], making the distribution
even closer to a Cauchy distribution.

After providing its personal estimate Xp, each agent
receives as social information the arithmetic mean M of the τ
previous final estimates in the sequence, among which
some information V (provided by the virtual influencers) is
introduced with probability ρ. Note that the actual partici-
pants were provided the geometric mean G of the τ
previous estimates. In terms of log-estimates, the social infor-
mation M = log(G) indeed transforms into the standard
arithmetic mean. The agent then provides a second estimate
Xs, defined as the weighted average of its personal estimate
Xp and the social information M: Xs = (1− S) Xp + S M,
where S is the weight given to the social information, that
we call sensitivity to social influence. S can thus be expressed
as S ¼ Xs�Xp

M�Xp
. In figure 5b, we show the distribution of S

from which five natural behavioural categories can be ident-
ified, in accordance with our previous findings [18]: subjects
keep their opinion (‘keepers’, S = 0), compromise with the
social information (‘compromisers’, 0 < S < 1), adopt the
social information (‘adopters’, S = 1), contradict it (‘contradic-
ters’, S < 0), or overreact to it (‘overreacters’, S > 1). In the
model, after receiving the social information, an agent
keeps its personal estimate (S = 0) with probability P0,
adopts the social information (S = 1) with probability P1, or
draws an S in a Gaussian distribution of centre mg and
width σg with probability Pg = 1− P0− P1.

Figure 5c shows that the average sensitivity to social influ-
ence S increases linearly with the distance D =M−Xp

between the average social information M and the personal
estimate Xp. This is implemented in the model by making
the probability Pg increase linearly with D, according to the
equation: 〈S〉 = P1 + Pg mg = a + b |D|, where the intercept a
and the slope b characterize the linear cusp observed in
figure 5c. More details can be found in the electronic sup-
plementary material, Material and methods section. Note
the subjects’ tendency to give more weight to social infor-
mation that is much lower than their personal estimate
(D <−3), than to social information that is much higher
(D > 3). Because this concerns only about 7.6% of the data,
we neglect this effect in the model.

Note that the distribution of X narrows after social influ-
ence (red dots and lines in figure 5a), implying that estimates
have overall got closer to the truth, all conditions mixed.
This may seem counterintuitive, because in most conditions,
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incorrect information was provided into the sequence of esti-
mates. To understand this result, we next investigate the
impact of incorrect information on estimation accuracy for
each condition separately.
3.4. Impact of incorrect information on estimation
accuracy

As explained above, we controlled the quality of the social
information received by the individuals, by introducing n = 0,
5 or 15 virtual influencers providing artificial estimates of
valueTI randomly inserted in the sequences of 20 estimatespro-
vided by the participants, and hence affecting the social
information delivered to them. Because we are looking for an
information parameter that is independent of the questions,
we define, consistently with the previous discussion on the
normalization procedure, the normalized (log) deviation from
the truth a ¼ log (TI=T)=spexp ¼ V=spexp as an indicator of

information quality, where σpexp
is an expected value of the dis-

persion of personal estimates Xp (the values of the σpexp
are

given in the electronic supplementary material, table S1), and
V the (log) deviation from the truth of the virtual influencers esti-
mates TI. We obviously did not know the dispersion of
estimates before running the experiment. Yet, because the ques-
tions were similar to others used in a previous study [18], we
could formulate reasonable expectations. Indeed, electronic
supplementary material, figure S2 shows that σpexp

scales line-
arly with the actual dispersion of estimates σp, although
it tends to underestimate it. α thus represents the deviation
of TI from the truth T in the (expected) natural scale of
each question. The value TI introduced in the sequence of esti-
mates is hence TI ¼ T � 10aspexp , and equals the true value T
when α = 0. Subsequently, to study the impact of information
quality on the group performance, we introduce the variable
Y =X/σp, where σp is the dispersion ofXp for a given question,
and define:

(i) individual accuracy as the median of the absolute
values of the Y of all individuals i, averaged over all
questions q: 〈mediani(|Yi,q|)〉q, and

(ii) collective accuracy as the absolute value of the median
of the Y of all individuals i, averaged over all questions
q: 〈|mediani(Yi,q)|〉q.
Individual accuracy measures how close individual esti-
mates are to the truth (i.e. close to 0 in terms of log
variables X) on average, while collective accuracy measures
how close the median estimate is to the truth. Both measures
are distinct, although related. Indeed, an improvement in col-
lective accuracy amounts to a shift of the median estimate
towards the truth, which is perforce accompanied by an
improvement in individual accuracy, as individual estimates
also get, on average, closer to the truth. However, there can
be individual improvement without collective improvement
if estimates converge after social influence, but without a
shift of the median (as shown and discussed in [18]).

