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Abstract

For composite nonsmooth optimization problems, Forward-Backward
algorithm achieves model identification (e.g., support identification for
the Lasso) after a finite number of iterations, provided the objective func-
tion is regular enough. Results concerning coordinate descent are scarcer
and model identification has only been shown for specific estimators, the
support-vector machine for instance. In this work, we show that cyclic
coordinate descent achieves model identification in finite time for a wide
class of functions. In addition, we prove explicit local linear convergence
rates for coordinate descent. Extensive experiments on various estimators
and on real datasets demonstrate that these rates match well empirical
results.

1 Introduction

1.1 Coordinate descent

Over the last two decades, coordinate descent (CD) algorithms have become
a powerful tool to solve large scale optimization problems (Friedman et al.,
2007, 2010). Many applications coming from machine learning or compressed
sensing have lead to optimization problems that can be solved efficiently via
CD algorithms: the Lasso (Tibshirani, 1996; Chen et al., 1998), the elastic net
(Zou and Hastie, 2005) or support-vector machine (Boser et al., 1992). All the
previously cited estimators are based on an optimization problem which can be



written:

p
o* € argmin{8(a) 2 f(z) + - 05(2)} . 0
j=1
£g(z)

with f a convex smooth (i.e., with a Lipschitz gradient) function and g, proper
closed and convex functions. In the past twenty years, the popularity of CD
algorithms has greatly increased due to the well suited structure of the new opti-
mization problems mentioned above (i.e., separability of the nonsmooth term),
as well as the possible parallelization of the algorithms (Fercoq and Richtarik,
2015).

The key idea behind CD (Algorithm 1) is to solve small and simple subprob-
lems iteratively until convergence. More formally, for a function ® : R? — R,
the idea is to minimize successively one dimensional functions @, : R — R,
updating only one coordinate at a time, while the others remain unchanged.
There exists many variants of CD algorithms, the main branching being;:

e The index selection. There are different ways to choose the index
of the updated coordinate at each iteration. The main variants can be
divided in three categories, cyclic CD (Tseng and Yun, 2009) when the
indices are chosen in the set [p] £ {1,...,p} cyclically,. Random CD
(Nesterov, 2012), where the indices are chosen following a given random
distribution. Finally, greedy CD (Nutini et al., 2015) picks an index,
optimizing a given criterion: largest decrease of the objective function, or
largest gradient norm (Gauss-Southwell rule), for instance.

e The update rule. There also exists several possible schemes for the
coordinate update: exact minimization, coordinate gradient descent or
prox-linear update (see Shi et al. 2016, Sec. 2.2 for details).

In this work, we will focus on cyclic CD with prox-linear update rule
(Algorithm 1): a popular instance, e.g., the one coded in popular packages
such as glmnet (Friedman et al., 2007) or sklearn (Pedregosa et al., 2011).
Among the methods of coordinate selection, random CD has been exten-
sively studied, especially by Nesterov (2012) for the minimization of a smooth
function f. It was the first paper proving global non-asymptotic 1/k convergence
rate in the case of a smooth and convex f. This work was later extended to com-
posite optimization f+>_ ;9 for nonsmooth separable functions (Richtérik and
Takac, 2014; Fercoq and Richtérik, 2015). Refined convergence rates were also
shown by Shalev-Shwartz and Tewari (2011); Shalev-Shwartz and Zhang (2013).
These convergence results have then been extended to coordinate descent with
equality constraints (Necoara and Patrascu, 2014) that induce non-separability
as found in the SVM dual problem in the presence of the bias term. Different
distributions have been considered for the index selection such as uniform distri-
bution (Fercoq and Richtérik, 2015; Nesterov, 2012; Shalev-Shwartz and Tewari,



2011; Shalev-Shwartz and Zhang, 2013), importance sampling (Leventhal and
Lewis, 2010; Zhang, 2004) and arbitrary sampling (Necoara and Patrascu, 2014;
Qu and Richtérik, 2016a,b).

On the opposite, theory on cyclic coordinate descent is more fuzzy, the anal-
ysis in the cyclic case being more difficult. First, Luo and Tseng (1992); Tseng
(2001); Tseng and Yun (2009); Razaviyayn et al. (2013) have shown convergence
results for (block) CD algorithms for nonsmooth optimization problems (with-
out rates’). Then, Beck and Tetruashvili (2013) showed 1/k convergence rates
for Lipschitz convex functions and linear convergence rates in the strongly con-
vex case. Saha and Tewari (2013) proved 1/k convergence rates for composite
optimization f+||.||; under ”isotonicity” condition. Sun and Hong (2015); Hong
et al. (2017) have extended the latter results and showed 1/k convergence rates
with improved constants for composite optimization f +3_; g;. Li et al. (2017)
have extended the work of Beck and Tetruashvili (2013) to the nonsmooth case
and refined their convergence rates in the smooth case. Finally, as far as we
know, the work by Xu and Yin (2017) is the first one tackling the problem of
local linear convergence. They have proved local linear convergence under the
very general Kurdyka-Lojasiewicz hypothesis, relaxing convexity assumptions.
Following the line of work by Liang et al. (2014), we use a more restrictive frame-
work (see Section 1.4) that allows to achieve finer results: model identification
as well as improved local convergence results.

