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ABSTRACT

Among the recent advancesmade in the analysis and simulation of themechanical

behaviour of composite materials, calculations on a mesoscopic scale make it

possible to take into account the internal architecture of a textile and to compute its

deformations. The mesoscopic analysis covers the reinforcement behaviour dur-

ing manufacturing (draping and permeability) and performance in-service (re-

sponse to applied loads and strains, including damage development). X-ray

tomography (lCT) is a toolwell suited for determining the 3D internal geometry of

the composite. The current characteristics of the lCT devices allow micrometre-

scale characterization, providing high-quality geometrical models. The paper

presents an overview of lCT-based meso-modelling of textile composites, illus-

trated by novelmodelling results. It covers two segmentationmethods (structural

tensor and texture analysis), models of the behaviour (deformation response) at

meso-scale of textile reinforcements and damagemodels for textile composites. A

set of cases is analysed where X-ray tomography provides the definition of the

initial models and the validation of the results obtained by mesoscopic analysis.

Introduction

The analysis and simulation of the behaviour of tex-

tiles composite has given rise to a great deal of

research in recent decades, most of which is carried

out on a macroscopic scale. Nevertheless, some

important phenomena occur on a smaller scale both

during the processing and when loading the cured

composite. Three scales are typically distinguished in

the analysis of composite materials or textile
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composite reinforcements. The macroscopic scale is

that of the composite part (Fig. 1a), the mesoscopic

scale is that of yarns in the textile (Fig. 1b), and the

microscopic scale is that of fibres in the yarn (Fig. 1c).

The three scales are simultaneously present in a

textile composite, but mechanical analysis is per-

formed at one of these scales (or at two scales simul-

taneously) depending on the objectives of the

simulation. Currently, industrial composite process

simulations and structural analysis are mainly carried

out on a macroscopic scale. These simulations concern

the forming of textile reinforcements or prepregs

(draping) [1], the injection of resin into fibrous rein-

forcements (LCM, liquid compositemoulding) [2–4] or

the structural analyses of composite structures [5, 6].

Microscopic scale analysis considers each fibre that is

modelled as beams or bars in contact with their

neighbours [7–10]. Given a large number of fibres in a

yarn (3000 to 48000 in a carbon yarn),microscopic scale

analysis is limited to a small domain. Mesoscopic

analysis (meso-FE modelling) is at an intermediate

scale. The textile composite is seen as a set of yarns in

contact with one another. The geometry of each yarn is

taken into account. Each yarn is considered as a con-

tinuousmedium.Themesoscopic analyses concern, on

the one hand, the composite reinforcements during

preforming (without resin) and, on the other hand, the

textile composites with a solid matrix as used in

structures. This article deals with these mesoscopic

analyses and the use of X-ray tomography to set them

up and validate them.

In addition to the nature of the textile composite

(dry fabric or consolidated composite), two types of

mesoscopic analysis can be distinguished. On the one

hand, some recent approaches use a mesoscopic

description for a global analysis of the composite part

or preform. For example, complete preform drape

simulation is based on a mesoscopic modelling

[10–15]. This approach provides information at the

yarn level and also simulates possible gaps, i.e. sep-

arations between yarns. This mesoscopic approach

for the entire composite part is undoubtedly

promising. As it concerns the entire composite

structure, the number of yarns and contacts between

yarns is important and the simulation is costly in

terms of calculation time, which forces simplified

mesoscopic modelling and nevertheless leads to high

calculation times. This limits its use at present.

The second type of analysis, which is the most

common, consists of mesoscopic analysis that con-

cerns one (or a few) RUC (representative unit cell).

The objective is then to determine the mechanical

properties of the RUC by submitting it to virtual tests.

As the analysis is limited to one or a few unit cells,

the model can be very detailed. It is therefore

important to have a very precise description of the

RUC geometry, orientation and density of the fibres.

As will be shown in the following sections, X-ray

tomography is a well-adapted tool for this purpose.

The boundary conditions depend on the problem

under consideration but are often conditions of

periodicity [16, 17]. Mesoscopic analysis on an RUC is

used to determine the homogenized properties of a

textile composite [18–22], to calculate stress and

strain in the unit cell [23–25] and to analyse the ini-

tiation and propagation of damage [26–30] and fail-

ure [31, 32]. In the case of dry textile reinforcements,

the mesoscopic analysis of an RUC constitutes virtual

Figure 1 The three scales of a textile composite. a Macroscopic, b mesoscopic, c microscopic.
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tests. These make it possible to determine the

mechanical properties of the reinforcements for dif-

ferent types of stresses: tension [33, 34], in-plane

shear [35, 36], transverse compression [37–42]. The

deformed geometry of the RUC (after shear and/or

compaction) allows the permeability of the deformed

fibrous reinforcement to be calculated by mesoscopic

simulation of the resin flow in the reinforcement

[43–46].

Tomography can be carried out by absorption

mode (this is the mode used by laboratory devices) or

by phase contrast or holotomography (in the case of

synchrotron sources). Synchrotron sources deliver

high flux and can achieve high resolution [47]. In this

study on mesoscopic analysis of composite materials,

laboratory sources are mainly considered because

they have become common and often easily available.

They are an accessible tool for mesoscopic analyses.

Their characteristics are well suited to the analysis of

the three-dimensional geometry of the initial

deformed unit cell. Physical quantity measurements

from images obtained by X-ray tomography require a

segmentation process and image analyses. The seg-

mentation procedure consists in differentiating

between various phases in the analysed material.

‘‘Image segmentation process’’ section presents some

segmentation methods for composite reinforcements

and ‘‘Segmentation’’ section for cured composites.

Finite element modelling and simulations are gener-

ally carried out to analyse the properties of the

material. Some analyses are directly based on the

voxels in the image [30, 41, 48]. The spatial resolution

of X-ray tomography has increased significantly in

previous years. The resolutions of current devices can

be less than 100 nm, and the maximum resolution of

the majority of devices is close to 1 lm [47]. This

resolution becomes less good as the analysed zone

moves away from the source. The current spatial

resolution of the laboratory devices (a few lm) is well

suited for mesoscopic analyses of a composite RUC.