Figure 6 shows that both measures improve after social
influence (i.e. red dots are closer to 0 than blue dots), over
almost the whole range of the considered values of α, suggesting
that incorrect information can, counterintuitively, be ben-
eficial to the performance of groups. Our results also
suggest that individual accuracy slightly improves after
social influence when r ¼ 0% (i.e. no virtual influencers), but
not collective accuracy, confirming previous findings [18].

Moreover, the optimum value αopt of α at which collective
or individual accuracy improves the most is strictly positive,
confirming the model prediction in [18] that such improve-
ment is maximized not by providing perfectly accurate
information to individuals, but information that overesti-
mates the true value. Such incorrect information partly
compensates the underestimation bias, thus bringing second
estimates closer to the truth.

Collective accuracy before social influence (blue dots and
lines) represents the absolute value of the collective bias of
the group, i.e. the distance between the median estimate
and the truth, averaged over all questions. If the value of
the collective bias is α0≈−0.72, one may naively expect that
αopt =−α0 in order to compensate the collective bias and
thus optimize collective accuracy. However, because not all
subjects follow the social information fully, one should
rather expect αopt >−α0, as supported by the data and model.

The fraction ρ of virtual influencers has no significant effect
on collective accuracy in the data in figure 6. However, the
simulations of the model predict that collective accuracy
degrades after social influence either when α < αmin≈−1.2
(for both r ¼ 20% and r ¼ 43%) or when α > αmax≈ 13.4 for
r ¼ 20% and αmax ≈ 7.2 for r ¼ 43%, which corresponds,
respectively, to hspexp q

iq � amax � 0:46� 13:4 � 6:2 and
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hspexp q
iq � amax � 0:46� 7:2 � 3:3 orders of magnitude

beyond the true value (see the electronic supplementary
material, figure S3). The impact of α is therefore not symme-
tric with respect to its optimum αopt: incorrect information
that largely overestimates the truth can still be beneficial to
collective accuracy, while incorrect information that only
moderately underestimates the true value is enough to
damage collective accuracy. The same analysis remains true
for individual accuracy, only with different values of αopt,
αmin, αmax and α0.

Electronic supplementarymaterial, figure S4 shows individ-
ual and collective accuracy for the four categories of questions.
Unexpectedly, subjects are found less accurate for questions
involvingvisual perception (electronic supplementarymaterial,
figure S4 left column), compared to the other categories which
show similar levels of accuracy to one another as well as to
when all questions are combined (figure 6). This suggests that
estimations involving visual perception are not strictly identical
to estimations based on personal knowledge/memory only,
although they both are based on similar cognitive processes
[31,32]. Indeed, to estimate populations of large cities, daily
life facts or extreme events, subjects can only rely on their
prior, personal information. However, when actually seeing
objects in an image, subjects can attempt to directly measure
the lengths/areas/volumes or number of objects to ultimately
answer the questions of the first category. In the electronic sup-
plementary material, figure S5, we show the absolute collective
and individual accuracy for the four categories of questions,
i.e. the accuracy before normalizing estimates X by their intrin-
sic dispersion σp for each question. Before the normalization is
done, individuals are more accurate for visual perception ques-
tions and populations of large cities than for daily life facts and
extreme events, as expected from their respective demonstrabil-
ity (figure 3b). It is, therefore, only when measuring subjects
performance relative to the intrinsic dispersion of questions
that the difference between visual perception questions and
other questions is revealed.
3.5. Incorrect information and sensitivity to social
influence

It has been shown that estimation accuracy strongly depends
on the sensitivity to social influence of individuals in groups
[18]. Analysing the above results in the light of the five behav-
ioural categories of sensitivity to social influence (figure 5b)
helps us to understand the mechanisms underlying them.
They cannot be explained by contradicters (S < 0), adopters
(S = 1) or overreacters (S > 1), who only represent a small per-
centage of the population. Figure 7 shows collective and
individual accuracy as a function of α, for the keepers and
compromisers, which together represent a substantial fraction
of the population (approx. 91%). Note that the effects are
clearer when this separation into behavioural categories is
made (compare to figure 6).