1.2 Model identification

Nonsmooth optimization problems coming from machine learning such as the
Lasso or the support-vector machine (SVM) generally generate solutions lying
onto a low-complexity model (see Definition 1 for details). For the Lasso, for
example, a solution z* has typically only a few non-zeros coefficients: it lies
on the model set T,» = {u € RP : supp(u) C supp(z*)}, where supp(x) is the
support of x, i.e., the set of indices corresponding to the non-zero coefficients.
A question of interest in the literature is: does the algorithm achieve model
identification after a finite number of iterations? Formally, does it exist K > 0
such that for all k > K, ®) € T,,.7 For the Lasso the question boils down to
“does it exist K > 0 such that for all k& > K, supp(z(®¥)) C supp(z*)”? This
finite time identification property is paramount for features selection (Tibshi-
rani, 1996), but also for potential acceleration methods (Massias et al., 2018) of
the CD algorithm, as well as model calibration (Bertrand et al., 2020).

Finite model identification was first proved in Bertsekas (1976) for the pro-
jected gradient method with non-negative constraints. In this case, after a finite
number of steps the sparsity pattern of the iterates is the same as the sparsity
pattern of the solution. It means that for k& large enough, l‘l(-k) = 0 for all 4
such that 7 = 0. Then, many other results of finite model identification have
been shown in different settings and for various algorithms. For the projected

INote that some local rates are shown in Tseng and Yun (2009) but under some strong
hypothesis.



gradient descent algorithm, identification was proved for polyhedral constraints
(Burke and Moré, 1988), for general convex constraints (Wright, 1993), and
even non-convex constraints (Hare and Lewis, 2004). More recently, identifica-
tion was proved for proximal gradient algorithm (Mercier and Vijayasundaram,
1979; Combettes and Wajs, 2005), for the ¢; regularized problem (Hare, 2011).
Liang et al. (2014, 2017); Vaiter et al. (2018) have shown model identifica-
tion and local linear convergence for proximal gradient descent. These results
have then been extended to other popular machine learning algorithms such as
SAGA, SVRG (Poon et al., 2018) and ADMM (Poon and Liang, 2019). To
our knowledge, CD has not been extensively studied with a similar generality.
Some identification results have been shown for CD, but only on specific models
(She and Schmidt, 2017; Massias et al., 2019) or variants of CD (Wright, 2012),
in general, under restrictive hypothesis. The authors are not aware of generic
model identification results for CD Algorithm 1.

1.3 Notation

General notation. We write ||| the Euclidean norm on vectors. For, x,v €

RP, the weighted norm is denoted [lz], £ />%_; v;22. For a differentiable
function ¥ : RP — RP, at x € RP, we write J(z) € RP*P the Jacobian of ¢ at
x. For a set S, we denote by S° its complement. We denote [p] = {1,...,p}. Let
(ej)§=1 be the vectors of the canonical base of RP. We denote the coordinatewise
multiplication of two vectors u and v by u ® v and by u ® M the row wise
multiplication between a vector and a matrix. We denote by B(x, €) the ball of
center « and radius e. The spectral radius of a matrix M is denoted p(M).

Convex analysis. We recall the definition of the proximity operator of a
convex function g, for any v > 0:

o1 9
roX,. (o) = argmin —||x — + .
prox. (z) o 1 27|| ylI* +9(y)

Let C C R? be a convex set, aff(C) denotes its affine hull, the smallest affine
set containing C, and ri(C) denotes its relative interior (the interior of its affine
hull). The indicator function of C is the function defined for any « € RP by

%QOZ{OKxGC | @

400 otherwise

The domain of a function f is defined as dom(f) = {z € R? : f(z) < +o0}.
For a convex function f, 9f(x) denotes its subdifferential at « and is given by
Of(x) ={s eRP: f(y) > f(z)+ (s,y —z),Vy € dom(f)}. We denote by L, the
coordinatewise Lipschitz constants of V; f, i.e., , for all z € RP, h; € R:

IVif(z+eih;) = Vif(@)]| < Ljlhy| - (3)



Coordinate descent. We denote 0 < v; < 1/L; the local step size and
v=(71,.-. ,'yp)T. To prove model identification we need to “keep track” of the
iterates: following the notation from Beck and Tetruashvili (2013) coordinate
descent can be written:

Algorithm 1 PROXIMAL COORDINATE DESCENT

input : v,...,7 € Ry, njger € N7w(0) € RP

for £k =0,...,ni do // index selection
2(0.k) 1 (F)
for j=1,...,pdo

2(Gk)  p(G—1k)

xg'],k) Prox,. 4. (mgj_l’k) - 'Yjvjf(x(j_l’k)))
x(k"l‘l) <_x(p7k)

return gmiertl

1.4 Assumptions on composite problem

We consider the optimization problem defined in Equation (1) with the following
assumptions:

Assumption 1 (Smoothness). f is a convex and differentiable function, with
a Lipschitz gradient.

Assumption 2 (Proper, closed, convex). For any j € [p], g; is proper, closed
and convex.