The geometry of the yarns and their cross section

(width = a few mm) is obtained with accuracy. As

will be discussed in the following section, it is pos-

sible to acquire the distribution of the fibres (diame-

ter = 7 lm for carbon fibres for example) in yarn

sections sufficiently close to the source.

X-ray analysis of effects induced by loadings on

materials can be performed in situ. The mechanical

test is then performed in the X-ray tomography

device [49–51]. Interrupted in situ experiments can be

performed when in situ testing is difficult [52, 53].

The tests presented in the present manuscript on

composite reinforcements have been interrupted

in situ tests. The specimen is analysed by X-ray

tomography in its initial state, then loaded outside

the tomograph and re-analysed by X-ray tomography

in its deformed state. This requires that the creep of

the material does not disturb the tests.

For the mesoscopic analysis to be relevant, the

finite element model must be accurate both in terms

of its geometry and for the direction of the fibres at

each point and their density. The purpose of this

article is to show that X-ray tomography is a well-

suited technique for providing unit cell geometry,

orientation and fibre density with the aim of per-

forming a mesoscopic analysis. Another contribution

of the X-ray tomography is the possibility of vali-

dating the mesoscopic simulations by comparison

with X-ray tomography. When the textile composite

is subjected to a loading, the deformed geometry,

strains, directions and densities of fibres can be

measured on the images provided by X-ray tomog-

raphy and compared to the results of a simulation.

This validation is important. The X-ray tomography

makes it possible for all the points inside the

composite.

The present paper investigates the ‘‘road map’’ for

meso-FE analysis of dry textile reinforcements and

consolidated textile composites, based on quantified

micro-CT images with the resolution in microns

range, which is a sufficient precision of the yarn

geometry, but not sufficient for recognition of the

individual fibres.

Analysis of the geometry by micro-CT

Software for modelling of textile versus X-
ray tomography

The mechanical properties of textile reinforcements

are highly dependent on their geometry at the

mesoscopic scale. Therefore, in order to best predict

the mechanical properties of composites, an accurate

description of the internal geometry of the fabric is

essential. X-ray tomography provides a direct

method for determining the internal geometry of

textile composite. Two kinds of approaches have

been used to construct mesoscopic geometric models

of composites for computer simulation:

J Mater Sci (2020) 55:16969–16989 
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a. Idealized models can be created by textile soft-

ware such as WiseTex [54, 55] or TexGen [56].

b. Models obtained by Micro-CT taking into account

the details of the geometry of the real textile

reinforcement [30, 38, 39, 41, 57–59]. Good reso-

lution of the X-ray tomography leads to accurate

geometric models at the mesoscopic scale.

While textile modelling software provides an

automatic and robust way to construct geometric

depictions of a material for numerical simulations,

the models obtained by micro-CT can describe the

geometric detail and variability of real textiles, which

can be important for accurate numerical simulations.

Image segmentation process

In order to generate a finite element model of the

woven fabric, a segmentation is carried out to sepa-

rate the different yarns, mostly warp and weft yarns.

This step presents certain aspects specific to the

analysis of woven reinforcements at the mesoscopic

scale because it relies on the orientation of the fibres

to separate the yarns. Two approaches are quickly

presented. The first is suitable for 2D textiles, and the

second is necessary for 3D reinforcements. This

method calculates the orientation of the fibres at a

given point from the components of the structure

tensor [60]. The latter is defined by the inner products

of the partial spatial derivatives of a greyscale func-

tion along the x and y directions in the plane of a 2D

reinforcement. The details of the method are given in

[57, 60, 61].

Once the orientation of each pixel has been

obtained (Fig. 2b), a thresholding in the anisotropy

directions of the tows followed by mathematical

morphological operations allow to obtain a seg-

mented geometry of the reinforcement without

interpenetration (Fig. 2c, d). This method is particu-

larly appropriate in 2D woven reinforcement

tomography images in the plan of the fabric. In some

situations, segmentation based on structure tensor

cannot be used because the stringy yarns aspect is not

visible. This is notably the case for 3D reinforcements

for images that are perpendicular or that cut the

yarns. However, a segmentation method called image

texture analysis can be used.

Image segmentation by texture analysis is based on

the calculation of grey-level co-occurrence matrices

[62]. This method analyses pairs of pixels spatially

separated by a given translation. A GLC matrix (grey-

level co-occurrence matrix) measures the number of

occurrences of pairs of pixel values located at a cer-

tain distance in the image. Fourteen parameters were

specified [63] so that texture properties can be

described with the GLC matrix. The parameters most

commonly used are contrast, correlation, energy and

homogeneity. The details of the method are given in

[39, 62, 63].

A trigger using the most relevant parameter is

performed in order to distinguish the warp and weft

threads from the segments. The best parameter for

yarn segmentation is homogeneity (Fig. 3d). Contrast

(Fig. 3a) and energy (Fig. 3c) can be used, but less

efficiently. A segmented volume can then be obtained

as shown Fig. 4 in the case of a 3D reinforcement.

Mesh generation

From the tomography images, a realistic mesh of the

reinforcement is generated. For this purpose, some

techniques use the voxel/element method

[30, 41, 48, 58]. Each voxel is then considered as a

hexahedral element of the mesh. This method is rel-

atively easy to implement but has some disadvan-

tages. One of them is the large number of elements

generated. Indeed, the size of the elements (voxel

size) depends on the resolution of the image stack.

The other difficulty lies in the description of the

interface between the tows. The ‘‘stepped’’ represen-

tation on the interface is detrimental when analysing

the deformation of the dry textile reinforcements, as

slippage will occur between the yarns during defor-

mation. An alternative is to mesh the 3D domain of

each yarn with finite elements. Both hexahedral and

tetrahedral elements were used. However, these two

types of elements are not completely satisfactory.

