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2Télécom Paris, LTCI, IPP - Institut Polytechnique de Paris, Paris, France
jean-marc.thiery@telecom-paristech.fr

3CNR IMATI, Pavia, Italy
marco.livesu@gmail.com

4University of Genoa, Genoa, Italy
Enrico.Puppo@unige.it
5Adobe, Paris, France

tamy.boubekeur@telecom-paris.fr

Abstract
Skeleton-based and cage-based deformation techniques represent the two most popular approaches to control real-time defor-
mations of digital shapes and are, to a vast extent, complementary to one another. Despite their complementary roles, high-end
modelling packages do not allow for seamless integration of such control structures, thus inducing a considerable burden on
the user to maintain them synchronized. In this paper, we propose a framework that seamlessly combines rigging skeletons and
deformation cages, granting artists with a real-time deformation system that operates using any smooth combination of the two
approaches. By coupling the deformation spaces of cages and skeletons, we access a much larger space, containing poses that
are impossible to obtain by acting solely on a skeleton or a cage. Our method is oblivious to the specific techniques used to
perform skinning and cage-based deformation, securing it compatible with pre-existing tools. We demonstrate the usefulness of
our hybrid approach on a variety of examples.

Keywords: animation, modelling, deformations
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1. Introduction

Interactive shape deformation is a fundamental building block in
3D modelling and many other applications. The various techniques
available in the literature rely on simplified control structures: the
user interacts with them, and the changes smoothly transfer to the
high resolution controlled object (the skin) through a set of weights,
which establish a relation between each point of the model and the
handles of the control structure [JDKL14].

The two most widely used controllers for real-time deformation,
namely skeletons and cages, support complementary tasks: skeleton-
based techniques are adequate to control rigid parts and pose artic-
ulated bodies; conversely, cage-based methods are best for smooth
volumetric deformations. Each control structure becomes unwieldy
and overly complicated to use where the other excels, thus pushing
practitioners to use them together on the same skin.

Numerous discussions on how to combine skeletons and cages
can be found on specialized forums, blogs and other online re-
sources. Despite this interest from the community of practitioners,
the problem of keeping them in sync and finding consensus between
the deformations they induce is still open. To this end, an important
issue is that there exists a plethora of alternative skeleton and cage
techniques, which are already implemented in almost any available
deformation software. Therefore, to promote a seamless integration
of hybrid deformation approaches into well-established software
packages, it becomes crucial to guarantee some sort of flexibility
and back-compatibility.

The complexity in combining skeletons and cages comes from the
fact that they achieve deformation in substantially different ways.
Skeleton-based techniques perform deformations that are relative to
a particular pose of the skin, often called the rest pose: the deformed
skin is always a combination of its shape in the rest pose with the
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Figure 1: Given an input 3D shape equipped with its deformation skeleton and cage (left), our framework seamlessly combines both structures,
merging their associated deformation spaces. We achieve this result by using rest and current pose both for the skeleton and cage (middle).
User can deform the shape with any interlaced combination of the two control structures, editing the skeleton in the current pose or the cage
both in the current and rest pose. Our novel operators automatically maintain all these entities in sync in real-time.

current position of the skeleton. Conversely, cage-based deformation
follows an absolute approach: the current position of the control
cage entirely determines the skin it envelopes, with no particular
reference pose existing.

Previous attempts to combine skeletons and cages fall short, ei-
ther because they are not general enough, or because they break
back-compatibility. Blender [Ble18] allows to link a control cage
to a skeleton and move the cage through it. The communication is
only mono-directional: edits performed on the cage do not reflect
on the skeleton, thus requiring complex manual edits to reposi-
tion the centres of rotation (CoR) of each bone. Jacobson and col-
leagues [JBPS11] combined skeleton, cage and point handles into
a unified deformation meta-structure, but impose the simultaneous
definition of all the handles and relative weights, and do not keep
the sync between them. Moreover, their system implements a cus-
tomized pipeline, which is not compatible with standard techniques.

We propose a hybrid deformation paradigm that seamlessly com-
bines skeletons and cages, providing a real-time framework where
the user can operate using any interlaced combination of the two
control structures (Figure 1). Our method is compatible with clas-
sical skeleton-based and cage-based deformation techniques: it just
acts as middleware to reach consensus between the two control
structures. In particular, skeleton deformations can be transferred
to the skin using the popular LBS [MTLT89], DQS [KCŽO08],
CoR [LH16] or any alternative approach (Figure 2). Linking weights
can be either the result of an automatic computation (e.g. [BP07])
or hand painted by a digital artist, as it often happens in the indus-
try. Similarly, cage-based deformation admits the use of any type
of generalized barycentric coordinates that produce deformation
through a linear relation between the cage handles and the vertices
of the skin [NS13]. To achieve consensus between the two control

structures, we retain the relative nature of skeletons and extend it to
the cages, which therefore exist both in the rest and current pose.
At modelling time, the user guides a deformation by acting on one

Figure 2: Results obtained with various alternative skinning meth-
ods implemented in our framework. The top row shows deformations
obtained with a skeleton edit only (a 90 degrees rotation of the el-
bow). The bottom row shows results with an additional cage edit (a
uniform stretch of the arm). Our joints and CoRs dynamic reposi-
tioning method handles both transformations in a natural manner.
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controller, and the system automatically updates all the other poses
accordingly. Our approach makes it possible to edit shapes both in
current and rest poses, and occurs in real-time, with negligible over-
head to classical skeleton- and cage-based deformation workload.
Figure 3 provides an overview of our framework, depicting the paths
of user interactions.

Contribution. Our main contribution is a deformation system that
combines the deformation spaces of skeletons and cages, revealing
a much larger deformation space, which contains configurations
that cannot be achieved using solely a skeleton or a cage. From
a technical point of view, our contribution consists of a collection
of synchronization operators that maintain the pose set up-to-date
during the editing session in real-time. We demonstrate our hybrid
deformation approach on a variety of examples, including shape
modelling and digital animation (Section 5). Our software prototype
already implements several skeleton- and cage-based techniques,
and can potentially embrace most existing techniques based on these
control structures, thus demonstrating a great flexibility and back-
compatibility.