Because keepers disregard social information, we observe
no improvement in individual or collective accuracy after
social influence (figure 7a,b,e,f ). However, compromisers
(figure 7c,d,g,h), who partly follow the social information,
significantly improve their performance over the whole
range of incorrect information tested here (except for α =−2
and r ¼ 43% of virtual influencers). Indeed, because subjects
in general, and compromisers in particular, tend to substan-
tially underestimate quantities, they can improve their
estimates by following incorrect social information that is
closer to the true value than their own personal estimate.
Moreover, partially following social information that overes-
timates the truth allows their second estimates to reach more
accurate values, even when the overestimation is quite pro-
nounced. Conversely, individual and collective accuracy
degrade quickly when compromisers are given incorrect
social information which reinforces their natural cognitive
bias by underestimating the true value. Compromising
thus allows group members to take advantage of incorrect
information, as long as this information goes against their
cognitive bias.
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Figure 8 shows the equivalent graphs for the ‘isolated’
subjects of our experiment (see the electronic supplementary
material, Material and methods). Isolated subjects received as
social information for each question, an estimate TI generated
from a random value of α uniformly distributed in the interval
[− 3, 3]. Figure 8 confirms the above conclusions, but dis-
plays sharper patterns, owing to a discretization effect:
social information in the main experiment was generated
from a discrete set of values of α, whereas for isolated sub-
jects, it was drawn from a continuous distribution.

Before social influence (blue), we find that keepers are
slightly more accurate than compromisers (average collective
accuracy: 0.98 versus 1.07; average individual accuracy: 1.08
versus 1.28). This was already observed in [18], and justified
by the fact that a higher tendency to disregard social infor-
mation is usually associated with a higher average
confidence of the subjects in their own estimates, which
often comes with a higher prior knowledge about the quan-
tity to estimate.

Note the slight U-shaped curve for keepers in figure 8a,c.
This effect is a direct consequence of people’s tendency to
stick to their personal estimate more when the social infor-
mation is closer to it (figure 5c): when participants receive
inaccurate information and retain their opinion, it is often
because they were close to it and therefore relatively inaccur-
ate too. Conversely, when participants receive accurate
information and keep their opinion, it is often because they
were close to it and therefore quite accurate too. Both effects
can be observed in figure 7, but are less pronounced there.

3.6. Influence of the fraction of virtual influencers on
individual behaviour

We have seen that compromisers, by partially following
social information, were able to improve their accuracy over
a wide range of incorrect social information. Figure 9 shows
the fraction of keepers and compromisers as a function of
α, when r ¼ 20% (figure 9a) and r ¼ 43% (figure 9b) of virtual
influencers are introduced in the sequence of estimates.

When r ¼ 20%, both fractions of compromisers and
keepers remain more or less independent of α (figure 9a).
However, when the proportion of virtual influencers providing
incorrect information is doubled (r ¼ 43%, figure 9b), the
fraction of compromisers gradually increases (from 0.5 to
0.68, orange line) with α (from −2 to 3), at the expense of
the fraction of keepers which decreases (from 0.38 to 0.25,
brown line). For this to happen, this increasing transition
from keeping to compromising behaviour as α increases
thus necessitates a significant proportion of subjects to be
provided with incorrect social information. Moreover, this
result also suggests that subjects not only adapt their behav-
iour to the degree of incorrectness of the social information
they receive but also tend to compromise more with some
social information that overestimates the truth, than with
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some social information that underestimates it. The model
predicts this increased behavioural transfer with α, even
when r ¼ 20%. This is a direct consequence of the cusp
relationship between the sensitivity to social influence S
and the distance to the social information D (figure 5c):
people tend to compromise with the social information
more as it gets farther from their personal estimates (and
from the truth) on average. However, this effect is signifi-
cantly stronger in the data, suggesting that other
mechanisms exist that are not implemented in the model.
Electronic supplementary material, figure S6 demonstrates
that this increasing fraction of compromisers with α when
r ¼ 43% leads to an increased improvement in individual
and collective accuracy for the whole group after social influ-
ence (but not when r ¼ 20%).
oc.Interface
17:20200496
4. Discussion
Understanding the effects of incorrect information on indi-
vidual and collective decisions is crucial in modern digital
societies, where social networks and other vectors of infor-
mation allow a fast and deep flow of information, the
accuracy of which is increasingly hard to verify [33]. Here,
we rigorously controlled the quality of the information deliv-
ered to subjects in estimation tasks, by means of virtual
influencers, i.e. virtual agents inserted into the sequence of
estimations—unbeknownst to the subjects—and providing a
value whose level of inaccuracy was controlled. We were
thus able to precisely quantify the impact of information
quality on individual and collective accuracy in those tasks.

