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Abstract. Upper Tropospheric (UT) cloud systems constructed from Atmospheric Infrared Sounder (AIRS) cloud data provide 10 

a horizontal emissivity structure, allowing to link convective core to anvil properties. By using machine learning techniques 

we composed a horizontally complete picture of the radiative heating rates deduced from CALIPSO lidar and CloudSat radar 

measurements, which are only available along narrow nadir tracks. To train the artificial neural networks, we combined the 

simultaneous AIRS, CALIPSO and CloudSat data with ERA-Interim meteorological reanalysis data in the tropics over a period 

of four years. Resulting non-linear regression models estimate the radiative heating rates as a function of about 40 cloud, 15 

atmospheric and surface properties, with a column-integrated mean absolute error (MAE) of 0.8 K/d (0.5 K/day) for cloudy 

scenes and 0.4 (0.3 K/day) for clear sky in the longwave (shortwave) spectral domain. Already about 20 basic input variables 

yield good results, with a 6% (10%) larger MAE. Developing separate models for i) high opaque clouds, ii) cirrus, iii) mid- 

and low-level clouds and iv) clear sky, independently over ocean and over land, lead to a small improvement, when considering 

the profile shapes. These models were then applied to the whole AIRS cloud dataset, combined with ERA-Interim, to build 20 

3D radiative heating rate fields. Over the deep tropics, UT clouds have a net radiative heating effect of about 0.3 K/day 

throughout the troposphere from 250 hPa downward, with a broad maximum of about 0.4 K/d around 330 hPa, enhancing the 

column-integrated latent heating by about 25%. This value is larger than earlier results of about 20%. Above the height of 200 

hPa, the LW cooling above convective cores and thick cirrus anvils is opposed by thin cirrus heating. Whereas in cooler regions 

low-level clouds also influence the net radiative heating profile, in warmer regions it is nearly completely driven by deep 25 

convective cloud systems. These mesoscale convective systems (MCS) are colder and include slightly more thin cirrus around 

their anvils than those in cooler regions. Hence, the MCSs over these warmer regions produce a vertically more extended 

heating by the thicker cirrus anvils and a heating of 0.7 K/d above the height of 200 hPa by the surrounding thin cirrus. The 

roughly estimated horizontal gradients between cirrus anvil and convective core as well as between surrounding thin cirrus 

and cirrus anvil seem to be slightly smaller in warmer regions, which can be explained by their larger coverage. The 15-year 30 

time series of the heating / cooling effects of MCSs are well related to the ENSO variation. While the coverage of all MCSs is 
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relatively stable (or very slightly decreasing) with surface warming, with -1.3 ± 0.6 %/K, the coverage of cold MCSs relative 

to all MCSs significantly increases by +18 ± 5 %/K. 

1 Introduction 

Upper tropospheric (UT) clouds play a vital role in the climate system by modulating the Earth’s energy budget and the UT 35 

heat transport. These clouds cover about 30% of the Earth and even 40% of the tropics (e. g. Stubenrauch et al. 2013, 2017). 

Yet, their role in the climate change feedback is still highly uncertain (e. g. Boucher et al., 2013, Zelinka et al., 2016). Tropical 

organized deep convection leads to cloud systems with stratiform cirrus anvils of the size of several 1000’s km2 (e.g. Houze, 

2004). Living much longer than the convective towers themselves, these cirrus anvils produce a radiative heating that is 

expected to be as important for the large-scale circulation as the released latent heat in the initial stage of convection. In tropical 40 

convective regions more than 50% of the total heating is contributed by cirrus radiative heating (e.g. Sohn 1999). This heating, 

induced by the anvils and cirrus, then influences the large-scale tropical atmospheric circulation (e.g. Slingo and Slingo, 1991; 

Sherwood et al., 1994). It is affected by: i) the areal coverage, ii) the horizontal cloud emissivity structure within the systems, 

and iii) the vertical structure of the cirrus anvils (layering and microphysics). The influence of the vertical distribution of 

radiative heating was demonstrated  on large-scale tropical circulations by Stephens and Webster (1984) and Bergman and 45 

Hendon (2000) and on the local cloud structure by Mather et al. (2007). The net radiative heating associated with tropical 

anvils and cirrus layers is also known to play a major role in the thermodynamic stability of the upper troposphere (Ackerman 

et al., 1988) and self-regulation of tropical convection (e.g. Stephens et al., 2004, 2008).  

So far, observational studies of tropical mesoscale convective systems (MCSs) have concentrated on the convective towers 

and the thick cirrus anvils (e.g. Yuan and Houze 2010, Roca et al. 2014). Yet thin cirrus correspond to about 30% of / around 50 

the anvil area of the deep convective systems (Protopapadaki et al. 2017). Other studies, focusing on their vertical structure 

along narrow nadir tracks (Fig. 1), missed the lateral horizontal dimension (e.g. Igel et al., 2014; Stein et al. 2017). The 

organisation of convection was studied by statistical analysis of ‘cloud regimes’, defined by similar cloud property distributions 

within grid cells (e.g. Tselioudis et al. 2013, Tan et al. 2015, Oreopoulos et al., 2016). Suggesting a connection between 

radiative effects and dynamics, this concept is very valuable, but it misses the horizontal extent of the systems.  55 

A study by Li et al. (2013) finds that the column-integrated radiative heating of tropical UT clouds accounts for about 20% of 

the latent heating. The radiative heating was estimated by combining International Satellite Cloud Climatology Project 

(ISCCP) data, classified as four distinct cloud regimes at a spatial resolution of 2.5° latitude and longitude, with heating rate 

profiles assigned from two tropical Atmospheric Radiation Measurement (ARM) sites, while the latent heating was deduced 

from measurements of the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). However, ISCCP and 60 

ARM data both may underestimate the effect of thin cirrus, because its occurrence may be missed by ground observation 
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(Protat et al., 2014) and by ISCCP (e.g. Stubenrauch et al., 2013), in particular when low-level clouds are also present and 

during night.  

