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A B S T R A C T   

Increasing temperature and atmospheric [CO2] can change plant VOC emissions, thereby providing a possible 
feedback to climate change by altering particle and greenhouse gas formation. While evidence gathered on 
isoprene emission generally indicated an inhibitory effect of elevated CO2 on emission at moderate temperature, 
it is unclear whether the emissions of other volatiles respond in a similar way. In a greenhouse study, we grew 
Artemisia annua plants under two [CO2] regimes (400/800 ppm) combined with two temperature regimes (25/15 
and 30/20 �C) and determined emissions at two assay [CO2] (400/800 ppm) combined with two assay tem-
peratures (30/37 �C). Foliar VOC concentrations were unaffected by growth conditions and resembled emissions 
consisting mainly of monoterpenes (>92%) and sesquiterpenes (>7%). Mean emission rates determined at 30 �C 
and 400 ppm [CO2] ranged between 1.2 and 2.5 μg g� 1h� 1 (11–26 ng m� 2s� 1) with lowest values observed for 
elevated-[CO2]-grown plants. However, this apparent negative effect of growth [CO2] was compensated by 
increased plant growth. Irrespective of growth conditions, doubling assay [CO2] significantly reduced emissions 
at 37 �C by about 30% and had no effect at 30 �C. Emissions always increased on the increase in assay tem-
perature, with monoterpenes responding more strongly than sesquiterpenes (mean %-increase of 17.5 and 12.5 
�C-1). Our results suggest that the future evolution of VOC release from A. annua depends mainly on the 
antagonistic emission responses to temperature and [CO2], while long-term acclimations play a minor role.   

1. Introduction 

Terrestrial vegetation releases into the atmosphere a large variety of 
organic molecules commonly called Biogenic Volatile Organic Com-
pounds (BVOC). BVOCs differ in size and physicochemical properties 
but have all in common a relative high vapor pressure at ambient tem-
perature and a low boiling temperature (Kesselmeier and Staudt, 1999). 
Hence all BVOCs potentially evaporate out of the plant tissues and 
spread in the surrounding environment, where they may encounter 
other organisms. Many BVOCs are known to mediate interactions be-
tween plants and other organisms: they are involved in plant repro-
duction by attracting pollinators (Wright and Schiestl, 2009), have 
defense functions against pathogens and herbivores directly through 
their antimicrobial and repellent properties (Dudareva et al., 2013) or 
indirectly by attracting enemies of herbivores (Heil, 2008). Further-
more, certain compounds may confer protection against abiotic stresses 
and/or serve as “airborne phytohormones” signaling stress between the 

organs of a same plant, and between plants of a same or different species 
(Kessler et al., 2006). 

However, once in the atmosphere BVOCs become part of the chem-
ical processes that regulate several radiative forcing components and 
hence the earth’s climate. Notably, they alter greenhouse gas concen-
trations by influencing the formation of ozone and the lifetime of 
methane in the troposphere and modify the optical properties of the 
atmosphere by favoring the formation and growth of secondary organic 
aerosols and cloud condensation nuclei (Sartelet et al., 2012; Ziemann 
and Atkinson, 2012). In particular larger molecules such as mono-
terpenes (C10) and sesquiterpenes (C15) are efficient precursors for 
aerosol formation over rural, forested areas, while smaller BVOCs such 
as isoprene (C5) - which is globally the most emitted BVOC - has rather a 
modest productivity of particles (Jokinen et al., 2015; Zhang et al., 
2018; McFiggans et al., 2019). The emissions of these terpenes are 
therefore potential actors to be considered in global climate change 
research, because climate change factors may affect their fluxes, which 
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in turn could feedback on climate evolution (e.g. Harper and Unger, 
2018; Sporre et al., 2019). 

Global climate change is characterized by an increase in mean tem-
perature and the concentrations of greenhouse gases such as carbon 
dioxide, methane and ozone but also by the increase in the frequency 
and intensity of precipitation, drought and extreme weather events in 
general. Temperature and CO2 concentration have been continuously 
rising since the end of the 19th century. Climate models predict that 
mean global surface temperature further rises up to 2–6 �C and mean 
global [CO2] to 800 ppm by 2100 with no or relative moderate regional 
differences compared to other climate factors such as precipitation 
(Pachauri et al., 2014). Therefore and because both factors are key 
drivers of the plant’s metabolism, rising temperature and [CO2] may 
substantially change the BVOC fluxes from all vegetation cover over the 
world (Kulmala et al., 2004; Pe~nuelas and Staudt, 2010). However, es-
timates of BVOC fluxes at large scales and how they evolve in a warmer 
CO2-enriched world are associated with large uncertainties (Jiang et al., 
2019). 

Studies that investigate and model the influence of environmental 
factors on isoprenoid emissions typically dissociate between short-term 
and long-term effects (Grote and Niinemets., 2008; Niinemets et al., 
2010; Guenther et al., 2012; Monson et al., 2012). Short-term effects 
imply fast changes of emission in response to changes of environmental 
drivers that come rapidly to a new steady state, usually within tenths of 
minutes (e.g. Monson et al., 1991; Staudt et al., 2003). By contrast 
long-term acclimation effects describe slow changes in the steady state 
emission rate at standard environmental conditions (30 �C temperature, 
1000 μmol m� 2 s� 1 incident photosynthetic photon flux density and 400 
ppm atmospheric [CO2]) also called basal emission rate or emission 
capacity. Long-term changes typically proceed over hours, days or 
months and may involve gene activation, metabolic adjustments, 
phenological changes and leaf anatomical acclimations (Harrison et al., 
2013; Staudt et al., 2017a). So far, the effects of temperature are better 
known and described than CO2 effects, and in both, the short-term in-
fluences better than their longer-term influences on emissions (for 
overview see Pe~nuelas and Staudt, 2010; Holopainen et al., 2018; Feng 
et al., 2019). Furthermore, the emissions of isoprene has been widely 
studied by the scientific community and its response to environmental 
factors is relatively well simulated, while there is more variability and 
uncertainty in the emission responses of higher isoprenoids. The foliar 
emission rate of isoprene is closely related to its biosynthesis rate, 
because in isoprene producing tissues the pool sizes of isoprene and its 
direct precursors are small and sustain emission only few minutes 
(Sharkey et al., 2007). Its emission is regulated on the short-term by both 
light and temperature (Grote and Niinemets, 2008; Harrison et al., 
2013). Isoprene emission increases in response to temperature expo-
nentially to an optimum around 40 �C, above which the emission de-
creases. In response to light, isoprene emission increases in a hyperbola 
shape similar to that of photosynthesis. As regards the short-term CO2 
effect, many studies revealed that isoprene emission decreases with 
increasing [CO2] (Sharkey and Monson, 2014; Monson et al., 2016; 
Rasulov et al., 2018; Lantz et al., 2019 and references therein). The re-
ported degrees of isoprene inhibition at elevated [CO2] depended on the 
applied CO2 levels (e.g. Monson and Fall, 1989), but also on the actual 
leaf temperature (e.g. Loreto and Sharkey, 1990). Generally, the 
short-term inhibitory effect of high CO2 on isoprene emission becomes 
reduced with increasing temperature and is completely offset at tem-
peratures around 35 �C or higher. The CO2 responsiveness of isoprene 
emissions can also vary among plant species and be modulated by the 
plant’s growth conditions (e.g. Sharkey et al., 1991; Wilkinson et al., 
2009). 