Hexahedral elements are well suited to describe the

yarn along the fibre direction and are more effective

numerically [21, 35, 64]. Nevertheless, the meshing of

the cross section of the yarn, usually lenticular or

elliptical, with hexahedrons is difficult. In addition,

the cross section of the yarn can be effectively meshed

by tetrahedrons. However, to obtain accurate results

a tetrahedral mesh requires a large number of ele-

ments. Prismatic elements allow a compromise

between the two aspects [39]. The cross section of the

yarn is meshed by triangles that constitute one side of

the prism. The quadrangular sides of the prism are

J Mater Sci (2020) 55:16969–16989 
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used in the length of the yarn (Fig. 5a). Thus, these

elements have the advantage of adapting to any type

of reinforcement morphology while reducing the

number of elements compared to tetrahedral ele-

ments. The aspect ratio and warping factor of the

prism allow to define a quality criterion Q between 0

and 1. The prismatic elements defined here present a

criterion between 0.7 and 1 (Fig. 5b).

Meso-scale analyses of textile
reinforcements

Mechanical behaviour for meso-scale
analysis of dry textiles

On the mesoscopic scale, yarns are considered as

continuous solids oriented by a fibre direction. They

are in contact with their neighbours, and this directly

brings about the behaviour of a woven textile, i.e.

high tensile stiffness in the direction of the warp and

weft yarns and very low in-plane shear stiffness. The

mechanical behaviour of the yarn (considered as a

Figure 2 Segmentation of a twill carbon fabric by the tensor structure method. a Cut view of the textile reinforcement. b Colour

orientation map. c Thresholding in the anisotropy directions. d Segmented geometry without interpenetration.

Figure 3 GLCM’s statistical parameters applied to 3D reinforcement.

Figure 4 Segmented volume of a 3D fabric.
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continuous medium) is very specific. The possible

slippage between the fibres that constitute the yarn

leads to very low shear stiffness. Mechanical beha-

viour models have to be written in the context of

large deformations, because shear strains as well as

yarn compactions can be large. Two constitutive

models of the mechanical behaviour of the fibre yarn,

for use in mesoscopic analysis, are presented below: a

hypoelastic model based on the frame of the fibre and

a transversely isotropic hyperelastic model. The

elastic nature of the mechanical behaviour of yarn

can be discussed. Slippage with friction between the

fibres provides an irreversible component to this

behaviour. However, it has been shown in the case of

fibre reinforcement forming that an elastic simulation

and a simulation taking into account the irre-

versibilities give similar results when the loading is

monotonous [65]. In this work, only monotonous

loadings will be considered.

Hypoelastic model for the fibre yarn

The rate constitutive equations (or hypoelastic equa-

tions) constitute an important group of models of

mechanical behaviour under large strain [66–68].

These behaviour laws link the objective Cauchy stress

rates rr to the strain rate D by the constitutive tensor

C and take into account material and geometrical

nonlinearities.

rr ¼ C:D ð1Þ

The objective derivative is a derivative performed

in a frame fixed with respect to the material or close

enough to the material to be null in the case of rigid

body motions. A rotated frame is commonly used for

this. The polar decomposition rotation defines the

Green Naghdi objective derivative [69] and the

corotational frame rotation defines the Jaumann

rotation [70]. These two objective derivatives are the

most standard and correspond to average rotations of

the medium and are adapted to isotropic materials.

Jaumann and Green Naghdi’s frames do not corre-

spond to the direction of the fibres during the

deformation. However, it is important that a frame

based on fibre direction be used for an objective

integration of stresses when modelling yarn defor-

mation. The following hypoelastic law is based on an

orthogonal frame f
i
¼ ðf

1
; f

2
; f

3
Þ based on the fibre

direction f
1
(Fig. 6) and whose rotation is that of the

fibre at the considered point [71, 72].

From the rate Eq. (1), the stresses are cumulated

over each time increment following the scheme of

Hughes and Winget [68].

rnþ1
� �

fnþ1
i

¼ rn½ �fn
i
þ Cnþ1=2
h i

f
nþ1=2

i

Denþ1
� �

f
nþ1=2

i

ð2Þ

The C matrix defines the tangent behaviour in the

fibre frame. Image analyses have shown that a

hypothesis of transverse isotropic behaviour of the

yarn can be made. Longitudinal and cross section

strains of the yarn can be distinguished:

e½ �fi¼
e11 e12 e13

0 0
sym: 0

2

4

3

5þ
0 0 0

e22 e23
sym: e33

2

4

3

5

¼ eL½ �fiþ eT½ �fi ð3Þ

The spherical part (change of area) and the devi-

ated part (change of shape) of the deformation in the

cross section of the yarn can be separated [35].

Figure 5 a Mesh of a 3D orthogonal non-crimp fabric; b quality of the prismatic elements.
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eT½ �fi¼
es 0
0 es

� �
þ ed e23

e23 �ed

� �
ð4Þ

The transverse behaviour depends on two param-

eters A and B (B = C).

Drs ¼ ADes Drd ¼ BDed Dr23 ¼ CDe23
ð5Þ

The physics of longitudinal behaviour is different

depending on whether the yarn is in tension or

compression. In tension, the rigidity is high and the

parallel fibres lead to a Poisson’s ratio of almost zero.

