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Abstract

Accurate numerical simulation of the effective thermal conductivity (ETC) of 3D pore-scale foam
models requires a judicious choice of boundary conditions, as the computational domains are often
smaller than the representative volume element, giving rise to considerable edge effects. Within
the finite element homogenization framework, a set of mixed boundary conditions are consid-
ered alongside the usual uniform and periodic boundary conditions. Validity criteria and order
relations, demonstrated from entropy-based principles, are numerically verified on unit cell-based
geometries, random virtual periodic foams, and non-periodic tomography-reconstructed foams of
equivalent microstructure. A statistical treatment based on the integral range provides confidence
intervals for the estimated ETC. For foam samples with random homogeneous porosity, the mixed
boundary conditions are shown to fulfill the macrohomogeneity condition and thus provide ther-
modynamically valid ETC estimates. For periodic foams with irregular microstructure, the ETC is
very slightly underestimated under the mixed boundary conditions. For non-periodic geometries,
it is shown that periodic boundary conditions–commonly viewed as the reference–underestimate
the ETC due to boundary geometry mismatch, while the mixed boundary conditions give a more
accurate and precise estimate.

Keywords: Foam, Thermal conductivity, Homogenization, Boundary conditions, Finite elements

1. Introduction

Cellular foam materials are a source of interest in many fields [1–3] as they combine attractive
thermal properties with good strength-to-weight ratio [4]. Accurate modeling of the foam effec-
tive thermal conductivity (ETC) is important on account of the difficulties in performing precise
measurements under service conditions (e.g., refractory ceramic foams with service temperatures
up to 1700 ◦C [5]). While analytical relations between the ETC and microstructural parameters
are abundant in the literature [6, 7], most still require calibration or validation against empirical
data [7] before they may be applied to particular classes of materials. As such, many recent studies
have focused on 3D pore-scale numerical simulations on either regular unit cell geometries [8],
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Nomenclature

Scalars are written in regular italic font, while first- and second-order tensors are denoted with bold face italics.

Latin
ℓ Micro-scale characteristic length
P Probability
R3 Cartesian frame
S Entropy functional
A Area
C Covariance
e Basis vector
F Macroscopic heat flux
f Volume fraction
G Macroscopic temperature gradient
h Distance
I Identity
J Integral range
j Direction index
k Thermal conductivity
L Length
N Number
n Normal direction
Q Heat flow
q Heat flux
R Rotation
r Residual
T Absolute temperature
V Volume
x Position

Greek
∆ Difference
ϵ Precision, error
µ Mean
Ω Domain
σ Variance

θ Relative temperature

Superscripts and Subscripts
+/− Opposite sides on the boundary
0 Reference, Arbitrary, Constant
adm Admissible
app Apparent
eff Effective
sol Solution
c Complementary
D Diagonal
p Pore
s Solid

Operators and accents
∇ Del operator
· Dot product, single tensor contraction
∂X Boundary of X
⟨X⟩ Volume average of X
[X] Matrix representation
X̂ Imposed values of X
X̃ Fluctuating component of X

Acronyms
ATC Apparent thermal conductivity
ETC Effective thermal conductivity
MBC Mixed boundary conditions
PBC Periodic boundary conditions
PSD Pore size distribution
RVE Representative volume element
SSA Specific surface area
UHF Uniform heat flux
UTG Uniform temperature gradient

digitally generated random periodic foams [9–11], or tomography-reconstructed real foam mod-
els [1, 2, 12–15].

Finite element-based computational homogenization [16–19] has been used to accurately pre-
dict the ETC tensor of heterogeneous materials such as composites [11] and porous media [20, 21]
from microstructural descriptions of the material. In this scheme, the ETC is classically obtained
by resolving uniform heat flux (UHF) and uniform temperature gradient (UTG) boundary value
problems [22] on computational domains of increasing size, until the resulting apparent thermal
conductivities (ATC) converge to the same value: the ETC. The domain at which convergence is
reached is then defined as a representative volume element (RVE). By this definition, the ETC
satisfies the macrohomogeneity condition1, i.e., fundamental thermodynamic quantities (entropy
in the case of heat conduction) are conserved during scale transition [23]. However, real porous
media such as foams can have prohibitively large RVE sizes due to the random microstructure and

1The analogous condition in the mechanical case is commonly called Hill’s lemma or the Hill-Mandel condition,
and is based on conservation of the mechanical strain energy during scale transitions.
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high contrast in phase properties [20, 21, 24]. Therefore, it is often necessary to estimate the ETC
using computational domains smaller than the RVE (for example, with statistical treatments based
on the integral range [20]). Contrary to the ETC which is intrinsic to the material, the ATC of such
domains may be highly sensitive to boundary conditions due to edge effects, even when convective
and radiative heat transfer are neglected [20, 24].

With their roots in the pioneering works on asymptotic homogenization [25–27], periodic
boundary conditions (PBC)2 have been shown to satisfy the macrohomogeneity condition, and
to directly yield the ETC when applied to single periodic unit cells [17, 24]. Even though the PBC
implicitly assume a periodic computational geometry, they have also been applied in numerous in-
stances to non-periodic geometries such as tomography-reconstructed microstructures [14, 15, 20,
21, 30]. The commonly held view is that the PBC provide the best possible ETC estimate even for
non-periodic geometries [16, 19], and that the error due to geometrical non-periodicity [30] would
vanish if the computational domain is sufficiently large [29]. However, no evidence has been
found to support this view in the case of highly porous real foam models obtained by tomographic
reconstruction, which are often smaller than the RVE.

Much past work involving numerical modeling on tomography-reconstructed foams (e.g., [1,
2, 13, 31]) used instead a set of mixed boundary conditions (MBC) that simulates steady-state
experimental configurations such as the guarded hot plate method [32]. With a parallelepipedic
domain of the sample material, uniform temperatures are fixed on two plane-parallel faces with a
small temperature difference ∆θ between them, while adiabatic conditions are applied to the four
other faces. If the macroscopic material behavior is isotropic or orthotropic [2, 31], a unidirec-
tionnal heat flow Q exists within the sample, and a scalar apparent conductivity k1D is computed:

k1D = −

(
Q
A

) (
∆L
∆θ

)
(1)

with A being the surface area of the hot and cold faces, and ∆L being the distance between them.
Despite their widespread use by the porous media community (e.g., [1, 2, 13, 31]), to the present
authors’ knowledge, these MBC have only been sporadically used within the computational ho-
mogenization framework [21, 24]. This is likely due to the uncertainty on whether the resulting
ATC satisfies the macrohomogeneity condition, especially for anisotropic microstructures. The
accuracy and precision of the MBC results relative to those given by the uniform and periodic
boundary conditions are also unclear, save for a few specific cases: Jiang et al. [24] found that the
MBC and PBC gave equally accurate results for 2D isotropic unit cells, and Dirrenberger et al.
[21] found that for stochastic fibrous samples, larger sample volumes were required to achieve the
same precision with the MBC than with the UTG. For foam geometries smaller than the RVE,
these questions remain open.

Through theoretical demonstrations verified with numerical results, the present work inves-
tigates the validity, accuracy, and precision of the ETC of foams estimated via computational
homogenization under uniform, periodic and mixed boundary conditions. The aim is to clarify the

2Periodic boundary conditions are also used in the volume averaging scheme [28], which gives the same result as
asymptotic homogenization under equivalent assumptions despite being theoretically distinct [29].
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most appropriate boundary conditions for different types of 3D foam models (unit cell-based ge-
ometries, virtual periodic foams, and tomography-reconstructed real foams), so as to pave the way
for more accurate predictions of microstructure-property relations. Section 2 describes the char-
acterization of tomography-reconstructed real foams through image analysis and the generation
of periodic foams of equivalent microstructure. Section 3 formalizes the homogenization prob-
lem and theoretically demonstrates validity criteria and order relations for the different ATC using
entropy-based principles. Section 4 presents the computational strategy, clarifies the concepts of
validity, accuracy, and precision of the ETC estimates, and describes the statistical treatment used
to account for the stochastic real foam microstructure. Results for the different numerical case
studies are then discussed in section 5.

1.1. Mathematical notation
Tensorial notation is used in the equations, with scalars in regular italic font, and first- and

second-order tensors denoted with bold face italics. Tensors expressed as vectors or matrices (de-
noted with square brackets [•]) are given with respect to the Cartesian reference frame {e1, e2, e3},
unless otherwise specified.

2. Characterization and modeling of foam morphology

This section describes the characterization and modeling of the different types of foams stud-
ied in this work. Two types of random foam models are considered: tomography-reconstructed
samples of a reference ceramic foam which provide the most realistic description of the pore scale
morphology, and digitally generated periodic foams of equivalent microstructure. In addition,
non-periodic regular structures were also created from an orthotropic unit cell for a preliminary
study (described further in subsection 5.1).

2.1. 3D imaging and reconstruction of real foam samples
The reference material for this study is NorFoam XPure R⃝ by Saint-Gobain, a high-purity

alumina foam for high temperature thermal insulation [5]. X-ray micro-computed tomography
of the reference material was performed using the Phoenix v|tome|x s by GE. A cubic volume
of 92.04 mm3 was scanned and stored as a grayscale image stack. Automatic thresholding and
denoising were performed using the Fiji software [33] (see Figures 1(a) to (c)) to obtain a binary
image stack containing 516 × 516 × 516 voxels with a voxel size of 8.75 µm). The porosity of the
reconstructed real foam is 74 ± 2 %, which agrees well with the measured apparent density of the
physical samples (the uncertainty reflects the sensitivity towards the image processing parameters).

