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A B S T R A C T   

The deformation of textile composite reinforcements is strongly conditioned by their fibrous composition. 
Standard plate and shell theories are based on kinematic assumptions that are not verified for textile re-
inforcements. A 3D shell approach specific to fibrous reinforcements is proposed. It is based on two specificities: 
the inextensibility of the fibres and the possible slippage between the fibres. The approach is developed in a 
continuum-based shell element. The form of the virtual work reflects the specificities of the deformation of the 
fibrous reinforcements. It takes into account the tensile and bending stiffness of the fibres. Friction between fibres 
is taken into account in a simple way in connection with bending. The present approach is based on the actual 
physics of the deformation of the textile reinforcements. It makes it possible to simulate the 3D deformations of 
textile reinforcements and provides displacements and strains for all points in the fabric thickness and the proper 
rotations of the material normal.   

1. Introduction 

The use of composite materials has led to weight reductions and 
consequently decrease in fuel consumption in the transport industry, 
particularly in the aeronautical and automotive sectors. Composites can 
be adapted so that their characteristics meet the intended applications. 
However, the manufacturing processes to obtain these materials are 
complex and achieving a defect-free composite part is a difficult chal-
lenge. To enable the increasing use of composite materials, it is neces-
sary to replace costly development with experimental methods based on 
trial and error by optimising manufacturing parameters by means of 
simulations and virtual manufacturing. The manufacture of textile- 
reinforced composites often requires the preforming of a dry textile 
reinforcement and the subsequent injection of a resin in LCM processes 
(Liquid Composite Moulding) [1–3]. The composite can also be pro-
duced by thermoforming a prepreg consisting of a textile reinforcement 
incorporating the unhardened matrix, so that the composite can be 
formed [4–8]. In both cases (LCM and prepreg), the forming process is 
driven by the deformation of the textile reinforcement. The basic physics 
of the deformation is the same and is that of the deformation of textile 
reinforcement made of continuous fibres. 

Kinematic drape models were the first approaches developed for the 
simulation of the forming of woven textile reinforcements [9–12]. These 

methods are purely geometric and are fast. However, they do not take 
into account the mechanical behaviour of the materials or the exterior 
loads on the reinforcements. In view of the low bending stiffness of 
textile reinforcements, some membrane approaches have been proposed 
[13–17]. They neglect the bending stiffness. They take into account the 
in-plane mechanical behaviour of the fabric, in particular the in-plane 
shear behaviour which is specific and has a major importance in 
draping. Nevertheless, it has been shown that bending stiffness has an 
important role during draping. In particular, it conditions the onset of 
wrinkling and the size of the wrinkles [18,19]. Taking bending stiffness 
into account is not straightforward. A standard shell approach gives a 
bending stiffness that depends on the membrane rigidities and the 
thickness. This leads to a bending stiffness that is much too large for the 
textile reinforcement. This is due to the fibrous composition of the 
reinforcement, which makes slippage possible between the fibres. This is 
an important point that is taken into account in this article. Several 
approaches have been proposed to address this difficulty. Textile rein-
forcement can be considered as a laminate material with different 
thickness properties that can be adjusted to achieve both correct mem-
brane and bending stiffnesses [20–24]. Stress resultant shell approaches 
that relate the resulting forces along a normal (Tensile and shear forces, 
bending moments) to membrane and bending strains naturally decouple 
membrane and bending stiffnesses [25,26]. Finally, the combination of a 
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bending finite element (e.g. DKT) with a membrane finite element is also 
used [27,28]. 

These different methods make it possible to decouple the membrane 
deformation energy from the bending energy. However, some aspects 
are artificial, and these methods are not based on the physics of the 
deformation of a textile reinforcement. Moreover, they do not provide 
the displacements and strains for points in the thickness of the fabric. 
Verification of the inextensibility of the fibres is not assured and the 
rotations of the material normals, which are related to this inex-
tensibility, are not known correctly. The approach that is proposed in 
this article has this objective: to define a 3D shell approach, specific to 
fibrous reinforcement, which gives the displacements and strain in any 
point of the textile reinforcement as well as the rotation of the material 
normals (This is what a shell theory does). It will be shown that standard 
shell approaches such as Kirchhoff and Mindlin are not relevant for 
fibrous reinforcements. The proposed specific shell approach is based on 
the quasi-inextensibility of the fibres and the possibility of slippage 
between the fibres. These two points are the major specificities of the 
physics of the deformation of a fibrous reinforcement. The feasibility of 
the approach in the case of a 2D two node fibrous element in the plane 
has been presented in [29]. The aim of the present article is to develop 
an approach to simulate all cases of 3D deformation of textile re-
inforcements. The formulation is implemented in the framework of the 
3D continuum-based shell elements [30–32]. It concerns both thin and 

thick textile reinforcements. Simulations of large deformations of textile 
reinforcements in 3D cases are presented and validated by comparisons 
with experiments. 