In compression, the stiffness is much lower. Longi-

tudinal compression gives rise to large transverse

strains (Fig. 7). A Poisson ratio (whose value can be

large) is introduced [73]. The matrix of the constitu-

tive tensor in the frame of the fibre takes the follow-

ing form:

½Ctens�f ¼

Yarn in tension
El 0 0 0 0 0

Aþ B

2

A� B

2
0 0 0

Aþ B

2
0 0 0

Glt 0 0

sym: B 0

Glt

2

666666666664

3

777777777775

½Ccomp�f

Yarn in longitudinal compression

Ec mctA mctA 0 0 0
Aþ B

2

A� B

2
0 0 0

Aþ B

2
0 0 0

Glt 0 0

sym: B 0

Glt

2

666666666664

3

777777777775

ð6Þ

The components of the constitutive matrix C can be

obtained by elementary experimental tests on the

yarn or by inverse approaches in the case of tests on

the woven reinforcement. In particular, longitudinal

compression tests have shown that a Young’s mod-

ulus Ec in longitudinal compression can be measured

and that the corresponding Poisson’s ratio can be

large (up to 11 for a glass yarn) [73]. This hypoelastic

approach will be used in the simulation of RUC

deformations in ‘‘Consolidated materials’’ section. In

particular, the transverse compaction of a RUC

leading to longitudinal compression of binder yarns

will be analysed.

Hyperelastic model for the fibre yarn

Hyperelastic models are another possible approach

for the mechanical behaviour of yarn fibres. Isotropic

models have been first introduced for large defor-

mations of rubber-like materials [74, 75]. Models for

anisotropic materials have also been developed for

large deformations of certain elastomers and com-

posites [76–78] or biomaterials [79, 80]. The hypere-

lastic model described below is for fibre yarns

assumed to be transversely isotropic. Denoting C the

Cauchy Green deformation tensor, a strain energy

potential wðCÞ gives the second Piola–Kirchhoff

stress tensor by derivation:

S ¼ 2
ow

oC
ð7Þ

For a transversely isotropic material, the potential

is in the form [81]:

w ¼ w I1; I2; I3; I4; I5ð Þ ð8Þ

where I1 ¼ TrðCÞ; I2 ¼ 1
2 TrðCÞ2 � TrðC2Þ
� �

; I3 ¼ detC

are the classic invariants of C and

I4 ¼ C : G1 � G1ð Þ and I5 ¼ C2 : G1 � G1ð Þ ð9Þ

are invariants obtained from the direction of the fibre

G1 (Fig. 6). So-called physical invariants are defined

Figure 6 lCT image of a yarn oriented by a fibre direction.

Experiment

Simula�on

Figure 7 Transverse deformation during a longitudinal

compression. Inverse approach to determine the Poisson ratio

(mct = 11).
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which are directly related to the deformation of the

fibre yarn: Ielong elongation, Icomp compression, Idist
distorsion, Ish longitudinal shear. These invariants are

functions of the invariants I1 to I5 [64]:

Ielong ¼
1

2
ln I4ð Þ; Icomp ¼

1

4
ln

I3
I4

� 	
; Idist

¼ 1

2
ln

I1I4 � I5
2
ffiffiffiffiffiffiffiffi
I3I4

p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1I4 � I5
2
ffiffiffiffiffiffiffiffi
I3I4

p
� 	2

�1

s0

@

1

A; Ish

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
I5
I24
� 1

s

ð10Þ

The potential is assumed to be the sum of poten-

tials depending only on one of the previous

invariants:

wtotal ¼ welong Ielong
� �

þ wcomp Icomp

� �
þ wdist Idistð Þ

þ wcis Icisð Þ ð11Þ

Consequently,

S
total

¼ 2
owelong

oIelong

oIelong
oC

þ owcomp

oIcomp

oIcomp

oC
þ owdist

oIdist

oIdist
oC

þ owcis

oIcis

oIcis
oC

 !

ð12Þ

The form of the potentials depends on the material.

They can be simply quadratic when the behaviour is

linear elastic for the considered deformation or more

complex (especially for wcomp). They are specified for

different materials in several studies where this

model has been used [15, 64, 82, 83].

X-ray tomography to validate
the simulations of mechanical loading
on the RUC

As shown in ‘‘Analysis of the geometry by micro-CT’’

and ‘‘Mesh generation’’ sections, X-ray tomography

makes it possible to know the geometry of the RUC

and to deduce meso-EF models consistent with the

real internal geometry of the textile reinforcement.

Another interest of X-ray tomography for the meso-

EF analyses is to be able to compare the deformation

obtained by mesoscopic simulation to the experi-

mental deformation, both inside the RUC and on the

edges of the textile reinforcement. An experimental

validation for all the points of the elementary cell is

important to check the modelling. This experimental

deformation can be obtained by in situ tests, i.e.

carried out in the tomography set-up, or by inter-

rupted in situ tests where loading is performed

outside the tomography set-up and scans are per-

formed in the initial, deformed state.

In the following sections, the hypoelastic model

presented in ‘‘Hypoelastic model for the fibre yarn’’

section is used in the FE analyses It is important to

take into account the different stiffnesses in tension

and longitudinal compression in examples ‘‘Com-

paction of an unbalanced textile reinforcement’’ and

‘‘Compaction of a 3D non-crimp fabric’’ sections

because the binder yarns are in longitudinal com-

pression. Also the high Poisson ratio of the yarns in

longitudinal compression is necessary in these

simulations.

All the tests presented in the present manuscript

have been interrupted in situ tests. The specimen is

analysed by X-ray tomography in its initial state, then

loaded outside the tomograph (e.g. with the system

in Fig. 8 and re-analysed by X-ray tomography in its

deformed state. This requires that the creep of the

material does not disturb the tests.

Biaxial tensile test

Figure 8 shows a device that can be installed in a

tomography set-up for biaxial tensile and in-plane

shear loading of a textile cross specimen [84]. The

first loading is a biaxial tension (the warp and weft

directions are at 90�) on a balanced glass plain weave.

Its characteristics are given in Table 1. The tensile

strain imposed here is equal in warp and weft

directions (equi-biaxial tension). In this case, the

yarns are subjected to transverse compaction because

of the weaving. For tensile forces of 11 N per yarn,

the deformation of a cross section measured by lCT
is shown in Fig. 9. The result of a mesoscopic simu-

lation of equi-biaxial tension is in good agreement

both for the compaction h/h0 = 0.89 and for the yarn

boundary [35, 84].