Monoterpenes and sesquiterpenes are typically emitted by plants 
that store these BVOCs inside specialized secretory organs like resin 
ducts, glandular trichomes or oil cavities, where they are synthesized 
and accumulated during the leaf development (Turner et al., 2000; 
Franceschi et al., 2005; Tissier et al., 2017). Buffered by large storage 

pools, the release of terpenes from these organs is uncoupled from 
biosynthesis. It is essentially driven by the vapor pressure and the re-
sistances along the diffusion paths (Staudt et al., 2017b). The emissions 
are not light dependent and the temperature response has no apparent 
temperature optimum. Emissions increase exponentially with tempera-
ture, where the slope of the log-linear relationship (β-value) is used to 
describe and model the emission responsiveness to temperature 
(Guenther et al., 2012). However, numerous studies have been ques-
tioned this paradigm by showing that terpene storing species also emit 
de-novo-synthesized terpenes that can be the same or different isomers 
with respect to their storage-derived emissions (e.g. Ghirardo et al., 
2010; Staudt et al., 2019; Huang et al., 2018). It is therefore possible that 
a fraction of their emissions are also inhibited by elevated CO2 and show 
a response pattern similar to that of isoprene as indicated by studies 
conducted on non-storing monoterpene emitters (e.g., Loreto et al., 
1996; Rapparini et al., 2004). To our knowledge only seven studies have 
investigated the effects of elevated CO2 (alone or along with other fac-
tors) on constitutive terpene emissions from ten terpene storing plants, 
nine of which were diverse coniferous species and one the aromatic 
shrub rosemary. Of the ten investigated species, two showed decreased 
emissions (Taxodium distichum (Llorens et al., 2009), hybrid larch 
(Mochizuki et al., 2017)), two increased emissions (Metasequoia glyp-
tostroboides (Llorens et al., 2009), Cryptomeria japonica (Mochizuki et al., 
2018)), and five unchanged emissions of terpenes in response to 
elevated CO2 (Pinus radiata (Juuti et al., 1990), Rosemary (Pe~nuelas and 
Llusi�a, 1997), Pinus ponderosa and Pseudotsuga menziesii (Constable 
et al., 1999), Pinus sylvestris (R€ais€anen et al., 2008; Llorens et al., 2009)). 
The experiments of Constable et al. (1999) and R€ais€anen et al. (2008) 
combined growth CO2 treatments with two growth temperature treat-
ments, but only in the latter study emissions were reported for all 
treatments. Based on temperature normalized emission rates, R€ais€anen 
et al. (2008) observed significantly increased terpene emissions from 
Scots pine grown under both elevated CO2 and elevated temperature, 
whereas growth under elevated CO2 alone had no significant effect, and 
growth under elevated temperature alone significantly decreased the 
emission rate. However, neither this work on Scots pine nor any other 
above cited studies on terpene emissions, dissociated experimentally 
long-term acclimation effects of growth under elevated CO2 from the fast 
responses of emissions to CO2, and its possible modulation by temper-
ature as evidenced for isoprene emission. Thus according to our litera-
ture survey, much more experimental work on terpene storing plants is 
needed to understand and predict how their BVOC emissions respond to 
future climate conditions. 

In order to contribute filling this gap, we designed an experiment, in 
which we grew Sweet wormwood plants (Artemisia annua L., Asteraceae) 
under two CO2 regimes combined with two temperature regimes and 
determined emissions at two assay [CO2] (400 and 800 ppm) combined 
with two assay temperatures (30 and 37 �C). More specifically, we 
addressed the following questions:  

- Which VOCs are released at what rates from A. annua foliage under 
environmentally controlled conditions and how do emissions 
compare with the foliar VOC concentrations?  

- Does the actual emission rate of BVOCs respond to changes in assay 
CO2 and if so does the CO2 responsiveness depend on the actual assay 
temperature ?  

- Does growth under warmer and/or CO2 enriched atmospheres 
modulate the fast emission responses to CO2?  

- Do growth conditions affect the overall VOC emission capacity and/ 
or foliar VOC concentrations? 

We chose A. annua in the present study, because it is a widely 
distributed, strongly aromatic herb. Native to Asia, it was naturalized 
throughout the world and is cropped in many countries under warm 
temperate climates. In fact, A. annua is the only source of artemisinin, a 
non-volatile endoperoxide sesquiterpene lactone, identified as the 
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compound active against protozoan parasites of the genus Plasmodium 
responsible for malaria (Gershenzon and Dudareva, 2007; Xiao et al., 
2016). A. annua culture involves environmental risks due to the toxicity 
of artemisinin leached in soil and groundwater (Herrmann et al., 2013). 
A. annua is also considered as an invasive weed species, whose distri-
bution has continuously expanded in Europe, and is expected to further 
increase with global climate warming (Follak et al., 2013). Its essential 
oil, which is also used in perfumery and cosmetics, is produced and 
stored in peltate glandular trichomes and contains mainly monoterpenes 
and sesquiterpenes (Woerdenbag et al., 1993; Tissier et al., 2017; Des-
rosiers et al., 2019). 

2. Material and methods 

2.1. Plant material and long-term treatments 

A. annua seeds were obtained from the supplier ChilternSeeds (UK). 
They were grown from end of April to beginning August 2018 in four 
identical glasshouse compartments at the Center for Functional and 
Evolutionary Ecology under two temperature regimes combined with 
two CO2 regimes: normal temperature and ambient CO2 (25/15 �C day/ 
night temperature and 400 ppm CO2 concentration, referred to hereafter 
as: “Ambient”), elevated temperature and ambient CO2 (30/20 �C, 400 
ppm [CO2], “þT”), normal temperature and elevated CO2 (25/15 �C, 
800 ppm [CO2], “þCO2”), and both elevated temperature and CO2 (30/ 
20 �C, 800 ppm [CO2], “þT þ CO2”). Plants were repeatedly sown 
during the period in order to have tests plants of similar size and 
development stage at any time of the experiment. For sowing, seeds 
were mixed with fine sand and then scattered on the surface of a mixture 
of compost and sand. Individual, well developed seedlings were trans-
planted into homemade cylindrical pots (2.8 L volume, 15 cm diameter, 
16 cm height) containing the same substrate mixture used previously. 
The pots were inside lined with a Teflon sheet (FEP, 50 μm thickness), 
which at the upper open pot side was double folded over the border and 

fixed with a silicon sealing ring taking care to let about 10 cm of Teflon 
sheet extending beyond the pot border. 