Therefore, to include also the thinner cirrus and the complete 3D structure of these cloud systems, we applied a different 

strategy: To estimate the radiative heating rates of UT clouds we combined observations which are more sensitive to thin 65 

cirrus, together with machine learning techniques and a cloud system approach. The good spectral resolution of IR sounders 

makes them sensitive to cirrus, down to a visible optical depth of 0.2, during daytime and nighttime. Cloud properties retrieved 

from measurements of the cross-track scanning Atmospheric Infrared Sounder (AIRS) aboard the polar orbiting Aqua satellite 

have a large instantaneous horizontal coverage (Stubenrauch et al., 2017). They have been used by Protopapadaki et al. (2017) 

to reconstruct UT cloud systems. Recently these datasets have been extended, so that they now cover Sep 2002 to Aug 2019. 70 

On the other hand, the space-borne active lidar and radar measurements of the CALIPSO and CloudSat missions (Stephens et 

al., 2002) supply the cloud vertical structure, in particular the radiative heating rates (Henderson et al., 2013). As this 

information is only available along successive narrow nadir tracks, separated by about 2500 km, we employed machine 

learning techniques on cloud, atmospheric and surface properties to build a 3D description of these cloud systems. These 

techniques were already successfully applied to extend IR brightness temperature (Kleynhans et al., 2017) and snow water 75 

(Snauffer et al., 2018) from other atmospheric variables.  

This article presents the effect of UT clouds on tropical radiative heating rates in the longwave (LW) and shortwave (SW) 

spectral domain and the relationship between surface temperature, convective depth and anvil radiative heating / cooling. Data 

and Methods are described in Section 2. Sensitivity studies and evaluation of the developed non-linear regression models via 

machine learning are presented in Section 3. They give insight into the most appropriate cloud and atmospheric properties as 80 

well as on how many scene-dependent non-linear regression models are necessary to reliably predict the radiative heating rates 

of different cloud types and of clear sky, over ocean and land. After application of these models to the AIRS cloud and ERA-

Interim atmospheric and surface data, section 4 investigates the contribution of clouds and in particular of thin cirrus and MCSs 

on the radiative heating / cooling. Conclusions and outlook are given in Section 5. 

2 Data and Methods 85 

2.1 AIRS Cloud Data and Cloud System Data 

Since 2002 AIRS (Chahine et al., 2006) aboard the National Aeronautics and Space Administration (NASA) Earth Observation 

Satellite Aqua provides very high spectral resolution measurements of Earth emitted radiation in the thermal IR (3.74 – 15.40 

µm) at 1:30AM and 1:30PM local time (LT). Cross-track scanning leads to a large instantaneous coverage of about 70% in 

the tropics. The spatial resolution of these measurements at nadir is about 13.5 km. Nine AIRS measurements (3 x 3) 90 

correspond to one footprint of the Advanced Microwave Sounder Unit (AMSU).  
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The Clouds from IR Sounders (CIRS) data (Stubenrauch et al., 2017) provide cloud pressure (pcld), cloud emissivity (εcld), as 

well as cloud temperature (Tcld) and cloud height (zcld), together with their uncertainties. The cloud retrieval is based on a 

weighted χ2 method (Stubenrauch et al., 1999), which uses eight channels along the 15 µm CO2 absorption band, with peak 

contributions coming from 235, 285, 375, 415, 565, 755, 855 hPa and near the surface. Minimizing χ2 leads to a pair of pcld 95 

and εcld values. The uncertainty on pcld is estimated by identifying the pressure level at which the normalized weighted χnorm
2(p) 

= (χ2(p) – χmin
2)/(χmax

2 – χmin
2) reaches 0.025, a value empirically determined by Feofilov et al. (2017). The uncertainty on εcld 

is then determined as the difference between εcld and the value of εcld computed at this pressure level. UT (high-level) clouds 

are defined as clouds with pcld < 440 hPa. UT cloud types are further distinguished with respect to εcld as opaque high clouds 

(Cb, εcld ≥ 0.98), cirrus (Ci, 0.98 < εcld ≤ 0.5) and thin cirrus (thCi, 0.5 < εcld ≤ 0.1). pcld is transformed to Tcld and zcld via the 100 

atmospheric temperature and water vapour profiles of the ancillary data (see section 2.2). An ‘a posteriori’ multi-spectral cloud 

detection is based on the spectral coherence of retrieved cloud emissivity in the atmospheric window between 9 and 12 µm. 

This spectral region also provides information on the thermodynamic phase of the clouds, and for semi-transparent cirrus the 

slope of cloud emissivities between 9 and 12 µm gives an indication of the effective ice crystal diameter (Guignard et al. 2012).   

To get information on the surrounding cloud scene structure within a region of 2° latitude x 2° longitude, we distinguished 105 

sixteen cloud regimes by applying a k-means clustering on histograms of εcld and pcld from CIRS-AIRS data, similar to the 

method developed by Rossow et al. (2005) using ISCCP data. In addition, we provide the clear sky fraction estimated from 

AIRS within these grid cells. 

The reconstruction of UT cloud systems is based on two independent variables, pcld and εcld (Protopapadaki et al. 2017): The 

AIRS cloud data were first merged to grid cells of 0.5° latitude x 0.5° longitude, and only grid cells with more than 70% UT 110 

clouds were used to reconstruct UT cloud systems. After having filled the data gaps between adjacent orbits, UT cloud systems 

were built from adjacent elements of similar cloud height, given by pcld; in a second step convective cores, thick cirrus and 

thin cirrus were identified within the anvils by using εcld. This cloud system approach was used in section 4 to identify MCSs 

and to relate the radiative heating / cooling profiles of their convective cores and their anvils to different surface conditions. 

Therefore MSCs were defined as UT cloud systems with at least one convective core (built from grid cells with average εcld > 115 

0.98 within subregions of εcld > 0.9) and a core fraction within the system of at least 0.05. 