2.2. Quantitative analysis of microstructural parameters
Pore size distribution. The reference alumina foam has a predominantly open-cell foam structure
with interconnected spheroidal pores. The principal microstructural parameter is taken as the
pore size distribution (PSD), with pore size defined as the diameter of an equal-volume sphere.
Segmentation of the pore phase is performed with a watershed algorithm based on a maximal ball
approach implemented in the iMorph software [34]. In Figure 2(a), the PSD based on pore count
(with the diameter in µm) is shown to follow a lognormal distribution of parameters µ = 4.5 and
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(a) Initial image. (b) Thresholding. (c) Denoising. (d) Segmentation.

Figure 1: Image processing steps.

σ = 0.97 representing the mean and standard deviation of the diameter’s logarithm respectively.
The median diameter is 140 µm based on pore count, and 590 µm based on pore volume.

Pore connectivity. Once segmentation of the pore phase is performed, the pore network can be
obtained by connecting the barycenter of each pore to those of its closest neighbors. The pore
connectivity is then described by the mean number of neighboring pores in contact with any given
pore, i.e., those having at least 1 voxel in common. This parameter is often considered in relation
to heat and mass transport through the pore phase.

Specific surface area (SSA). The specific surface area is the total foam surface area per unit ap-
parent volume, and represents the area available for heat exchange between the pore and solid
phase. iMorph uses a marching cubes algorithm [34] to generate a surface mesh of the pore-solid
interface constituted of triangular elements; the specific surface area is then estimated using the
sum of the elements’ areas.
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(b) Covariance along the principal directions.

Figure 2: Microstructural characteristics of the real foam.

Covariance range. The morphological covariance characterizes the geometrical dispersion within
the foam sample [20]. Let x be a point in the sample. Denoting Ωp the set of all points belonging
to the pore phase and h ∈ R3 an arbitrary distance vector, the morphological covariance C(h) is
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an even function describing the probability that both points x and x + h belong to the pore phase:

C(h) = P
({
x ∈ Ωp

}
∩

{
x + h ∈ Ωp

})
= C(−h) (2)

When h = 0, the covariance is simply equal to the porosity fp. As |h | → ∞, C(h) tends to the
theoretical asymptotic value f 2

p (two points infinitely far apart are uncorrelated). In most cases,
there exists a finite distance called the covariance range at which this asymptotic value is reached.
The covariance range depends on the size and arrangement of pores, and thus represents the char-
acteristic length ℓ of the micro-scale in a given direction [20]. Points at distances larger than this
range are considered statistically independent in terms of their microstructure. In Figure 2(b),
the covariance ranges along the principal directions of the cubic geometry vary from 333 µm to
373 µm, which is approximately 3 times the median pore diameter of 140 µm. The tiny variation
along the different principal directions suggests a very slight anisotropy in the material.

2.3. Generation of equivalent periodic foam models
Recent studies on pore-scale foam modeling have increasingly favored the use of digitally gen-

erated random polydisperse foam models over traditional unit cell descriptions [35], with Voronoi-
based tessellations often used to simulate the distinctively skeletal structure of ultra-low density
foams (usually having porosities of over 90%) [4, 9, 10, 36]. However, for ceramic foams of
slightly lower porosity (approximately between 60% and 85%) fabricated by direct foaming of a
ceramic slurry, spheroidal pores tend to be observed instead [37], as is the case with NorFoam
XPure R⃝. For this class of foams, the foam structure is more closely simulated as a solid matrix
with packed spherical inclusions [10, 38]. The method of Cunsolo et al. [10] chosen to generate
the virtual foams in this work will be briefly described in this subsection.

(a) Sphere packing. (b) Inflation. (c) Gaussian filter. (d) Thresholding. (e) Periodic foam.

Figure 3: Generation of periodic foam models with the algorithm of Cunsolo et al. [10].

Four microstructural parameters are given as input: the target porosity fp, the standard devi-
ation σ of the diameter’s logarithm, the edge length L of the cubic domain, and the number of
pores in the domain. Figure 3 summarizes the foam generation workflow. The process starts with
the generation of a random periodic packing of non-overlapping spheres, with relative diameters
following a normalized lognormal PSD of parameter σ. The spheres are first inflated with their
relative size unchanged, allowing intersections, to roughly match the target porosity. The structure
is then converted into binary voxel format. A Gaussian blur filter followed by grayscale thresh-
olding allows fine-tuning of the porosity while softening sharp edges in the foam structure, giving
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Foam type &
volume (mm3)

PSD: Pores per mm3 vs.
diameter (µm)

Pore con-
nectivity

SSA
(mm−1)

Covariance
range (µm)

Real foam �
(V = 92.04)

100 1000
0.01

0.1

1

10 3.93 10.7 353 ± 20

Virtual foam △

(V = 2.74)
3.5 ± 0.7 9.7 ± 0.5 429 ± 184

Virtual foam �
(V = 11.78)

3.9 ± 0.4 8.4 ± 0.3 696 ± 345

Table 1: Comparison of key microstructural parameters between the real and virtual foams: pore size distribution
(PSD), pore connectivity, specific surface area (SSA), and covariance range. For the virtual foams, the mean and
standard deviations across 10 realizations are given.

results similar to more sophisticated but computationally demanding approaches (e.g., the discrete
element approach of Dyck and Straatman [38]).

Virtual foams of 6 distinct volumes ranging from 2.74 mm3 to 11.78 mm3 with 10 realizations
for each volume are generated. The target porosity of 74% is achieved within voxel precision for
all virtual foams. The same microstructural analysis described in subsection 2.2 is then applied
to the virtual foams, with the results for the smallest and largest foams summarized in Table 1.
The PSD, connectivity and SSA of the virtual foams agree remarkably well with those of the real
foam, especially given that the absolute pore sizes were not fixed during the generation procedure.
The higher mean covariance range in the virtual foams with a wider scatter suggests a less random
pore arrangement in the virtual foam resulting from the periodicity constraint, with a higher degree
of geometrical anisotropy within certain realizations due to the presence of a few extremely large
pores. As the covariance ranges remain smaller than the cubic edge length L, the separation of
micro- and macro-scales is upheld, and the realizations are statistically independent of one another.

2.4. Creation of non-periodic unit cell-based structures
For the preliminary study described in subsection 5.1, regular geometries that possess the key

characteristics of the tomography-reconstructed foams (non-periodicity, anisotropy, high porosity)
are created according to the method described below.

A reference orthotropic unit cell is first built, starting from a motif comprised of a body-
centered cubic arrangement of overlapping spheres (Figure 4(a)). An oblong 4× 2× 1 tessellation
of said motif is created (Figure 4(b)), then compressed into a cube, resulting in an orthotropic
tessellation of overlapping ellipsoids. Finally, the inverse of this tessellation (Figure 4(c)) gives a
periodic, orthotropic unit cell with interconnected ellipsoidal pores. The porosity of fp = 71.3%
is in the same range as the studied foams.

Non-periodic anisotropic geometries are then created as follows: a large 3D tessellation of the
orthotropic unit cell is created, an arbitrary rotation is applied to the tessellation, then a cube is cut
according to the initial Cartesian reference frame to give the final geometry. They are then used
for the preliminary study described in subsection 5.1; notably, Table 2 contains examples of the
anisotropic geometries obtained with the present method.
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(a) Initial motif. (b) 4 × 2 × 1 tessellation. (c) Orthotropic unit cell.

Figure 4: Generation of the orthotropic unit cell.

3. Theoretical study on boundary conditions

Heat transfer within engineering parts or structures made of foams typically occur over length
scales much greater than the characteristic sizes of the foams’ heterogeneities. Applying the prin-
ciple of scale separation, two distinct scales can be considered. At the macro-scale, one is con-
cerned with the thermal loading and response of the engineering structure, and the behavior of the
foam may be represented by an effective thermal conductivity (ETC) tensor keff. While a phe-
nomenological model for keff can be derived from experimental measurements, this approach is
generally cumbersome. Computational homogenization provides a more versatile way to deduce
keff by simulating heat transfer at the micro-scale on explicit representations of the foam mor-
phology (see Figure 5). The chosen micro-scale boundary conditions should satisfy the so-called
“macrohomogeneity condition” to ensure fundamental thermodynamic quantities remain consis-
tent during scale transition.

Four boundary conditions for the micro-scale problem are examined in this work: uniform heat
flux (UHF), uniform temperature gradient (UTG), periodic (PBC) and mixed (MBC) boundary
conditions. Assuming they satisfy the macrohomogeneity condition, these boundary conditions
should predict the same macro-scale behavior when the computational geometry is large enough
to be considered a representative volume element (RVE) of the foam. However, as most foam
geometries are smaller than the RVE, different boundary conditions generally generally give dif-
ferent apparent thermal conductivity (ATC) tensors kapp which are more or less accurate estimates
of the ETC.

The governing equations of the two-scale problem are first provided in subsection 3.1. The
different boundary conditions are then examined in subsection 3.2. In particular, validity criteria
for the MBC are developed with respect to the macrohomogeneity condition. The maximum
entropy principle is then used in subsection 3.3 to establish analytical order relations between the
ATC computed under different boundary conditions.

3.1. Governing equations
3.1.1. Macro-scale problem

At the macro-scale, the foam may be approximated as an equivalent homogeneous medium
with a second-order effective thermal conductivity (ETC) tensor keff. In the absence of volumetric
heat sources, steady-state heat transfer is described by the macro-scale Fourier’s law:

F = −keff · G with ∇ · F = 0 (3)
8



where F and G are the macroscopic heat flux and temperature gradient vectors respectively.
If keff is known, the heat flux and temperature fields across the entire macroscopic domain can

be computed for any well-posed loading case. One way to obtain keff is through the computational
homogenization approach presented in the next subsection.

on

Macro-scale Micro-scale

Figure 5: An illustration of two-scale problem. At the micro-scale, boundary temperatures θ̂ and normal heat fluxes
q̂n are prescribed on parts of the boundary ∂Ωq and ∂Ωθ respectively, giving solution fields qsol and θsol over the
entire domain Ω.