2. Related Works

Our approach bridges skeleton-based and cage-based deformations.
While works of this kind are quite rare, the literature offers a wide
variety of approaches that focus on one deformation paradigm or the
other. We refer the reader to the work of Jacobson et al. [JDKL14]
for a recent survey, and focus here on the articles most relevant to
our work.

Skeletons. Deformations defined by linearly blending transforma-
tion matrices associated with the bones of a control skeleton, also
known as linear blend skinning (LBS), appeared long time ago in the
literature [MTLT89] and have become extremely popular ever since.
LBS suffers from a number of artefacts, most of which come from
singular transformation matrices generated by the linear interpola-
tion of rotations. A typical artefact of this kind is the well-known
candy wrapper, which arises at the shoulders of a character when
big torsions are applied to its arms. Recent literature has proposed
more robust ways to combine transformation matrices. In particular,
Kavan and colleagues proposed to blend rotations in the space of
dual quaternions (DQS), avoiding the generation of candy wrapper
artefacts at the cost of a minimal overhead in the real-time deforma-
tion pipeline [KCŽO08]. Due to their simplicity and intuitiveness,
LBS and DQS are de facto standards in skeleton-based deformation.
More recent non-linear skinning methods, such as stretchable and
twistable bones [JS11], differential blending [OBP*13] and elastic-
ity inspired deformers [KS12], introduce more sophisticated tech-
niques that act on the same basic ingredients, namely rigging weights
and affine transformations, to define the pose of the skeleton. Finally,
Le and Hodgins [LH16] introduced an efficient method designed to
avoid the respective artefacts of LBS and DQS, through the defini-
tion of a per-vertex CoR derived from an analysis of the skinning
weights, and resulting from an optimization targeting as-rigid-as-
possible deformations. In our software prototype, we incorporated
LBS, DQS and CoRs (Figure 2), but our framework can support
all previously cited skinning methods, thus promoting a seamless
integration with available implementations. Critical to the pre-

viously cited methods is the definition of the so-called skin-
ning weights. Various automatic methods aim at defining smooth
weights [BP07, WL08, JBPS11, JWS12, DdL13] or target as-rigid-
as-possible deformations under training [TE18]. While automatic
methods generally provide satisfactory results on challenging in-
puts, artists often need to tune the skinning weights as they tar-
get specific effects, and methods allowing for high-level skinning
weights editing have been developed recently [BCBiR*15, BL18].
Our method is quite general and has no restrictions on the skinning
weights used for deformation, thus allowing for great artistic flexi-
bility.

Cages. Cage-based methods derive directly from the free form de-
formation [SP86] and allow to deform a volume bounded by a con-
trol mesh. Each point within such volume is defined as a weighted
sum of cage vertices, hence its position can be efficiently updated
each time the cage is deformed by the user. Control weights are
generalized barycentric coordinates, and differ to each other mainly
for their smoothness and locality. Several alternatives have been
proposed in the literature [TMB18, TTB13, JSW05, JMD*07, LK-
COL07, LLCO08, ZDL*14, HS08]. All methods, with the excep-
tion of [LLCO08, BCWG09], compute skin coordinates as a linear
combination of cage vertices, and are seamlessly supported by our
framework. Similarly to skeletons, cages can be either automatically
computed or manually crafted, thus ensuring a seamless integration
with most available implementations. For brevity, we do not review
methods for cage generation. We point the reader to the survey
of [NS13] for classical literature in the field, and to [CLM*19] and
references therein for a list of more recent algorithms.

Hybrid approaches. Some methods depart from the classical
skeleton-based and cage-based deformation paradigms, trying to
improve on them on some aspect. Garcia et al. [GPCP13] proposed
a hybrid system that seamlessly combines multiple cages and
barycentric coordinates. The system is completely devoted to cages
only, and does not take into consideration interactions with a skele-
ton. Mukai and Kuriyama [MK16] propose the use of automatically
generated bone helpers to enrich the space of deformations of LBS
with secondary motions, enabling the animation of muscles and soft
tissues. The system focuses on a very specific problem and does not
offer the flexibility granted by a real control cage. Being compatible
with LBS, their bone helpers could also be incorporated in our
framework. Ju et al. [JZvdP*08] combined the use of cages and
skeletons to avoid the candy wrapper artefacts of LBS. Opposite to
ours, their system works as an open loop, using the skeleton to pose
the cage, and the cage to pose the skin. Similar systems are currently
supported by commercial software (e.g. Blender [Ble18]), but do
not really offer the possibility to seamlessly combine deformations
defined on the skeleton with others defined on the cage in arbitrary
order. The combination of skeletons and point handles was explored
in [WJBK15]. Jacobson et al. [JBPS11] proposed a system where
skeleton, cage and point handles are all integrated into the same
framework. Their system requires the simultaneous definition of
all structures (see Equation 1 in the original paper), and is based
on the use of the same coordinates at all levels, without permitting
the use of manually painted weights, or different weights for
different handles. Moreover, the skeleton and cage are part of the
same meta-structure and must be jointly animated: manipulating
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the skeleton (respectively, the cage) will not induce a deformation
of the cage (respectively, the skeleton), contrary to what we aim
at. All in all, previous techniques cannot offer the flexibility of
our technique, that is switching seamlessly from one structure
to the other while always relying on the optimization framework
to update the other structure appropriately. Finally, combining
deformation rigs has been used for a long time in specialized
industrial scenarios. In particular, on-surface facial rigs are often
superimposed on the skeleton rigs that control the head orientation.
However, these scenarios typically come with a fixed prioritization
policy, e.g. facial rigs defined in the local frame of the face, which
itself undergoes a single rigid transform stemming from the neck
bone. The scenarios we address are more challenging, as both
structures compete to control global and non-rigid deformations
that happen simultaneously.