2.2 Atmospheric and surface data 

ERA-Interim (Dee et al. 2011) is a global atmospheric reanalysis provided by the European Centre for Medium-Range Weather 

Forecast (ECMWF). Land surface, oceanographic, atmospheric, and spaceborne measurements from numerous sources are 

assimilated in the Integrated Forecast System. The data assimilation scheme is sequential: at each time step, it exploits available 120 

observations to constrain the model, which in turn provides a short-range forecast for the next assimilation time step. Gridded 
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data products (at a spatial resolution of 0.75° latitude x 0.75° longitude) include 6-hourly surface temperature, atmospheric 

temperature and water vapour profiles, as well as dynamical parameters such as horizontal and vertical large-scale winds. 

These data are given at Coordinated Universal Time (UTC) values of 0:00, 6:00, 12:00 and 18:00.  In order to match these 

data with the AIRS observations, the former were interpolated to the corresponding local time, using a cubic spline function, 125 

as in Aires et al. (2004). Surface temperature and pressure, atmospheric profiles of temperature and water vapour, interpolated 

to 23 pressure levels, and tropopause pressure determined from the temperature profile according to Reichler et al. (2003) were 

added, since the CIRS retrieval relies on these ancillary data for the retrieval (Stubenrauch et al., 2017). We then derived the 

relative humidity within the 22 atmospheric layers from the temperature and water vapour profiles by a method based on 

(Stubenrauch and Schumann, 2005). The CIRS cloud retrieval classifies the temperature and water vapour profiles by 130 

comparing them to about 2300 representative clear sky atmospheric profiles of the Thermodynamic Initial Guess Retrieval 

(TIGR) data base (Chédin et al. 1985, 2003), which includes the spectral atmospheric transmissivities used in the radiative 

transfer part of the retrieval. This atmospheric classification provides additional information for the non-linear regression 

models developed in section 3.  

Spectral IR surface emissivities over land have been retrieved in the case of clear sky conditions using measurements of the 135 

IR Atmospheric Sounding Interferometers (IASI) by Paul et al. (2012). We use a monthly mean climatology at a spatial 

resolution of 0.25° x 0.25° for wavelengths with values around 9.00, 10.16and 12.18 µm. The surface emissivity of water is 

set to 0.99 for 9 µm and to 0.98 for the other wavelengths, according to Wu and Smith (1997).  

For the prediction of the SW heating rates during daytime we use, instead of the spectral IR surface emissivities, the visible 

surface albedo at noon local solar time and the solar zenith angle. The land surface albedos, retrieved under clear sky conditions 140 

at wavelengths of visible light measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on NASA’s 

Aqua and Terra satellites (MODIS Collection 5, MOD43 product, Strahler et al., 1999), are distributed as a monthly 

climatology at a spatial resolution of 0.1° x 0.1° by the NASA Earth Observations (NEO) website (https://neo.sci.gsfc. 

nasa.gov/). Over ocean we assume a surface albedo at noon local solar time of 0.06. 

MODIS also provides aerosol optical depth (AOD) at a wavelength of 550 nm (MODIS Collection 5, MOD04/MYD04 145 

product, Levy et al., 2009). We explore the benefit of adding the AOD of a monthly climatology at a spatial resolution of 0.25° 

x 0.25°, also provided by the NEO website, to the input variables to be used by the machine learning. 

Finally we explore the value of adding the vertical velocity at 500 hPa, at the spatial resolution of 0.375° x 0.375°, from the 

ERA5 reanalysis (Hersbach et al., 2020). 

2.3 CALIPSO-CloudSat vertical structure and collocation with AIRS 150 

The vertical structure of the clouds can only be determined by active spaceborne instruments. The Cloud-Aerosol Lidar with 

Orthogonal Polarization (CALIOP) aboard CALIPSO and the Cloud Profiling Radar (CPR) aboard CloudSat, both part of the 
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A-Train constellation, follow AIRS within a few minutes. CALIOP (Winker et al., 2009) provides backscatter profiles at a 

wavelength of 532 nm and 1064 nm, with a vertical and horizontal resolution of about 30 m and 90 m, respectively. 

Measurements are sampled every 333 m along the track. The backscatter ratio helps to distinguish between aerosols and clouds. 155 

The 94 GHz nadir-viewing CPR (Stephens et al., 2002) measures profiles of the power backscattered by clouds at a native 

vertical resolution of 480 m over footprints covering 1.8 km×1.4 km. By using oversampling, data are provided at a vertical 

resolution of 240 m. While CALIOP is even sensitive to subvisible cirrus, its signal only penetrates clouds to a level where 

the cloud gets opaque (i. e. the optical depth reaches about 3). On the other hand, CPR is able to probe optically thick cloud 

layers and therefore provides their correct cloud base. By combining information from both instruments it is possible to 160 

describe completely the vertical structure of clouds. However, this information is only given along successive nadir tracks.  

The radiative fluxes and heating rates of 2B-FLXHR-LIDAR (version R04; Henderson et al., 2013; L’Ecuyer et al., 2008) 

were derived by applying the BUGSrad broadband radiative transfer model (Ritter and Geleyn, 1992) to the scenes observed 

by CALIPSO-CloudSat, using as inputs the vertical location of the cloud layers (2B-GEOPROF-LIDAR), the cloud water / 

ice content and effective particle sizes retrieved from radar only (2B-CWC-RO) (Austin et al., 2009), distinction between 165 

cloud and rain water contents from 2C-PRECIP-COLUMN (Haynes et al, 2009) and collocated atmospheric and surface 

auxiliary data from ECMWF. For the clouds and aerosols which are undetected by CloudSat, the MODIS-based cloud optical 

depth (2B-TAU) and CALIPSO version-3 products (Trepte et al., 2010) are used to calculate the corresponding radiative 

properties. Thin clouds which are only detected by CALIPSO are defined as ice clouds by a temperature smaller than 253.15 

K, and their ice crystal equivalent mass sphere effective radius is assumed to be 30 µm for the radiative transfer calculations.  170 

According to a study of Protat et al. (2014) over the tropical ARM site of Darwin, the shapes of the radiative heating rates are 

in good agreement with those derived from ground-based remote sensing by radiative transfer calculations (McFarlane et al., 

2013) and with those from an experimental 2C-ICE-FLUX product, between altitudes of 1 and 12 km. Above 12 km, ice 

properties included from 2C-ICE lead to a reduced LW cooling and enhanced LW warming of about 0.3 K/day compared to 

2B-FLXHR-LIDAR, whereas the underreported cirrus frequency by the ground-based lidar at the ARM site leads to an 175 

enhanced LW cooling and reduced LW warming of about 0.4 to 0.8 K/day.  