3.1.2. Micro-scale problem and maximum entropy principle
The micro-scale problem considers the foam as a two-phase domain Ω with boundary ∂Ω,

sufficiently large compared to the characteristic microscopic length scale ℓ, yet sufficiently small
compared to the macroscopic length scale (see Figure 5). As such, the temperature variations
within Ω are small: T = T0 + θ ≈ T0, with T0 being the reference temperature and θ the relative
temperature. The second-order local thermal conductivity tensor k is then assumed constant with
respect to temperature.

Under steady-state heat conduction with no volumetric heat generation, the micro-scale heat
flux vector q and relative temperature θ are linked by the micro-scale Fourier’s law:

q = −k · ∇θ with ∇ · q = 0 (4)

Given a set of micro-scale boundary conditions on ∂Ω, the heat flux and temperature fields
over Ω may be provided by the “maximum entropy principle” introduced by Onsager [39] and
formalized in the next paragraph.

Maximum entropy principle. For a set of boundary conditions applied to the domain Ω, it is pos-
sible to define the disjoint parts of the boundary ∂Ωq and ∂Ωθ on which the boundary normal heat
flux q̂n and temperature θ̂ are prescribed respectively (see Figure 5). The resulting solution heat
flux and temperature fields are denoted qsol and θsol.

An “admissible” solution for the heat flux field qadm is a field that satisfies the boundary heat
flux conditions, while possibly differing from the “true” solution qsol elsewhere. The maximum
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entropy principle states that qsol maximizes the rate of entropy increase minus the dissipation-
rate [39], which for small temperature variations (T ≈ T0 on Ω) is written using the functional S :

∀q ∈
{
qadm}

, S(q) =
1

T2
0

(
−

∫
∂Ωθ

(q · n)θ̂ dA −
1
2

∫
Ω

q · (k−1 · q) dV
)
≤ S(qsol) (5)

where θ̂ is the boundary temperature prescribed on ∂Ωθ .
Similarly, an “admissible” solution θadm for the temperature field satisfies the temperature

boundary conditions, but may differ from the “true” solution θsol elsewhere. The complementary
statement of the maximum entropy principle is written as:

∀θ ∈
{
θadm}

, Sc(θ) =
1

T2
0

(
−

∫
∂Ωq

q̂nθ dA −
1
2

∫
Ω

(k · ∇θ) · ∇θ dV

)
≤ Sc(θ

sol) (6)

where q̂n is the boundary normal heat flux prescribed on ∂Ωq.
Note that for a given set of boundary conditions and the resulting solution fields

{
qsol, θsol

}
,

the following property may be proven with the divergence theorem (equation (A.1)):

S(qsol) + Sc(θ
sol) =

1
T2

0

(
−

∫
∂Ω
(qsol · n)θsol dA +

∫
Ω

qsol · ∇θsol dV
)
= 0

⇐⇒ S(qsol) = −Sc(θ
sol)

(7)

3.1.3. Micro-macro scale transition and macrohomogeneity condition
The following averaging relation is proposed for any given scalar or vector field defined over

Ω:
⟨•⟩ =

1
V

∫
Ω

• dV (8)

Having obtained the solution heat flux and temperature fields, the micro-macro scale transition
is achieved by assigning F ≡ ⟨q⟩ and G ≡ ⟨∇θ⟩ [18, 19]. The terms “mean” and “macroscopic”
are henceforth used interchangeably. It is then possible to identify a second-order apparent thermal
conductivity (ATC) tensor kapp linking F and G, using the macroscopic Fourier’s law (given here
in both tensorial notation and vector/matrix form with respect to the Cartesian frame):

F = −kapp · G ≡


F1

F2

F3


= −


kapp

11 kapp
12 kapp

13

kapp
21 kapp

22 kapp
23

kapp
31 kapp

32 kapp
33



G1

G2

G3


(9)

As kapp may vary depending on the choice of micro-scale boundary conditions and the size ofΩ, it
is generally different from keff, which should be intrinsic to the homogenized medium. The chosen
micro-scale boundary conditions to compute kapp should ensure consistency of fundamental ther-
modynamic quantities between the micro- and macro-scales. This “macrohomogeneity condition”
is detailed below.
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Macrohomogeneity condition. The following quantity represents the micro-scale specific entropy
production rate due to the irreversibility of heat conduction, and is obtained by expressing the
second law of thermodynamics in the form of the Clausius-Duhem inequality [39, 40]:

−q · ∇T
T2 ≥ 0 (10)

where T = T0 + θ. Note that the same quantity appears in the statements of the maximum entropy
principle (equations (5) and (6)).

The macrohomogeneity condition states that the specific entropy production rate should be
conserved between the micro- and macro-scales [19, 23]. For small temperature variations (T ≈

T0) across Ω, this condition can be simplified to:〈
−q · ∇T

T2

〉
≈

〈
−q · ∇θ

T2
0

〉
= −F · G

T2
0

⇐⇒ ⟨q · ∇θ⟩ ≈ F · G (11)

Schindler et al. [23] showed that this simplification is indeed valid, inducing an error of 0.18%
when the maximal temperature variation over the domain is 1 K for 273 K ≤ T0 ≤ 775 K.

As the divergence theorem links the averages ⟨q⟩, ⟨∇θ⟩, and ⟨q · ∇θ⟩ to their boundary val-
ues (see equation (A.1)), the applied boundary conditions have a direct influence on whether the
macrohomogeneity condition is satisfied.

3.2. Boundary conditions
The different sets of boundary conditions considered in this work are presented in this section,

and their validity with respect to the macrohomogeneity condition is examined. For mathematical
details, readers may refer to Appendix A.

3.2.1. Uniform and periodic boundary conditions
The usual uniform and periodic boundary conditions encountered in the literature on compu-

tational homogenization (e.g., [19, 27]) are first discussed.

Uniform heat flux (UHF). Denoting F0 an arbitrary heat flux vector constant with respect to x,
the normal component of the heat flux qn = q · n at all points on the boundary is fixed:

∀x ∈ ∂Ω, qn = F0 · n (12)

These conditions can be applied to computational domains of any geometry, and lead to:
⟨q⟩ = F0. Application of these boundary conditions automatically satisfies the simplified macro-
homogeneity condition (11).

Uniform temperature gradient (UTG). Denoting G0 an arbitrary temperature gradient vector con-
stant with respect to x, the temperature θ at all points on the boundary is fixed:

∀x ∈ ∂Ω, θ = G0 · x (13)

As with the UHF, these conditions can be applied to computational domains of any geometry,
and lead to: ⟨∇θ⟩ = G0. Application of these boundary conditions also automatically satisfies the
simplified macrohomogeneity condition (11).
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Periodic boundary conditions (PBC). These conditions are based on splitting the temperature field
over the entire domain into θ = G0 · x + θ̃, and imposing the periodicity on θ̃ (which represents
the fluctuations due to the heterogeneities). In practice, for cuboidal domains, the boundary tem-
perature is specified as:

∀{x+, x−} ∈ ∂Ω, θ(x+) = θ(x−) + G0 · (x+ − x−) (14)

where x+ and x− are two homologous points on the boundary ∂Ω, i.e., one point is obtained by
projecting the other along the normal vector onto the opposite face. If a variational approach such
as the finite element method is used to resolve the temperature and heat flux fields within the
domain, application of the PBC automatically results in antiperiodic normal heat fluxes (qn(x

+) =

−qn(x
−)) on the boundary [41]. If that is not the case, this needs to be specified as an additional

constraint (e.g., in [14]).
Application of the PBC also automatically satisfies the simplified macrohomogeneity condi-

tion (11). The PBC as defined do not explicitly impose any restriction (e.g, periodicity) on the
geometry of the computational domain [19]. However, their use on non-periodic microstructures
such as real foam models reconstructed with X-ray tomography could lead to errors in the com-
puted ATC [30].

3.2.2. Mixed boundary conditions and validity criteria
Unlike uniform and periodic boundary conditions, mixed boundary conditions (MBC) do not

generally satisfy the macrohomogenity condition (equation (11)), and are thus rarely considered
within the computational homogenization framework. In this subsection, the validity of a set
of MBC commonly encountered in past work on porous media [1, 2, 13, 31] and sporadically
used in computational homogenization [21, 24] is analysed with respect to the macrohomogeneity
condition.

Definition of the MBC. Consider a cuboidal domain Ω centered at the origin of the Cartesian
frame, with boundary normal vectors n aligned to the Cartesian axes {e1, e2, e3} (see Figure 6).
The lengths of the cuboid along the e1, e2 and e3 directions are denoted L1, L2 and L3 respectively.
Assuming G0 = G0e1, the MBC are defined as follows (the cases with e1 replaced by e2 and e3
are obtained trivially by index permutation):

∀x ∈ ∂Ω,

{
θ = G0 · x = G0x1 if n ∥ G0

qn = 0 if n ⊥ G0
(15)

To simplify the expressions for the macroscopic fields, the following notations are defined:

∀ j ∈ {1,2,3},


∂Ω+j =

{
x ∈ ∂Ω | n = +e j

}
∂Ω−

j =
{
x ∈ ∂Ω | n = −e j

}
∂Ω j = ∂Ω

+
j ∪ ∂Ω−

j

(16)
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Figure 6: Schema of the mixed boundary conditions (MBC) applied to a cuboidal domain.