We demonstrated that a proper normalization of esti-
mates must take into account their dispersion, which gives
the natural range of ‘reasonable’ estimates of a given quantity
for a given group. This normalization process led to the con-
clusion that estimates follow a Laplace distribution when
subjects have little prior information about a quantity to esti-
mate. Early research showed that in many datasets, estimates
X (i.e. deviations from the truth) were often close either to
Gaussian distributed or to Laplace distributed [34,35]. Later
work have encompassed Laplace and Gaussian distributions
into a broader family of exponential distributions, the gener-
alized normal distributions (GND) family [36,37], described
by their centre m (often called location parameter), width σ
(often called scale parameter) and tailedness η (often called
shape parameter), which controls the thickness of the tails.
The fatter the tails of a distribution, the higher the probability
to find outliers (i.e.estimates that are very far from the distri-
bution centre). More recent work has studied various datasets
of estimates and forecasts in the light of GND, and showed
that the tailedness of distributions ranged from η = 1 (Laplace
distribution) to η = 1.6, η being equal to 2 for Gaussian distri-
butions [38]. They concluded that most distributions of
estimates for usual quantities are actually closer to Laplace
distributions than to Gaussian distributions. This discussion
can be related to the amount of prior information held by
a group about a certain quantity. We found that when a
quantity is ‘hard’ to estimate (i.e. low demonstrability, corre-
sponding to a low amount of prior information about the
quantity in the group), the expected distribution of estimates
is very close to a Laplace distribution. When a quantity is
‘easy’ to estimate (i.e. high demonstrability, corresponding
to a high amount of prior information about the quantity in
the group), few outliers are expected, such that the distri-
bution of estimates could be expected to be closer to a
Gaussian distribution. However, our results show that
regardless of the questions’ demonstrability, distributions of
estimates are significantly closer to Laplace distributions
than to Gaussian distributions when properly normalized,
in agreement with [38]. In any case, we consider that future
studies involving estimation tasks should apply the normal-
ization procedure presented here when comparing and
aggregating the estimates of different quantities, for which
the width σp should be used to quantify their
demonstrability.

We then studied the impact of incorrect information on
individual and collective accuracy, and found that providing
incorrect information that overestimates the true value can
help a group perform better than providing the correct
value itself, by partly compensating for the human underes-
timation bias. Moreover, collective and individual accuracy
can improve after social influence over a surprisingly wide
range of incorrect information. This counterintuitive result
is a consequence of a large proportion of individuals compro-
mising with the social information, i.e. partially following it.
By doing so, subjects are able to benefit not only from rela-
tively accurate social information but also from incorrect
information that goes against their cognitive bias. Indeed,
because of the human tendency to underestimate quantities,
partially following an overestimation of the truth—even a
large one—can bring second estimates closer to the truth,
thus improving accuracy. However, incorrect social infor-
mation can also harm accuracy if it amplifies the bias. This
may be related to some deleterious effects of social infor-
mation observed at times, for instance, how the spread of
misinformation can deeply affect the behaviour of crowds
as well as public opinion [39,40].

In a former study [18], we showed that adopting the
social information was the best strategy in order to improve
accuracy, if virtual influencers provide perfectly accurate infor-
mation in the sequence of estimates. However, while
adopting can lead to higher performance than compromising
in this particular case, our results show that compromising
offers more resilience when the information provided is
potentially less accurate.

We also found that subjects were sensitive to the degree
of incorrectness of the social information they received.
They adapted their behaviour to the social information,
by compromising more with the social information as it
overestimated the truth more, and compromising less as it
underestimated the truth more. This asymmetric strategy is
surprisingly well adapted to counter the human underesti-
mation bias. Indeed, as explained above, following (even
partly) social information that underestimates the truth may
increase the bias, while following social information that
overestimates the truth may decrease it. Following less in
the former case, and more in the latter is thus bound to
increase the performance of groups. Former studies have
already observed this subjects’ tendency to rely more on
social information that is higher than their personal estimate,
than on social information that is lower, and showed that it
had valuable consequences for collective performance in esti-
mation tasks [29,30]. In [30], it is suggested that people can
more easily assess the validity of small numbers compared
to large numbers, because they have no direct experience
with events related to those large numbers [41], and as a
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consequence reject more often small numbers provided by
the social information.

We then used a modified version of a model of collective
estimation developed in [18]. The predictions of the model
are in good agreement with the experimental data, and con-
firm that to optimize collective accuracy, social information
must overestimate the truth further than merely compensat-
ing the initial collective bias, as most individuals only
partly follow social information. In addition, the impact of
the quality of information is not symmetric with respect to
its optimum: collective accuracy can be improved by deliver-
ing incorrect information which overestimates the true value
by up to several orders of magnitude, whereas it decays fast if
the information delivered only slightly underestimates it. In
other words, social information reinforcing the bias of the
group has a strong negative impact on its accuracy.

Overall, we found that incorrect social information does
not necessarily impair the collective wisdom of groups, and
can even be used to counter some deleterious effects of cog-
nitive biases. Individuals demonstrated an ability to
discriminate the validity of the social information, depending
on its distance from their personal estimates, and thus to
benefit from accurate social information, while at the same
time resisting inaccurate social information. These results
suggest that groups of people may be more resilient to mali-
cious information than is often thought, and at the same time
that the negative effects of identified biases can be dampened
by exchanging relevant social information, thus improving
collective decisions.
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