The 2C-ICE-FLUX product assumes different cloud microphysical and radiative properties than the 2B-FLXHR-LIDAR data, 

in particular the ice microphysical properties are obtained from 2C-ICE (Deng et al., 2013), when 2B-CWC-RO has no data. 

The same microphysical properties, together with improved cloud phase identification and surface characteristics, are 

integrated in the very recently released version R05 of FLXHR-LIDAR data (Matus and L’Ecuyer, 2017). The improvements 180 

led to a better agreement with TOA fluxes from the Clouds and the Earth’s Radiant Energy System (CERES), with global 

annual mean TOA net cloud radiative effect of -17.1 ± 4.2 Wm-2 (Matus and L’Ecuyer, 2017) compared to -18.1 ± 3.7 Wm-2 

(Henderson et al., 2013) and global annual mean atmospheric cloud radiative effect between both versions differing by about 

10% (Hang et al., 2019): 7.8 Wm-2 (R05) compared to 8.6 Wm-2 (R04).  
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The comparison of 2B-FLXHR-LIDAR (R04) with CERES-CALIPSO-CloudSat-MODIS (CCCM) products, using a finer 185 

vertical resolution and different microphysics than FLXHR-LIDAR, revealed a small low bias in SW heating of FLXHR-

LIDAR due to a slight underestimation of cloud occurrence of height below 1 km, while the LW heating of CCCM for thin 

cirrus may be slightly high biased (Ham et al., 2017).  

We extended the collocated AIRS-CALIPSO-CloudSat data used by Feofilov et al. (2015) and Stubenrauch et al. (2017) by 

the NASA 2B FLXHR-LIDAR (R04) heating rates for the period of 2007 to 2010. These are given at a vertical resolution of 190 

240 m, corresponding to about 80 values over a height of 20 km. Since the AIRS cloud height is retrieved as pressure and the 

input parameters are probably not precise enough to predict such a fine vertical structure, we transformed the FLXHR-LIDAR 

heating rates to 22 pressure layers between 70 hPa and the surface. For each of the AIRS footprints this collocated dataset also 

includes the number of detected cloud layers, as well as cloud top and cloud base of each of these cloud layers, detected by 

lidar or radar, at the spatial resolution of the radar footprints from the 2B-GEOPROF-LIDAR data. In section 3 we use the 195 

number of detected cloud layers to evaluate the clear sky identification by AIRS alone. 

As version R05 of the FLXHR-LIDAR data was only released when we were finishing our analyses of section 4, we present 

the results which used 2B-FLXHR-LIDAR (R04) data for the training of the artificial neural networks (ANN), keeping in mind 

that the cirrus HRs above a height corresponding to 200 hPa are more reliable than those from ground-based measurements by 

may be still slightly underestimated compared to newer versions with different ice microphysics (Protat et al., 2014; Ham et 200 

al., 2017; Hang et al., 2019). Within the overall uncertainties described in this section and in section 3, the results in Section 4 

are still valid. In the future we will train the ANN models again with the improved version of the FLXHR-LIDAR data and a 

new version of the CIRS data (using ERA5 ancillary data, as ERA-Interim data production ceased in August 2019). 

2.4 Artificial Neural Network Construction 

The challenge in creating a complete 3D description of the UT cloud systems and their environment lies in the lateral expansion 205 

of the information on the vertical structure, only available at the locations sampled along the lidar-radar nadir tracks, illustrated 

in Figure 1. In order to achieve this goal, we developed nonlinear regression models based on ANNs on the combined AIRS 

and ERA-Interim data as described in sections 2.1 and 2.2. ANNs have seen spectacular progress during the last few years, 

especially in the automation of finding the most appropriate weights used in the ANN layers. We used the TensorFlow 

framework (https://www.tensorflow.org) to train machine learning models available in the Keras program library 210 

(https://keras.io) for Python, with training and testing along the nadir tracks, using four years of collocated data.  

Kleynhans et al. (2017) demonstrated that thermal IR radiation at top of atmosphere, as measured by MODIS, can be best 

simulated from available atmospheric reanalysis data by using a multi-layer perceptron (MLP) supervised learning technique. 

This technique produced the lowest overall error rates, in particular over cloudy situations, compared to non-linear support 

vector regression (SVR), convolutional neural network (CNN) and even to atmospheric radiative transfer simulations. After 215 
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having explored the performance on the number of hidden layers within the MLP ANN, our final ANN consists of an input 

layer with the approximately 30 to 45 input variables (see section 3), two hidden layers with 64 neurons and an output layer 

which corresponds to the radiative heating rates given in 22 pressure layers. Hsieh (2009) states that often a single hidden layer 

is already adequate to model any nonlinear continuous function. To improve the performance, we used the rectified linear unit 

(ReLU) activation function, corresponding to max(0,x). For a better efficiency we use the Adaptive Moment Estimation 220 

(Adam) optimizer, using adaptive learning rates (Kingma and Ba, 2014).   

The training dataset is randomly separated into three portions: 80% are used for training, 10% for validation and 10% for 

testing. In order to have similar cloud type, day-night and ocean-land statistics in these portions, we stratified the data by cloud 

type, ocean-land and day-night for LW and by cloud type and ocean-land for SW (only available during daytime). We used 

the mean absolute error (MAE) between the prediction and the target value from the lidar-radar observations as metrics for the 225 

quality of the regression model. 