In-plane shear test

An in-plane shear (shear angle = 46�) of the glass

plain weave (Table 1) is analysed in Fig. 10. The

deformation obtained from the meso-FE simulation is

compared to the experimental deformation measured

by X-ray tomography [35]. In the deformed state,

three sections along the yarn (denoted 1, 2 and 3) are

considered and shown in Fig. 10b. For these three

sections, the result of the simulation (the contour of

the section drawn in continuous black line) is

J Mater Sci (2020) 55:16969–16989 
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compared to the experimental section (in grey) in

Fig. 10d. Although there is some difference, the

tomographic sections are in good agreement with the

sections obtained by simulation. The sections of the

sheared textile are clearly different from the initial

section. They evolve noticeably along the yarn.

Compaction of an unbalanced textile reinforcement

The glass fabric shown in Fig. 11 is a quasi-unidi-

rectional reinforcement [73]. The warp yarns are the

largest. The weft yarns are smaller, and their function

is to ensure the cohesion of the fabric. The binder

yarns cross the fabric through the thickness. They

allow greater permeability in RTM processes. The

textile reinforcement is subjected to transverse com-

paction between two sheets of Plexiglas.

The initial geometry obtained by X-ray tomogra-

phy and the initial FE mesh of the RUC are shown in

Fig. 11. Figure 12 displays a simulation of the trans-

verse compaction where the longitudinal behaviour

of the yarn is the same as in tension. In this case,

spurious buckling develops for the binder yarn.

When the complete behaviours (different in tension

and longitudinal compression) [Eq. (6)] are taken into

account, the meso-FE simulation is correct and in

agreement with the X-ray tomography of the

deformed state (Fig. 13). There is no more spurious

buckling, and the binder yarn widths are consistent

with those measured from lCT.

Compaction of a 3D non-crimp fabric

An orthogonal E-glass 3D orthogonal non-crimp

fabric (HYBON 2001�) is presented in Fig. 14 and

Table 2. As in the previous section, the loading is a

transverse compaction of the fabric reinforcement

(compaction strain = 22%). For this analysis, as was

the case in ‘‘Compaction of an unbalanced textile

reinforcement’’ section, it is important to use a dif-

ferent behaviour when the yarn is in longitudinal

tension or compression. Indeed, the Z-yarn is sub-

jected to longitudinal compression in this test. The

25 mm

170 mm

Figure 8 Loading system for imposing biaxial tension or shear

loading on a textile cross specimen within the tomography set-up.

Figure 9 Biaxial tensile test.

The experimental cross section

obtained by X-ray tomography

is in grey. The boundary of the

cross section obtained by

meso-FE simulation is in a

black line.

Table 1 Glass plain weave

Weaving Yarn width warp

(mm)

Yarn width weft

(mm)

Densities warp (yarn/

mm)

Densities weft (yarn/

mm)

Crimp warp

(%)

Crimp weft

(%)

Glass plain

weave

3.4 3.4 0.25 0.25 0.55 0.55
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Figure 10 In-plane shear test (46�). Comparison of the deformed shape obtained by tomography (a) and meso-FE simulation (b).

Comparison for the initial cross section (c) and for three cross section along the yarn (d).

Figure 11 Initial geometry of

an unbalanced textile

reinforcement and mesh of the

RUC.

Figure 12 Incorrect

simulation of the fabric

compaction if the longitudinal

compression properties of the

binder yarn are the same as in

tension.
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comparison of the initial geometries and the defor-

mations is shown in Fig. 15. The results are not per-

fect, but the deformations are in correct agreement

(recovery rate = 93%) [39].

It is indeed necessary to ensure that the creep of the

material does not disturb the tests. The duration of

the scan is about 10 to 20 min. It can be a problem in

compaction. But the test is carried out with pre-

scribed displacements. The geometry of the fabric

between two plates changes little. The analysis of the

influence of creep is certainly an aspect that deserves

further investigation.

Consolidated materials

In order to establish a complete methodology of the

numerical modelling of textile reinforced composites,

in this section we consider three main aspects: image

segmentation, material and damage model

description.

The main purpose of the material modelling at the

meso-scale is to describe behaviour of two or more

types of materials. If it comes to textile reinforced

composites, the first one is impregnated yarns,

described by anisotropic behaviour (anisotropic

damage) and the second one is isotropic matrix

described as an isotropic material (scalar damage

variable). If the issue of manufacturing defects is

addressed, then the third phase should be added to

represent voids as manufacturing defects.

Segmentation

The structure tensor-based method proposed in [85]

is adopted in the present study for impregnated

materials. First, the structure tensor is computed at

each voxel within a user-chosen neighbouring zone.

The structure tensor of a 3D grey-level image I is

defined as

Figure 13 Transverse compaction of an unbalanced fabric. Comparison between (a) Meso-FE simulation and (b) X-ray tomography.

Figure 14 3D orthogonal

non-crimp fabric under

compaction. X-ray

tomography and meso-FE

simulation.
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where W stands for the neighbouring window

around each voxel. According to [85], the partial

differentiation in each direction (X, Y, Z) is per-

formed by a 5-point derivative filter kernel

D = [1, - 8, 0, 8, 1]T. The integral is completed by a

convolution filter with a uniform kernel whose size is

that of the neighbouring zone.

With the structure tensor at hand, various local

feature parameters can be deduced for every voxel.

The local orientation N is expressed by the eigen-

vector of the structure tensor corresponding to the

smallest eigenvalue. The local orientation can be

further converted into characteristic angles with dif-

ferent axes according to practical cases. In the present

case, weft and interlock yarns are globally parallel to

the Y-axis, while warp yarns are globally perpen-

dicular to Y-axis, Thus, the angle / between the ori-

entation N and the Y-axis is chosen as the

characteristic angle to distinguish the two groups of

yarns. A so-called anisotropy degree is defined in

Eq. (14) using the eigenvalues of the structure tensor

(k1\k2\k3).

b ¼ 1� k1
k3

ð14Þ

Besides, the image grey level is also a very useful

local feature to describe the mass density of con-

stituents. To reduce the noise sensitivity, this is

averaged within the same neighbouring zone as that

used for structure tensor.