2.2. Plant exposure system 

Volatile emissions were determined by dynamic headspace tech-
nique using a system allowing to study VOC emissions from the whole 
foliage of small plants under environmentally controlled conditions. The 
system was composed of two double walled glass chambers settled side 
by side, closed on top by a removable glass lid and open underside to 
enable the installation of the potted plants (Fig. 1). The inner headspace 
volume of the chambers was about 5 L. Homogenous mixing of the air in 
the chambers was maintained by small Teflon fans fixed at the chamber 
lids (motor outside). Temperature control of the chambers was carried 
out by circulating water from a water-bath around the double walled 
chamber section. A programmable temperature controller regulated 
constantly the temperature of the water bath to achieve the target air 
temperature measured by a thermocouple inside the chamber head-
space. Additional thermocouples (Chrom-Constantan, OMEGA) were 
inserted to survey the chamber air temperatures. Photosynthetic Photon 
Flux Density (PPFD) was monitored with two quantum sensors (LI-COR, 
PAR-SB 190, Lincoln, NE, USA) located outside the chambers at middle 
height of the plants. A programmable LED lamp (LX60 Heliospectra AB, 
G€oteburg, Sweden) illuminated the chambers with a PPFD of approx. 
600 μmol m� 2 s� 1. Temperature and PPFD values were recorded by a 
data logger (21x; Campbell Scientific Ltd., Shepsherd, UK). 

The chambers were continuously flushed with charcoal filtered 
ambient air via PFA tubing at constant rates regulated by mass flow 
controllers (Mass Stream, M þ W Instruments GmbH, Leonhardsbuch, 
Germany). Pure CO2 was injected from a 5 L tank via high precision mass 
flow regulators (El-Flow Select, Bronkhorst France S.A.S., Montigny-les- 
Cormeilles, France) to achieve the warranted CO2 concentrations inside 
the chambers. CO2 concentrations were manually adjusted before and 
during the acclimation phases of the plants to assay conditions and 

Fig. 1. Enclosure system used for the measurement of VOC emissions from the entire foliage of Artemisia annua plants. The red arrows indicate the direction of the 
airflow. The double walled middle section of the chamber with the temperature-regulated water circuit is shown in blue. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 

J. Daussy and M. Staudt                                                                                                                                                                                                                      



Atmospheric Environment: X 7 (2020) 100082

4

generally changed little once photosynthesis had reached steady state. 
The CO2 concentrations of the air entering and leaving the chambers 
were continuously measured and recorded by infrared gas analyzers (LI- 
COR 840 combined with LI-COR 7000, LI-COR Inc., Lincoln, Nebraska, 
USA). 

2.3. VOC sampling and measurement protocol 

Prior installation of the plants inside the chambers, the Teflon sheet 
protruding the upper pot border was gently wrapped around the stem 
basis and loosely sealed with a Teflon tape to separate the soil with the 
root system from the above ground organs (Fig. 1). The glass chambers 
having the same diameter as the pots were then carefully placed on the 
pots with plants and sealed outside with a sealing ring to improve the air 
tightness of the system. The plants were mounted in the experimental 
device the night before the experiment started (on average 17 h) and 
flushed with charcoal filtered ambient air at a high rate (~3 L min� 1) to 
remove any residuals of VOC bursts that potentially occurred during 
plant installation (Niinemets et al., 2011). Indeed, preliminary tests 
showed that even tiny movements of the leaves caused for example by 
switching on the enclosure fan triggered temporary emission increases 
that were still detectable after 1 h. 

The measurements were started in the next morning around 9 a.m. 
To measure VOC emissions, the chamber flow rate was reduced to 1 L 
min� 1 (chamber flushing half-time ca. 3.4 min) and CO2 concentration 
and air temperature were set to one of the following four assay condi-
tions: Standard temperature and normal CO2 (30 �C, 400 ppm [CO2], 
referred to hereafter as: “30 � 400”), high temperature and normal CO2 
(37 �C, 400 ppm [CO2], “37 � 400”), standard temperature and high 
CO2 (30 �C, 800 ppm [CO2], “30 � 800”), and both high temperature 
and high CO2 (37 �C, 800 ppm [CO2], “37 � 800”). These assay tem-
peratures were chosen to detect the possible interaction of temperature 
on CO2 responsiveness as shown for isoprene emissions. At 37 �C, which 
lies in the range of temperatures optimal for VOC emissions and supra- 
optimal for net-photosynthesis, the inhibitory effect of high CO2 on 
emissions typically disappears (Sharkey and Monson, 2014; and other 
references cited above). Furthermore, 30 �C is the standard temperature 
commonly applied to determine the plant’s emission capacity for 
emission modelling (Guenther et al., 2012). VOC emissions of each 
replicate plant were subsequently measured at the four assay conditions, 
whereby the order of the assay conditions was randomly reversed to 
avoid a potential bias associated with potential intrinsic diel variation in 
emissions. Before VOC sampling plants were maintained at target assay 
conditions for at least 30 min after photosynthesis had reached a new 
steady-state. After the last measurement around 3 p.m., plants were 
removed and the foliage was harvested for the determination of surface 
area and dry weight and the extraction of stored VOCs. On the whole, six 
replicate plants per growth treatment were measured at the 4 assay 
conditions, whereby the order of growth treatments was randomly 
changed throughout the duration of the experiment. 

VOCs in the chamber air were trapped on adsorbent cartridges 
(stainless steel, Perkin Elmer, Villebon, France) packed with two ab-
sorption polymers (Tenax TA and Carbotrap). 2 L of air from the 
chambers with or without plants (i.e., background measurement) was 
drawn through the tubes at 0.2 L min� 1 by mean of pumps and mass flow 
regulators. Background measurements were made approx. 50 min after 
plants were removed from the chambers while continuously flushed 
with clean air at the same rate. To close the open bottom of the cham-
bers, two pots filled with substrate and lined with Teflon sheets (iden-
tical to the pots with plants) were fitted under the chambers. Additional 
empty chamber measurements were made at extra days without any 
plant measurements to check temporal variations of background con-
centrations and memory effects in the device. 

2.4. Solvent extraction of stored VOCs 

After VOC emission measurements, five leaflets of the plant were cut, 
rapidly weighed on a microbalance (on average 0,52 g) and plunged into 
10 mL of dichloromethane. The extraction tube was placed for 10 min in 
an ultrasonic bath, then vortexed for 1 min and left for 1 h at room 
temperature. After maceration, the plant material was removed. An in-
ternal standard of 4 mL biphenyl (0.1 mg mL-1) was added to the extract 
before concentration to a volume of 225 μL in a moderate nitrogen flow. 
The concentrated sample was stored at � 20 �C until analysis. 