The input variables have first been normalized by subtracting the mean and dividing by the standard deviation over the four-

year dataset. However, this metrics is difficult to use in phase 2, when we apply the model to all data, because in this case we 

would need to re-compute the mean and standard deviation of each variable over the whole data period, as they may change 

with time. In addition, not all input variable distributions are Gaussian. Therefore, once we had established sensitivity tests to 230 

estimate the most appropriate variables, we trained final scene-dependent models by standardizing the input variables, which 

means subtraction of an acceptable minimum and division by the difference between acceptable maximum and minimum. 

These acceptable minimum and maximum values have been established for each variable and adapted to the scenes for which 

the models were trained: ocean or land, all cloud types, clear sky, high clouds or mid- and low-level clouds. Before the 

application of the model, the input variables have been bounded between minimum and maximum in order to avoid outliers. 235 

3 Evaluation and Sensitivity Studies  

In this section we assess the sensitivity of the predicted radiative heating rates (HRs) to two different factors: the selection of 

input variables and the number of scene types for which the models are developed. The following cloud scenes are considered: 

i) all clouds over the whole tropical band, ii) all clouds separately over ocean and over land, iii) high-level clouds and 

independently mid- / low-level clouds, each of both cloud types separately over ocean and over land and iv) Cb, Ci / thin Ci, 240 

mid- / low-level clouds independently, where each cloud type is further separated over ocean and over land. Clear sky is treated 

independently, because the cloud properties are not used in this case. For the application to all data, the cloud and clear sky 

models are then combined to construct the radiative HRs over the whole tropical band (section 3.3). 

https://doi.org/10.5194/acp-2020-613
Preprint. Discussion started: 4 August 2020
c© Author(s) 2020. CC BY 4.0 License.



9 
 

3.1 Sensitivity to input variables  

The input variables describing the cloud, atmosphere and surface properties used for the prediction of the radiative HRs are 245 

summarized in Table 1.  

The training for the SW HRs is based only on data recorded at 1:30PM LT, while the training for the LW HRs exploits data 

for both 1:30AM and 1:30PM. Since the CALIPSO data are slightly more sensitive during night-time, we used for the LW 

training a day-night flag as additional input variable. The choice of input variables slightly differs for the prediction of LW 

and SW HRs: For the training of LW HRs, we used surface spectral IR emissivities while for the training of SW HRs we used 250 

surface albedo and solar zenith angle.  

The MLP regression models compute from about 40 input variables radiative HRs for 22 pressure layers from 70 hPa to 1000 

hPa. Earth topography implies that the temperature, relative humidity and radiative HR profiles are not always determined 

over all 22 pressure layers. Given that neural networks need a constant number of input and output values, we had to replace 

the missing values below the surface. Therefore, we first continued the temperature, relative humidity and radiative HR profiles 255 

below psurf with their lowest valid value, and then added to these values the average vertical gradients between the 

corresponding layer and the layer with the lowest valid value. These gradients were computed using the average profiles of 

regions containing all 22 pressure layers, separately determined over ocean and over land, and per cloud type and month. Even 

if these values below the surface are not used in the analyses, they slightly influence the training. 

 260 
Table 1: List of input variables for the prediction of LW and SW heating rates. 
Clouds 
CIRS cloud properties and uncertainties εcld, pcld, Tcld, dεcld, dpcld, dTcld, χmin

2      
cloud spectral emissivity difference  (εcld (12µm) - (εcld (9µm)) 
CIRS cloud regime (CR) at 2° x 2°  CR (1-16), kernel distance 265 
Atmosphere 
AIRS TB at 0.5° x 0.5°   TB(11.85µm), σ(TB), TB(7.18 µm) 
ERA-Interim atmospheric properties TIGR atmosphere (1-1500), total precipitable water, ptropopause  
ERA-Interim relative humidity profile RH (determined from T and water vapour) within 10 layers  
ERA-Interim temperature profile  T within 10 layers 270 
ERA5 vertical velocity   ω at 500hPa  
MODIS aerosol optical depth  AOD (monthly mean climatology) 
Surface      
ERA-Interim surface properties  psurf, Tsurf, nb of atm. layers down to psurf 
IASI spectral surface emissivity  εsurf(9, 10, 12µm)  (monthly mean climatology) 275 
surface albedo    αsurf   (monthly mean climatology) 

solar zenith angle, day-night flag, land-ocean flag 
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For the sensitivity study of the most appropriate variables, we considered cloudy scenes over ocean, and we set up six different 

experiments to predict the LW (SW) HRs, starting with  280 

1) a set of 18 (19) basic variables, which describe cloud, atmospheric and surface properties: CIRS cloud properties and their 

uncertainties, cloud spectral emissivity difference between 9 and 12 µm, AIRS brightness temperatures, total precipitable 

water, tropopause height and TIGR atmosphere class, surface pressure and temperature.  

Then we gradually added to the basic variables of experiment 1: 

2) weather state classification and its uncertainty given by the kernel distance: total of 20 (21) input variables,  285 

3) relative humidity in ten layers: total of 30 (31) input variables,  

4) atmospheric temperature in ten layers: total of 40 (41) input variables,  

5) vertical velocity from ERA5 reanalyses: total of 41 (42) input variables, and  

6) monthly mean aerosol optical depth: total of 42 (43) input variables. 

Table 2 compares the mean absolute error (MAE) for the prediction of LW and SW heating rates of clouds over ocean from 290 

the experiments 1 to 6. In all cases the MAE over the validation data and over the testing data are within 0.01 K/d. Therefore 

only the MAE over the validation dataset is shown. We provide further details in Figure S1 of the supplement, presenting the 

MAE as a function of number of iterations (epochs). The similarity in MAE between the validation and testing data means that 

there is no under-fitting (the variables are not sufficient to predict the target) nor over-fitting (the model is too detailed, with 

too many variables or the data base is not sufficiently large). A similar figure for the evaluation of the clear sky models is 295 

given in Figure S2 of the supplement. As shown in Table 2, the MAE decreases by about 5% (10%) for the LW (SW) model 

when the atmospheric profiles are included, while the addition of vertical velocity and AOD do not seem to improve the results. 