AVG ¼
Z

W

I xð ÞdV ð15Þ

To summarize, three local feature parameters are

used in the image segmentation: one is the average

grey level AVG, and two others are calculated from

the structure tensor (the characteristic angle / and

the anisotropy parameter b). They will be further

used in a supervised clustering algorithm. One

important parameter in this method is the size of the

neighbouring zone. A small neighbouring zone

retains the local characteristics but makes the result

sensitive to image noises, while a large one can

reduce noise sensitivity, but the counterpart is to lose

local information when averaging within the neigh-

bouring zone.

Gaussian-type supervised clustering is applied to

classify the voxels into three groups using the feature

parameters presented above. The training sets of each

cluster are chosen manually. Each training set I is

parameterized by the centroids lI ¼ l1; l2; . . .½ �T and

covariance matrix COVI of the feature parameters:

lI ¼ 1

n

X
vI

COVI ¼ v� lI
� �

v� lI
� �T

8
<

:
ð16Þ

where vI ¼ v1; v2; . . .½ �T is the vector of feature

parameters of each voxel in the training set and n is

the number of voxels within the training set. These

two statistical variables are used for judging which

clusters a voxel (outside the training sets) is the most

Figure 15 Comparison of the deformed cross section in a

compaction (22%) of a 3D fabric.

Table 2 E-glass 3D orthogonal non-crimp fabric

Filament

diameter (mm)

Number of

filament in a yarn

Areal

density (g/

m2)

Fabric

thickness

(mm)

Roving tex

(g/km)

Densities warp

(yarn/mm)

Densities weft

(yarn/mm)

Densities z yarn

(yarn/mm)

15 2000 2720 3.1 900 0.47 0.43 0.43
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likely to belong to. In Gaussian-type supervised

clustering, the judgment is conducted through a

probability value calculated from the Gaussian dis-

tribution formula:

PI ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
COVI
 

q exp
�1

2
v� lI
� �T

COVI
� ��1

v� lI
� �� �

ð17Þ

The greatest value of PI indicates the cluster that

the voxel belongs to. The results of this segmentation

method are shown in ‘‘Material’’ (Figs. 17 and 18).

Damage models

In this section, we briefly remind the definition of

anisotropic behaviour and define the criteria for

damage initiation and damage evolution laws. It

should be noted that we incorporate into the meso-

scale models the information about micro-scale

structure at two levels. The first one is yarn proper-

ties estimation, if possible by analytical solutions or

by numerical homogenization. The second one rela-

ted to geometry estimation (general shape and ori-

entation) [30, 86–88].

Material modelling is part of continuum damage

mechanics, grounded on three basic theorems of

equivalent stress, strain and energy. According to the

concept of effective Cauchy stress, r� acting on ficti-

tious undamaged configuration is related to stress r
in actually damaged configuration via a linear oper-

ator M generally called fourth-order damage effect

tensor as follows:

r� ¼ M : r ð18Þ

where ‘‘:’’ is double contraction. The damage effect

tensor is constructed by damage tensor of second

order [89]:

D ¼ Rdini � ni i ¼ 1; 2; 3ð Þ ð19Þ

where ni indicates eigenvectors of the damage tensor

corresponding to the eigenvalue di, which is a scalar

that qualified the net area reduction due to the exis-

tence of micro-cavities. In an anisotropic damage

model for the yarn, the subscript i ranges from 1 to 3,

corresponding to the failure modes, such as fibre

direction damage and transverse matrix damage

along the second and third material principal direc-

tions. In this article, the following M tensor in Voigt

notation is adopted:

M Dð Þ ¼ diag 1� d1ð Þ�1; 1� d2ð Þ�1; 1� d3ð Þ�1; 1� d4ð Þ�1;
h

1� d5ð Þ�1; 1� d6ð Þ�1
i ð20Þ

where d4 ¼ d1 þ d2ð Þ=2, d5 ¼ d1 þ d3ð Þ=2 and

d6 ¼ d1 þ d2ð Þ=2. According to the energy equivalence

principle, the damaged complementary energy

U r;Dð Þ can be obtained by replacing the Cauchy

stress r by the effective stress r� in the undamaged

complementary energy, i.e. U r�; 0ð Þ. Sd and S0 rep-

resent the compliance tensor of the material in dam-

aged and initially undamaged states, respectively.

1

2
r : Sd : r ¼ U r;Dð Þ � U r�; 0ð Þ ¼ 1

2
r� : S0 : r� ð21Þ

After energy identification, it can be proven that

Sd ¼ MT : S0 : M. Correspondingly, the damaged

stiffness tensor is obtained as Cd ¼ Sd
� ��1¼ M�1 : C0 :

MTð Þ�1
where C0 denotes the initial stiffness tensor.

Combination with Eq. (20), the Cd can finally be

expressed in Voigt notation as follows:

Sd ¼ MT : S0 : MCd ¼ Sd
� ��1¼ M�1 : C0 : MT

� ��1
C0Cd

Cd ¼

b21C11 b1b2C12 b1b3C13 0 0 0
b22C22 b2b3C23 0 0 0

b23C33 0 0 0
b12C44 0 0

sym b13C55 0
b23C66

2

6666664

3

7777775

ð22Þ

where bi ¼ 1� di i ¼ 1; 2; 3ð Þ, bjk ¼
2 1� dj
� �

1� dkð Þ= 2� dj � dk
� �� �2

j; k ¼ 1; 2; 3ð Þ and

Cmn (m, n = 1, 2,…, 6) corresponds to the component

in the undamaged stiffness matrix.

As for the damage evolution laws for all failure

mechanisms (fibre damage, transversal damage and

matrix damage), the brittle behaviour is assumed.