2. Specificities of the mechanical behaviour of fibrous materials 

Plate and shell approaches concern solids whose geometry is close to 
a middle surface and thin enough to simplify the kinematics i.e. it de-
pends on a smaller number of variables than 3D solids. In an orthogonal 
coordinate system of x,y,z coordinates, a plate is considered to have a 
thickness h and a middle surface z = 0. The displacements along x,y,z, 
and the components of the rotation from the normal to the plate are 
noted u,v,w, and θx, θyrespectively. The hypothesis is made that the 
points along a segment oriented by the normal initially perpendicular to 
the middle surface remain on a straight segment that consists of the 
deformed normal. Consequently: 
⎡

⎣
u
v
w

⎤

⎦ =

⎡

⎣
u
v
w

⎤

⎦+ z

⎡

⎣
θy
− θx

0

⎤

⎦ (1)  

Here u, v,w are the displacements of the point of the middle surface. The 
strains are as follows: 

Fig. 1. (a) Bending experiment of multilayer reinforcements; (b) 3 points bending test of multilayer reinforcement; (c) 3D Bending due to an imposed displacement at 
the corner; (d) Simulation using Mindlin shell S3 element in Abaqus; (e) Bending of a thin reinforcement. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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ε = e + zχ εxz =
1
2
γxz εyz =

1
2

γyz (2)  

where e is the membrane strain in the mean surface, χ is the curvature 
and Γ is the transverse shear strain [33,34]. 

χ =

⎡

⎣
χxx
χyy
χxy

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂θy

∂x

−
∂θx

∂y
∂θy

∂y
−

∂θx

∂x

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Γ =

[
γxz
γyz

]

=

⎡

⎢
⎢
⎢
⎣

θy +
∂w
∂x

− θx +
∂w
∂y

⎤

⎥
⎥
⎥
⎦

(3) 

If the transverse shear strain is zero or very low, which is often 
verified when the plate is very thin, then Γ = 0. The Kirchhoff theory is 
thus obtained where the directions initially perpendicular to the middle 
surface remain perpendicular to the deformed middle surface. 

These plate approaches are very efficient for the analysis of thin 
structures because the kinematics of the deformation is given by a 
reduced number of variables (u, v, w, θx, θy) that are function of (x,y). 
Nevertheless, in order to use them, it is necessary that the kinematic 
hypothesis on which they are based is verified. It will be seen that this is 
not the case for fibrous reinforcements. 

Fig. 1 shows examples of deformation of composite fibre re-
inforcements. It can be seen from all the examples that the material 
normals (direction initially perpendicular to the middle surface and 
fixed to the material) do not remain perpendicular to the middle surface 
of the textile reinforcement. The deformations do not correspond to 
Kirchhoff’s theory. The angle between the material normals and the 
middle surface is often very different from 90◦. The deformation of the 
fibrous reinforcements has two main features. The fibres of which they 
are composed (carbon fibres in the examples in Fig. 1) are almost 
inextensible. Especially during a forming process, the fibres practically 
do not elongate. Besides, some slippage may occur between the fibres. 
These two aspects form the physical basis for the deformation of these 
materials and are specific to textile reinforcements. They are the basis of 
the proposed specific shell approach. 

Kirchhoff’s hypothesis (the material normal remains perpendicular 

to the middle surface) which reflects the physics of the deformation of 
standard materials, in particular when they are thin, is abandoned here 
and replaced by the constraint of inextensibility of the fibres. The 
Mindlin approach, by the transverse shear Γ (Eq. (3)) makes it possible 
that the material normal does not remain necessarily perpendicular to 
the middle surface. In Mindlin’s model, the transverse shear strain is 
defined by a constitutive law that relates it to the shear stress [33–35]. 
This does not correspond to the physics of fibre reinforcement defor-
mation. The position of the material normals after deformation is 
defined by the quasi inextensibility of the fibres and the possibility of 
slippage between them. Fig. 1c and d shows the deformation of a textile 
reinforcement composed of 11 layers of carbon reinforcement G1151 
(Hexcel). Fig. 1c shows the experimental deformation where the mate-
rial normals were marked and Fig. 1d shows the simulation performed 
using the Mindlin S3 shell finite element of Abaqus software. The tensile 
and transverse shear properties have been optimized so that the middle 
surface is in agreement with the experiment. However, the material 
normals obtained by simulation do not correspond to the experiment. 
Furthermore, an example of bending of thin textile reinforcement 
(Fig. 1e) shows that the normals do not tend to be perpendicular to the 
middle surface after deformation when the thickness is small. Unlike 
Mindlin shells, textile reinforcements do not tend towards Kirchhoff’s 
theory when the thickness is small. 