Assumption 3 (Existence). The problem admits at least one solution:

argmin ®(z) # 0 . (4)

rERP

Assumption 4 (Non degeneracy). The problem is non-degenerate: for any
x* € argmin, cp, P(x)

—Vf(z") €ri(9g(z7)) . (5)
Assumption 4 can be seen as a generalization of qualification constraints (Hare
and Lewis, 2007, Sec. 1).
1.5 Contributions

With mild assumptions on the g; functions, for the cyclic proximal coordinate
descent algorithm:

e We prove finite time model identification (Th. 1).
e We provide local linear convergence rates (Th. 2).

e We illustrate our results on multiple real datasets and estimators (Sec-
tion 4) showing that our theoritical rates match the empirical ones.



2 Model identification for CD

As stated before, the solutions of the Lasso are structured. Using an iterative
algorithm like Algorithm 1 to find an approximate solution (since we stop after
a finite number of iterations) brings the question of structure recovery. For the
Lasso, the underlying structure, also called model (Candés and Recht, 2012),
is identified by the Forward-Backward algorithm. It means that after a finite
number of iterations, the iterative algorithm leads to an approximate solution
that shares a similar structure than the true solution of the optimization problem
(Liang et al., 2014; Vaiter et al., 2018; Fadili et al., 2018). For the Lasso,
the underlying model is related to the notion of support: i.e., the non-zero
coefficients for the Lasso, and it can be generalized for the case of completely
separable functions as follows:

Definition 1 (Generalized support, Sun et al. 2019). We call generalized sup-
port Sy C [p] the set of indices j € [p] where g, is differentiable at x;:

S: £ {j € [p] : 9g;(z;) is a singleton} . (6)

This notion can be unified with the definition of model subspace from Vaiter
et al. (2015, Sec. 3.1):

Definition 2 (Model subspace, Vaiter et al. 2015). We denote the model sub-
space at x:

T, ={ueRP:VjeS; u =0} . (7)

See Lemma 1 in Appendix A for details.

Examples in machine learning.
The ¢4 norm. The function g(z) = Y7, |z;| is certainly the most popular
nonsmooth convex regularizer promoting sparsity. Indeed, the /1 norm generates
structured solution with model subspace (Vaiter et al., 2018). We have that
Sy ={j € [p] : z; # 0} since | - | is differentiable everywhere but not at 0, and
the model subspace reads:

T, = {u € R” : supp(u) C supp(z)} . (8)

The box constraints indicator function djg ). This indicator function appears
for instance in box constrained optimization problems such as the dual problem
of the SVM. Let Z0 = {j € [p] : #; = 0} and Z$ = {j € [p] : z; = C}, then

T, ={ucRP:I0 C 10 and ¢ C 7°}.

For the SVM, model identification boils down to finding the active set of the box
constrained quadratic optimization problem after a finite number of iterations.

We now turn to our identification result. To ensure model identification, we
need the following (mild) assumption:

Assumption 5 (Locally C?). For all j € S;+, g; is locally C? around x3, and f
is locally C? around x*.



It is satisfied for the Lasso and the dual SVM problem mentioned above, but
also for sparse logistic regression or elastic net. The following theorem shows
that the CD (Algorithm 1) has the model identification property with local
constant step size 0 < y; < 1/L;:

Theorem 1 (Model identification of CD). Consider a solution * € argmin_p, ®(z)
and § = S+ Suppose

1. Assumptions 1 to 5 hold.
2. The sequence (x(k))kzo generated by Algorithm 1 converges to x*.

Then, Algorithm 1 identifies the model after a finite number of iterations, which
means that there exists K > 0 such that for all k > K, xg? =TS

This result implies that for k large enough, z(*) shares the support of z*
(potentially smaller).
Sketch of proof [Theorem 1]

e First we show that Assumptions 1 to 5 implies that g is partly smooth
(Lewis, 2002) at x* relative to the affine space z* 4 Tj+.

e Then we show that for the CD Algorithm 1: dist (8<I>(:c(k)), 0) — 0, when
k — o0, enabling us to apply Hare and Lewis (2004)[Thm. 5.3].

A full proof of Theorem 1 can be found in Appendix A. The first point is shown
in appendix Lemma 1. We show the second point below:
Proof As written in Algorithm 1, one update of coordinate descent reads:

1 (i ) 1 . )
—:cg.] Lk) _ V;f (x(]fl’k‘)> — —zgj’k) € 0g;j (x§]’k))
Vi i
1 o 1
7x§k) v, f (x(] 1,k)> _ 7jxglmtl) € g, (wgk—&-l))

Vi

Since g is separable with non-empty subdifferential, the coordinate wise subdif-
ferential of g is equal to the subdifferential of g, we then have

1 . 1
S oW (v, (1R B S))
¥ ( if ( >)je[p1 ¥
€ 9g(a™h)y | 9)
which leads to
1 ‘ 1
Zoa® _ (v f(p0-1R S ))
¥ ( if ( ))je[p] ¥
+ Vf(z*D) € 9d(x++D) (10)



To prove support identification using Hare and Lewis (2004, Theorem 5.3), we
need to bound the distance between 9®(x*+1)) and 0, using Equation (10):

dist (8¢($(k+1)>, 0)2

p_| k) 4 L (kD) ?
<D | Vi) - 4 V)
el G i

< Hx(k) _ x(k+1)|‘371
P . 2
o (m) e )
j=1

p
< Hx(k) _ x(k+1)|"2y_1 + L2 Z”I(jfl,k) 7 x(k+1)‘|2
j=1
PP 9
< ||lz® — x(k+1)”i_l n Lzz Z ’xyf) _x§_11c+1)‘ '

J=1j'2j

—0 when k—oco

‘We thus have:
e dist (02(z*+1),0) — 0

o &(z*)) = ®(2*) because ® is prox-regular (since it is convex, see Poliquin
and Rockafellar 1996) and subdifferentially continuous.