The macroscopic fields are obtained by directly applying their definitions in boundary integral
form (equations (A.3) to (A.5) in Appendix A). The macroscopic heat flux vector is expressed as:

[F] =



F1 =
1
V

(∫
∂Ω+1

q1
L1

2
dx2 dx3 −

∫
∂Ω−

1

q1

(
−

L1

2

)
dx2 dx3

)
F2 =

1
V

(∫
∂Ω+1

q1x2 dx2 dx3 −

∫
∂Ω−

1

q1x2 dx2 dx3

)
F3 =

1
V

(∫
∂Ω+1

q1x3 dx2 dx3 −

∫
∂Ω−

1

q1x3 dx2 dx3

)


(17)

The macroscopic temperature gradient is expressed as:

[G] =



G1 =
G0

V

(∫
∂Ω+1

L1

2
dx2 dx3 −

∫
∂Ω−

1

(
−

L1

2

)
dx2 dx3

)
= G0

G2 =
1
V

(∫
∂Ω+2

θ dx1 dx3 −

∫
∂Ω−

2

θ dx1 dx3

)
G3 =

1
V

(∫
∂Ω+3

θ dx1 dx2 −

∫
∂Ω−

3

θ dx1 dx2

)


(18)

The macroscopic specific entropy production rate is expressed as:

⟨q · ∇θ⟩ = G0

V

(∫
∂Ω+1

q1
L1

2
dx2 dx3 −

∫
∂Ω−

1

q1

(
−

L1

2

)
dx2 dx3

)
= F1G1 (19)

Validity criteria. Recall that the MBC do not necessarily satisfy the macrohomogeneity condition
given in equation (11), which based on equations (17) to (19) can be rewritten as:

F · G − ⟨q · ∇θ⟩ = 0 ⇐⇒ F2G2 + F3G3 = 0 (20)
13



While equation (20) can be systematically verified a posteriori, it is often desirable to be able to
deduce a priori if the macrohomogeneity condition is satisfied based on the given microstructure.
To begin with, one may observe that a sufficient condition for equation (20) to be satisfied is if the
mean temperature difference between any two pairs of opposite lateral faces are zero, which from
equation (18) gives:

G2 = G3 = 0 (21)

Equation (21) is hereafter called the sufficient condition for macrohomogeneity of the MBC.
For non-periodic foam structures, it can be postulated that if the pores are distributed in space
in a statistically homogeneous manner, the macroscopic temperature gradient will deviate little
from the e1 direction: the temperature fields on opposite lateral faces will then be similar, i.e., the
sufficient condition (21) will be satisfied. This postulate will be confirmed by numerical modeling
on real and virtual microstructures in subsection 5.4.

Note also that if condition (21) holds, the expression for kapp
11 is consistent with the scalar k1D

in equation (1) computed with the 1D simplification to Fourier’s law:

G2 = G3 = 0 =⇒ kapp
11 = −

F1

G1
= −

L1

V︸︷︷︸
1/A

1
2

(∫
∂Ω1

q1 dx2 dx3

)
︸                   ︷︷                   ︸

Q

1
G0︸︷︷︸
∆L/∆θ

(22)

This alone by no means implies that kapp is orthotropic, since F2 and F3 are not necessarily
zero.

3.3. Influence of boundary conditions on the apparent thermal conductivity
If the computational domain chosen for the micro-scale problem is a representative volume

element (RVE) of the foam material, the apparent thermal conductivity (ATC, kapp) should then
be equal to the effective thermal conductivity (ETC, keff) under any set of boundary conditions
satisfying the macrohomogeneity condition. However, as the RVE may be prohibitively large
for real porous media, it is often necessary to estimate the ETC from smaller, non-representative
computational domains. As such, the ATC may vary greatly depending on the boundary conditions
used due to edge effects [20, 21, 24].

For foam domains Ω smaller than the RVE, the values of kapp under different boundary con-
ditions are compared analytically using the maximum entropy principle [39] presented in sec-
tion 3.1.2. The uniform heat flux (UHF), uniform temperature gradient (UTG), periodic (PBC)
and mixed (MBC) boundary conditions presented in subsection 3.2 are considered. The objective
is to establish order relations between the four values of kapp. As the thermal conductivity tensor
is necessarily positive semi-definite [40], any two thermal conductivity tensors kA and kB may be
compared based on their quadratic form:

kA ≤ kB ≡ (kA · G0) · G0 ≤ (kB · G0) · G0 ∀G0

≡ F0 ·
(
k−1

A · F0

)
≥ F0 ·

(
k−1

B · F0

)
∀F0

(23)

The discussion is hereinafter restricted to cuboidal domains Ω comprised between points
−[L1 L2 L3]/2 and +[L1 L2 L3]/2 in the Cartesian frame {e1, e2, e3}, as illustrated in Figure 6,
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with the arbitrary heat flux and temperature gradient vectors F0 = F0e1 and G0 = G0e1 (the cases
with e1 replaced with e2 and e3 can be obtained trivially by index permutation). The same ref-
erence temperature T0 is adopted for all four boundary value problems. It is first assumed that
application of the MBC satisfies the macrohomogeneity condition (20) (but not necessarily condi-
tion (21), the sufficient condition for macrohomogeneity).

3.3.1. Known order relations
Key results from the literature [17, 19, 22, 24, 42] are summarized below, with complete

demonstrations included in Appendix B. These are based on the observation that any heat flux
q defined over Ω is an admissible solution heat flux field to the UTG problem, since no boundary
heat fluxes are prescribed (∂Ωq = ∅). Conversely, any temperature θ defined over Ω is an admis-
sible solution temperature field to the UHF problem since no boundary temperatures are defined
(∂Ωθ = ∅). The maximum entropy principle (5) and its complementary statement (6) then give:

∀q, SUTG(q) ≤ SUTG(qUTG) (24a)

∀θ, SUHF
c (θ) ≤ SUHF

c (θUHF) (24b)

Firstly, considering the true solutions to the PBC problem qPBC and θPBC as admissible solu-
tions to the UTG and UHF problems respectively, equations (24) gives a well-known result [17,
19, 24] the demonstration of which is found in Appendix B:{

SUTG(qPBC) ≤ SUTG(qUTG)

SUHF
c (θPBC) ≤ SUHF

c (θUHF)
⇐⇒ kUHF

app ≤ kPBC
app ≤ kUTG

app (25)

Secondly, considering the true solutions to the MBC problem qMBC and θMBC as admissi-
ble solutions to the UTG and UHF problems respectively, a development based on the work of
Hazanov and Huet [42] gives the following result, which is also demonstrated in Appendix B:{

SUTG(qMBC) ≤ SUTG(qUTG)

SUHF
c (θMBC) ≤ SUHF

c (θUHF)
⇐⇒ kUHF

app ≤ kMBC
app ≤ kUTG

app (26)

Since kUHF
app = keff = kUTG

app when V → ∞ according to Hill [22], the following relation
necessarily holds for sufficiently large volumes:

kUHF
app ≤ keff ≤ kUTG

app (27)

In summary, the existing literature agrees that the UTG and UHF yield upper- and lower-bound
estimates respectively for keff, and for any given domain size, the PBC and MBC (assuming the
macrohomogeneity condition (20) holds for the latter) provide equally good if not better estimates.
However, no direct theoretical comparison has been made between the estimates obtained with the
PBC and MBC, a gap which will be addressed presently.
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3.3.2. Comparison between mixed and periodic boundary conditions
Assume for the purpose of the present demonstration that there exists a cubioidal domain Ω

that, when subjected to the PBC, gives zero normal heat fluxes on the lateral faces (for foam ge-
ometries, this premise is in fact more general than it may seem at first glance, as will be explained
following the demonstration). For the considered microstructure, qPBC is thus an admissible solu-
tion heat flux to the MBC problem, and one may write:

SMBC(qPBC) ≤ SMBC(qMBC)

⇐⇒ −

∫
∂Ω1

(qPBC · n)(G0 · x) dA −
V
2
⟨q⟩PBC ·

(
(kPBC

app )−1 · ⟨q⟩PBC
)

≤ −

∫
∂Ω1

(qMBC · n)(G0 · x) dA −
V
2
⟨q⟩MBC ·

(
(kMBC

app )−1 · ⟨q⟩MBC
)

⇐⇒ −V ⟨q⟩PBC · G0 +
V
2
⟨q⟩PBC · ⟨∇θ⟩PBC

≤ − V ⟨q⟩MBC · G0 +
V
2
⟨q⟩MBC · ⟨∇θ⟩MBC

(28)

Assuming now that the sufficient condition for macrohomogeneity (21) holds for the MBC,
i.e., ⟨∇θ⟩MBC = G0, and substituting ⟨q⟩ = −kapp · ⟨∇θ⟩, the following inequality is obtained
from equation (28):

−
V
2
⟨q⟩PBC · G0 ≤ −

V
2
⟨q⟩MBC · G0

⇐⇒

(
kPBC

app · G0

)
· G0 ≤

(
kMBC

app · G0

)
· G0

⇐⇒ kPBC
app ≤ kMBC

app

(29)

The premise of zero normal heat fluxes on the lateral faces (qPBC
n = 0 where n ⊥ G0) required

for equations (28) and (29) to hold can in fact be generalized to most types of foam geometries
considered. It is trivially met for periodic microstructures for which the lateral boundaries are
symmetry planes (e.g., unit cells such as in [24]). For non-periodic highly porous foam geometries,
the following postulate can be offered: under the PBC, as qPBC

n is anti-periodic, only opposite pairs
of boundary points that both belong to the solid phase would have non-zero heat fluxes (in porous
media, near-zero heat fluxes are found at points on the boundary where the pore phase is present
and where the heat flux is not specified [24]). With increasing porosity, the rate of occurrence
of such points decreases sharply, reducing the normal heat flux to zero everywhere on the lateral
faces (save eventually for a few points).

In summary, for periodic geometries with boundary faces as symmetry planes and non-periodic
foam models with sufficiently high boundary mismatch, the premise qPBC

n = 0 where n ⊥ G0
should hold. These postulates will be examined through the numerical case studies (sections 5.2
and 5.4).