The objective of the present work is to develop a 3D shell approach 
that is tailored to the deformation physics of the fibre reinforcements. 
The objective of this shell approach is to determine all the kinematics 
and stresses in the entire thickness of the textile reinforcement. It is an 
alternative to the 3D finite element approaches (solid elements) that 
have been developed for this purpose [36–39] but with a better nu-
merical efficiency, the number of degrees of freedom being much lower. 

Therefore, a continuum mechanics-based 3D shell element is devel-
oped. The kinematics associated with the form of the virtual work taken 
into account reflect the specificity of the deformation modes of the fibre 
reinforcements (quasi inextensibility of the fibres and the possibility of 
slippage between fibres). Examples of 3D deformation of textile re-
inforcements are analysed both experimentally and simulated with good 
agreement using the proposed approach. 

The fibre reinforcements under consideration are composed of two 

Fig. 2. Geometry of the 3D fibrous shell element. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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directions of quasi inextensible fibres. This is an idealized situation. In 
practice, woven composite fibre reinforcements and their stacking are 
close to this situation. The weaving creates a crimp and the condition of 
inextensibility is not strictly observed. Nevertheless, on the one hand the 
geometries of the textile reinforcements are very flat in order to give 
good mechanical characteristics to the composite, on the other hand, 
during a process, the deformations of the reinforcement are large and 
the stresses are moderate. Consequently, in practice, for these composite 
woven reinforcements, the condition of inextensibility is a correct 
assumption. This can be verified in all the tests presented in this article, 
in particular Fig. 1. 

3. Continuum mechanics-based 3D shell element for fibrous 
reinforcement 

3.1. Geometry of the 3D shell element 

The proposed shell is developed within the framework of continuum- 
based shell elements which was widely used to define effective shell 
elements [30–32]. In this article, this fibrous triangular shell element 
possesses 3 nodes, the geometry is shown in Fig. 2, the position vector of 
a point M(ξ, η, ζ) is defined as: 

x(M) = x(H)+ y(M) (4) 

H is a point defined at the middle surface. ξ, η, ζ are the element 
natural coordinates (Fig. 2) with 0⩽ξ⩽1, 0⩽η⩽1, − 1⩽ζ⩽1. The co-
ordinates ξ,η give the in-plane position. The element edges coincide with 
warp and weft directions, ζ is along the material normal direction which 
joints the top-bottom layer. 

The position interpolation in the element is given by: 

x(ξ, η, ζ) =
∑3

k=1
Nkxk +

∑3

k=1
Nk

ζ
2

hk
mVk

m (5)  

where xk is the position vector of node k, hk
m is the thickness along the 

direction of material director Vk
m which is the unit material director 

defined at each node k. Nk is the shape function at node k. 

N1 = 1 − ξ − η; N2 = ξ; N3 = η (6) 

A local orthogonal frame (Vk
1,Vk

2,Vk
3) is defined at each node 

k(Fig. 2). e1, e2, e3 is the global unit base vector, n is the unit vector 
normal to the element’s mid-surface. 

Vk
3 = Vk

m, Vk
1 =

e2 × Vk
3⃒

⃒e2 × Vk
3

⃒
⃒
, Vk

2 = Vk
3 × Vk

1 (7) 

A point with position x in the element gives the covariant vectors 
with respect to natural coordinates: 

g1 =
∂x
∂ξ
, g2 =

∂x
∂η, g3 =

∂x
∂ζ

(8) 

In order to avoid locking due to fibre inextensibility, the vector along 
the direction of the warp and weft fibres k1,k2 are equal to the covariant 
vectors g1, g2 [40,41]. 

g1 = k1, g2 = k2 (9)  

3.2. Conservation of the thickness in the direction of the normal 

As in the classic shell models, the approach presented is for cases 
where there are no external forces in the thickness direction or where 
these are not taken into account. The thickness of the reinforcement in 
the direction of the normal to its mean surface is the sum of the thick-
nesses of the fibres which are assumed to be in contact. This thickness in 
the direction of the normal remains constant during deformation. It can 
be seen, especially in Fig. 1, that this hypothesis is verified in the ex-
periments. This assumption complete the kinematics. Consequently: 

hk
m =

h
Vk

m⋅n
(10)  

where h is the thickness along the direction normal to the mid-surface of 
the shell, hk

m is the thickness along the material director Vk
m at node k. 