This lack of improvement may be explained by noise coming from these sources in combination with the AIRS cloud properties 

and ERA-Interim atmospheric and surface properties. The addition of the temperature profile only slightly improves the 

prediction of the heating rates, most probably because the atmospheric T profiles are more similar within the tropics than the 300 

atmospheric relative humidity profiles.  

 
Table 2: MAE (K/d) for the prediction of LW or SW heating rates of clouds over ocean, from experiments 1 - 6. 

ocean basic + WS + RH10 RH-T10 + w500 + AOD 

LW HR 0.84 0.84 0.80 0.79 0.79 0.79 

SW HR 0.51 0.50 0.46 0.45 0.45 0.45 
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As the MAE only provides an average estimation of the quality of the prediction, we also considered the difference between 305 

the predicted radiative HRs and those determined from CALIPSO-CloudSat measurements over tropical ocean, separately for 

five cloud types: high opaque (Cb), cirrus (Ci), thin cirrus, midlevel and low-level clouds. The LW and SW results are 

compared between the different experiments in Figure S3 of the supplement. Overall, all results show good agreement between 

predicted and CALIPSO-CloudSat derived HRs. The differences between mean predicted and ‘observed’ radiative HRs 

undulate well around 0 K/day. However, we note that when using the ERA5 vertical velocity at 500 hPa as an additional input 310 

variable, the results for Cb and mid- and low-level clouds in the LW are slightly degraded. Similarly, the addition of the 

monthly mean AOD does not improve the results. This indicates only a medium compatibility between these two variables 

and the instantaneous AIRS cloud properties and ERA-Interim atmospheric and surface properties. Therefore we use in the 

following the input variables of experiment 4 for the model development. The 30% quantiles and 70% quantiles of the HR 

differences in Figure S3 give an indication of the uncertainty, which may be related to differences in horizontal resolution 315 

between AIRS and CALIPSO-CloudSat. In particular for convective towers of very large optical depth (Cb) and for mid- and 

low-level clouds, the coarse AIRS spatial resolution may lead to a mixture of several cloud types or of clouds and clear sky 

within one footprint.  

3.2 Sensitivity to the selection of scenes used for the training  

The second part of sensitivity studies is dedicated to the scene types for which we develop the models: i) all clouds over the 320 

whole tropical band (one model), ii) all clouds separately over ocean and over land (two models), iii)  high-level clouds and 

mid- / low-level clouds individually, each separately over ocean and over land (four models), and iv) Cb, Ci / thin Ci, mid- / 

low-level clouds individually, each separately over ocean and over land (six models). In addition, we develop models for clear 

sky i) over the whole tropical band (one model) and ii) separately over ocean and over land (two models). In general, a model 

trained over all scenes together will smooth out differences between different cloud types and between ocean and land. Also 325 

scenes which are less frequent may have a smaller weight and may be therefore less represented than other scenes. Since we 

are interested in the study of the effect of UT cloud systems, we choose to use separate models. In particular, the modelling of 

Cb clouds is improved when exploiting a dedicated training for this cloud type, which represents about 7% of all clouds in the 

deep tropics (Stubenrauch et al., 2017).  

When using one model for all clouds over ocean and land, the MAE is 0.82 K/day for LW and 0.51 K/day for SW HRs. Table 330 

3 presents the MAE for the prediction of LW and SW HRs over the validation data, separately for different scene types over 

ocean and over land. In general, the performance is slightly better over ocean than over land, which can be explained by a 

greater homogeneity of surface, in particular in the SW, and atmospheric properties. We also observe a decreasing performance 
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from clear sky scenes (LW 0.36 K/day and SW 0.27 K/day) over mid- / low-level clouds towards high-level clouds and Cb, 

which again can be explained by an increasing inhomogeneity, and in the case of Cb the saturation of εcld at 1.  335 

To illustrate the effect of model aptness in dependence of training scenes, we compare in Figure 2 the difference between the 

predicted radiative HRs and those from CALIPSO-CloudSat over ocean for Cb, cirrus and thin cirrus, in the LW and SW, 

respectively. Compared are models which were trained i) for all clouds over ocean and land together, ii) for all clouds over 

ocean, iii) for high-level clouds over ocean and iv) for Cb and for Ci / thin Ci over ocean. All results are quite similar, with the 

differences between mean predicted and ‘observed’ radiative HRs undulating well around 0 K/day. However, we observe an 340 

overestimation of the LW cooling above Cb clouds by nearly 1 K/d when all clouds together are used to develop one single 

model. The results improve for cirrus and thin cirrus when a dedicated model is developed for these cloud types. For the SW 

HRs it is not possible to determine the best performance among these four models. The SW heating in the upper part of Cb 

clouds is more difficult to predict, as for all four models the mean difference undulates around 0 K/day within ± 0.8 K/day 

between 100 and 200 hPa. Considering the radiative HR profiles shown in Figure S4 of the supplement, we find that the largest 345 

uncertainties for Cb clouds are around the maxima of LW cooling and SW heating. Furthermore, we observe that all models 

give very similar results, so that in the following we will mainly use the most specific scene models, leading to the application 

of eight models to reconstruct the radiative heating rate fields over the tropics. 