Then the conditions to apply Hare and Lewis (2004, Th. 5.3) are met and hence
we have model identification after a finite number of iterations. O

Comments on Theorem 1. It unifies several results found in the liter-
ature: Massias et al. (2019) showed model identification for the Lasso, solved
with coordinate descent, but requiring uniqueness assumption. Nutini et al.
(2017) showed some identification results under strong convexity assumption on
f. Theorem 1 do not rely on any uniqueness, strong convexity, or local strong
convexity hypothesis. Even if the solution of the optimization problem defined
in Equation (1) is not unique, CD achieves model identification.

3 Local convergence rates

In this section, we prove local linear convergence of the CD Algorithm 1. After
model identification, there exists a regime where the convergence towards a
solution of Equation (1) is linear. Local linear convergence was already proved
in various settings such as for ISTA and FISTA algorithms (i.e., with an ¢,
penalty, Tao et al. 2016) and then for the general Forward-Backward algorithm
(Liang et al., 2014).



Local linear convergence requires an additional assumption: restricted injec-
tivity. It is classical for this type of analysis as it can be found in Liang et al.
(2017) and Poon and Liang (2019).

Assumption 6. (Restricted injectivity) For a solution z* € arg min g, ®(x),
the restricted Hessian to its generalized support & = S« is definite positive,
i.e.,

Visf(@) =0 . (11)

For the Lasso, Assumption 6 is a classical necessary condition to ensure
uniqueness of the minimizer (Fuchs, 2004).

In order to study local linear convergence, we consider the fixed point itera-
tion of a complete epoch (an epoch is a complete pass over all the coordinates).
A full epoch of CD can be written:

2D %/J(x(k)) £P,o0...0 7’1(33(k)) ) (12)

where P; are coordinatewise sequential applications of the proximity operator
P; : RP — RP:

T

Thanks to model identification (Theorem 1), we are able to prove that once
the generalized support is correctly identified, there exists a regime where CD
algorithm converges linearly towards the solution:

Theorem 2 (Local linear convergence). Consider a solution * € argmin cp, (z)
and § = Sy«. Suppose

1. Assumptions 1 to 6 hold.
2. The sequence (:c(k))kzo generated by Algorithm 1 converges to x*.
3. The model has been identified i.e., there exists K > 0 such as for all k > K

k
mgc) =TG5 .

Then (m(k))kZK converges linearly towards x*. More precisely, for any v €
[p(Tvs,s(x*)), 1], there exists K > 0 and a constant C such that for all k > K,

k _
2% — 2|l < Cv*=BYz{Y) — x| .



—— practical rate — == theoretical rate === model identification
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Figure 1: Lasso, linear convergence. Distance to optimum, [Jz(*) — z*||,
as a function of the number of iterations k, on 4 different datasets: leukemia,
gisette, rcvl, and real-sim.

The complete proof of Theorem 2 can be found in Appendix B.
Sketch of proof [Theorem 2]

e A key element of the proof is to consider a full epoch of CD: it can be
written as a fixed point iteration: 2(*t1) = ¢)(z(®) (see Equation (12)).

e We then show that the proximal operators, Prox, g evaluated at zj —
v; V; f(x*) are differentiable (for j € [p]). Once stated, the differentiability

of the proximal operator allows us to write the Taylor expansion of :

24D ot = (k) ()
= (F(at), o) = 2t} + oo — 2],

e Capitalizing on model identification (Theorem 1) we start from xgi) = x%.

and show the bound p(Jv¥s.s(z*)) < 1 on the spectral radius of the
restricted Jacobian of ¥ at z*: Jis s(z*).

e Finally, all the conditions are met to apply Polyak (1987, Th. 1, Sec.
2.1.2). The latter reference provides sufficient conditions for local linear
convergence of sequences based non linear fixed point iterations.

O
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—— practical rate — == theoretical rate === model identification
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Figure 2: Sparse logistic regression, linear convergence. Distance to
optimum, ||z*) — z*||, as a function of the number of iterations k, on 4 different
datasets: leukemia, gisette, rcvl, and real-sim.

4 Experiments

We now illustrate Theorems 1 and 2 on multiple datasets and estimators: the
Lasso, the logistic regression and the SVM. In this section, we consider a design
matrix A € R"*P and a target y € R™ for regression (Lasso) and y € {—1, 1}" for
classification (logistic regression and support-vector machine). We used classical
datasets from 1libsvm (Chang and Lin, 2011) summarized in Table 1.