3.3. Kinematics of the fibrous shell 

By considering the kinematic equation of continuum-based element, 
the expression of the incremental displacement for each point in the 
element between the geometry at time it and i+1t is developed: 

Δu(ξ, η, ζ) = i+1x − ix (11) 

Taking Eq. (5) into account: 

Δu(ξ, η, ζ) =
∑3

k=1
Nk(

i+1xk −
ixk) +

∑3

k=1
Nk

ζ
2
( i+1hk

m
i+1Vk

m − ihk
m

iVk
m)

=
∑3

k=1
NkΔuk +

∑3

k=1
Nk

ζ
2
( i+1hk

m
i+1Vk

m − ihk
m

iVk
m)

(12) 

The rotation of material director is given by two rotation components 
α and β. On the time step from it to i+1t: 

i+1Vk
m − iVk

m = Δαk
iVk

1 − Δβk
iVk

2 (13) 

The update of thickness along material director direction is: 

Δhk
m = i+1hk

m − ihk
m =

h
i+1n( tVk

m + Δαk
iVk

1 − Δβk
iVk

2)
−

h
in iVk

m
(14)  

where the expression of the updated unit normal vector i+1n is. 

i+1n=
i+1g1 ×

i+1g2

‖ i+1g1 ×
i+1g2‖

=
( ig1 + Δu2 − Δu1) × ( ig2 + Δu3 − Δu1)

‖( ig1 + Δu2 − Δu1) × ( ig2 + Δu3 − Δu1)‖
(15) 

Taking Eqs. (13)–(15) into Eq. (12), the displacement increment is:  

v 
The above formulation results in five degrees of freedom per node. 

Δuk is the nodal incremental translation displacement vector, the other 

two DOFs are two rotations components. The configuration at i+1t 
enable the calculation of the internal nodal loads at i+1t. 

4. Internal virtual work of the textile reinforcement 

For any virtual displacement equal to zero on the boundary with 
prescribed displacement, the virtual work theory is written: 

Δu(ξ, η, ζ) =
∑3

k=1
NkΔuk +

∑3

k=1
Nk

ζ
2
( ihk

m + Δhk
m)(Δαk

iVk
1 − Δβk

iVk
2)+

∑3

k=1
Nk

ζ
2

Δhk
m

iVk
m (16)   
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δWext − δWint = δWacc (17) 

The internal virtual work is separated into three parts: 

δWint = δWTen
int + δWBend

int + δWShear
int (18) 

In Eq. (18), δWint denotes internal virtual work, δWTen
int , δWBend

int , δWShear
int 

are the tension, bending, in-plane shear internal virtual works 
respectively. 

δWTen
int =

∑Nfibres

f=1

∫

Lf
T11f δεf

11 dL+
∑Nfibres

f=1

∫

Lf
T22f δεf

22 dL (19)  

δWBend
int =

∑Nfibres

f=1

∫

Lf
M11f δχf

11 dL+
∑Nfibres

f=1

∫

Lf
M22f δχf

22 dL (20)  

δWShear
int =

∑Nfibres

f=1

∫

Ω
Msf δγf dΩ (21) 

The superscript f indicates the fibre in consideration. T11,T22 are the 
tensions in the fibres in the warp and weft direction, δε11,δε22 are virtual 
tensile strains; M11,M22 are the bending moment on the fibres in warp 
and weft directions, δχ11,δχ22 are the virtual curvature; Ms is the in-plane 
shear moment, δγ is the virtual in-plane shear angle. 

The form (Eqs. (19)–(21)) of the internal virtual work corresponds to 
the specific mechanical behaviour of the fibrous reinforcements. The 
virtual tension work takes into account the high tensile rigidity of the 
fibres and leads to the quasi-inextensibility of the fibres. It controls the 
deformation of the fibrous medium. The quasi-inextensibility of the fi-
bres at different altitudes in the thickness of the reinforcement leads to 
specific positions of the normals as shown in the different examples (e.g. 
Fig. 1). The virtual bending work considers the bending stiffness of each 
fibre. It will also be shown in Section 5.2 that it makes it possible to take 
into account the friction between the fibres for certain materials. The in- 
plane shear stiffness in the plane is taken into account in a standard 
manner for textiles [42–46]. No other stiffness is taken into account thus 
making it possible for the fibres to slip between the fibres whereas it is 
not possible in a standard shell approach. 