Combining equation (29) with the inequalities in equations (25) and (26) gives:

kUHF
app ≤ kPBC

app ≤ kMBC
app ≤ kUTG

app (30)
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While kPBC
app is equal to the effective thermal conductivity keff in the case of periodic geometries,

no rigorous ETC solution is available for non-periodic geometries, for which kPBC
app and kMBC

app can
only be considered the best possible estimates of keff. One key goal of the numerical studies
presented in the subsequent sections is to ascertain which of the two are more appropriate for the
different types of foam geometries considered.

4. Numerical methods

Finite element modeling was performed on the different types of cubic foam geometries (L1 =

L2 = L3 = L) described in section 2 with two key goals:

• to investigate the validity, accuracy and precision of the effective thermal conductivity (ETC,
keff) estimated with the apparent thermal conductivity (ATC, kapp) under different boundary
conditions on foam geometries smaller than the representative volume element (RVE), and

• to verify the theoretical postulates of section 3 pertaining to the validity of the mixed bound-
ary conditions (MBC) and to the comparison of its result and that obtained under periodic
boundary conditions (PBC).

The finite element modeling procedure is described in subsection 4.1. The quantities of interest
during post-processing (notably the concepts of validity, accuracy, and precision) are defined in
subsection 4.2. The precision of the estimated ETC for random microstructures can be evaluated
with a statistical treatment based on the integral range [20], detailed in section 4.3.

4.1. Finite element modeling procedure
Initially represented in binary voxel format of equal voxel size (8.75 µm), the different cubic

geometries were fully meshed with linear (P1) brick elements with a mesh density of one element
per voxel (see Figure 7(a)); it was verified that further mesh refinement did not modify the com-
puted ATC value by more than 1.6% on average. Each element was attributed a constant isotropic
thermal conductivity corresponding to that of sintered alumina [43] or air [44] at a reference tem-
perature T0 = 298 K. The contrast between the solid and pore phase conductivities (ks and kp
respectively) is indeed very high: ks/kp = 539.

Finite element modeling of 3D steady-state heat transfer over the entire computational do-
main was performed using the preconditioned Krylov-based iterative solver of Abaqus/Standard
2017 [45]. The governing variational statement of the finite element method [41, 45, 46] is math-
ematically equivalent to the maximum entropy principle [39] presented in section 3.1.2. From the
computed temperature and heat flux fields (see example in Figures 7(b)–(c)), the mean temperature
gradient, heat flux, and specific entropy production rate were calculated based on their respective
definitions in Appendix A.

To solve for kapp, three orthogonal configurations were solved for each boundary value prob-
lem, i.e., the directions of G0 = G0e j or F0 = F0e j were permuted for j ∈ {1,2,3}. As equa-
tion (9) gives three equations linking F ≡ ⟨q⟩ and G ≡ ⟨∇θ⟩ for each configuration, nine equations
were thus obtained to solve for the nine unknowns in kapp. With MPI-based parallelization on a
quad-core processor with a clock speed of 2.20 GHz, computation of the complete ATC tensor
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Figure 7: Application of the mixed boundary condition (MBC) on a 1.35 mm × 1.35 mm × 1.35 mm reconstructed
foam model meshed with 3.65 million (1543) elements. The ∂Ω+1 , ∂Ω+2 , and ∂Ω+3 faces are shown.

for a domain with 8 million elements took approximately three hours, half of which was spent on
post-processing.

4.2. Quantities of interest during post-processing
For each set of boundary conditions and each type of microstructure, four aspects of the com-

puted ATC are studied:

Validity with respect to the macrohomogeneity condition. As small temperature variations are con-
sidered, the macrohomogeneity condition (11) should be satisfied by each set of boundary condi-
tions used for the resulting ATC to be considered valid. An “entropy residual” rS can be defined
as follows:

rS =

√√√
1
3

3∑
j=1

(
⟨q · ∇θ⟩ − F · G

F · G

)2

G0∥e j

(31)

A zero value of rS means that the macrohomogeneity condition (11) is satisfied, i.e., the specific
entropy production rate is consistent between the micro- and macro-scales.

Diagonalizability. Eigendecomposition of the ATC was performed to identify the principal direc-
tions of orthotropy (if they exist) and the ATC along these directions. Consider a cubic domain
aligned to the Cartesian frame in which the ATC matrix [kapp] is computed. If the thermal con-
ductivity of the underlying material is indeed orthotropic in another reference frame rotated with
respect to the Cartesian frame by a matrix [R], then [kapp] is diagonalizable and the diagonalized
ATC matrix [kD

app] can be written as:

[
kD

app
]
= [R]−1 [kapp

]
[R] with

[
kD

app
]
=


kapp

I 0 0
0 kapp

II 0
0 0 kapp

III

 (32)

where kapp
I , kapp

II and kapp
III are the real eigenvalues of [kapp], and the columns of [R] are the corre-

sponding eigenvectors.
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Accuracy. For periodic geometries, the ATC obtained through application of the PBC is the refer-
ence ETC (kPBC

app = keff), and was used to evaluate the accuracy of those obtained under the other
boundary conditions (UHF, UTG, MBC). For non-periodic geometries, no rigorous reference ETC
can be obtained in general, if convergence of the UHF and UTG bounds is not achieved.

Precision. While deterministic effective properties exist for regular geometries, for random mi-
crostructures, the variation between the ATC may not vanish even when the computational domain
is extremely large. The ETC was therefore estimated using the stochastic mean ATC ⟨⟨kapp⟩⟩ of
different samples of the material (or realizations, if digitally generated virtual geometries are con-
sidered). With N independent samples of equal volume V , the precision ϵ of the i j term of the
mean ATC matrix was evaluated from the standard error [20]:

ϵ =
2σk

⟨⟨kapp
i j ⟩⟩

√
N

(33)

where σk is the standard deviation of the ATC, which generally decreases with increasing V . To
achieve a given precision ϵ , one may either work with a large number of small samples, or a small
number of large samples.

4.3. Statistical treatment based on the integral range
In random foams of arbitrary size, the interplay between the variance of the ATC and sample

volume depends not only on the regularity of the microstructure, but also on the type of property
considered, the phase contrast, and the boundary conditions. To account for their influence, Kanit
et al. [20] proposed the following power law model for the ATC variance σ2

k :

σ2
k = fp

(
1 − fp

) (
ks − kp

)2
(

Jk

V

)α
for V ≫ Jk (34)

where ks and kp are the conductivities of the solid and pore phases respectively, α is the power law
exponent, and Jk is the integral range which can be interpreted as the scale of the phenomenon, V
being the scale of observation. In practice, for a given set of boundary conditions and microstruc-
ture, Jk and α are estimated by first computing σk for a few different values of V , then performing
a power law regression.

With equations (33) and (34), it is then possible to evaluate the precision ϵ of the estimated
ETC even if computation of the standard deviation is impossible (e.g., when an insufficient number
of samples are available). Alternatively, one may also define a target precision ϵ0, and estimate the
associated “statistical RVE size” as V(ϵ0,N = 1).

It is important to note that application of the statistical treatment only accounts for the scat-
ter due to the random microstructure; when working with geometries of sub-RVE sizes, due to
edge effects, inaccuracies in the ETC estimate may still exist depending on the chosen boundary
conditions.
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5. Results and Discussion

The apparent thermal conductivity (ATC, kapp) of three types of foam geometries are computed
under four sets of boundary conditions: uniform heat flux (UHF), uniform temperature gradient
(UTG), periodic (PBC) and mixed (MBC) boundary conditions. While a deterministic value of
the effective thermal conductivity (ETC, keff) intrinsic to the entire medium may be computed for
regular periodic microstructures, for random microstructures, the mean ATC of several realizations
was used as an estimate of the ETC.

Specific results corresponding to each type of foam geometry are first presented:

• Subsection 5.1 describes a preliminary study on unit cell-based geometries that highlights
the effect of geometrical non-periodicity on the accuracy of the estimated ETC;

• Subsection 5.2 describes a study of the effect of random porosity on the accuracy of the ETC
estimated under different boundary conditions in the case of periodic virtual foams;

• Subsection 5.3 describes a study of the accuracy and precision of the ETC estimated under
different boundary conditions on non-periodic tomography-reconstructed real foams.

Last but not least, the theoretical postulates in section 3 pertaining to the validity of the MBC
as well as the order relation between the MBC and PBC results are verified in subsection 5.4.

As was commonly done for porous media, the results were given in terms of the normalized
ATC kapp/ks, which is generally only dependent on the microstructure and independent of the
base material properties due to the high phase contrast [6], allowing the discussion hereafter to be
generalized to all foams of similar morphology whatever the base material.

Where appropriate, the results are compared to several well-known analytical models: the
series and parallel models, also known as the Wiener or Voigt-Reuss bounds of the ETC of arbitrary
mixtures; the Maxwell-Eucken models, also known as the Hashin-Shtrikman bounds for isotropic
mixtures; and a power law solution to the “asymmetric” Bruggeman approximation for spherical
inclusions of negligible conductivity, commonly named after Archie [47]. A thorough review of
analytical models applicable to porous ceramics can be found in references [6] and [7].

5.1. Study on unit cell-based geometries: effect of geometrical non-periodicity
The ATC of the reference orthotropic unit cell (Figure 4(c)) was first calculated using different

boundary conditions. Regardless of the boundary conditions used, the ATC matrix was indeed
diagonal as expected. Results for two different tessellation sizes are shown in Figure 8. Larger
tessellations were not considered to keep the size of the computational domain representative of
typical reconstructed foam models.