2.5. VOC analysis 

All VOC analysis were carried out at the Ecological Chemical Anal-
ysis Platform of the CEFE institute. Volatiles trapped on adsorption 
cartridges were analyzed by GC-MS using an automatic thermal 
desorption system (TD-20, Shimadzu France, Marne-la-Vall�ee, France) 
coupled to a Shimadzu GC-MS QP2010 Plus equipped with a DB5 col-
umn (30 m � 0.25 mm i.d., 0.25 μm film thickness). Trapped VOCs were 
thermally desorbed and injected in splitless mode into the column after 
pre-concentration in a cold trap with the following temperature pro-
gram: desorption 15 min at 230 �C, preconcentration at � 30 �C on a 
Tenax TA cold trap, injection 5 min at 230 �C, transfer-line 200 �C. The 
GC oven program was: 2 min at 40 �C, 5 �C min� 1 to 200 �C, 10 �C min� 1 

to 270 �C held for 6 min. Leaf extracts were analyzed by a second Shi-
madzu GC-MS QP2010 Plus instrument equipped with the same DB5 
column. An aliquot of 1 μL of the concentrated leaf extracts was injected 
with a split ratio of 4. The GC oven temperature program was: 40 �C for 
1 min, 3.2 �C min� 1 to 100 �C, 2.90 �C min� 1 to 170 �C, 10 �C min� 1 to 
250 �C held for 6 min. Both GC-MS used helium as carrier gas at a 
constant flow of 1 mL min-1. The MS ion sources were operated at 70 eV 
and 200 �C. 

GC-MS data were processed using the GC-MS Solution package, 
Version 4.11 (Shimadzu Corporation 2013). Identification of the com-
pounds was realized by comparing mass spectra and retention indices 
with those of authentic VOC standards, databases (Wiley 9, Nist 11, 
Adams) and alkane standards. For quantification, we used standard so-
lutions of (Z)-3-hexenylacetate, linalool, methyl salicylate and β-car-
yophyllene in three different concentrations (approximately 100, 10 and 
1 ng μl� 1 each compound), which were prepared from authentic pure 
standards (Fluka, Sigma) using methanol as solvent. Each substance 
represents a class of VOCs typically found in A. annua. Multipoint cali-
brations for all standards revealed a good linear dependency of peak 
area to the respective compound concentration. For each standard VOC, 
the slope of the linear relationship was used as calibration factor (peak 
area ng� 1) for all molecules of the same VOC class (i.e. LOX, mono-
terpenes, phenolic compounds, sesquiterpenes). On average, the cali-
bration factors of the four selected standard VOCs diverged by 30% with 
the lowest sensibility observed for methyl salicylate and the highest for 
β-caryophyllene. 

2.6. Calculations and statistics 

The emission rate of a given VOC was calculated as the difference 
between the VOC concentration in the chamber with plant and the 
concentration in the empty chamber (zero in many cases), multiplied by 
the chamber air flow rate and divided by either the dry weight or the 
projected leaf area of the enclosed foliage. VOC amounts in the leaf 
extracts were calculated from the amount of internal standard weighed 
for differences in the calibration factors of the VOC classes. Foliar VOC 
concentrations were expressed per leaf dry weight, which was estimated 
from the fresh weight of the measured leaflets and the ratio of fresh 
weight to dry weight determined on adjacent leaflets. Fresh and dry 
weights (24 h at 60 �C) were measured on a microbalance (Mettler, 
model AE 100) and leaf area from scans using the Image J software. It 
should be noted that losses of stored VOCs occurring during foliage 
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harvest, leaf area determination and oven drying have likely lead to a 
slight underestimation of the foliage dry weight (<1%, cf. Table 1, see 
also Portillo-Estrada et al. (2015) on this issue). 

The photosynthesis rate A was calculated according to Von Caem-
merer and Farquhar, 1981 (equation (1)): 

A¼
ue

s
�

�

ce � co�

�
1 � we � 10� 3

1 � wo � 10� 3

��

;
�
μ mol  m� 2s� 1� (1)  

where ue, the molar flows of air entering the glass chambers (mol s-1), s is 
the leaf area (m2), ce/co the mole fractions of CO2 entering/leaving the 
glass chambers (μmol mol-1), and we/wo the mole fraction of water 
vapor entering/leaving the glass chambers (mmol mol-1). It should be 
noted that water condensation occasionally occurred at high assay 
temperature in the chamber outlet and tubing. Therefore, transpiration 
and stomatal conductance data were not considered in this study. The 
underestimation of wo due to water condensation causes however only 
small errors in the calculation of the photosynthesis rates (relative error 
<5%). 

Statistical analyses were performed using R Software (version 
3.5.2.). Variables were log transformed after testing the normality and 
homoscedasticity of residuals. Differences were considered as significant 
at a probability level of P<0.05 and as marginally significant at a 
probability level of P<0.1. For VOC emission and photosynthesis data, 
no interactions between the effects of assay conditions and growth 
conditions were found (Linear mixed model fit by REML with log- 
transformed values: F ¼ 0.842; degrees of freedom (df) ¼ 9; P ¼ 0.58 
and F ¼ 0.916; df ¼ 9; P ¼ 0.52). The effects of assay and growth 
treatments were therefore treated independently in our study. The effect 
of assay treatments on VOC emission (total and single compound clas-
ses) and photosynthesis rate were tested with a linear mixed model with 

repetition as a random effect and growth condition as a fixed effect. 
Differences between assay treatments were tested with post-hoc t-tests 
using Satterthwaite’s method and the rates of increase and decrease in 
emissions were compared using paired Wilcox test. The effect of growth 
conditions on VOC emission (total and single compound classes) and 
photosynthesis rate measured at standard conditions was tested with a 
one-way Anova followed by a Tukey post-hoc test, and further on the 
pooled emission or photosynthesis data measured at the four different 
assay conditions with a linear mixed model with repetition as a random 
effect and assay conditions as a fixed effect. The effect of growth con-
ditions on foliar VOC concentration, leaf dry mass per projected leaf area 
(LMA), leaf water content and plant biomass was tested with a one-way 
Anova, followed by a Tukey post-hoc test. 

3. Results 

3.1. Volatiles stored and emitted by A. annua 

Overall, 29 compounds were found in A. annua leaf extracts and 23 in 
the emissions, of which 21 were common (Fig. 2, Table 1, see also 
supplementary data Table S1). The great majority of VOCs were iso-
prenoids, mostly non-oxygenated and oxygenated monoterpenes (MTs) 
and non-oxygenated sesquiterpenes (SQs). In addition, one alkene and 
several non-identified compounds could be detected. Artemisia ketone 
was by far the most emitted compound accounting for about the half of 
the total VOC release (42.5–52.3%). The second major emitted VOCs 
were α-pinene (4.0–14.9%) and 1.8-cineole (8.3–12.1%) followed by 
camphor (5.0–8.2%), β-pinene (2.6–5.2%), artemisia alcohol 
(2.3–4.8%) and the SQ (E)-β-caryophyllene (3.6–5.2%). 