Exploration of shape space. Our method is loosely related to
methods based on the analysis of 3D shapes and subsequent structure
aware deformation, which have the main intent to explore the space
of shapes similar to a reference mesh (Figure 8). To this end, our
real-time deformation tool complements classical methods based
on feature curves [GSMCO09], bounding envelopes [ZFCO*11]
or semantic handles [YCHK15], without exposing any significant
technical overlap.

3. Background

We take as input a polygonal mesh M0, together with a skeleton S0

rigged to M0, and a cage C0 surrounding M0. We set our working
structures at rest pose by initializingM ≡ M0, S ≡ S0 and C ≡ C0;
note thatM , C and S can evolve because of editing, as discussed in
the next section. Our method uses only the set of vertices of meshes
and is oblivious of their connectivity. For this reason, whenever no
ambiguity arises, we will overload the same symbol to denote both
a mesh and its set of vertices.

3.1. Skeleton-based deformation

As customary, instead of representing the skeleton S explicitly, we
consider the set of rigid transformations T = {T1, . . . ,Ts} that de-
termine a given pose. Each transformation Tj is associated with
the j -th bone of S and represents a rotation around one of its end-
points, which affects all the sub-skeleton below the given joint in the
bones hierarchy. At rest pose, all transformations are set to identity.
The skeleton S is rigged to M through an m× s (sparse) matrix of
weights �, where each entry ωi,j defines the influence of the j -th
bone of S on i-th vertex of M .

A general skeleton-based deformation (a.k.a. skinning) has the
following form:

M ′ = F (T , �,M), (1)

where M ′ is the deformed (current) mesh. For instance, LBS is
encoded vertex-wise by

v′
i =

s∑
j=1

ωi,jTjvi , (2)

which is often presented in the following form where the linear part
(Tr

j ) applied to the vertex is separated from the translation part (Tt
j )

v′
i =

⎛
⎝ s∑
j=1

ωi,jTr
j

⎞
⎠ · vi +

⎛
⎝ s∑
j=1

ωi,jTt
j

⎞
⎠, (3)

while DQS is encoded similarly

v′
i = DQblend(Ti , �i) vi , (4)

where DQblend is the proper function to blend transformations
represented via DQS, while Ti and�i denote the i-th rows of T and
�, respectively.

The recently introduced CoR method [LH16] is slightly different
from other methods, in the sense that it makes the use of an additional
parameter derived from a cross-analysis of the mesh geometry and
the skinning weights: a per-vertex CoR. This CoR pi associated
with vertex i is computed as:

pi :=
∫
x∈M

δ(ωi,·, ωx,·) x dx /
∫
x∈M

δ(ωi,·, ωx,·)dx, (5)

δ(ωi,·, ωx,·) denoting a distance between the sets of weights of vertex
i and vertex x.

Given the CoR pi associated with vertex i, and computing the
linear partR(i) applied to the mesh vertex using quaternion blending
of the bone rotations {Tr

j }j , the translation applied to the vertex is
computed as:

t(i) =
s∑
j=1

ωi,j
(
Tr
j · pi + Tt

j

)− R(i) · pi.

Since the CoR computation depends only on the skinning weights,
vertices with similar skinning weights have similar CoRs and are
therefore transformed by the same rigid transformation.

Overall, the (run time) deformation of vertex i by the CoR method
can be summarized as:

⎧⎪⎪⎨
⎪⎪⎩

v′
i = R(i) · vi + t(i) (deformation),
R(i) = DQBlendRot({ωi,j ,Tr

j }j ) (linear part),
t(i) = p̃i − R(i) · pi (translation part),
p̃i = ∑s

j=1 ωi,j (T
r
j · pi + Tt

j ) (transformed CoR),

(6)

where DQBlendRot returns the linear part of the matrix DQBlend
as defined above in equation 4.

Our method is compliant with all skinning methods mentioned in
Section 2, and any which requires only the rest pose location of the
joints of the skeleton (or CoR derived from the rest pose mesh as
done in the CoR method).
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Figure 3: Interactions with our hybrid deformation system: the user can edit the skeleton in the current pose (S ′) or the cage, both in the rest
(C) and current (C ′) pose. The diagram illustrates the chain of reactions that automatically update the system, maintaining the sync among
the various entities involved in the deformation. All interactions occur in real-time.

3.2. Cage-based deformation

The cage C controls M via an m× c (sparse) matrix of barycen-
tric coordinates �, where entry φi,k is the barycentric coordi-
nate of mesh vertex vi with respect to cage vertex ck . We re-
quire deformation to be given vertex-wise by the standard linear
equation:

v′
i =

c∑
k=1

φi,kc′
j , (7)

where v′
i represents the (deformed) position of vertex vi ofM when

the cage vertices are set at (edited) positions c′
j . This equation is

compliant with all barycentric coordinates reviewed in Section 2,
except the green coordinates [LLCO08] and the variational har-
monic maps [BCWG09], which also require face normals that set a
non-linear relation between the cage and skin. Indeed, our method is
not compliant with the latter two techniques. Note that Equation (7)
does not refer to any rest position for either the cage or skin. By
convention, we assume that we have a rest pose for the cageC, when
its vertices are at positions where equalityM = �C holds. Namely,
the rest pose of the cage induces the rest pose of the skin. In fact,
this is the usual setting from which the barycentirc coordinates are
obtained.

4. Method

In the following section, we will refer to six structures, namely: the
skin M , the skeleton S and the cage C at rest pose, together with
their deformed counterparts M ′, S ′ and C ′ at current pose.

Our method aims at reaching consensus among these structures
upon any interleaved sequence of skeleton-based and cage-based
deformations, obtaining synchronization between them. Performing
a cage-based deformation, the S ′ and S skeletons must preserve the
relationship with the � skinning weights. On the other hand, an S ′

edit must update the position of the C ′ cage accordingly to the new
M ′.

Our system makes it possible to edit any structure, assuming the
sets of skinning weights � and barycentric coordinates � remain
constant. Note thatM is induced by S via skinning when T contains
just identity transformations; andM is induced byC via barycentric
coordinates: these invariants set the consensus at rest pose and will
be maintained throughout.