As the geometry is periodic, the PBC result on a single unit cell directly gives the reference
ETC of the whole medium. The conclusions regarding the other boundary conditions were in line
with past findings [17, 20, 24]. The UHF and UTG provided lower- and upper-bound estimates of
the ETC respectively; however the large difference between the bounds and their extremely slow
size convergence due to the large phase contrast render their use impractical, and demonstrate that
the RVE as defined by Hill [22] would be prohibitively large. Notably, the UTG result coincides
exactly with the parallel model (upper Wiener bound) and seems insensitive to material orthotropy,
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Figure 8: Diagonal values of the apparent thermal conductivity (ATC) matrix computed for two tessellations of the
orthotropic unit cell with the uniform heat flux (UHF), uniform temperature gradient (UTG), periodic (PBC), and
mixed (MBC) boundary conditions. The bounds given by the series and parallel models are also included; the lower
bound (series model) is extremely close to zero.

a recurring observation in the following subsections. Similar to the results of Jiang et al. [24], the
ATC of the orthotropic unit cell computed with the MBC is identical to that of the PBC within
numerical accuracy.

With a 2 × 2 × 2 tessellation of the orthotropic unit cell as the reference, two non-periodic,
anisotropic geometries of the same volume are then created: a “low anisotropy” case through
rotating the base material with respect to the Cartesian frame by 45◦ about the [0 0 1] axis, and
a “high anisotropy” case by a rotation of 57.1◦ about the [−0.13 0.38 0.92] axis. As mentioned
in subsection 2.4, the diagonalized ATC matrices of all three geometries should be equal, i.e.,
they should have the same eigenvalues (equation (32)). Table 2 lists the eigenvalues of the ATC
obtained with the PBC and MBC for the different anisotropic cases, and their mean errors with
respect to those of the ETC matrix of the orthotropic unit cell calculated with the PBC.

The negative errors show that the ETC is systematically underestimated by both the PBC and
MBC due to boundary effects (linked to the zero lateral normal heat flux for the MBC, and to the
geometrical mismatch for the PBC). The estimate obtained with the MBC is however significantly
better than that given by the PBC, which contradicts the commonly held view that the PBC offer
the best estimate for computational domains of sub-RVE sizes. This can be explained by the
following: assuming the sufficient condition for macrohomogeneity (20) is fulfilled, the MBC can
be seen as a relaxed form of the PBC, in which the restriction of θ̃(x+) = θ̃(x−) (local periodicity)
on the lateral faces where n ⊥ G0 is replaced with a weaker condition of

∫
θ̃(x+) dA =

∫
θ̃(x−) dA

(“macroscopic periodicity”). At the same time, without the condition of anti-periodicity of qn on
the faces with n ∥ G0, the flux concentration is reduced on these faces. These lead to a lower error
in the ETC estimation with the MBC than with the PBC.

5.2. Study on virtual periodic foam models: effect of random porosity
Virtual periodic foam models of six different volumes ranging from V = 2.74 mm3 to V =

11.78 mm3 were generated with the algorithm of Cunsolo et al. [10] (see subsection 2.3) and
used to investigate the effect of random porosity on the estimated ETC. For each sample, rigorous
reference values for the ATC can be obtained by applying the PBC; however a scatter in the ATC
between different samples still exists due to the random microstructure.
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Type of geometry Normalized ATC matrix [kapp/ks] Eigenvalues Mean error
Reference:

PBC:

0.112 0 0

0 0.173 0
0 0 0.234




0.112
0.173
0.234

Ref.

MBC:

0.112 0 0

0 0.173 0
0 0 0.234




0.112
0.173
0.234

0.0%

Low anisotropy:

PBC:


0.126 −0.016 0
−0.016 0.126 0

0 0 0.231




0.110
0.142
0.231

−7.3%

MBC:


0.141 −0.030 0
−0.030 0.141 0

0 0 0.230




0.111
0.171
0.230

−1.5%

High anisotropy:

PBC:


0.144 −0.017 0.026
−0.017 0.127 0.024
0.026 0.024 0.198




0.104
0.153
0.211

−9.5%

MBC:


0.112 −0.020 0.027
−0.020 0.136 0.030
0.027 0.030 0.211




0.107
0.166
0.226

−3.9%

Table 2: Normalized apparent thermal conductivity (ATC) matrices of anisotropic geometries computed with periodic
(PBC) and mixed (MBC) boundary conditions, and the error of their eigenvalues relative to the reference (Ref.) values.
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For each given volume, the mean ATC over 10 virtual foam realizations was used to estimate
the ETC of the entire medium. The mean ATC matrices in the Cartesian frame computed with
the PBC, MBC and UHF are diagonal, with a slight orthotropy (±9% difference between the three
eigenvalues). The orthotropy is expected from the large scatter observed in the covariance range
(see Table 1 in subsection 2.3). The UTG result gives an isotropic matrix with diagonal values
equal to the parallel model (upper Wiener bound).

Figure 9 compares the largest eigenvalue of the mean ATC (kapp
max = max

{
kapp

I , kapp
II , kapp

III

}
)

computed with the four sets of boundary conditions, with the precision ϵ indicated as error bands.
The precision hovers around 2% for all cases, does not significantly decrease with increasing foam
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Figure 9: Mean normalized apparent thermal conductivity (ATC) of periodic virtual foams of increasing volume,
under uniform heat flux (UHF), uniform temperature gradient (UTG), periodic (PBC) and mixed (MBC) boundary
conditions. Comparison was shown for the largest eigenvalue of the ATC. The error bands indicate the standard error.

volume, and is only very slightly lower with the PBC than with the MBC. This is thanks to the
similarity in microstructure between the samples: the average over 10 samples of even the smallest
volume (V = 2.74 mm3) is sufficient to account for the random nature of the virtual foams. Further
statistical treatment (e.g., with equation (34)) was thus considered unnecessary.

As the virtual foams are periodic, application of the PBC gives the reference ETC value. As
with the orthotropic unit cell, the UTG and UHF yielded extremely wide and thus uninformative
upper- and lower-bound estimates of the ETC. Unlike for the orthotropic unit cell, the MBC result
is extremely close but systematically lower than the PBC result, which makes this type of geometry
a counter-example to the order relation in equation (30). Indeed, the absence of symmetry planes
due the irregularity of the pore arrangement means that the demonstration in subsection 3.3.2 does
not apply to this type of microstructure.

One can thus conclude that for random periodic structures, the PBC result is unsurpassed by
the MBC result, with the latter generally underestimating the ETC due to regions close to the
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boundary not participating in heat transfer as they would in an infinite medium. The difference
between the MBC and PBC results in the present case is however very slight.

5.3. Estimation of the effective thermal conductivity of reconstructed real foams
For the tomography-reconstructed real foam models, no rigorous numerical solution of the

ETC can be obtained due to the non-periodic geometry. As such, the mean ATC of non-overlapping
cubic subdomains of the reconstructed foam is used as an ETC estimate. Volumes between
0.0117 mm3 and 11.5 mm3 were considered, with the number of samples for each volume recorded
in Table 3. To ensure statistical independence of the samples, care was taken such that the dimen-
sions L of the smallest subdomains remain greater than the real foam’s covariance range.

Volume V (mm3) 0.0942 0.318 0.754 1.47 2.54 6.03 11.5
Number of samples 125 125 64 64 27 8 8
Porosity fp (%) 74 ± 9 74 ± 5 74 ± 3 74 ± 2 74 ± 1 73.8 ± 0.5 74.0 ± 0.5

Table 3: Number of samples and porosity (stochastic mean and standard deviation) for each considered subdomain
volume.

Near-diagonal mean ATC matrices were obtained in all cases, with an approximate difference
of ±6% between eigenvalues. For the volumes considered, the variance between the ATC of
different subdomains are much higher than that obtained with the periodic foams. Indeed, while
the periodic foams all have the same porosity and only differ in terms of pore arrangement, the
real foam subdomains considered here can have vastly different porosities, which is the main factor
influencing the ATC. The variance of the ATC computed with the UTG, PBC and MBC decreases
sharply with sample volume, in excellent agreement with the power law (34) proposed by Kanit
et al. [20] (Figure 10). On the other hand, the UHF estimate has a relatively stable variance that is
of several orders of magnitude smaller, showing an insensitivity towards pore volume fraction at
high porosities.
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Figure 10: Variance of the normalized apparent thermal conductivity (ATC) of real foams of different volumes simu-
lated with the mixed boundary conditions (MBC), with the power law fit proposed by Kanit et al. [20].

The integral range Jk and power law exponent α for the UTG, PBC and MBC identified from
the numerical experiments are summarized in Table 4. The values of Jk confirm that the hypothesis
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V ≫ Jk for equation (34) holds, and also α ≈ 1 in line with the findings of Kanit et al. [20]. The
statistical RVE sizes (VN=1 for a target precision ϵ0 = 2%) estimated through equations (33) and
(34) using the identified parameters are also given, showing notably that the ETC estimated with
the MBC stabilizes at smaller volumes than with the PBC.

Jk of kapp
j j /ks (10−3 mm3) α of kapp

j j /ks (-) VN=1 (mm3)
j = 1 j = 2 j = 3 j = 1 j = 2 j = 3 ϵ0 = 2%

UTG 9.490 9.490 9.490 1.255 1.255 1.255 33
MBC 6.116 4.670 4.137 1.240 1.163 1.117 125
PBC 1.339 4.309 2.602 0.934 1.153 1.028 505

Table 4: Integral range Jk and power law exponent α corresponding to the diagonal terms of the normalized apparent
thermal conductivity kapp/ks of the real foam, under uniform temperature gradient (UTG), mixed (MBC) and periodic
(PBC) boundary conditions. The size of the statistical representative volume element VN=1 for a precision of ϵ0 = 2%
was also given.

The mean and precision of the largest eigenvalue of the ATC obtained using different bound-
ary conditions on subdomains of increasing volumes are shown in Figure 11. As with the results
obtained on periodic foams, comparison was made with the series and parallel (Weiner) bounds,
Maxwell-Eucken bounds, and the power law of Archie [47]. Once again, the UTG and UHF
results are extremely far apart and thus uninformative. For every subdomain, the UTG system-
atically gives the parallel model result (upper Wiener bound); the narrow error bands observed
simply reflect the slight variation in porosity–and thus the parallel model result–between individ-
ual subdomains. The MBC results are slightly more precise than the PBC results, both in absolute
and relative terms.