 
Table 3: MAE (K/d) for the prediction of LW and SW heating rates over different scene types. 350 

ocean clouds high Cb cirrus mid/low clear 

LW HR 0.79 0.91 1.10 0.90 0.69 0.34 

SW HR 0.45 0.62 1.10 0.59 0.33 0.22 

land clouds high Cb cirrus mid/low clear 

LW HR 0.88 0.99 1.24 0.97 0.67 0.39 

SW HR 0.69 0.77 1.35 0.72 0.54 0.36 

 

3.3 Construction of Tropical Heating Rate Fields  

We then applied the ANN models to one month of AIRS data, January 2008, corresponding to a La Niña condition. During 

this condition, tropical convection is shifted towards the West Pacific. In order to obtain the radiative HRs over the whole 

tropical band, the different models were applied to the corresponding scenes. The results were then averaged at a spatial 355 
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resolution of 0.5° latitude x 0.5° longitude. This allows us to compare the results of the laterally extended radiative HRs with 

those of FLXHR, providing statistics only along the nadir tracks.   

Figure 3 shows the contrast between the mean radiative LW and SW HRs of five cloud types (Cb, Ci, thin Ci, mid- and low-

level clouds) and the one related to clear sky, as identified from AIRS, over the latitude band 30N – 30S. For comparison, the 

radiative HRs from FLXHR, averaged over the nadir tracks, (broken lines) are also shown. Averages of predicted and 360 

‘observed’ radiative HRs are very similar, despite different sampling and spatial resolution. This means that the nadir track 

statistics gives a good picture on monthly average over the whole tropics and that the prediction models provide reliable results.  

In a clear sky situation, LW cooling occurs, linked to the absorbed and transmitted energy by the molecules in the atmosphere. 

As shown in Figure 3, this cooling decreases from about -2.5 K/day with increasing height until it reaches about 0 K/day 

around 100 hPa. Its variability over the tropics is small. Since the AIRS clear sky identification may also include subvisible 365 

cirrus as well as partly cloudy scenes within the AIRS footprint, we estimated how much this affects the radiative HRs by 

comparing the FLXHR HRs for AIRS clear sky and for CALIPSO-CloudSat clear sky identification. As shown in Figure S5 

of the supplement, one observes a slight positive bias in the clear sky LW heating near 100 hPa of about 0.1 to 0.2 K/day due 

to subvisible cirrus, in particular during night, when the CALIPSO lidar better detects subvisible cirrus. The small SW clear 

sky heating positive bias of the same order of magnitude between 400 and 800 hPa is most probably linked to contamination 370 

by partial cloudiness. 

Relatively opaque clouds heat the atmospheric column below by trapping surface emissions, but cool the column above due 

to excess emission, while thin cirrus heat the UT by intercepting the LW radiation coming from below. Indeed, Figure 3 

exhibits a LW cooling above optically thick clouds, the strongest effect above Cb, of about -4.5 K/day around 170 hPa, and a 

heating within the clouds and below the clouds, compared to clear sky. The small cooling around 550 hPa is due to melting. 375 

The cooling above mid- and low-level clouds is located around 600 hPa and 800 hPa, respectively. Thin cirrus heat the UT 

around 100 hPa. In the SW range, the sunlight heats the atmosphere and the particles within the cloud. We observe a strong 

heating in the upper part of the Cb with a maximum of about 8 K/day around 200 hPa, while in the rest of the cloud this effect 

is negligible, given that the sun is blocked by the dense cloud particles. For midlevel clouds a small peak is found around 600 

hPa and for low-level clouds around 850 hPa. The LW HRs are very similar during day and night. Although LW and SW 380 

contributions are large, their effect is opposite so that the net radiative heating during day (LW + SW) is small. This agrees 

very well with the expectations and earlier publications (e.g. Oreopoulos et al., 2016).  

To illustrate the additional value of the lateral expansion of the radiative HRs, Figure 4 presents geographical maps of monthly 

mean LW heating / cooling in four specific pressure layers (around 106, 200, 525 and 850 hPa, respectively) compared to the 

monthly mean nadir track statistics from CALIPSO-CloudSat. These four pressure layers were chosen according to 1) UT 385 

heating by thin cirrus, 2) cooling above Cb and thick cirrus, 3) middle troposphere heating by high thick clouds and 4) cooling 

above low-level clouds and a heating below clouds. The horizontal structures of the predicted HR fields agree quite well with 
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those from FLXHR, but they appear clearer, since the spare nadir track statistics is quite noisy. The comparison between the 

fields determined from different models in Figure S6 of the supplement gives an indication of the uncertainty, which lies 

generally within 0.25 K/day, with a few regions of 0.45 K/day. 390 

4 The impact of tropical UT cloud systems  

By using the 3D radiative heating fields constructed in section 3, we first want to quantify the effect of clouds on the 

atmospheric radiative cooling, in comparison to earlier results (section 4.1). Furthermore the cloud system approach described 

in section 2.1 allows us to study the heating and cooling within convective cloud systems by distinguishing the HRs of the 

convective cores (Cb), the cirrus anvil (Ci) and the surrounding thin cirrus (thin Ci). This may yield a deeper insight how the 395 

tropical heating changes with varying surface temperature (sections 4.2 and 4.3). 

4.1 Tropics-wide cloud radiative heating 

In general, clouds introduce sharp vertical gradients to the atmospheric radiative cooling profile, and we are in particular 

interested in the effect of MCSs. Li et al. (2013) have concluded that the tropics-wide 24-hr mean UT cloud radiative heating 

effect has a narrow maximum of about 0.45 K/day around 250 hPa, and that the column-integrated radiative heating of UT 400 

clouds accounts for about 20% of the latent heating estimated by TRMM, the latter with a broad peak of about 1.7 K/day 

around 450 hPa. These results were obtained by using radiative heating rates calculated from ground-based lidar and radar 

measurements at two ARM sites (Manus and Darwin), classified by ISCCP UT cloud regimes, and then expanded over the 

deep tropics according to the ISCCP UT cloud regime occurrence frequency. 

In order to compare to this significant result, we concentrate on the same latitude band from 15N to 15S and we calculate the 405 

24-hr SW heating rates by multiplying the SW heating rates at 1:30PM LT by 1/(π x cosΘ), where Θ is the solar zenith angle. 