Although most forming processes are quasi-static, the simulation is 
often based on an explicit dynamic approach. [47–49]. The principle of 
virtual work and the finite element approximation leads to: 

Mü+Cu̇ = Fext − Fint (22)  

M and C are the mass and damping matrices respectively. Fint and Fext 

are the internal and exterior nodal loads. Fint is specific to the textile 
reinforcements and is composed of three parts: the tensile nodal loads 
FTen

int , the bending nodal loads FBend
int and the in-plane shear nodal loads 

FShear
int . The calculation of Fint for the specific form of virtual works given 

in Eqs. (17)–(19) is a main point of the approach presented and is the 
subject of Section 4.1 below. 

The central difference scheme on a time step iΔt = i+1t − it gives the 
nodal displacement increment: 

i+1uN = iuN +( i− 1/2u̇N +
1
2
( i− 1Δt + iΔt)M− 1( iFext −

iFint))
iΔt (23)  

M is the lumped matrix for node k of the shell. It is given in appendix A 
[50]. 

4.1. Calculation of internal nodal force 

4.1.1. Tension 
The nodal tensile internal loads FTen

int for the element consists of two 
parts. The first part denoted by FTen concerns the displacement degrees 
of freedom. The second part denoted by MTen concerns the rotation 
degrees of freedom. 

FTen =
∑n

f=1

∫

Lf
(BTen

11 )
f T

T11f dL+
∑n

f=1

∫

Lf
(BTen

22 )
f T

T22f dL (24)  

Here 
(
BTen

αα
)f matrix is the fibre tension strain interpolation matrix, in 

which the right subscript αα represent the component in different fibre 
directions, α takes value 1 or 2. n is the number of fibres in the thickness 
considered for numerical integration. In the present work n = 3. The 
tensile virtual strain in direction α for the fibre f is consequently: 

(δεαα)
f
=
(
BTen

αα
)f δuf (25)  

uf is the single column displacement matrix for fibre end points of the 
segment f . It is obtained from nodal displacements and rotations matrix 
u by using Eq. (16). With the Eq. (9), assigning the fibre direction as the 
direction of element edge, the virtual strain is shown (Eq. (26)) with 

ξ1 = ξ ; ξ2 = η ; ξ3 = ζ  

(δεαα)
f
=

gf
α

⃦
⃦gf

α
⃦
⃦2⋅
〈

∂N1(ξ, η)
∂ξα

∂N2(ξ, η)
∂ξα

∂N3(ξ, η)
∂ξα

〉

⎧
⎪⎪⎨

⎪⎪⎩

δuf
1

δuf
2

δuf
3

⎫
⎪⎪⎬

⎪⎪⎭

(26) 

The 
(
BTen

αα
)f is given as: 

(
BTen

αα
)f

=
gf

α
⃦
⃦gf

α
⃦
⃦2⋅
〈

∂N1(ξ, η)
∂ξα

∂N2(ξ, η)
∂ξα

∂N3(ξ, η)
∂ξα

〉

(27) 

The second part is the load provided by the force at top and bottom 
fibre (Fig. 3). The tensile force in the different fibres in the thickness 
generate moments at node k: 

Fig. 3. Moment produced by internal force at top-bottom position of node k. 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 4. In-plane shear angle and virtual displacement. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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MTen
α k =

∑n

f=1

ζhk
m

2

((
FTen

k

)f ⋅Vk
1

)
, MTen

β k = −
∑n

f=1

ζhk
m

2

((
FTen

k

)f ⋅Vk
2

)
(28)  

MTen =
[
MTen

α MTen
β

]
(29) 

Eq. (28) shows the two nodal moment components corresponding 
with rotations α, β. The tensile internal load is obtained by assembling 
two parts FTen and MTen. 

4.1.2. In-plane shear 
The shear angle γf for the element at position f is: 

δγf=
(
BShear)f δuf (30) 

In Fig. 4, considering the fibre in direction α = 1 for example, the 
angle between dx1 and δx1 is denoted by γ11. Consequently γ22 will 
represent the angle between dx2 and δx2. The virtual angle between 
warp and weft direction is given as the combination of these two angles 

[25] in form of Eq. (31) which gives 
(
BShear)f : 

δγf =(
∂uf

∂ξ
⋅k1)

k2⋅k1
⃦
⃦k2⃦⃦‖k1‖

+(
∂uf

∂η ⋅k1)

⃦
⃦k2⃦⃦

‖k1‖
− (

∂uf

∂η ⋅k2)
k1⋅k2

⃦
⃦k1⃦⃦‖k2‖

− (
∂uf

∂ξ
⋅k2)

⃦
⃦k1⃦⃦

‖k2‖

(31) 

By using the same method as described in Section 4.1.1 for tension, 
the internal loads FShear

int will also be divided into two parts, and they 

could be calculated from matrix 
(
BShear)f and the thickness along 

Fig. 5. (a) Triangular element mid-surface (b) Parameters defined in two neighbouring elements. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 

Fig. 6. Bending test on a multilayer textile reinforcement (a) Test condition (b) Experiment (c) Simulation by 3D shell element. (d) Position of mid-surface. (e) Angles 
between material directors and horizontal direction. (f) Thickness along material director. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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material director. 