The estimate given by the PBC is now systematically and significantly inferior to the MBC
result, in agreement with the order relation kPBC

app ≤ kMBC
app (30) demonstrated in subsection 3.3.2.

While no rigorous reference ETC value exists, one can nonetheless see that the ETC estimated
under the PBC slowly tends towards the MBC result (instead of the other way round), suggesting
that the converged value is closer to the MBC result than it is to the PBC result. Coupled with
the results from the preliminary study on unit cell-based geometries (see subsection 5.1), this
observation gives strong evidence that the MBC give more accurate estimates of the ETC than the
PBC for non-periodic foam microstructures.

5.4. Verification of theoretical postulates
In the next subsections, the postulates in section 3 are verified with the results of the numer-

ical case studies. Notably, the validity of the mixed boundary conditions (MBC) for statistically
homogeneous foams and the order relation between the apparent thermal conductivities (ATC)
computed under the MBC and periodic boundary conditions (PBC) are examined.

5.4.1. Macrohomogeneity condition and validity of the mixed boundary conditions
For all the considered cases, the entropy residual rS (31) was systematically checked to en-

sure that the macrohomogeneity condition is satisfied. Figure 12 shows, for the tomography-
reconstructed real foams, the evolution of the mean entropy residual with sample volume for
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Figure 11: Mean normalized apparent thermal conductivity (ATC) of non-periodic real foam samples of increasing
volume, under uniform heat flux (UHF), uniform temperature gradient (UTG), periodic (PBC) and mixed (MBC)
boundary conditions. Comparison was shown for the largest eigenvalue of the ATC. The error bands indicate the
standard error.

different boundary conditions. The uniform temperature gradient (UTG) boundary conditions
systematically gave a residual of exactly 0% showing that the macrohomogeneity condition was
perfectly satisfied. However, a low, non-zero residual was found for the other cases, most likely
due to the use of a “displacement-based” finite element solver [45] which introduces small dis-
cretization errors where exact temperature boundary conditions are not given.

At large domain sizes, the low residual (rS < 1%) shows that all the considered boundary
conditions satisfy the macrohomogeneity condition. At small domain sizes, the residual obtained
with the MBC rises sharply with a much larger scatter (compared to that obtained with the PBC,
which only rises slightly due to the increased discretization error). This observation certainly
supports the postulate made in subsection 3.2.2: that the MBC satisfy the sufficient condition for
macrohomogeneity (21) as long the sample contains a statistically homogeneous spatial distri-
bution of pores, since a smaller foam volume with respect to the characteristic pore size would
imply a less homogeneous spatial distribution of pores within the sample. To illustrate this, the
normalized temperature difference between opposite lateral faces (∂Ω3) is compared in Figure 13
for two different volumes: the smaller sample (V = 0.318 mm3, L/ℓ ≈ 1.9) has significantly
larger differences between the temperature fields on opposite faces compared to the larger sample
(V = 2.54 mm3, L/ℓ ≈ 3.9) for which the difference is close to zero.

5.4.2. Comparison of the apparent conductivities of non-periodic foams under periodic and mixed
boundary conditions

In subsection 3.3.2, the order relation kPBC
app ≤ kMBC

app (28) was demonstrated with the postulate
that the boundary normal heat flux under the PBC vanishes on the lateral faces for non-periodic
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Figure 13: Normalized temperature difference on opposite pairs of lateral ∂Ω3 faces of non-periodic real foams of
different volumes subjected to the mixed boundary conditions (MBC).

foams of high porosity, due to a combination of high phase contrast and high geometrical mis-
match.

Figure 14 illustrates the normal heat flux qn on the boundaries of a non-periodic real foam
model subjected to the PBC, and compares it with the geometrical features on the corresponding
boundaries: for each pair of opposite boundary faces, the white regions show regions at which the
solid phase is present on both faces, the black regions show regions at which the pore phase is
present on both faces, and the gray regions indicate regions with boundary geometry mismatch.

One sees that qPBC
n is indeed non-zero on the boundaries only where the solid phase is present

on both sides. While high values of qPBC
n are seen on the ∂Ω1 faces perpendicular to the imposed

temperature gradient, low values close to zero are generally seen on the lateral faces even when
there is “continuity” of the solid phase across opposite lateral faces. This observation supports
the postulate that the combined effect of geometrical mismatch on the lateral faces and high phase
contrast reduces qPBC

n to zero on lateral faces, confirming the theoretical status of the demonstrated
order relation kPBC

app ≤ kMBC
app for non-periodic, highly porous foams.
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6. Conclusion

In performing computational homogenization on microstructures smaller than the reprensen-
tative volume element (RVE), the apparent thermal conductivity (ATC) under different boundary
conditions are generally biased estimates of the effective thermal conductivity (ETC) of the entire
medium due to edge effects. The present theoretical and numerical study clarified the influence of
boundary conditions on the validity, precision and accuracy of the ETC thus estimated for open-
cell foams of sub-RVE sizes with porosities close to 74%. Three different types of foam models
were considered: unit cell-based structures, digitally generated periodic foams, and tomography-
reconstructed real foams. When the microstructure is random, the resulting scatter in the ATC is
taken into account by averaging over several equivalent samples, and a statistical treatment pro-
posed by Kanit et al. [20] based on the integral range was used to estimate the confidence interval,
as well as the statistical RVE size associated with a given precision.

Due to the high porosity of the considered microstructures and the high contrast between the
thermal conductivities of the solid and pore phases, an extremely wide gap was observed between
the numerical lower and upper bounds given by the uniform heat flux (UHF) and uniform temper-
ature gradient (UTG) boundary conditions respectively. The extremely slow convergence of these
two bounds is evidence of the prohibitively large RVE size, and renders these boundary conditions
impractical for estimating the ETC of foams. The UTG result can be particularly misleading as it
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systematically gives an isotropic ATC equal to the parallel model result (upper Wiener bound) for
the considered computational volumes, even when significant orthotropy exists.

The set of mixed boundary conditions (MBC) considered in this work was shown to satisfy the
macrohomogeneity condition for foam samples in which the pores are distributed homogeneously,
and thus provide thermodynamically valid ETC estimates under the homogenization framework.
While this rule of thumb may be used to determine a priori the types of microstructures on which
the MBC can be used, it is still recommended to verify this point on a case-by-case basis (i.e., by
computing the entropy residual rS defined in equation (31)).

Contrary to the common view that periodic boundary conditions (PBC) give the best possible
estimate of the ETC for any given microstructure, for non-periodic foam microstructures, the
aforementioned MBC are shown to provide more accurate and precise ETC estimates. Indeed, the
PBC significantly underestimate the ETC under the combined effect of high phase contrast and
high geometrical mismatch on the lateral boundaries.

The reverse is true for periodic foams with irregular porosity: while the PBC directly give the
reference ETC value, the MBC lead to an underestimation of the ETC, although in the present in-
vestigation, the confidence intervals of both results lay very close. Identical results are obtained for
the MBC and PBC results for periodic structures in which symmetry planes exist for the geometry
(e.g., the regular isotropic unit cells studied by [24]).

The guidelines established in this work should improve the accuracy and precision of foam
microstructure-property relations predicted through direct pore-scale modeling. Future work could
focus on numerical modeling on gigantic samples (using more appropriate alternatives such as
FFT-based techniques [48, 49]) to attempt to reproduce the present results for foam sizes close
to or exceeding the RVE. Also of interest is the development of more realistic, physics-based
periodic foam generation techniques, which may eliminate the need for costly direct computation
on tomography-reconstructed foam samples without sacrificing the accuracy of the morphological
description and hence the estimated ETC. While the present study focuses on thermal conduction
modeling in foams, extensions to other physical phenomena such as permeability, elasticity, and
plasticity (with appropriate treatments to handle nonlinear behavior [16, 50]) are most certainly of
interest for future investigations.

7. Acknowledgments

This research was supported by Saint-Gobain Research (SGR) Provence and the French Na-
tional Association for Research and Technology (ANRT) through the CIFRE grant number 2017/0775.
The authors would like to express their gratitude to L. San Miguel (SGR Provence), L. Pierrot
(SGR Provence) and J. Meulemans (SGR Paris) for their insight and discussions that greatly as-
sisted the research, to Y. Millot (SGR Provence) for the preparation of foam samples, and to J.
Adrien (MATEIS laboratory) for assistance with X-ray tomography.

29



Appendix A. Mean field computation for different boundary value problems

For a volume Ω with boundary ∂Ω on which a differentiable scalar field ψ and a vector field
Ψ are defined, the divergence theorem and its corollary state that:∫

Ω

∇ · Ψ dV =
∫
∂Ω
Ψ · n dA (A.1a)∫

Ω

∇ψ dV =
∫
∂Ω
ψn dA (A.1b)

The heat flux q can be expanded using the relations ∇x = I (the identity tensor) and ∇ · q = 0:

q = q · ∇x = ∇ · (qx) −✘✘✘✘(∇ · q)x (A.2)

The mean heat flux ⟨q⟩ is then written as a boundary integral:

⟨q⟩ =
1
V

∫
Ω

q dV =
1
V

∫
Ω

∇ · (qx) dV

=
1
V

∫
∂Ω
(qx) · n dA =

1
V

∫
∂Ω

qnx dA
(A.3)

Rewriting the mean temperature gradient ⟨∇θ⟩ as a boundary integral requires simple applica-
tion of the divergence theorem (A.1):

⟨∇θ⟩ = 1
V

∫
Ω

∇θ dV =
1
V

∫
∂Ω
θn dA (A.4)

As for the mean specific entropy production rate ⟨q · ∇θ⟩, a similar development as in equa-
tion (A.3) is undertaken:

⟨q · ∇θ⟩ = 1
V

∫
Ω

q · ∇θ dV =
1
V

∫
Ω

∇ · (qθ) dV

=
1
V

∫
∂Ω
(qθ) · n dA =

1
V

∫
∂Ω

qnθ dA
(A.5)

Equations (A.3) to (A.5) are then applied to each boundary condition to demonstrate their
validity with respect to the macrohomogeneity condition, as shown below.