In Figures 1 to 3 the distance of the iterates to the optimum, ||z*) — &
as a function of the number of iterations k is plotted as a solid blue line. The
vertical red dashed line represents the iteration k* where the model has been
identified by CD (Algorithm 1) illustrating Theorem 1. The yellow dashed line
represents the theoretical linear rate from Theorem 2. Theorem 2 gives the
slope of the dashed yellow line, the (arbitrary) origin point of the theoretical
rate line is chosen such that blue and yellow lines coincide at identification time,
i.e., all lines intersect at this point. More precisely, if k* denotes the iteration
where model identification happens, the equation of the dashed yellow line is:

hik) = ||l2®) — 2% || x p(Ts,s(2*))FF) . (13)

Once a solution z* has been computed, one can calculate Js s(z*) and its
spectral radius for each estimator.
For the experiments we used three different estimators that we detail here.
Lasso. (Tibshirani, 1996) The most famous estimator based on a nonsmooth
optimization problem may be the Lasso. For a design matrix A € R™*P and a

“|

11



Table 1: Characteristics of the datasets.
Datasets #samples n  #features p density

leukemia 38 7129 1
gisette 6000 4955 1
revl 20,242 19,959 3.6 x 1073
real-sim 72,309 20,958 2.4 x1073
20news 5184 155,148 1.9 x 1073
—— practical rate ~ == theoretical rate === model identification
= leukemia gisette rcvl 20news
w100 ] = T
RSt H 4 T -\ } y
= 1 1 ~ 1
5“) 10 1 T 1 T 1 T T \
0 50 0 200 0 10 0 100
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Figure 3: Support vector machine, linear convergence. Distance to
optimum, ||z(*) — z*||, as a function of the number of iterations k, on 4 different
datasets: leukemia, gisette, rcvl and 20news.

target y € R™ it writes:

o1
arg min o— || Az — y[|* + Al - (14)
TERP 2n

The CD update for the Lasso is given by
Tj & ST’Yj)\ (xj - rY]AT](y - AZ‘)) ’ (15)

where ST)(2) = sign(z) - max(Jz| — A,0). The solution of Equation (14) is
12
obtained using Algorithm 1 with constant stepsizes 1/7; = %
Sparse logistic regression. The sparse logistic regression is an estimator
for classification tasks. It is the solution of the following optimization problem,

for a design matrix A € R"*? and a target variable y € {—1,1}", with o(z) £
1.
THe ="

1 n
argmin—ﬁ Zloga(yixTAiy;) + Azl - (16)
zERP i—1

The CD update for the sparse logistic regression is
2; STy x (2, — AT (Y © (o(y © Az) — 1)) . (17)

The constant stepsizes for the CD algorithm to solve Equation (16) are given

A, |2

by 1/7; = I 4,7;H )
Support-vector machine. (Boser et al., 1992) The support-vector ma-
chine (SVM) primal optimization problem is, for a design matrix A € R™*P and

12



Table 2: C values for SVM.
dataset ‘ leukemia  gisette revl 20news

Cvalue | 10 151072 151072 510"

a target variable y € {—1,1}™:

argmm ||:E||2+C2max 1y’ Ay ,0) . (18)
i=1

The SVM can be solved using the following dual optimization problem:

!
argmmiw (y@A) y@A sz

weR?

subject to 0 < w; < C . (19)
The CD update for the SVM reads:
w; = P,y (ws = 7((y © )] (y © Aw) - 1)) (20)

where P, ¢j(x) = min(max(0, ), C). The stepsizes of the CD algorithm to solve
Equation (1‘)) are given by 1/7; = ||[(y®A);.||?. The values of the regularization
parameter C for each dataset from Figure 3 are given in Table 2.

Comments on Figures 1 to 3. Finite time model identification and local
linear convergence are illustrated on the Lasso, the sparse logistic regression
and the SVM in Figures 1 to 3. As predicted by Theorem 1, the relative model
is identified after a finite number of iterations. For the Lasso (Figure 1) and
the sparse logistic regression (Figure 2), we observe that as the regularization
parameter gets smaller, the number of iterations needed by the CD algorithm
to identify the model increases. To our knowledge, this is a classical empirical
observation, that is not backed up by theoretical results. After identification,
the convergence towards a solution is linear as predicted by Theorem 2. The
theoretical local speed of convergence provided by Theorem 2 seems like a sharp
estimation of the true speed of convergence as illustrated by the three figures.

Note that on Figures 1 to 3 high values of A (or small values of C') were
required for the restricted injectivity Assumption 6 to hold. Indeed, despite its
lack of theoretical foundation, it is empirically observed that, in general, the
larger the value of A, the smaller the cardinal of the generalized support: |S|.
It makes the restricted injectivity Assumption 6: V%ysf(a:*) > 0 easier to be
satisfied. For instance, for A = Apax/20, the restricted injectivity Assumption 6
was not verified for a lot of datasets for the Lasso and the sparse logistic regres-
sion (Figures 1 and 2). In the same vein, values of C for the SVM had to be
chosen small enough, in order to make |S| not too large (Figure 3).