Unfortunately, if a meshM ′ is induced via skinning by a skeleton
S ′, there may not exist a cageC ′ that inducesM ′, and vice-versa. We
address this issue by synchronizing S ′ and C ′ so that they produce
similar skins: M ′ is obtained through skinning, with a process that
incorporates C ′ also.
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Figure 4: A diagram of our method showing transitions among the
different structures; symbols attached to arrows denote the param-
eters or algorithms used to effect such transitions; hooked arrows
marked UI denote user interaction. The dotted arrow represents
rigging at rest pose and is just symbolic.

User interaction. The user can operate on three of the six structures
defined above, namely the user can edit:

� the current pose S ′ of the skeleton;
� the cage C at rest pose;
� the cage C ′ at current pose.

Direct editing of either the skin (respectively, skeleton) at rest
pose is not considered, as this operation is inherent to modelling
(respectively, rigging) the input shape; it would be straightforward
to include them in our framework, though. Note that the roles of
the skeleton and cage are not fully symmetric: while the former
can modify only the current pose of the skin, the latter can modify
both current and rest poses. From the user point of view, editing
the rest pose means adapting a different skin to the rigging, which
remains untouched.

When executed, the three user interactions outlined above trig-
ger a set of sync operations, automatically handled by the system.
Specifically:

� if S ′ is edited, then both M ′ and C ′ will follow, while no change
will occur to any structure in the rest pose (Figure 3, top);

� if C is edited, then M will follow, S will be adjusted to the new
skin and the current set of transformations T will be adjusted
accordingly, inducing a new current pose S ′ and a new skin M ′

– the current cage C ′ will be also updated (Figure 3, middle);
� if C ′ is edited, we have the most complicated situation: changes

to C ′ will be reflected to C; while all other modifications will
occur as in the previous case up to C ′ itself, in a closed loop
(Figure 3, bottom).

To get a consistent result in all cases, we must synchronize the
different structures, as explained in the following.

Synchronization. We achieve synchronization among the six
structures in the two poses by introducing a set of transitions, which
reflect editing among them and are summarized in Figure 4:

� S → S ′ → M ′ is the standard skinning from Equation (1);

� C → M is the standard application of barycentric coordinates
from Equation (7);

� C → S adjusts the CoR of S on a modified skin M at rest pose
– we call it the skeleton updater (SkelUp);

� S ′ → C ′ finds a consensus between the current poses of the
skeleton and the cage – we call it the cage updater (CageUp);

� C ′ → C reflects the direct editing on the current pose to the cage
at rest pose – we call it the Reverse cage deformer (CageRev). We
must guarantee that the current cage C ′ determined from editing
by the user coincides with the current cage resulting from the
transition C → S → S ′ → C ′, as induced by the rest cage C
modified by C ′. To achieve this result, we must set this transition
in a proper way.

No other direct transitions are considered. For instance, there is no
direct transition fromC toC ′. This is a specific design choice, which
determines the clockwise central cycle C → S → S ′ → C ′ → C

in Figure 4: no matter where interaction starts, we propagate its
effects through this cycle to maintain all four structures synchro-
nized using the operators described in the following subsections.
Note that edits do not recursively propagate along the aforemen-
tioned cycle. Once C is synchronized, the system has reached its
new convergence state and is ready for the subsequent input from the
user.

4.1. Cage updater

The transition S ′ → C ′ corresponds to the algorithm denoted by
CageUp in Figure 4. When the skeleton S ′ is modified, we skin M
to obtain M ′ and update C ′ accordingly. More precisely, we seek a
cage C ′ that generates a skin as close as possible to M ′, according
to the (static) barycentric coordinates �.

As already observed in Section 4, this problem may (and in gen-
eral does not) admit an exact solution. To avoid solving a least
squares problem of the size of M ′, we apply the MaxVol relax-
ation proposed in [TTB12]. During pre-processing, we extract a
subset M̃ of vertices of M with the same cardinality of the ver-
tices of C. Vertices are selected so as to result in a matrix of
coordinates with the highest volume. Then, we consider the cor-
responding set M̃ ′ in the current mesh M ′, and we solve the linear
system:

�̃C ′ = M̃ ′, (8)

where �̃ is the submatrix of � corresponding to the vertices of M̃ .
Note that this is a square system having same size of C ′ (which
is assumed to be much smaller than M ′). The system is invert-
ible and remains fixed throughout; we factorize it once and effi-
ciently solve it with back-substitution in real-time. Besides perfor-
mances, as shown in [TTB12], the resulting fitted cages are also
more stable than the cages fitted to the full geometry using a least
squares approach. Also consider that the purpose of the CageUp
is not to best reconstruct the mesh as a function of the fitted cage,
but rather to provide the user with a stable cage that nicely en-
velopes it and aids interaction, therefore the use of the relaxation is
appropriate.
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Figure 5: A straight bar bent at 45, 90 and 135 degrees using LBS, on top of which we applied various skeleton edits (isotropic and
anisotropic scaling, single handle displacement). When the skeleton updater is disabled, cage edits move the skeleton away from the correct
CoR, generating various visual artefacts. Our bone positioning system correctly recovers from all configurations, producing visually plausible
deformations. Note that the system is not sensitive to the specific cage being used, and produces valid results both with a regular (left) and
irregular (right) cage.

Figure 6: Weights are typically close to 1 around the middle of
the bones, resulting in highly rigid transformations in these parts
of the mesh, while they blend most with the other weights near the
articulations.

4.2. Skeleton updater

The transition C → S corresponds to the algorithm denoted by
SkelUp in Figure 4. When a deformation of C is performed – either
directly or as the result of deforming cage C ′ – we update the
skeleton at rest pose and propagate it down the skinning pipeline.
Indeed, when the cage stretches limbs or creates a bulge on the
skin, the position of the skeleton joints, which act as CoR during
skinning, must be repositioned to avoid artefacts (Figure 5). In other
words, we need this to preserve the semantic relation between the
skeleton joints and their position relative to the skin.