The other compounds found in the emissions represented less than 

Table 1 
Mean � SEM (n ¼ 6) VOC emission rates and foliar VOC concentrations of Artemisia annua plants grown under four temperature and CO2 regimes: Ambient: 25 �C and 
400 ppm, þT: 30 �C and 400 ppm, þCO2: 25 �C and 800 ppm, þT þ CO2: 30 �C and 800 ppm. All emissions were determined at standard assay conditions (30 �C and 
400 ppm [CO2]). Emissions and contents are expressed per g foliage dry weight. Tr: Trace amounts (<0.01 μg g� 1 h� 1); -: not detected in the samples; NI: Non- 
Identified peak with retention time; oxMT: oxygenated MT; MTs, SQs, Other semi-volatiles: Sum of monoterpenes, sesquiterpenes and other non-emitted, non- 
identified compounds; *: tentative identification (for more details see Supplementary Table S1).  

VOC Ambient þT þCO2 þT þ CO2 

Emission Content Emission Content Emission Content Emission Content 

[μg g� 1 h� 1] [μg g� 1] [μg g� 1 h� 1] [μg g� 1] [μg g� 1 h� 1] [μg g� 1] [μg g� 1 h� 1] [μg g� 1] 

α-Pinene 0.13 � 0.07 17.82 � 10.2 0.20 � 0.07 26.95 � 6.14 0.16 � 0.02 29.42 � 3.75 0.41 � 0.13 31.24 � 9.2 
Camphene 0.03 � 0.01 5.83 � 1.74 0.02 � 0.01 3.91 � 1.29 0.02 � 0.01 4.26 � 0.89 0.06 � 0.02 4.15 � 1.16 
β-Pinene 0.06 � 0.02 10.87 � 3.68 0.03 � 0.01 4.05 � 0.62 0.06 � 0.02 6.84 � 1.77 0.10 � 0.04 4.41 � 1.15 
1,8-Cineole 0.26 � 0.06 17.68 � 5.06 0.17 � 0.04 13.36 � 5.06 0.11 � 0.04 11.78 � 5.32 0.20 � 0.09 5.94 � 2.73 
Artemisia ketone 1.32 � 0.39 100.03 � 22.04 0.58 � 0.12 55.71 � 19.88 0.62 � 0.07 50.36 � 8.95 0.99 � 0.25 59.64 � 7.07 
Sabinene hydrate 0.02 � 0.01 1.39 � 0.57 tr 1.93 � 0.70 tr 1.79� 0.47 0.01 � 0.01 1.96 � 0.43 
Artemisia alcohol 0.08 � 0.02 11.1 � 3.23 0.03 � 0.01 8.00 � 2.64 0.03 � 0.01 6.84 � 1.51 0.10 � 0.03 9.05 � 1.95 
(E)-Pinocarveol 0.02 � 0.01 2.26 � 1.49 0.01 � 0.01 4.39 � 1.6 0.01 � 0.004 3.82 � 0.43 0.02 � 0.01 4.93 � 1.32 
Camphor 0.17 � 0.05 26.06 � 9.35 0.08 � 0.04 20.18� 6.54 0.06 � 0.02 16.9 � 4.1 0.27 � 0.17 20.94 � 7.18 
(Z)-Verbenol* – 1.04 � 0.34 – 1.24 � 0.29 – 0.94 � 0.16 – 0.93 � 0.14 
Pinocarvone 0.01 � 0.01 3.72 � 2.35 0.02 � 0.01 6.26 � 2.36 0.01 � 0.003 5.39 � 0.83 0.04 � 0.01 7.53 � 1.61 
Myrtenal tr 1.86 � 0.5 tr 0.89 � 0.28 tr 1.09 � 0.07 0.01 � 0.003 1.10 � 0.28 
Myrtenol – 1.35 � 0.33 tr 0.81 � 0.22 tr 0.85 � 0.09 tr 1.09 � 0.29 
Tridec-1-ene* 0.04 � 0.01 0.66 � 0.19 0.03 � 0.01 0.59 � 0.19 0.03 � 0.01 0.33 � 0.09 0.04 � 0.01 0.64 � 0.14 
OxMT* – 0.28 � 0.24 – 0.52 � 0.25 tr 0.48 � 0.21 tr 0.19 � 0.1 
NI:22.89 tr – 0.01 � 0.01 – tr – – – 
α-Copaene tr 0.98 � 0.43 tr 0.44 � 0.08 tr 0.84 � 0.1 tr 1.34 � 0.51 
(E)-β-Caryophyllene 0.09 � 0.03 4.48 � 2.35 0.06 � 0.02 2.53 � 0.45 0.04 � 0.01 3.99 � 0.7 0.11 � 0.05 7.31 � 2.13 
Geranyl acetone tr – 0.01 � 0.01 – tr – tr – 
α-Humulene tr 0.3 � 0.2 tr 0.14 � 0.04 tr 0.24 � 0.05 0.01 � 0.004 0.46 � 0.14 
(E)-β-Farnesene 0.03 � 0.02 3.32 � 1.05 tr 0.37 � 0.13 tr 3.13 � 0.85 tr 2.52 � 1.02 
β-Chamigrene* tr 0.09 � 0.09 tr 0.04 � 0.04 tr 0.01 � 0.01 tr 0.03 � 0.03 
Germacrene-D 0.02 � 0.01 6.96 � 3.75 tr 2.52 � 0.45 tr 5.22 � 0.79 0.01 � 0.002 7.62 � 1.97 
β-Selinene 0.04 � 0.01 5.76 � 1.74 0.04 � 0.03 8.11 � 5.21 tr 0.14 � 0.03 0.03 � 0.02 1.84 � 1.47 
Arteannuin b* – 33.28 � 8.91 – 31.22 � 8.82 – 15.28 � 2.4 – 24.95 � 6.77 
Other semi-volatiles – 18.66 � 4.90 – 18.00 � 5.14 – 10.31 � 1.56 – 13.55 � 4.03 
MTs 2.12 ± 0.54 201.27 ± 45.50 1.15 ± 0.27 148.20 ± 42.37 1.11 ± 0.14 140.76 ± 25.18 2.23 ± 0.62 153.08 ± 20.55 
SQs 0.19 ± 0.07 55.16 ± 13.19 0.13 ± 0.04 45.37 ± 13.47 0.06 ± 0.02 28.85 ± 2.75 0.18 ± 0.07 46.07 ± 11.07 
Total 2.35 ± 0.52 275.75 ± 60.41 1.34 ± 0.29 212.16 ± 60.91 1.20 ± 0.15 180.25 ± 26.71 2.45 ± 0.68 213.35 ± 29.31  
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4% of the total VOC release. 
Among the emitted VOCs, geranyl acetone and one non-identified 

compound (RT 22.89) were not detected in the leaf extracts but 
almost regularly in the emissions albeit at trace level. All other emitted 
VOCs were also observed in the leaf extracts with relative abundances 
similar to those of the emissions. However, the second major stored 
compound, a highly oxygenated SQ tentatively identified as arteannuin 
B, as well as a MT alcohol tentatively identified as verbenol and six non- 
identified compounds were exclusively found in the leaf extracts. Except 
verbenol, these stored but apparently non-emitted VOCs eluted all very 
late on our analytical column, hence were compounds having a very low 
volatility. 