FShear =
∑n

f=1
(BShear)

f T
(Cγ)

f (32) 

The moment produced by force 
(
FShear)f at different position in the 

thickness is: 

MShear
α k =

∑n

f=1

ζhk
m

2

((
FShear

k

)f ⋅Vk
1

)
MShear

β k = −
∑n

f=1

ζhk
m

2

((
FShear

k

)f ⋅Vk
2

)

(33) 

The internal in-plane shear nodal internal loads are FShear, MShear. 

4.1.3. Bending 
The curvature is calculated from the position of the neighbouring 

elements. This method has been developed to obtain rotation free shell 
element [51–53]. 

The virtual curvature in warp and weft direction is interpolated from 
the nodal virtual displacement: 

δχαα=BBend
αα δu (34) 

Fig. 5 shows some parameters defined in the element. The height 
from node k is denoted as hk, nc is the exterior normal to side in the 
element’s plane, the relative rotation angle between the principal 
element plane and neighbour element around the side s is denoted by θs, 
s vary in (1,2,3), s’ is the corresponding node number in neighbour 
element. Denoting ĝα the unit vector of gα, the curvature in the fibre 
direction is obtained [25]: 

χαα = −
∑3

s=1

(
2(ĝαncs)

2

hs

hsθs

hs + hs’
) with δθs = δφs’ + δφs (35) 

φs and φs′ are respectively the rotation angle of the principal element 
and the neighbour element around side s. They are represented by the 
incremental nodal displacements where p and q are the complements of s 
in (1,2,3): (Fig. 5) 

Table 1 
Mechanical properties of single layer in multilayer reinforcement (Section 5.1).  

Tension stiffness (per unit width) 1200 N/mm 

Bending stiffness (per unit width) B = 7.5 N⋅mm when |χαα|⩽0.001   
With Mαα = Bχαα   

0.5 N⋅mm when χαα⩾0.001   
With Mαα = Bχαα + 0.0075   
0.5 N⋅mm when χαα⩽ − 0.001   
With Mαα = Bχαα − 0.0075   

Fig. 7. (a) 3-Points bending test on a single ply and twenty plies of Hexcel G1151 (b) Moment-curvature data for multilayer reinforcement. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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δφs =
δus⋅ns

hs
−

cosβq

hp
δup⋅ns −

cosβp

hq
δuq⋅ns (36) 

Thus θs can be given by the nodal displacements δu, this gives the 
bending strain interpolation matrix BBend

αα , consequently, the nodal 
bending internal loads are: 

FBend
int =

∫

L
(BBend

11 )
T M11dL+

∫

L
(BBend

22 )
T M22dL (37) 

Mαα is a function of the curvature measured in bending experiment 
[54]. The detail of the calculation of the bending nodal internal loads 
can be found in [25,52]. 

5. Numerical simulations and experimental comparisons in 2D 

5.1. Bending test on a multilayer textile reinforcement 

The specimen consists of 20 plies of Hexcel G986® carbon twill 
weave stacked in the same orientation (Fig. 6). The horizontal and 
vertical displacements are imposed at the right end of specimen, 
meanwhile the other is clamped. The experimental deformed shape is 
shown in Fig. 6b. The simulation based on the proposed shell element is 
shown in Fig. 6c. The material properties of Hexcel G986 are given in 
Table 1 [55]. Comparisons between numerical and experimental results 
is given in Fig. 6d, e and f. The deflection, the rotation of the material 
director and the change in thickness along material director are in good 
agreement with experiment. 

Furthermore, some other tests like cantilever bending test, have also 

been carried out and simulated by the 2D approach presented in [29] 
with a good agreement between tests and simulations. The 3D shell 
approach proposed in this paper leads to strictly identical results in these 
cases. 

5.2. Influence of friction between fibres 

In the approach proposed above in Sections 3 and 4, friction does not 
appear explicitly. Nevertheless, the friction between the fibres exists and 
has an influence that may not be negligible [56–58]. In order to high-
light the influence of friction on bending stiffness, 3-point bending tests 
are carried out Fig. 7 on two specimens consisting of a single carbon 
fabric layer (Hexcel G1151®), and twenty layers of the same rein-
forcement respectively. 