Uniform heat flux (UHF). Using equation (12) as a starting point, the macroscopic heat flux F =
⟨q⟩ is computed:

F =
1
V

∫
∂Ω

x(F0 · n) dA =
1
V

∫
Ω

F0 dV = F0 (A.6)

From relation (A.5), it can then be shown that the macrohomogeneity condition in (11) is
automatically satisfied:

⟨q · ∇θ⟩ = 1
V

∫
∂Ω
(F0 · n)θ dA = F0 ·

(
1
V

∫
∂Ω
θn dA

)
= ⟨q⟩ · ⟨∇θ⟩ (A.7)
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Uniform temperature gradient (UTG). Using equation (13) as a starting point, the macroscopic
temperature gradient G = ⟨∇θ⟩ can be computed (knowing that ∇x = I the identity tensor):

G =
1
V

∫
Ω

∇(G0 · x) dV =
1
V

∫
Ω

G0 · (∇x) dV = G0 (A.8)

The macrohomogeneity condition in (11) is also automatically satisfied:

⟨q · ∇θ⟩ = 1
V

∫
∂Ω

qn(G0 · x) dA =
(

1
V

∫
∂Ω

qnx dA
)
· G0 = ⟨q⟩ · ⟨∇θ⟩ (A.9)

Periodic boundary conditions (PBC). The temperature field over the domain is split as follows:

∀x ∈ Ω, θ = G0 · x + θ̃ (A.10)

where θ̃ is the fluctuation due to the micro-scale heterogeneities. The periodicity of θ̃ is imposed
in the PBC, as shown by rewriting equation (14):

∀x ∈ ∂Ω, θ̃(x+) = θ(x+) − G0 · x+ = θ(x−) − G0 · x− = θ̃(x−) (A.11)

In the expression of the macroscopic temperature gradient G = ⟨∇θ⟩, the boundary integral
involving θ̃ vanishes due to its periodicity:

G =
1
V

(∫
Ω

∇(G0 · x) dV +
✟✟✟

✟✟✟
∫
∂Ω
θ̃n dA

)
= G0 (A.12)

In a similar fashion, knowing that qn is anti-periodic, the term involving θ̃ in ⟨q · ∇θ⟩ also
vanishes, and the macrohomogeneity condition in (11) is satisfied:

⟨q · ∇θ⟩ = 1
V

(∫
∂Ω

qn(G0 · x) dA +
✟✟✟

✟✟✟
∫
∂Ω

qnθ̃ dA
)
= ⟨q⟩ · ⟨∇θ⟩ (A.13)

Mixed boundary conditions (MBC). The mean fields are directly obtained from the application of
equations (A.3)–(A.5), replacing with the boundary conditions in (15).

Appendix B. Proofs of known order relations between the ATC computed with different
boundary conditions

Result #1. Comparison of the PBC and UTG results (kPBC
app ≤ kUTG

app ) in equation (25):

SUTG(qPBC) ≤ SUTG(qUTG) ⇐⇒

(
kPBC

app · G0

)
· G0 ≤

(
kUTG

app · G0

)
· G0 (B.1)
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Proof #1. The right hand side expands as follows:

SUTG(qUTG) = −SUTG
c (θUTG) =

(
kUTG

app · ⟨∇θ⟩UTG
)
· ⟨∇θ⟩UTG =

(
kUTG

app · G0

)
· G0 (B.2)

The left hand side expands as follows:

SUTG(qPBC) = −

∫
∂Ω
(qPBC · n)θUTG dA −

V
2
⟨q⟩PBC ·

(
(kPBC

app )−1 · ⟨q⟩PBC
)

= −

∫
∂Ω
(qPBC · n)(G0 · x) dA −

V
2
⟨q⟩PBC · G0

= −V ⟨q⟩PBC · G0 +
V
2
⟨q⟩PBC · G0

=
(
kPBC

app · G0

)
· G0

(B.3)

Result #2. Comparison of the PBC and UHF results (kUHF
app ≤ kPBC

app ) in equation (25):

SUHF
c (θPBC) ≤ SUHF

c (θUHF) ⇐⇒
V
2
F0 ·

(
(kPBC

app )−1 · F0

)
‘ ≤

V
2
F0 ·

(
(kUHF

app )−1 · F0

)
(B.4)

Proof #2. The right hand side expands as follows:

SUHF
c (θUHF) = −SUHF(qUHF) =

V
2
⟨q⟩UHF ·

(
(kUHF

app )−1 · ⟨q⟩UHF
)
=

V
2
F0 ·

(
(kUHF

app )−1 · F0

)
(B.5)

The left hand side expands as follows:

SUHF
c (θPBC) = −

∫
∂Ω
(qUHF · n)θPBC dA −

V
2

(
kPBC

app · ⟨∇θ⟩PBC
)
· ⟨∇θ⟩PBC

= −

∫
∂Ω
(F0 · n)θPBC dA −

V
2
⟨q⟩PBC · ⟨∇θ⟩PBC

= −VF0 · ⟨∇θ⟩PBC −
V
2
⟨q⟩PBC · ⟨∇θ⟩PBC

= VF0 ·
(
(kPBC

app )−1 · ⟨q⟩PBC
)
−

V
2
⟨q⟩PBC ·

(
(kPBC

app )−1 · ⟨q⟩PBC
)

≡ Πc

(
⟨q⟩PBC

)
(B.6)

Setting Πc
(
⟨q⟩PBC)

to represent the expression on the last line, one can then deduce:
∂Πc

∂⟨q⟩PBC

����
⟨q⟩PBC=F0

= VF0 · (kPBC
app )−1 − V ⟨q⟩PBC · (kPBC

app )−1 = 0

∂2Πc(
∂⟨q⟩PBC

)2 = −V(kPBC
app )−1 ≤ 0 ∀⟨q⟩PBC

⇐⇒ max SUHF
c (θPBC) = maxΠc

(
⟨q⟩PBC

)
= Πc(F0) =

V
2
F0 ·

(
(kPBC

app )−1 · F0

) (B.7)
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Result #3. Comparison of the MBC and UTG results (kMBC
app ≤ kUTG

app ) in equation (26) according
to the work of Hazanov and Huet [42]:

SUTG(qMBC) ≤ SUTG(qUTG) ⇐⇒
V
2

(
kMBC

app · G0

)
· G0 ≤

V
2

(
kUTG

app · G0

)
· G0 (B.8)

Proof #3. The right hand side expands as follows:

SUTG(qUTG) = −SUTG
c (θUTG) =

V
2

(
kUTG

app · ⟨∇θ⟩UTG
)
· ⟨∇θ⟩UTG =

V
2

(
kUTG

app · G0

)
· G0 (B.9)

The left hand side expands as follows:

SUTG(qMBC) = −

∫
∂Ω
(qMBC · n)θUTG dA −

V
2
⟨q⟩MBC ·

(
(kMBC

app )−1 · ⟨q⟩MBC
)

= −

∫
∂Ω
(qMBC · n)(G0 · x) dA −

V
2
⟨q⟩MBC ·

(
(kMBC

app )−1 · ⟨q⟩MBC
)

= −V ⟨q⟩MBC · G0 −
V
2
⟨q⟩MBC ·

(
(kMBC

app )−1 · ⟨q⟩MBC
)

≡ Π

(
⟨q⟩MBC

) (B.10)

Setting Π
(
⟨q⟩MBC)

to represent the expression the last line, one can then deduce:
∂Π

∂⟨q⟩MBC

����
⟨q⟩MBC=−kMBC

app ·G0

= −VG0 − V(kMBC
app )−1 · ⟨q⟩MBC = 0

∂2Π(
∂⟨q⟩MBC

)2 = −V(kMBC
app )−1 ≤ 0 ∀⟨q⟩MBC

⇐⇒ max SUTG(qMBC) = maxΠ
(
⟨q⟩MBC

)
= Π

(
−kMBC

app · G0

)
=

V
2

(
kMBC

app · G0

)
· G0

(B.11)

The comparison of the MBC and UHF results (kUHF
app ≤ kMBC

app ) in equation (26) can be demon-
strated in the exact same manner as for result #2, by replacing all occurrences of ‘PBC’ with
‘MBC’ in equations (B.4), (B.6) and (B.7).

Data availability

The raw and processed data in this work cannot be made publicly available at this time as they
are part of an ongoing study.

References

[1] S. Suter, A. Steinfeld, S. Haussener, Pore-level engineering of macroporous media for increased performance
of solar-driven thermochemical fuel processing, International Journal of Heat and Mass Transfer 78 (2014)
688–698.

[2] J. Petrasch, B. Schrader, P. Wyss, A. Steinfeld, Tomography-based determination of the effective thermal con-
ductivity of fluid-saturated reticulate porous ceramics, Journal of Heat Transfer 130 (2008) 032602.

33



[3] D. Baillis, R. Coquard, J. Randrianalisoa, L. A. Dombrovsky, R. Viskanta, Thermal Radiation Properties of
Highly Porous Cellular Foams, Special Topics & Reviews in Porous Media - An International Journal 4 (2013)
111–136.

[4] W. Zhu, N. Blal, S. Cunsolo, D. Baillis, Micromechanical modeling of effective elastic properties of open-cell
foam, International Journal of Solids and Structures 115-116 (2017) 61–72.

[5] M. Schumann, L. San Miguel, Fiber-Free Ceramic Insulation Foam for Highest Temperatures – a New Genera-
tion of HSE-friendly Refractory Products with Multiple Application Possibilities, refractories WORLDFORUM
9 (2017) 50–58.
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