Regularization based on the crack band model con-

cept [90] directly incorporates the critical strain

energy release rate (GIC) as a material parameter to

minimize the mesh dependency. Regularization is

done on element characteristic length (L). General

expression takes an exponential form as follows:

di ¼ 1� 1

fdi
eð1�fdiÞX2

I L�= ðEi GI;cÞ

ði ¼ 1; 2; 3; I ¼ TðCÞL if i ¼ 1; else I ¼ TðCÞTÞ
ð23Þ

Another key importance is to select damage initi-

ation criteria which are indicated in Eq. (23). More
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and detailed information about initiation criteria of

all damage mechanisms is described in [30]. How-

ever, the damage initiation criterion in the matrix

should be recalled. For this purpose, we use hydro-

static pressure-dependent model which is written in

the following form:

fdm ¼ 3J2 þ I1XmtXmc

XmtXmc

ð24Þ

where I1 ¼ rI þ rII þ rIII and J2 ¼ 1
6 rI � rIIð Þ2þ
h

rII � rIIIð Þ2þ rIII � rIð Þ2� are first stress tensor invari-

ant and second invariant of stress deviator expressed

in principal stress rI; rII; rIIIf g, respectively, Xmt;Xmc

are tensile and compressive yield stresses for matrix

material, respectively. Plastic deformations are

neglected in this work. The matrix was epoxy poly-

mer which behaviour allows to make such a

statement.

Assuming the level of approximation and the

computational costs, the numerical multi-scale con-

current modelling is still complex. Thus, the well-

established analytical approximations are applied

here. The elastic properties and strength of yarns in

textile composites were estimated from analytical

formulations presented in [91].

Material

To highlight the advantages of the proposed simu-

lation strategy we consider an example of warp

interlock textile reinforced composite with layer-to-

layer binding in which warp yarns are connected by

two adjacent layers. X-ray tomography image shows

one selected cross section for such types of materials

(Fig. 16). These textiles were manufactured at

ENSAIT (Roubaix, France), and its areal weight is

0.266 g/cm2. The yarns are made of E-glass fibres

(qf = 2.61 g/cm3, E = 72 GPa and v = 0.22). Textiles

were impregnated with epoxy resin (Prime 27) which

has the following properties: qm = 1.11 g/cm3,

E = 3.3 GPa and v = 0.375. The textiles were

impregnated by a rectilinear flow of epoxy resin

under the constant inlet pressure of 1 bar in a rect-

angular mould with the dimensions of

270 9 290 9 2.6 mm3 using the resin transfer

moulding process. For every plate, a systematic

measurement of global fibre and void content is

adopted with respect to ASTM D2734 standard. The

following results are obtained: Vf = 0.41 ± 0.012 and

Vv = 0.038 ± 0.004. Local observations were per-

formed using scanning electron microscopy tech-

nique. Three polished cross sections were analyzed

for every set of specimens (details can be found in

[87]) including at least 30 different yarns of each

group (weft/warp). Based on these measurements,

local fibre volume fraction (VYf) and local void frac-

tion (VYv) were estimated (see Table 3). Finally, all

yarn properties calculated according to [91] are pre-

sented in Table 3. Through thickness strength (S23) is

estimated based on Puck’s 3D failure theory for

unidirectional composites with taking into account

compensated transversal compressive strength (Yc).

Table 3 Elastic and strength properties of yarns with voids

Elastic (in MPa) E1 E2 ¼ E3 G12 ¼ G13 ¼ G23 v12 ¼ v13(–) v23(–)

Warp yarns (VYf = 0.63, VYv = 0.016) 45835.7 13267.0 4904.6 0.279 0.380

Weft yarns (VYf = 0.61, VYv = 0.029) 43896.0 12422.0 4585.7 0.283 0.383

Strength (in MPa) Xt Xc Yt Yc S12 S23*

Warp yarns (VYf = 0.63,VYv = 0.016) 1550 1550 48.4 61.3 24.2 25.1

Weft yarns (VYf = 0.61,VYv = 0.029) 1480.7 1480.7 43.4 55.0 21.7 22.7

*Indicates that the component concerns the effective Cauchy stress r� (defined in Eq. (18))

Figure 16 X-ray tomography

images of impregnated 3D

warp interlocks with

manufacturing defects.
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Composites samples (dimensions of reconstructed

image are 13.71 9 3.14 9 9.99 mm3) were then anal-

ysed using X-ray tomography available in ISIS4D

X-ray CT platform (University of Lille, France). The

scanning parameters are the following: spot size = 2

lm; voxel size = 8.79 lm; tension = 80 kV; cur-

rent = 68 lA; frame rate = 10 f/s; scanning time =

20 min. The sample was scanned with 1440 projec-

tion images over a 360� rotation. A projection image

was the average of six frames to reduce the random

noises. Three-dimensional images were reconstructed

using the software of RXSolution�.

As can be seen from the image shown in Fig. 16, in

addition to geometry reconstruction and local mate-

rial orientation calculation, we face another key

problem, which is manufacturing defects such as

voids systematically presented in composite parts

manufactured by liquid composite moulding

processes.

Analysis of 3D warp interlock segmentation
with manufacturing defects

Images were post-processed to deal with beam

hardening problems faced during the accusation

process. In this section, the structure tensor strategy

described in ‘‘Segmentation’’ section is applied.

Results of segmentation with different voxel sizes are

shown in Fig. 17. The groups of impregnated yarns,

whether it is the warp (green colour in Fig. 17a and b)

or weft (yellow colour in Fig. 17c and d), are shown

along with voids. In all figures, the matrix material is

set transparent. It is observed that if the selected size

of the final voxel model is smaller (high-resolution

images, Fig. 17a, c), then it is possible to capture more

details about smaller voids dispersed in the matrix

compared with Fig. 17b, d. An important point is that

using the structure tensor technique we can segment

voids that are located in the matrix only. Voids

located inside yarns are much more difficult or

almost impossible to segment with the current reso-

lution of the images. Moreover, the main principle of

the structure tensor is the usage of the information

within a certain integration window, which makes

the voids of size close to fibre size simply smeared

and overaged within this window.