The measured bending moment versus curvature is shown in Fig. 7b. 
The measured bending stiffness of the stack made of twenty G1151 
layers is larger than the summation of the bending rigidities of twenty 
individual fabrics. This difference is due to friction between the plies and 
is far from negligible. In order to take friction into account in a simple 
way in the simulations, the bending stiffness taken into account in the 
proposed shell element is that of the overall stack (and not the sum of the 
stiffness of the individual plies or fibres). From the point of view of 
experimental identification, the measurement of the stiffness of the 
global stack is no more complex and sometimes simpler than that of each 
ply. 

Friction within a woven reinforcement is a complex problem and 
depends on a number of factors, in particular the clamping forces 
applied during forming [59]. Nevertheless, the proposed shell approach 

Fig. 8. (a) Schema of 3D experiment (b) Boundary condition of Test 6.1.1 (c) Boundary condition of Test 6.1.2. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Deformed shape along side 1. (a) Experiment. (b) Simulation. Deformed shape along side 2. (c) Experiment. (d) Simulation. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version of this article.) 
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is macroscopic with only one element in the thickness of the reinforce-
ment or reinforcement stack. The approach used to take into account the 
friction between the fibres makes it possible to remain within this 
framework and to be quite effective. Furthermore, measuring the 
bending stiffness of the reinforcement is quite simple. This approach has 
its limitations, especially in the case of complex boundary conditions 
during a process. In such cases, it may be necessary to consider 3D or 
mesoscopic modelling. 

6. Numerical simulations and experimental comparisons in 3D 

In this section, the proposed approach is applied to 3D deformation 
cases. The part above the diagonal 1–3 of a rectangular fibrous specimen 
is clamped and the lower part is subject to bending (Fig. 8). The defor-
mation of the two sides are captured by two cameras (Figs. 8a and 9). 
Some straight lines are drawn on both two sides in the through-thickness 
direction, they are initially normal to the mid-surface. They show the 

material directors and their rotations. 

6.1. Bending test of a fibrous specimen 

The specimen is a stack of 130 sheets of paper. It is not exactly a 
textile composite reinforcement but a model material which, with re-
gard to bending, corresponds to the problem under consideration. The 
in-plane shear stiffness is large and the sheets of paper do not deform in 
in-plane shear. 

6.1.1. Bending due to an imposed displacement of a corner 
A rigid support imposes a vertical displacement at the corner of the 

rectangle specimen (Figs. 8b and 9). The experimental deformed 
configuration of the two sides are shown in Fig. 9a and c and the results 
of the corresponding simulations using the proposed shell approach are 
displayed in Fig. 9b and d. 

Fig. 10 compares the experimental and numerical deformed middle 

Fig. 10. (a) (d) Mid-surface along side 1 and side 2 (b) (e) Angles between the material directors and the horizontal direction along side 1 and side 2 (c) (f) Thickness 
along with material director along side 1 and side 2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 11. Deformed shape along side 1. (a) Experiment (b) Simulation. Deformed shape along side 2. (c) Experiment (d) Simulation. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version of this article.) 
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surface positions, material director rotation and thickness. The corre-
spondence between the simulation and the experiment is pretty good. In 
this test, the curvature of the shell is non-zero and yet the material di-
rectors remain almost parallel. This is not in accordance with standard 
shell theory. 

6.1.2. Buckling bending test 
The diagonal of the specimen is clamped (Fig. 8). An in-plane 

displacement is imposed at the corner of the rectangle specimen (see 

Fig. 12. (a) (d) Mid-surface along side 1 and side 2 (b) (e) Angles between the material directors and the horizontal direction along side 1 and side 2 (c) (f) Thickness 
along with material director along side 1 and side 2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Table 2 
Mechanical properties of G1151 multilayer reinforcement (Section 6.2).  

Tension stiffness (per unit width) 2300 N/mm 

Bending stiffness (per unit width) Warp B = 72 N⋅mm 
Weft B = 68 N⋅mm  

Fig. 13. Bending of a G1151 laminate due to an imposed displacement of a corner. Deformed shape along side 1. (a) Experiment. (b) Simulation. Deformed shape 
along side 2. (c) Experiment. (d) Simulation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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Figs. 8c and 11). The deformed configuration is shown in Fig. 11. Fig. 12. 
compares the experimental and numerical deformed shapes with regard 
to mean surface position, material director rotation and thickness. The 
correspondence between the simulation and the experiment is pretty 
good. 