Note that finite time model identification is crucial to ensure local linear
convergence, see for instance 20news dataset on Figure 3. However there exists
very few quantitative theoretical results for the convergence speed of the model
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identification. Nutini et al. (2019); Sun et al. (2019) tried to obtain some rates
on the identification, quantifying “how much the problem is qualified”, i.e., how
much Assumption 4 is satisfied. But these theoretical results do not seem to
explain fully the experimental results of the CD: in particular the identification
speed of the model compared to other algorithms.

Limits. We would like to point out the limit of our analysis illustrated
for the case of A = Apnax/15 for the sparse logistic regression and the rcvl
dataset in Figure 2. In this case, the solution may no longer be unique. The
support gets larger and Assumption 6 is no longer met. In this case, the largest
eigenvalue of J1s s(z*) is exactly one, which leads to the constant rate observed
in Figure 2. Despite the largest eigenvalue being exactly 1, a regime of locally
linear convergence toward a (potentially non unique) minimizer is still observed.
Linear convergence of non-strongly convex functions starts to be more and more
understood (Necoara et al., 2019). Figure 2 with A = Aax/15 for rcv! suggests
extensions of Necoara et al. (2019) could be possible in the nonsmooth case.

Conclusion and future work. In conclusion, we show finite time model
identification for coordinate descent Algorithm 1 (Theorem 1). Thanks to this
identification property we were able to show local linear rates of convergence
(Theorem 2). These two theoretical results were illustrated on popular esti-
mators (Lasso, sparse logistic regression and SVM dual) and popular machine
learning datasets (Section 4).

A first natural extension of this paper would be to investigate block coor-
dinate minimization: Theorem 1 could be extended for blocks under general
partial smoothness assumption (Hare and Lewis, 2004). However, it seems that
Theorem 2 would require a more careful analysis. A second extension could be
to show linear convergence without the restricted injectivity (Assumption 6),
paving the way for a generalization of Necoara et al. (2019) as suggested by
Figure 2.
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A Proofs of model identification (Theorem 1)

Model identification often relies on the assumption that the nonsmooth function
g is regular enough, or more precisely partly smooth. Loosely speaking, a partial
smooth function behaves smoothly as it lies on the related model and sharply
if we move normal to that model. Formally, we recall the definition of partly
smooth functions restricted to the case of proper, lower semicontinuous and
convex functions.

Definition 3 (Partial smoothness). Let g : RP? — R be a proper closed convex
function. g is said to be partly smooth at x relative to a set M C R"™ if there
exists a neighbourhood U of x such that

¢ (Smoothness) M NU is a C?>-manifold and g restricted to M NU is C?,

e (Sharpness) The tangent space of M at z is the model tangent space T,
where T, = Lin(dg(z))*,

e (Continuity) The set valued mapping Jg is continuous at x relative to

M.

The class of partly smooth functions was first defined in Lewis (2002). It
encompasses a large number of known nonsmooth machine learning optimiza-
tion penalties, such as the £;-norm or box constraints to only name a few, see
Vaiter et al. (2018, Section 2.1) for details. Interestingly, this framework en-
ables powerful theoretical tools on model identification such as Hare and Lewis
(2004)[Thm. 5.3]. For separable functions, next lemma gives an explicit link be-
tween the generalized support Definition 1 (Sun et al., 2019) and the framework
of partial smooth functions (Hare and Lewis, 2004).

Lemma 1. Let z* € dom (g). If for every j € Su+, g; is locally C* around Ty
(Assumption 5), then g is partly smooth at x* relative to x* 4+ Tyx.

Proof. We need to prove the three properties of the partial smoothness (Defini-
tion 3).

Smoothness. Let us write M+« = * 4T« the affine space directed by the
model subspace and pointed by z*. In particular, it is a C?>-manifold.

For every j € S+, g; is locally C? around 7}, hence there exists a neigh-
borhood U; of z7 such that the restriction of f to U is twice continuously
differentiable. For j € &%., let’s write U; = R. Take U = ®j€[[)] U;. This a
neighborhood of z* (it is open, and contains z*). Consider the restriction g,
of g to Mg«. Tt is C? at each point of U since each coordinates (for j € S,+)
are C? around Uj.

Sharpness. Since g is completly separable, we have that dg(x*) = dg1 (z7) x
... X Ogp(zy). Note that dg;(z}) is a set valued mapping which is equal to the
singleton {V;g(z7)} if g; is differentiable at z7 or it is equal to an interval. The
model tangent space T,+ of g at x* is given by

T,. = span(dg(a*))"  where span(dg(a*)) = aff(9g(a*)) — e . (21)
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with

ey = argmin |le]| , (22)
ecaff(dg(z*))

called the model vector.
In the particular case of separable functions, we have that

aff (Dg(2*)) = aff (Og1(27) x ... x Bgy(x})) = aff (g1 (27)) x ... x aff (9g,(2}))
In this case,

P P
aﬁ(agj@)):{{vgg(x])} S %:{ngm) ifjes

R otherwise j 0 otherwise .
(23)
Thus we have that
span (9g(z*)) = aff (Og(z*)) — epv = {z € RP : Vj' € Spv,zjy = 0} .
Then
Ty = span (9g(z*))" = {z € R? : Vj' € 8., 2 = 0} . (24)

Continuity. We are going to prove that dg is inner semicontinuous at x*
relative to M+, i.e., that for any sequence (z*)) of elements of M~ converging
to 2* and any 7 € dg(z*), there exists a sequence of subgradients n*) € dg(z*))
converging to 7.