3.2. Emission responses to changes in assay temperature and CO2 

Changing assay [CO2] and/or temperature significantly changed 
total VOC emission rates ([CO2]: F ¼ 6.30; df ¼ 1; P ¼ 0.014; temper-
ature: F ¼ 239.95; df ¼ 1; P<0.001) (Fig. 3a) regardless of the climate 
conditions where plants were grown (F ¼ 0.84; df ¼ 9; P ¼ 0.58). The 
effect of assay [CO2] on emissions depended on assay temperature (CO2- 
temperature interaction: F ¼ 2.79; df ¼ 1; P ¼ 0.09). At 30 �C, switching 
assay [CO2] from 400 to 800 ppm had no significant effect on VOC 
emission rates, whereas at 37 �C it significantly decreased volatile 
emissions by about a third. The inhibitory CO2 effect on emissions at 37 
�C was significant for both VOC classes (MTs, SQs) and all individual 
major compounds with the exception of β-pinene and artemisia alcohol. 
Increasing assay temperature from 30 to 37 �C always significantly 
increased emission rates of the individual compounds and the sum of 
VOCs. On average, the total VOC release of A. annua was about 3 times 
higher at 37 �C than at 30 �C (17% increase per �C). Assuming a log- 
linear relationship between temperature and emission as applied in 

emission models for storage-derived VOCs (Guenther et al., 2012), the 
resulting global slope β is 0.16 �C-1 (see supplementary data Table S2 
and Fig. S1a). Due to the negative CO2 effect on emission at 37 �C, the 
apparent rate of emission increase with temperature increase was 
marginally significantly greater at 400 ppm (19% �C� 1, β ¼ 0.17) than at 
800 ppm (15% �C� 1, β ¼ 0.14) (V ¼ 204, P ¼ 0.07). Among compound 
classes, MT emissions responded more strongly to temperature than SQ 
emissions (F ¼ 8.14, df ¼ 1, P ¼ 0.005). However, this compound spe-
cific difference in the temperature responses was very similar at both 
assay [CO2] (F ¼ 0.22, df ¼ 1, P ¼ 0.64; MTs: 20%- and 15%- increase 
�C� 1; SQs: 15%- and 10%-increase �C� 1 at 400 and 800 ppm assay 
[CO2], respectively; see also supplementary data Table S2 for β-values 
and Figs. S1a and b). 

Switching assay temperature from 30 �C to 37 �C consistently 
decreased photosynthesis rates (Fig. 3b). The rate of decrease was 
significantly greater at 400 ppm than at 800 ppm (respectively 15.6% 
and 9.4%. V ¼ 38, P ¼ 0.0007). On the contrary, the photosynthesis rates 
of A. annua plants significantly increased when assay CO2 concentration 
was doubled from 400 to 800 ppm. The rate of increase was significantly 
greater at 37 �C than at 30 �C (respectively 29.8% and 20.9%. V ¼ 32, P 
¼ 0.0003). 

3.3. Acclimation effects of growth conditions on VOC production 

Growth conditions had only minor effects on the VOC production of 
A. annua foliage. The mean emission rates measured at the standard 
assay conditions of 30 �C and 400 ppm CO2 ranged between 1.2 and 2.5 
μg g� 1 h� 1 (11–26 ng m� 2 s� 1) of the four populations with the lowest 
and highest value observed for the plants grown under elevated CO2 and 
normal temperature and under elevated CO2 and elevated temperature 
respectively (Table 1). 

Fig. 2. Comparison of the composition of emitted and stored VOCs of Artemisia annua foliage. (a) Percentage contributions of the seven major compounds plus the 
sum of all other detected VOCs and (b) Percentage contributions of the seven main only. Values are means of n ¼ 24. 
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This apparent acclimation effect on the foliage emission capacities 
was however not significant for the sum of VOC emissions, for the sum of 
MTs and SQs emissions and for the major VOCs except for artemisia 
alcohol that was marginally higher in emissions of plants from the þT þ
CO2 treatment than emissions of plants from “þT” and “þCO2” treat-
ments (P ¼ 0.05 and P ¼ 0.09 respectively) (see supplementary data 
Fig. S2a). Using the pooled emission data from the measurements made 
at the four different assay condition, our statistical analysis indicated 
reduced VOC emissions of the plants grown at elevated CO2 and normal 
temperature with respect to plants grown at normal CO2 and tempera-
ture (Fig. 4a). 

This negative acclimation effect of elevated growth CO2 on total 
mean VOC emission rates was also marginally significant for the emis-
sions of the main compound artemisia ketone (F ¼ 1.21, df ¼ 3, P ¼
0.055), but not significant for the emissions of the other major VOCs or 
the sum of MTs and SQs. However, there was no more significant effect 
of growth CO2 when Anova analyses were run with emission rates 
expressed per leaf area. Likewise, average VOC emissions per plant were 
not different among growth treatments suggesting that at whole plant 
scale any negative effect of elevated CO2 on the foliar emission capacity 
was compensated by the CO2 fertilization effect on plant growth. Total 
or individual VOC emission rates per dry weight or leaf area from plants 
grown under elevated temperature with either normal or elevated CO2 
were not significantly different from all others. Growth conditions had 
also no significant effect on the foliar concentration of individual VOCs 
or VOC classes (Fig. 4b). In fact, foliar VOC concentrations were highly 
variable among replicate plants, especially within the population grown 
under ambient conditions. 

3.4. Acclimation effects of growth conditions on primary metabolism 

Growth conditions did not significantly affect the mean photosyn-
thesis rate (F ¼ 1.44, df ¼ 3, P ¼ 0.26, measured at same assay condi-
tions), plant height (F ¼ 0.80, df ¼ 3, P ¼ 0.51) and total leaf area (F ¼
0.69, df ¼ 3, P ¼ 0.57) of A. annua plants (Table 2). However, growth 
under elevated CO2 had a global positive effect on the mean dry and 
fresh biomass of the plants (dry biomass: F ¼ 6.91, df ¼ 1, P ¼ 0.02; fresh 
biomass: F ¼ 4.25, df ¼ 1, P ¼ 0.05). Consequently, the leaf mass per 
area (LMA) and the relative water content were respectively higher and 
lower in the þT þ CO2 treatment than in the ambient treatment (LMA: F 
¼ 5.05, df ¼ 3, P ¼ 0.01; water content: F ¼ 2.83, df ¼ 3, P ¼ 0.06). 