We address this issue by introducing a new relation between the
cage vertices and the position of skeleton joints. This relation is
computed once and for all in pre-processing, and allows to express
the position of skeleton joints at rest pose as a linear combination

of the cage vertices, giving us the ability to readily update/refit the
skeleton in real-time. Note that this update is not limited to a simple
global registration, but rather can change the local geometry of the
skeleton (e.g. stretching/shrinking its bones).

Skeleton updater weights. All computations in the following are
performed only once in the initial pose and involveC ≡ C0 and S ≡
S0. We first identify to which mesh vertices a joint j corresponds
to, by defining a (discrete) joint localization function L�j,· for each
joint of S. These functions depend only on the skinning weights �
and are defined vertex-wise on M as follows:

L�j,i = −1 + ωi,j
s +

⎛
⎝∑
k �=j

ωi,k

⎞
⎠
s

, (9)

with s � 1 (we use s = 0.1 in our implementation). Function L�j,·
takes value 0 in rigid regions (i.e. for ωi,j = 1 and ωi,j = 0) and
larger values as ωi,j approaches 0.5, i.e. near the joint, where the
skinning weights blend the most (Figure 6).

Next, we use our joint localization functions to define barycen-
tric coordinates for the joints positions {aj } w.r.t. the cage, and
exploit them to transform the joints along with the skin with cage
deformation. Specifically, we first compute mean value coordinates
{mvcj,i}i for the joints rest pose locations aj w.r.t. the input mesh,
which we localize around the articulation using the localization
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8 F. Corda et al. / Real-Time Deformation with Coupled Cages and Skeletons

function. Note that the resulting weights {L�
j,i}i := {mvcj,i ∗ L�j,i}i

are not valid barycentric coordinates at this step. The joints barycen-
tric coordinates are then defined as:

ψj,· = MEC

(∑
i

L�
j,iφi,·

)
, (10)

where the free index · is varying over the vertices of C and MEC
denotes the projection of input masses in R

c to the set of valid
barycentric coordinates for aj , i.e. verifying linear precision: aj =∑

k ψj,kck and partition of unity:
∑

k ψj,k = 1 ∀j – and closest to
the input masses as the output barycentric coordinates maximize the
cross entropy, following the strategy introduced by Hormann and
Sukumar [HS08]:

MEC({mk}) := argmax
{bk }

∑
k

−bkln(bk/mk),

s.t.

{∑
k bk.ck = aj∑
k bk = 1.

(11)

One may see this construction as deriving barycentric coordinates
for the input articulations A w.r.t. the input cage C0 through the
combination of (i) the input cage coordinates and (ii) the localization
function derived from the input skinning weights, which allows us
expressing (once fixed) the articulations as a linear combination of
the cage vertices, since

A = MEC(L� ·�) · C := � · C, (12)

where MEC(·) is computed here per line j for each joint j with
constrained rest-pose aj independently. This construction presents
several advantages. In particular, we make no assumption over the
set of input coordinates �, input skinning weights � or quality of
the input mesh. Additionally, the construction is intuitive, since one
can simply edit the localization function L�i,j as an ad-hoc set of
weights allowing for the reconstruction of the joint position as a
combination of the mesh vertices. Moreover, it is highly efficient
and parallelizable.

Skeleton joints refitting. When C is deformed, we update the
joints of S at positions {aj } as a linear combination of cage vertices
with

aj =
c∑
k=1

ψj,kck, (13)

where theψj,k are the barycentric coordinates described earlier. Note
that, after the joints have been relocated, the length and orientation
of the bones in the skeleton have been changed; these changes must
be reflected on the current skeleton S ′ and, consequently to the C ′

andM ′. To trigger these changes, we update each skinning transfor-
mation Tj of T by keeping its rotational component Tr

j unchanged
and by recomputing its translational component Tt

j according to the
new joints rest-pose locations. We do so by simply following the
hierarchical structure of the skeleton, updating first all roots, and
then processing children in an iterative manner, so as to preserve the

iteratively deformed skeleton articulations. The effect of updating
T , hence S ′, propagates down through standard skinning, and the
cage updater described previously.

CoRs repositioning. As already discussed, the CoR method makes
the use of per-vertex CoR pi for vertices i, which are precomputed
following Equation (5). Since a manipulation of the cage deforms the
rest pose state for the skeletal deformation, we have to reposition the
CoRs as well. Fortunately, those are defined as a linear combination
of the mesh rest pose vertices M . Rewriting Equation (5) in matrix
form as CoRs = �CoRs ·M , and using the fact that the rest pose
meshM is expressed asM = � · C, we can precompute the matrix
	 := �CoRs ·� when computing the CoR, and reposition them at
run time using

CoRs = 	 · C. (14)

Doing so, we assume that the area terms in the surface averaging
remain similar (see Equation 5). In fact, this introduces slight dif-
ferences between the CoRs we obtain after a cage deformation of
the rest pose mesh, and the ones one can obtain when recomput-
ing them from scratch, every time the rest pose mesh is changed.
However, these differences are minor, and do not impact negatively
the quality of the resulting deformation (Figure 2). In particular, the
vertices with similar input skinning weights are still transformed
by the same rigid transformation. Lastly, our joints repositioning
method is highly compatible in spirit with the CoR method, as both
motivate the use of the cross-analysis of the mesh geometry and the
skinning weights in the derivation of optimal pivot positions.

4.3. Reverse cage deformer

The transition C ′ → C corresponds to the algorithm denoted by
CageRev in Figure 4. While the user interacts with C ′, we must
reflect any modification ∂C ′ with a corresponding modification ∂C
of the rest cage C, and such modification must maintain the frame-
work consistent. To do so, we express the generic modification ∂C ′

as a function of ∂C through the sequence C → S → S ′ → C ′, and
we finally reverse this function. To obtain a linear problem and
achieve efficiency, we compute the above function by assuming
LBS throughout. We will discuss at the end of the section how to
handle other types of skinning methods.