Let z(®) be a sequence of elements of M« converging to z*, or equivalently,
let t(*) be a sequence of elements of Ty» converging to 0, and let 7 € dg(x*).

For j € §,+, we choose nﬁk)
have 77§k) £ p;. For all j € S¢, xg
we have ngk) € dg(xh).

= 9; (x;+t§k) ), using the smoothness property we

) = x} we choose 17§k) = 75, since z*) € My,

We have that n(®) € 9g(z*) and n*) converges towards 7 since g;» is C*

around % for j € S,+, hence, g (x} + tgk)) converges to gj(z5) = 7;. Thus, it
proves that g is partly smooth at x* relative to x* + T,.. O

The end of the proof of Theorem 1 is contained in Section 2.

B Proofs of local linear convergence (Theorem 2)
To simplify the notations in this section, S £ S,+. Let us also write the element

of S as follows: S = {j1,...,js}- The first point of this proof is to write the
CD algorithm as a fixed point iteration. A full epoch of CD can be written as

2D = p(2®) =Py o o Py (™) . (25)
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We also define n%5¢ : RIS| — RP for all zg € RISI and all j € S by

@%%mﬁ.—{% Loes (26)

J x5 iijSC,

and for all j, € S, 75;6‘*96 : RISl — RIS! is the function defined for all zg € RIS
and all j € S by

if j # Js

~ ok x
PEs (g = ! % if 7 ] 27
( i S))j {proij (zj, =7, V) f(n*se (zs))) it j=]s - 0

Once the model is identified (Theorem 1), we have that there exists K > 0 such
that for all k¥ > K, we have that

xgi) =z%. and xgﬁ_l) = &(mgﬁ)) = ’P;‘*;T 0...0 'Pflgc (xgk)) . (28)
When no confusion is possible, we denote by 75j the function ’ﬁf g“, hence still

dependant on z%5.. The following lemma shows that 75j is differentiable at the
optimum.

Lemma 2. Forall j € S, 75j is differentiable at x%.

Proof. From Assumption 5, we know there exists a neighboorhood of 7 denoted
U such that, for j € S, the restriction of g; to U is C? on Y. In particular, it
means that z} is a differentiable point of g; and given a pair (u,v) € U x RP
such that

u=prox, , (v) €U , (29)
we have %(v —u) € Jg;(u) becomes
1
?(v—u):g;(u)(:)v:u—l—’ng;(u)@U:(Id—i-g;)(u) ) (30)
j

Let H(u) = (Id + g})(u), since g; is twice differentiable at u, we have that
H'(u)=1 +'ng;-'(u) : (31)

Thus, H' : U — R is continuous and then H : U — R is continuously differen-
tiable. Hence F(v,u) = v — H(u) is C' and F(v,u) = 0. By convexity of g, we
have g/ (u) > 0 and

oF

du

Using the implicit functions theorem, we have that there exists an open interval
V C R with v € V and a function h : V + R which is C! such as u = h(v).

Using (29) we thus have with the choice u = x7%, v = x5 —7;V; f(2*) that the

map h coincides with prox, .. on V and is differentiable at v = 2 —7;V; f (z*) €

V. Tt follows that P; is differentiable at z%. O

(v,0) = —H'(u) = =1 — 79" (u) #0 . (32)
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For the sake of completness, we show that in fact prox. . is also differen-
tiable on the complement of the generalized support at = — V; f (x*).
Lemma 3. For all j € 8¢, prox, . is constant around x;—ij(m*). Moreover,

the map x v+ prox, , (z; — ij(acS) is differentiable at x* with gradient 0.

Proof. Let 0g;(z%) = [a;b] and let zF = 2% —V f(2*), then combining the fixed
point equation and Assumption 4 leads to:

1 * * : *
v—j(zj — a%) e ri (9g;(x})) =la; [ . (33)
Thus,
2 €yt e+ (34)

For allv €]vy;ja+a};v;b+a7[, we have %(vfx;) €la; b[=1i (9g;(x7)), i-e., prox, . (v) =

5. As fis C* in z*, we have that z — prox, . (zj — V; f(z)) is differentiable
at «* with gradient being 0. O

From Lemma 2, we have that 75j is differentiable at % for all j € S. Since
x* is an optimal point, the following fixed points equation holds:

x; = Prox, .. (x;‘ - fijjf(x*)) . (35)

The map ¢ is then differentiable at x’s since it is obtained as the composition of
differentiable functions and that each function P; is evaluated at a differentiable
point (only one coordinate change at each step).