The key parameter for a correct material model for

consolidated composites is local materials orientation

which is calculated for every voxel. The final results

are shown in Fig. 18. We can see that the local fibre

orientation follows properly the yarn geometry.

Comparison of the simulation results
with experimental data

Numerical simulation of stress analysis was carried

out over the 3D finite element mesh constructed from

the segmentation image. The stack of images (see

Fig. 16) has been segmented as shown in the previous

section (Fig. 17). The course resolution is taken for FE

simulations. Segmented images were then directly

imported into ABAQUS/Standard as a numerical

model in which voxels were represented by C3DR

finite elements. The properties of the materials are

listed in Table 3. For a case of uniaxial tensile test,

loading applied along the warp direction for which

the experimental data were obtained from tensile

tests. The quasi-static tests were carried out on

Instron 1185 test machine with a cross head speed of

2 mm/min. The averaged result from three rectan-

gular (200 9 25 9 2.6 mm3) tensile specimens with

glued composite tabs is shown in Fig. 19a. The width

of tensile specimen respects requirement of being at

least two times larger than the unit cell size of the

textile. Additionally to extensometer, a digital image

correlation system VIC2D was used obtaining the

following results: Young’s modulus in warp direction

Ewarp = 15.31 ± 0.6 (GPa), tensile strength Xwarp = 225

� 4 (MPa) and failure strain ef = 2.83 � 0.12 (%).

A comparison between the simulation and experi-

ments is shown in Fig. 19a. Damage initiates at the

beginning around ei = 0.0025 in both simulation and

experimental data, whereas the nonlinear behaviour

observed in experiments shows a more pronounced

change of slope of the curve at the strain of 0.006.

Simulation overestimates the mechanical response in

the second part of the stress–strain curve and predicts

strength within the error of 5%. Additionally,

transversal damages in the warp yarns and matrix

cracking are shown in Fig. 19b and c, respectively.

Apart from the modification of the elastic and

strength properties of the yarn due to the presence of

micro-voids inside (Table 3), inter-yarn voids have

been included in the matrix. They are seen as white

coloured elements in Fig. 19c.

The observed difference between simulations and

experiments is caused by the following reasons. The

first one is the meso-scale geometry approximation

itself which is inevitable. The second reason follows
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Figure 17 Segmentation using the structure tensor technique of

impregnated 3D warp interlock. Comparison between (a, c) high-

resolution warp/weft yarns with voids in the matrix and (b, d) low-

resolution voxel model warp/weft yarns with voids (the matrix is

hidden).

Figure 18 Local fibre

orientation of impregnated 3D

wrap interlock textile

assignment based on the

structure tensor technique (all

materials are set transparent,

and blue and red colours

represent warp and weft

yarns).
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from the first one, and the material model did not

take into account non-uniform geometry and

distribution of the voids inside the yarns. As men-

tioned in the Introduction section, meso-models

incorporating micro-scale information (fibres,

matrix and voids) would become a computationally

attractive tool for a material design for such complex

composites.

Figure 19 Simulation results:

a stress–strain curves from

simulation and experiments;

b transversal damage in the

yarns and c matrix cracking.
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Conclusion

The current characteristics of lCT scanners associ-

ated with the size of the elementary woven cell of

composite materials provide high-quality geometric

models for the mesoscopic analysis of textile rein-

forcements and their composites. The complexity and

variability of the geometry is taken into account

accurately by models resulting from X-ray tomogra-

phy. The mesoscopic scale analysis is promising in

several areas. It makes it possible to determine by

simulation the permeability of a deformed textile

reinforcement, to obtain the mechanical characteris-

tics of a composite by homogenization and to analyse

its damage. Woven fabric draping simulations based

on a mesoscopic model of the complete textile rein-

forcement are beginning to be used. The influence of

the internal geometry is then directly taken into

account. In particular, the influence from the manu-

facturing process on the final mechanical properties

of textile composites can be accurately analysed by

taking into account the deformation of yarns and

voids in a composite part. In spite of those promising

advantages, the computing time required by these

approaches is still prohibitive.

The objective of this paper was to show that X-ray

tomography is a well-suited tool for the mesoscopic

analysis of textile reinforcements and consolidated

composites. The set of cases presented concerns one

(or a few) representative unit cells. Moreover, the

latter must be sufficiently close to the source. If the

analysis concerns an important part of the composite

part or a cell far from the source, the mCT laboratory

devices are not suitable. Future developments of

these devices will undoubtedly provide solutions to

these issues.
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Bréard J, Hivet G (2013) Mesoscopic scale analyses of

textile composite reinforcement compaction. Compos Part B

Eng 44(1):231–241

J Mater Sci (2020) 55:16969–16989 
https://doi.org/10.1007/s10853-020-05225-x

https://doi.org/10.1007/s10853-006-0213-6
https://doi.org/10.1007/s10853-006-0213-6


[39] Naouar N, Vidal-Salle E, Schneider J, Maire E, Boisse P

(2015) 3D composite reinforcement meso FE analyses based

on X-ray computed tomography. Compos Struct

132:1094–1104

[40] El Said B, Green S, Hallett SR (2014) Kinematic modelling

of 3D woven fabric deformation for structural scale features.

Compos Part A Appl Sci Manuf 57:95–107

[41] Wijaya W, Ali MA, Umer R, Khan KA, Kelly PA, Bickerton

S (2019) An automatic methodology to CT-scans of 2D

woven textile fabrics to structured finite element and voxel

meshes. Compos Part A Appl Sci Manuf 125:105561

[42] Wijaya W, Kelly PA, Bickerton S (2020) A novel method-

ology to construct periodic multi-layer 2D woven unit cells

with random nesting configurations directly from lCT-scans.

Compos Sci Technol 193:108125
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