6.2. Bending of a carbon textile reinforcement 

The considered multilayer reinforcement is made up by 11 layers of 
G1151 carbon weaves. The dimension of the laminate is 200mm×

150mm× 15mm. The mechanical properties of G1151 have been 
determined in several previous studies [60–62]. The bending stiffness of 
this multilayer specimen is measured in three point bending test, the 
influence of friction is taken into account (Table 2). 

6.2.1. Bending due to an imposed displacement of a corner 
The G1151 laminate reinforcement is subjected to an imposed 

displacement of a corner (Figs. 8b and 13). The experimental deformed 
configuration captured on two sides are shown in Fig. 13a and c, the 
corresponding simulation result is shown in Fig. 13b and d. The position 
of the mid-surface, the material director directions and thicknesses are 
shown in Fig. 14. The simulation shows a good agreement with exper-
iment, which was not be obtained with the Abaqus S3 Mindlin shell 
element. 

6.2.2. Buckling bending test 
An in-plane displacement is imposed at the corner of the rectangle 

G1151 laminate reinforcement with a clamped diagonal (Figs. 8c and 
15). The deformed configuration is shown in Fig. 15a and c, the 

Fig. 14. Bending of a G1151 laminate due to an imposed displacement of a corner. (a) (d) Mid-surface along side 1 and side 2 (b) (e) Angles between the material 
directors and the horizontal direction along side 1 and side 2 (c) (f) Thickness along with material director along side 1 and side 2. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 15. Buckling bending test of a G1151 laminate. Deformed shape along side 1. (a) Experiment. (b) Simulation. Deformed shape along side 2. (c) Experiment. (d) 
Simulation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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corresponding simulation is presented (Fig. 15b and d). The deformed 
middle surface, the material director directions and thicknesses are 
shown in Fig. 16. The simulation shows a fairly good agreement with 
experiment. 

6.3. Scope and limits of the approach 

The proposed approach is developed for fibrous reinforcements with 
two directions of inextensible fibres in the plane of the reinforcement. 
This is an idealized situation. A real reinforcement, more or less deviates 
from this situation. Simulations based on this approach will be more 
relevant if one is close to this situation. Deformations of woven re-
inforcements and stacks of woven reinforcements are simulated in this 
paper with a correct agreement with the experiments (Figs. 6, 13, 15). 
The modelling can be satisfactorily extended to more complex re-
inforcements, e.g. thick interlocks [29]. However, the deformation of 
some 3D reinforcements containing tows in the thickness direction 
cannot be simulated with the proposed shell approach. 

7. Conclusion 

A shell approach specific to fibrous reinforcements is necessary 
because classical theories such as Kirchhoff and Mindlin are based on 
kinematic assumptions that are not verified for textile reinforcements. 
The deformation of these fibrous fabrics has two major features: the 
inextensibility of the fibres and the possible slippage between the fibres. 
A shell approach has been developed to take these specificities into ac-
count. An Ahmad shell finite element has been developed. This element 
has been validated on some 3D deformation tests where it has been 
shown that it allows determining the displacement, the strains at all 
points in the thickness and the rotation of the material normals in good 

coherence with the experiments. A simple approach was used to take 
into account friction between layers. The bending stiffness was 
measured on the overall reinforcement, and friction increases the 
bending stiffness, which is taken into account. Other ways can be 
considered to take friction into account, for example by adding a specific 
term in the virtual work. The proposed approach makes it possible to 
greatly reduce the cost of the calculations compared to an approach 
where each layer is described by a layer of shell finite elements in 
contact with its neighbours. Some aspects remain to be studied and 
modelled, in particular the case of the different orientations of the fibre 
plies in the textile reinforcement and the consideration of thickness 
variations during consolidation. 
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Appendix A 

The lumped matrix for node k of the shell is given bellow, where k is the index number of node, ρ is the mass density of the element material, V is the 
volume of the element [50]. 

Fig. 16. Buckling bending test of a G1151 laminate. Deformed shape along side 1. (a) Experiment. (b) Simulation. Deformed shape along side 2. (c) Experiment. (d) 
Simulation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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[Mk] =

⎡

⎢
⎢
⎢
⎢
⎣

mkk 0 0 0 0
0 mkk 0 0 0
0 0 mkk 0 0
0 0 0 Ikk 0
0 0 0 0 Ikk

⎤

⎥
⎥
⎥
⎥
⎦

(38)  

mii =

∫

V ρNi(ξ, η)T Ni(ξ, η)dV
∑3

k=1
∫

V ρNk(ξ, η)T Nk(ξ, η)dV

∫

V
ρdV and Iii =

mii

4
(hi

m)
2 (39)  
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