4. Discussion 

One purpose of our study was to identify the VOCs emitted by 
A. annua plants and to quantify the emission rates under undisturbed, 
environmentally controlled conditions. The relative composition we 
observed in the foliar VOC emissions closely resembled that of the foliar 
VOC contents, especially when considering that some asymmetry be-
tween the compositions is expected due to differences in the volatility of 
the individual VOCs and due to limitations in the VOC extraction 
method, notably unaccounted losses of light VOCs during the concen-
tration step of leaf extracts (Ormeno et al., 2011). The compositional 
similarity of foliar VOC emissions and extract suggests that the great 
majority of the emitted VOCs came from the essential oil stored at the tip 
of the glandular trichomes covering foliage and stems. However, two 
minor emitted compounds were not detected in the leaf extracts, 
perhaps because our extraction method was not sensitive enough. 
Alternatively, these emissions are not part of the essential oil but derive 

Fig. 3. VOC emissions (a) and photosynthesis (b) of whole Artemisia annua foliage measured at two assay [CO2] (400, 800 ppm) combined with two assay tem-
peratures (30, 37 �C). Boxes display the medians (central lines), the first and third quartiles (bottom and top borders of the box) respectively. The whiskers extend to 
the most extreme data points. Symbols indicate the different CO2 and temperature conditions, in which the plant were grown. Superscript letters denote significant 
differences between the means of the pooled data (n ¼ 24, VOC emissions: F ¼ 85.69; df ¼ 3; P<0.0001; photosynthesis: F ¼ 51.99; df ¼ 3; P<0.0001). 
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from other small VOC pools. Geranyl acetone for example might be 
secondary formed from the breakdown of non-volatile metabolites such 
as carotenoids (Fruekilde et al., 1998; Kask et al., 2016). On the whole, 
the VOC composition we observed in the emissions as well as in the leaf 
extract agrees with the results of previous studies on A. annua. Artemisia 
ketone was always identified as the main compound (Woerdenbag et al., 

1993; Rapparini et al., 2008; Nibret and Wink, 2010), though its pro-
portion may vary with the chemotype (Woerdenbag et al., 1993), the 
season and the method of VOC extraction (Ormeno et al., 2011; Nekoei 
et al., 2012). 

As a highly aromatic plant that stores large amounts of VOCs in its 
glandular trichomes, A. annua emissions may essentially contribute to 
the atmospheric VOC load in rural landscapes where it is cultivated or 
commonly appears as ruderal or weed species. However, VOC emission 
rates of aromatic plants determined by enclosure techniques might be 
easily overestimated, since any mechanical stress leads to the rupture of 
trichomes, which causes large emission bursts (Niinemets et al., 2011). 
To avoid such artifacts we used large enclosures avoiding any contact 
between foliage and chamber wall and flushed chambers overnight after 
installation of the plants. Proceeding in this way, we observed that the 
whole foliage of individual A. annua plants released VOCs at rates of 1–5 
μg g� 1 h� 1 under standard assay temperature. This is in the range of 
those reported by other terpene storing plants (Kesselmeier and Staudt, 
1999; Biogenic VOC emission database http://www.es.lancs.ac.uk/cnh 
group/download.html; �Simpraga et al., 2019) but 1–2 orders of 
magnitude lower than those reported by Rapparini et al. (2008) for the 
same species. The aforementioned emission enhancement by mechani-
cal stress might be the main reason for this discrepancy in addition to 
other methodological and biological sources of variation such as the 
choice of cultivar, measurement scale and conditions. 

Growing A. annua under warmer and/or CO2-enriched atmospheres 
hardly affected their overall BVOC emission capacities and had no sig-
nificant effect on the short-term responses of emissions to assay CO2 and 
temperature. Nevertheless, elevated-[CO2]-grown plants tended to have 
a lower BVOC emission capacity per foliage dry weight, although this 

Fig. 4. Effect of growth under different temperature and CO2 regimes on (a), total amount of VOCs emitted under the four assay conditions (symbols) and (b), total 
foliar VOC concentration (μg g� 1 DW) of Artemisia annua plants. Boxes display the medians (central lines), the first and third quartiles (bottom and top borders of the 
box) respectively. The whiskers extend to the most extreme data points. Superscript letters denote significant differences between the means of n ¼ 6 replicate plants 
per growth treatment (VOC emissions: F ¼ 2.60; df ¼ 3; P ¼ 0.08; foliar VOC concentration: F ¼ 0.66; df ¼ 3; P ¼ 0.59). 

Table 2 
Effect of growth under elevated temperature (T) and/or [CO2] on photosynthesis 
rate, plant height, foliage dry, fresh weight and leaf area, LMA and water content 
of Artemisia annua. Means � SEM (n ¼ 24) annotated with different letters are 
significantly different and * indicate an effect of elevated CO2 as a single factor. 
Mean photosynthesis rates were calculated from the measurements made at 
standard assay conditions (30 �C and 400 ppm [CO2]).  

Growth 
conditions 

Photosynthesis (μmol 
m� 2 s� 1) 

Height 
(cm) 

Dry 
weight (g) 

Fresh 
weight (g) 

Ambient 10.62 � 0.52 12.83 �
0.79 

0.82 �
0.08 

5.47 �
0.61 

þCO2 10.75 � 0.97 11.83 �
0.85 

1.05 �
0.12 * 

6.58 �
0.70 * 

þT 12.16 � 0.79 11.50 �
0.48 

0.82 �
0.13 

5.08 �
0.83 

þT þ CO2 10.07 � 0.41 12.33 �
0.49 

1.15 �
0.12 * 

6.33 �
0.34 *  

Growth conditions Leaf area (cm2) LMA (g m2) Water content (%) 

Ambient 293.59 � 24.04 27.96 � 0.66 a 84.80 � 0.36 a 
þCO2 326.64 � 44.70 31.88 � 1.16 ab 84.05 � 0.32 ab 
þT 281.79 � 34.61 29.36 � 1.52 ab 84.01 � 0.52 ab 
þT þ CO2 320.66 � 15.83 35.49 � 2.22 b 81.93 � 1.29 b  
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effect was compensated by higher growth rates. Furthermore, the lower 
emission capacity was attributed to an increase in LMA (Table 2) rather 
than to a true change of the emission source strength. The increase in 
LMA was mostly due to an increase in the leaf’s dry matter density (for 
example due to increased starch accumulation under elevated [CO2]) as 
indicated by the significant decrease in leaf water content. Changes in 
leaf structure and composition are commonly observed in plants grown 
under elevated CO2 (Zvereva and Kozlov, 2006; Poorter et al., 2009; Sun 
et al., 2012). 

However, growth conditions had no significant effect on VOC con-
tents of A. annua foliage that largely varied among individual plant 
replicates. Intraspecific chemical diversity in VOC production 
commonly exists in VOC storing plants (see e.g. Woerdenbag et al., 
1993; Wu et al., 2011), which could have also increased the data vari-
ability in our study of both, VOC contents and emissions. In addition, 
sporadic losses of VOCs during the extraction might have been 
contributed to data scattering, most likely some inevitable rupture of 
trichomes during the leaf sample preparation (i.e. the dissection, 
weighing and transfer of leaflets to the solvent). Finally as for emissions, 
variation in foliar VOC contents based on concentrations may not 
necessarily reflect changes in VOC production but can also result from 
dilution or concentration effects (Koricheva, 1999) thus further 
increasing the inconsistency of results within and among studies. 
Indeed, previous studies examining changes in the yield and composi-
tion of essential oils of aromatic herbs or oleoresin of conifers grown 
under elevated CO2 and/or elevated temperature reported contrasting 
effects, of which the majority found no or negative effects of elevated 
CO2 (Table 3). 