To exploit matrix computation, we linearize all our structures.
For the sake of clarity and with abuse of notation for this section
only, we use the same symbols as before to denote the linearized
structures. We denote C,C ′ ∈ R

3c the vectors stacking the vertices
of the rest and current cage, respectively; and we denote �, �,
� the marices computed as the Kronecker products between their
respective matrices as defined previously and the Identity matrix
I3 (note that the linearized matrices have sizes 3m× 3s, 3m× 3c
and 3s × 3c, respectively). Moreover, we explicitly represent the
skinning components as follows. We denote A ∈ R

3s the vector
stacking the current articulations of the skeleton. And we split the
skinning rotational and translational component as follows: we de-
note R a 3m× 3m matrix composed of m 3 × 3 matrices on the
diagonal (block i is the linear part applied to vertex i – for LBS,
R(i) = ∑

j ωi,jT
r
j ), and T the 3s vector stacking all translation
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parameters Tt
j , where, as previously, Tr

j and Tt
j are the translation

and rotation components of Tj , respectively. Therefore, the dynamic
rest pose skin M , the current skin M ′ and the current cage C ′ are
obtained by the following formulas:

⎧⎪⎪⎨
⎪⎪⎩
A = � · C
M̃ = �̃ · C
M̃ ′ = R̃ · M̃ + �̃ · T
C ′ = �̃−1 · M̃ ′,

(15)

where, as in Section 4.1, ·̃ is used to denote all quantities that require
only the subset of mesh vertices selected by MaxVol (the cage
updater requires the transformed position of those vertices only). We
can observe that the third equation is nothing but a matrix expression
of Equation (1), where the rotational and translational components
of the transformation at each vertex have been separated, following
Equation (3).

We aim at computing offsets ∂C to apply to the rest cage so as to
obtain a resulting offset ∂C ′, which the user wishes to apply to the
current cage. Before pursuing the derivation, we stress that the set
of Equations (15) is not sufficient for that purpose as, in fact, apply-
ing offsets to the skeleton articulations A results in changes in the
skeletal deformation parameters T , since the translation parameters
are affected to preserve the skeleton connectivity.

Relating joint offsets and skeletal deformations. Follow-
ing [TE18], we note that applying an offset to an articulation aj
results in offsets applied to the translations {Tt

k} in the following
manner:

{
Trj · (aj + ∂aj ) + Ttj + ∂Ttj = aj + ∂aj if j is a root

Trj · ∂aj + ∂Ttj = Trf · ∂aj + ∂Ttf if j has father f ,
(16)

the first equation simply means that the pivot point is updated ac-
cordingly, and the second equation simply means that the joint j
has to be preserved by the transformations of handle j and its father
f both, under preservation of the linear parts {Tr

k} of the skeletal
deformation T . This system can be rewritten as:

{
(I3 − Tr

j ) · ∂aj = ∂Tt
j if j is a root

(Tr
j − Tr

f ) · ∂aj = ∂Tt
f − ∂Tt

j if j has father f ,
(17)

or, in matrix expression

AR · ∂A = Btopo · ∂T . (18)

We note that, while AR depends on the current skeletal deforma-
tion parameters (the linear part {Tr

k}), Btopo depends on the topology
of the skeleton only, and can safely be inverted once and for all,
independently of the current skeletal deformation parameter set.

Relating interaction and deformation cage offsets. Finally, we
can gather the previously derived equations to obtain the c × c linear
system:

(
R̃ · �̃+ �̃ · B−1

topo · AR ·�) · ∂C = �̃∂C ′ (19)

that can be resolved efficiently. Note that when no skeletal deforma-
tion is performed, i.e. the linear part {Tr

j } is composed of Identity
matrices only and all translations {Tr

j } are null, the current cage C ′

and rest cage C match (as they should), since R is then the identity
matrix and AR is null.

Impact of the MaxVol relaxation. Note that using a subset of the
mesh vertices in the cage fitting has several important consequences:
firstly, all matrices in Equation (19) have dimensions bounded by
max(3c, 3s), which results in updates that can be performed in real
time on the examples we used, these timings being in this case
entirely independent from the mesh size. Secondly, by matching the
dimensionality of the cage and mesh used for inversion, the system
in Equation (19) is exactly invertible, and the loopC ′ → C → S →
S ′ → C ′ is exact.

We originally tried using all vertices in the inversion process,
resulting in an approximate loop. While the approximation was ex-
tremely subtle and unnoticeable, the biggest issue was that it resulted
in reduced performance: we could not obtain results that were fast
enough for a modelling session on large models, as the user had to
wait a few seconds when switching from skeleton manipulation to
cage manipulation. Note that, if desired, the user could still rely on
more vertices than just the ones selected by MaxVol (a good strategy
could be to use farthest sampling in the space of cage coordinates
of the vertices, as done in [JBK*12] – Section 3.3); the construction
described in this section would remain valid, but the inverse of the
matrices would have to be replaced by pseudo-inverses and the loop
would be only approximate (rigorously, the manipulation cage C ′

is then obtained by least-squares fitting as (�̃T · �̃) · C ′ = �̃T ·M ′,
which leads to a modified Equation (19) where both terms are mul-
tiplied by �̃T on their left).

Handling skeletal deformation methods other than LBS. As
already emphasized earlier, the reverse cage deformer operator as-
sumes LBS as the skinning deformation method. This will give us
indeed an exact result if LBS is the current skinning method, and
an approximated result with the other skinning methods. However,
since the reverse cage deformer is always applied to small incre-
mental modifications ∂C ′, the approximation error is negligible and
hardly noticeable during user interaction. Another possibility is to
make the use of a ghost mesh that is deformed with LBS and use
this ghost mesh to derive the fitting of the interaction cage in the
cage updater, regardless of the actual final deformation method. The
cage updater CageUp is then not optimal, in the sense that it best
fits an LBS deformation of the mesh instead of the actual deformed
mesh, but the loop C ′ → C → S → S ′ → C ′ is always exact. Note
that only the vertices selected for inversion need to be deformed in
the ghost mesh, so this step is negligible in practice. Both options
are satisfactory and trivial to implement, and will work well for
all skinning methods producing deformations that resemble LBS at
large scale (as illustrated in our results featuring DQS and CoRs)
since the cage fitting performed by CageUp is a global operation as
a result of using global cage weights.