To compute, the Jacobian of ’P~j at x5, let us first notice that

IPis) = (e | e v |ejn | fes) (36)

where v; = 9, prox, (25) (e =7 V3. f(2%)) and 2z} = aF — v;V; f(«*). This
matrix can be rewritten as

jﬁ](xg) = Idg —ejejT + Oy Prox, g (z]*) (ejejT — WjejejTVQf(x*))
= Idg —eje;r*yjaz Prox. .. (z;‘) (diag(u) + V2f(m*))
=1Idg —eje;-r'yjam Prox, o (z;) M
=M~1/? (Id‘s‘ —Ml/ere;eraw Prox., o (zj*) M1/2) M2
= M~Y2 (1|5 —B;) MY? (37)

where
M £ V% of (z¥) + diag (u) (38)

and u € RIS is defined for all j € S by

1 1 : *
—— — = if prox Z 0
uj = { P ) Ay L PR, () 7

0 otherwise,
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and
= M2 1/2T
B; = M“j 70 PIOXy g, (Z;> M:,j : (40)
Since only one coordinate change at each step, the chain rule leads to

J(xs) = TP; (x5) TPy, (x5) ... TPy, (x5)
= M~Y2(ld-B;,)...(Id — B;,) M*/?

A

The next series of lemma will be usefull to prove that the spectral radius
p (7)) <1.
Lemma 4. The matriz M defined in (38) is symmetric definite positive.

Proof. Using the non-expansivity of the prox, and the property 9, Prox, g (27) >
0 for j € S, diag(u) is a symmetric semidefinite matrix, so M is a sum of a sym-
metric definite positive matrix and a symmetric semidefinite matrix, hence M

is symmetric definite positive. O

Lemma 5. For all j € S, the matriz B; defined in (40) has spectral norm
bounded by 1, i.e., || Bj||, < 1.

Proof. Bj is a rank one matrix which is the product of v;0, prox, . (z]*)Mlj/ 2
and Mlj/ QT, its non-zeros eigenvalue is thus given by
1/2T 1/2
151l = | M50, prox, ()M
= |70, Prox. .. (z;‘)M” ‘
= |y;0p prox., , (%) | V2. f(z*) + ! L
= N (2 >
J Yi9i NI Y ’Y]aw prOX,ng]_ (Zj*> v
0<
< e
(41)
By positivity of the two terms,
HBJ ll2 = 7;0a ProXy g, (Z;) V?,jf(x*) + (1 —0s PTOXy, g, (Z;))
<Lj<L
J
< Oy prox, o (27) + (1 — Oy prox, o (z;))
<1. (42)
O
Lemma 6. Forallj € S, B;/||Bj| is an orthogonal projector onto Span(le,;Z).
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Proof. Tt is clear that B;/||B;|| is symmetric. We now prove that it is idempo-
tent, i.e., (Bs/||Bs||)? = Bs/||Bs||-

* 1/2 1/2T 1/2 1/2T
B2/||BI[* = (7505 prox, ,, (23)2 M) MSZT M2 ME2T /|| By |2

J
* 1/25 ,1/2T
= (%05 prox,, ()1 B 1M1 M. /|| By
= B;/lIBjl| .
Hence, B;/||B;|| is an orthogonal projector. O
Lemma 7. For all j € S and for all x € R, if ||(Id—Bj)z| = ||z| then

x € Span(M%j/Q)J-.

Proof.

B.:
Id-B; =1d—||B,| =~

B,
= (1 —[|B;]))1d +||BjH21d—||Bj||27B_j
1 B;]]2
B;
= A= BIDId+|B;]  (1d -7+ : (43)
B ]2

projection onto M}J/?l

Let = ¢ Span(M;l’J/Q)J-, then there exists k # 0, z,1/21 € Span(M},]/Q)J- such
that N

xr = KM;J' + $M1(2J_ . (44)

Combining Equations (43) and (44) leads to:
(Id=Bj)z = (1 — [ Bjll2)z + ||Bj||2$M}1/A2L
1(Ad =Bj)a|| < |1 = [|Bjll2][l=]l + [|Bjll2 [[€ /24 ]l
N——— g

———

=1—|Bjl2 <|iz

<zl
O

Lemma 8. The spectral norm of A is bounded by 1, i.e., ||Id —Bj,) ... (Id =By, )|z =
[|All2 < 1.

Proof. Let x € R® such that ||(Id—B;,) ... (Id =By, )z| = ||z||. Since

[(Id =By, ... (Id =Bj))|l2 < [[(1d =Bj, )||2 x - - x [|[(Id =B;, )2
— ——

<1 <1
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we thus have for all j € S, ||(Id —B;)z|| = ||z||. One can thus successively apply
Lemma 7 which leads to:

il L
€ ﬂ Span M:l,]p & x € Span <M1J/127 ce M1]/52> .
JES

Moreover M'/? has full rank (see Lemma 4), thus = 0 and
H(Id 7Bjs) e (Id 7Bj1)||2 <1.

O

From Lemma 8, ||A]lz < 1. Moreover A and J4(z%) are similar matrices,
then p(T0(r3)) = plA) < [|A]ls < 1. ~

To summarize, «% is the solution of a fixed point equation ¥ (z%, 2%5.) = 2.
From Lemma 2, (., x¥%.) is differentiable at %5 and the Jacobian at z% satifies
the condition p(J4(z%)) < 1. Then all conditions are met to apply Polyak
(1987)[Theorem 1, Section 2.1.2] which proves local linear convergence.
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