Regarding the short-term influences of [CO2] and temperature, 
doubling [CO2] decreased emissions at high assay temperature but not 
at standard temperature, whereas switching temperature from 30 to 37 
�C always strongly increased emissions, though the degree of increase 
was apparently higher at low assay [CO2] than at high assay [CO2]. 
Thus, our results revealed a possible interaction in the temperature and 
CO2 responses of emissions, suggesting that either the positive effect of 
temperature is attenuated by high [CO2] or the inhibitory effect of [CO2] 
is enhanced by high temperature. This observation discords with the 
aforementioned conclusion of storage derived emissions. If A. annua 
VOC emissions are sustained by the large preformed reservoirs in the 
tips of its glandular trichomes, they should be insensitive to changes of 
[CO2] and any temporary variation in the plant’s metabolism. Even 
changes in stomatal aperture should not affect the emission rate, 
because it is unlikely that the VOCs stored in the extracellular sub-
cuticular cavity of the apical trichome cells diffuse back inside and along 
the subapical, stalk and basal trichome cells into the leaf parenchyma to 
leave the leaf via the stomata. Hence, emissions should depend solely on 
temperature driving the volatilization and diffusion through the cuticle 
of the trichome tips. A possible explanation for this apparent discrep-
ancy is that a second, CO2-responsive de-novo synthesis VOC pool exists 
in the photosynthetic leaf parenchyma, which fuels a fraction of the total 
A. annua VOC release. Indeed, Tellez et al. (1999) found small amounts 
of SQs in the foliage extracts of glandless A. annua phenotypes and traces 
of ocimene indicating that isoprenoids are also produced outside tri-
chomes. However, we found no ocimene emission in our study and there 
was no difference between the apparent CO2 responses of compound 
classes. Furthermore, high-CO2 inhibition of de-novo synthesized iso-
prenoid emissions in photosynthesizing tissues occurs typically at low 
temperatures and not at high temperatures (Sharkey and Monson, 
2014), which is the opposite what we have observed in the present study 
on A. annua emissions. An alternative explanation is that the CO2 sen-
sitive part of the emissions stemmed from the young growing leaves and 
apex of the enclosed foliage. R€ais€anen et al. (2008) observed that 
elevated CO2 and temperature affects terpene emissions from Scots pine 
saplings only during the period of shoot growth indicating that the 
responsiveness of emissions could be associated with oleoresin synthesis 
in the growing tissues. In A. annua as for many other VOC storing plants 

(e.g. Turner et al., 2000; Vendemiatti et al., 2017), the production of 
essential oil takes place in developing trichomes and ceases when the 
reservoirs are filled and foliage becomes mature (Towler and Weathers, 
2015; Tan et al., 2015). There, large amounts of isoprenoids are de-novo 
synthesized in the non-green apical trichome cells and subsequently 
actively excreted into the subcuticular space (Olsson et al., 2009; Tissier 
et al., 2017), during which a fraction could leak out in the air. Indeed, Lu 
et al. (2002) observed that that the transcript level of a terpene synthase 
is much higher in juvenile than in mature leaves of A. annua and that the 
temporal variations in transcript levels correlates with those of foliar 
emissions and contents. This suggests that some terpenes produced in 
juvenile foliage are not entirely sequestered and stored in glandular 
trichomes, but are released directly after synthesis (Lu et al., 2002). 
Given that the isoprenoid production there relies at least partly on 
photosynthate imports via phloem transport (Schuurink and Tissier, 
2019), is influenced by stress hormones (Hao et al., 2017) and cross talks 
with other secondary metabolite pathways (Ma et al., 2018), it is plau-
sible that it respond differently to CO2 than the constitutive synthesis of 
isoprene in photosynthetic source tissues. 

To conclude, we observed no relevant long-term, acclimation effect 
of elevated temperature and CO2 on the overall VOC production ca-
pacity of A. annua plants, apart from a general CO2 fertilization effect on 
plant growth and leaf structure. Thus our results suggest that consid-
ering short-term responses of emissions is sufficient to predict their 
future evolution. Contrary to isoprene emissions, A. annua emissions 
became CO2-inhibited at high temperature and not at moderate 

Table 3 
Overview of the effects of growth under elevated CO2 concentrations or elevated 
temperature on foliar VOC concentrations of aromatic herbs or conifers reported 
in the present and previous studies.  

CO2 effect Plant species References 

↗ Rosmarinus 
officinalis 

Pe~nuelas and Llusi�a, (1997) 

Thymus vulgaris Vurro et al. (2009) 
Valeriana 
jatamansi 

Kaundal et al. (2018) 

↘ Salvia officinalis Nowak et al. (2010) 
Melissa officinalis Shoor et al. (2012) 
Pseudotsuga 
menziesii 

Litvak et al., 2002; Snow et al., 2003 

Pinus sylvestris Sallas et al. (2003) 
Picea abies Sallas et al. (2003) 
Eucalyptus 
camaldulensis 

Bustos-Segura et al. (2017) 

¼ Artemisia annua Present study 
Artemisia 
tridentata 

Johnson and Lincoln, (1990) 

Pinus sylvestris Kainulainen et al., 1998, Heyworth et al., 
1998 a; Sallas et al., 2001 

Pinus ponderosa Constable et al. (1999) 
Pseudotsuga 
menziesii 

Constable et al. (1999) 

Eucalyptus globulus McKiernan et al. (2012) 
Eucalyptus 
pauviflora 

McKiernan et al. (2012) 

Temperature 
effect 

Plant species References 

↗ Picea abies Sallas et al. (2003) 
Pinus sylvestris Sallas et al. (2003) 
Pseudotsuga 
menziesii 

Litvak et al. (2002) 

↘ Pseudotsuga 
menziesii 

Snow et al., 2003; Duan et al., 2019 b 

Valeriana 
jatamansi 

Kaundal et al. (2018) 

¼ Artemisia annua Present study 
Pseudotsuga 
menziesii 

Duan et al., 2019 b  

a No effect except an increase in α-pinene. 
b Depending on the tree’s provenance. 
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temperature thus reducing the apparent temperature response of 19% 
emission increase per �C to 15% �C� 1. More in deep studies over larger 
CO2 and temperature ranges are needed to corroborate and precise the 
antagonistic interaction between these two factors and the underlying 
mechanisms. Furthermore, we need to know whether this phenomena is 
common in BVOC storing plant species and whether it is constrained to 
the growing vegetative phase. If so, the release of VOCs from A. annua 
and possibly other aromatic plants would increase less rapidly in a 
warmer and more CO2-enriched world due to the more frequent nega-
tive feedback of CO2 on their emissions. 
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