5. Results

We have implemented our modelling framework as a single-
threaded C++ program. Models have been either manually
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Table 1: Performances of our modelling system, measured on a MacBook pro early-2015 equipped with an Intel i5 processor, 8GB of RAM and Intel Iris 6100
GPU.

SkelUp CageUp CoR CageRev LBS DQS CoR
Skel Cage preprocess preprocess update update frame frame frame

Model Verts joints handles ms ms ms ms ms ms ms

Arm (coarse cage) 2089 24 28 401 5 ≤1 3 0.88 1.62 2.26
Arm (medium cage) 2089 24 58 417 29 ≤1 20 1.61 1.53 1.63
Arm (fine cage) 2089 24 79 439 45 ≤1 40 2.22 1.84 2.17
Warrok 6557 64 104 2672 106 ≤1 83 7.81 7.66 9.51
Ely 7512 64 88 3018 75 ≤1 56 9.24 8.73 9.99
Airplane 41 425 19 69 3738 44 5 30 23.70 21.68 26.40
Timber Rattlesnake 120 066 98 44 46 771 32 9 16 50.03 39.43 52.35

Columns labelled SkelUp preprocess and CageUp preprocess refer to the pre-processing time of the SkelUp and CageUp operators, respectively. The CoR
update column reports the time necessary to update the centres of rotation each time SkelUp is executed (this update does not occur when LBS or DQS is
used). CageRev update reports the execution time of the CageRev operator, when the user switches from skeleton manipulation to cage (in current pose)
manipulation during a modelling session. This few-milliseconds latency is observed only when the user grabs the cage and not during cage manipulation after
that, as all necessary matrix factorizations do not need being updated as long as the skeleton is untouched. Finally, the last three columns report the cost of
updating the current pose with the various skinning methods implemented in the framework (the cost of rendering is not taken into account here). Note that
all the timings we report refer to a CPU implementation. Moving to GPU should dramatically improve our performances. Also note that in our examples DQS
seems to outperform LBS. While this is not true in the general case, in our codebase we used a carefully optimized implementation of DQS, as opposed to a
naive implementation of LBS. Therefore, these numbers are strictly dependent on our specific software prototype.

crafted or downloaded from online repositories, such as Adobe
Mixamo [mix19] and SketchFab [sf19]. Whenever a control cage
was not provided in the original dataset, we used the method
proposed in [CLM*19] to produce one. In case the skinning was
missing, we manually created one using Maya [may19]. In terms
of performances, our hybrid modelling system introduces only
negligible overhead with respect to the classical skeleton- and
cage-based pipelines, and for moderately complex characters runs
in real time with high frame rate even on commodity hardware
(Table 1).

Deformation options. A key feature of our hybrid deformation
system is its ability to scale across multiple methods for skeleton-
and cage-based deformation, which can therefore be chosen from
pratictioners depending on their taste and needs. For the skeleton
part, we implemented the two most popular skeleton-based deforma-
tion methods, namely LBS [MTLT89], DQS [KCŽO08], and the re-
cently introduced CoR [LH16], which combines the positive aspects
of the previous two and at the same time avoids their weak points
(volume loss for LBS and bulging for DQS). A side-by-side com-
parison between these three alternatives is shown in Figure 2. For
the skinning weights, although various automatic methods exist in
the literature (Section 2), industry-level deformations often involve
carefully designed weights that are manually painted on the surface
by skilled artists. Our system is agnostic on the specific weights of
choice, and transparently supports both automatic and manual ap-
proaches. Rigs are imported into the system using standard formats
(i.e. FBX), securing an easy interface with commercial software and
publicly available repositories. For the cage part, we used the mean
value coordinates [JSW05] in all our tests, which are internally com-
puted by our framework. Similarly to skeleton weights, alternative
barycentric coordinates that obey the linear blend of Equation (7)
can be loaded into the system and used in a transparent way. To the
best of our knowledge, this includes the vast majority of the known
barycentric coordinates that appeared in the literature, including

the recently proposed coordinates for quad cages [TMB18]. Two
notable exceptions are the green coordinates [LLCO08] and
the variational harmonic maps [BCWG09], which both use a
blend equation that involves mesh vertices and face normals, and
are therefore not directly applicable to our linear deformation
paradigm.

Skeleton updater. In Figure 5, we evaluate our skeleton updater
with a synthetic shape, consisting of a straight bar bent at 45/90/135
degrees using LBS. Editing the bar with the cage moves the skeleton
away from the correct CoR, and without the skeleton re-fitting pro-
cedure described in Section 4.2, extremely evident artefacts arise.
Our bone positioning system correctly recovers from all configu-
rations, producing visually plausible deformations. Note that the
system is not sensitive to the specific cage being used and pro-
duces valid results both with a regular (left) and irregular (right)
cage.

Scale adaptivity. Skeletons and cages may be very different to one
another, and are indeed able to control features of the same object at
different scales. Our system is able to seamlessly combine skeletons
and cages that operate at different levels of detail. In Figure 7, a
simple bent arm controlled by a skeleton is further edited with three
alternative cages. The coarse cage controls the whole hand and is
used to enlarge it; the medium cage allows to selectively edit each
finger and is used to thicken the thumb; the dense cage contains
various control points around the bicep and is used to inflate it
when the arm is bent. All three hybrid deformations are visually
plausible and difficult to replicate by acting solely on a skeleton or a
cage.

Hybrid modelling. The principal intent when designing our de-
formation framework was to offer artists a unique system where
they could seamlessly combine multiple deformation paradigms.
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Figure 7: Our method can seamlessly combine edits defined on skeletons and cages that operate on features at different scales. Here, a
simple arm bent with a skeleton (left) is enriched with additional edits with three alternative cages that operate at different levels of details
(right). The coarse cage controls the whole hand, and is used to enlarge it; the medium cage allows to selectively edit each finger, and is used
to thicken the thumb; the dense cage has many control points around the bicep, and is used to inflate it. All the three cages produce visually
plausible deformations that are difficult to replicate by acting solely on the skeleton or on the cage.

Figure 8: Jointly acting on skeletons and cages allows to easily control complementary aspects of the modelling and explore the space of
shapes starting from a simple example (top left). Skeletons are best to bend tubular parts and, more in general, deform the rigid components
of a shape. Cages are more appropriate to control locally smooth deformations, such as changes of the local thickness of the airplane or the
profile of its wings.

Starting from an input shape linked to a skeleton and a cage, artists
can explore the space of deformations to create a family of similar
objects, using the more appropriate tool for each edit. An example
of hybrid modelling is given in Figure 8, where several variations
of an airplane are produced from a single item. Skeleton bones are
used to control the rigid parts of the plane (e.g. to bend the core and
wings). Cage handles are used to apply local volumetric deforma-
tions, for example to locally inflate parts of the core or to edit the
profile of the wings.

Hybrid animation. Another interesting application of our frame-
work consists of using the various shapes it produces as keyframes,

to guide a computer-generated animation sequence. In Figure 9,
we show a few interpolated frames of an animation, obtained
by keyframing some of the airplanes shown in Figure 8. In
between frames are generated interpolating bone rotations with
Slerp [DKL98] and cage vertices linearly. Note that the deformation
cage C is keyframed, not the manipulation cage C ′. The skeleton
updater is, therefore, required at each reconstruction step (but the
update is extremely fast as it is linear in the number of skeleton joints
only), but the cage reverse updater is not involved in the process.
Following a similar approach, legacy animations can be enriched
with new effects. In Figure 10, we show a skeleton-driven punch
sequence downloaded from Adobe Mixamo [mix19], which wex
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Figure 9: Using deformed models as keyframes, we can create computer animations. Bone rotations are interpolated using Slerp [DKL98],
and cage edits are linearly interpolated.

Figure 10: Top: A legacy skeleton-based animation downloaded from Adobe Mixamo [mix19]. Middle: An edited sequence obtained by
inflating the punch with a control cage. Bottom: The animation timeline, with both skeleton keyframes (circles, from Mixamo) and cage
keyframes (squares). The first two cage keyframes were automatically generated with [CLM*19], and simply enclose the rest pose; the third
one was manually edited to inflate the punch. Editing a single keyframe we produced a new sequence containing a non-trivial twist. Note also
that this example exhibits regions where the skeleton is much more detailed than the cage and vice-versa: while the hands embed a highly
detailed bone structure allowing animating all the fingers and the cage around them resemble essentially paws, the belly contains a few bones
only to mimick a simple spine behaviour, while the cage around it is finely detailed to allow for precise anisotropic volume editing.

enriched with three cage keyframes that inflate the punch at the
proper time. Note that a minimal workload is already enough to
incorporate in the animation with new interesting effects. In this
specific case, only one manually edited keyframe was used, and
the other two are simple envelopes of the rest pose, computed

with [CLM*19]. Also note that skeletons and cage keyframes are
interpolated asynchronously, hence can work on the same character
independently and at different levels of details. Similar results are
also shown in Figure 11. We point the readers to the accompanying
video to see the actual animations we obtained.
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Figure 11: Our framework allows animating and deforming char-
acters simultaneously. In the top row, we show the Mixamo’s Ely
character, with a cage we added on the left, and three frames of
the walking sequence. In the bottom row, we deformed the same
character fattening him (notice the changed cage on the left), and
performed the same walking animation. Combining skeleton and
cage controls, we can fatten the character while it walks as we show
in the accompanying video.

6. Conclusion and Future Work

We started from the observation that skeleton-based and cage-based
deformations control different aspects of shape modelling, and are
to a large extent complementary to one another. We, therefore, pro-
posed a real-time modelling framework based on a novel paradigm
that seamlessly combines these structures. We obtained the desired
effect by adopting the concept of rest pose and current pose for both
skeletons and cages, introducing novel update operators that realize
the sync between all these structures. As a result, we operate in a
larger deformation space, containing poses that are impossible to
obtain by acting solely on a skeleton or a cage.

To grant reproducibility of our results, we publicly release the
source code of our framework on GitHub (https://github.com/
cordafab/SuperCages). It is back-compatible with most existing
techniques for skeleton-based and cage-based deformation. The
only limitation in this sense comes from our assumption of a lin-
ear equation for cage-based shape editing (Equation 7). From a
technical standpoint, non-linear cage-based deformation techniques,
such as [LLCO08], could potentially be incorporated in the system,
though at the cost of having more complex algorithms to maintain
the sync. Similar considerations can be done for partial cages, such
as the ones proposed in [GPCP13]. We did not perform tests in
these directions yet, but it would be interesting to check how this
will affect the frame rate and the real-time experience.

Regarding user interaction, the visualization of controllers for
both the skeleton and cage may sometimes clutter the screen, es-
pecially for complex characters requiring numerous skeleton bones
and complex control cages. We envisage a potential improvement
by adopting a dynamic rendering of the controllers that fades away
from the mouse position.

We believe that our contribution could support advanced
deformation control. For future works, we plan to provide a GPU
implementation, realize a user evaluation with skilled artists and
extend the framework with more controllers (e.g. point handles),
which we can incorporate with the same approach to synchroniza-
tion, while remaining oblivious on the specific technique used for
their implementation.

References

[BCBiR*15] BANG S., CHOI B., BLANCO I RIBERA R., KIM M., LEE

S.-H., NOH J.: Interactive rigging with intuitive tools. Computer
Graphics Forum 34 (2015), 123–132.

[BCWG09] BEN-CHEN M., WEBER O., GOTSMAN C.: Variational
harmonic maps for space deformation. ACM Transactions on
Graphics (TOG) 28, 3 (2009), 34.

[BL18] BANG S., LEE S.-H.: Spline interface for intuitive skinning
weight editing. ACM Transactions on Graphics (TOG) 37, 5
(2018), 174.

[Ble18] BLENDER ONLINE COMMUNITY: Blender — A 3D Modelling
and Rendering Package. Blender Foundation, Blender Institute,
Amsterdam, 2018.
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