The latter is about 33° near the equator. Similar to the HR normalisation of Li et al. (2013), we neglect seasonal and 

geographical variations. The net radiative heating is then the sum of LW and 24 hr SW heating. This estimation assumes a 

negligible diurnal cycle in clouds. Indeed, the diurnal cycle of UT clouds over tropical ocean is less than 2% and reaches about 

7% over tropical land (Feofilov and Stubenrauch, 2019), with slightly less cirrus and thin cirrus at 1:30PM than at 1:30AM. 410 

This means that our estimated 24 hr net heating effect of UT clouds, thin cirrus and MCSs is slightly underestimated.  

We determined the average 24 hr net radiative heating effect of specific cloud types by removing the clear sky radiative heating 

rate and then weighted by the total cloud cover. Figure 5 presents a tropics-wide 24 hr – mean radiative heating induced by 

UT clouds throughout the troposphere, from 250 hPa downward, of about 0.3 K/day, with a broad maximum of about 0.4 

K/day around 330 hPa and a local minimum of about 0.2 K/day around 550 hPa due to ice crystal melting at this altitude, 415 

already reported by Johannsson et al. (2015). The heating decreases towards 0 K/day at 200 hPa, and above this altitude a 
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small net cooling is observed. The values are in the same range as the ones determined by Li et al. (2013). However, the shape 

of the heating effects are significantly different: Whereas the earlier result shows a narrow maximum of 0.45 K/day around 

250 hPa and a minimum heating of about 0.1 K/day around 800 hPa, our estimation indicates a much more vertically extended 

heating, with a broader maximum of about 0.4 K/day around 330 hPa and a heating throughout the lower troposphere larger 420 

than 0.25 K/day. This then leads to a vertically different reinforcement of the latent heating, with a larger contribution between 

800 hPa and 330 hPa, compared to Figure 9 of Li et al. (2013), shown in Figure S7 in the supplement. The enhancement factor 

between our column-integrated radiative heating of UT clouds and this latent heating (between 100 and 800 hPa) is 24%, larger 

than 21% found by Li et al. (2013).  

The difference in the profile shape of the UT cloud radiative heating effect is not related to the exploitation of profiles from 425 

only two sites, as the profiles of the different cloud types, when present, averaged over both sites are similar to the ones 

averaged over the whole tropics (not shown). However, as discussed by Protat et al. (2014), a significant portion of the ice 

cloud observations using ground-based measurements is attenuated by any liquid cloud below ice clouds or by the liquid part 

of deep convective systems. This leads to a smaller SW heating than the satellite estimates in the middle troposphere. Another 

key reason for an underestimation of the heating effect in the lower troposphere is that the ISCCP cloud regimes have been 430 

determined at a spatial resolution of 2.5° and especially the cirrus and mixed cloud regimes, which are the most frequent out 

of the four UT cloud regimes (72%), include also a certain fraction of single-layer low-level clouds next to the cirrus clouds. 

When considering the radiative effect of mid- and lowlevel clouds in Figure 5, which shows a cooling in the middle and lower 

troposphere down to 880 hPa, the shape of the radiative heating profile contribution of the ISCCP UT cloud regimes can be 

explained by the fact that at the coarse spatial resolution of 2.5° the UT cloud regimes also contain surrounding single-layer 435 

low-level clouds. In addition, the identification of thin cirrus with optical depth less than 1.3, the most frequent within these 

two ISCCP cloud regimes, is also less reliable, and the cloud height in this case is often just set to the tropopause height (e. g. 

Stubenrauch et al., 2012).  

Further consideration of Figure 5 reveals that most of the total cloud net radiative heating effect, which is the sum of the UT 

and mid- and low-level cloud effects, comes from MCSs. The UT cooling above the opaque parts of the MCSs is compensated 440 

by thin cirrus UT heating, with half of the effect coming from those directly surrounding the anvil and the other half from in 

situ cirrus. The average net radiative heating within and the cooling above the MCSs seems to be slightly stronger over ocean 

than over land. Mid- and low-level clouds present a cooling above the clouds and a heating within and below. As there are 

more low-level clouds over ocean and more mid-level clouds over land, the shapes of the net heating effect differ accordingly. 

The HR profiles of UT clouds, initially deduced from CALIPSO-CloudSat data, include the effect of lower clouds underneath, 445 

as the small warming peak around 920 hPa suggests. This peak is slightly stronger over ocean, where one expects more low-

level clouds, also underneath cirrus. 
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From Figure 6, which compares the tropics-wide mean net radiative heating effect of the different cloud types at 1:30 AM LT 

and at 1:30 PM LT, we deduce a large difference in the profile shapes between nighttime and daytime, and therefore in their 

vertical heating gradients. During nighttime, UT clouds heat the troposphere from 300 hPa downward increasingly, with a 450 

maximum of about 0.6 K/day around 920 hPa. The thicker UT clouds lead to an average cooling, with a minimum of -0.25 

K/day around 200 hPa. This leads to a strong vertical gradient. The heating of the lower troposphere is slightly larger over 

land, but with a smaller vertical gradient in the lower troposphere. Thin cirrus have a very small average heating effect around 

150 hPa, slightly larger over land than over ocean. During daytime, with additional solar heating, UT clouds, in particular the 

thicker ones, are strongly heated (see also Figure 3), which leads to a tropics-wide maximum of about 0.6 K/day between 250 455 

and 350 hPa. The heating strongly decreases towards the lower troposphere. Again, most of the effect of UT clouds can be 

explained by MCSs. The profiles reveal slightly lower but stronger systems over ocean and slightly higher systems over land, 

with the peak in heating located about 100 hPa higher in altitude over land than over ocean. 

During nighttime and during daytime, thin cirrus have on average a small heating effect throughout the whole troposphere. 

The effect of low-level and midlevel clouds differs diurnally: During nighttime we observe a cooling effect above these clouds, 460 

of -0.3 K/day around 820 hPa and of -0.1 K/day around 550 hPa, respectively, and a heating within and below, while during 

daytime the SW contribution partly compensates this effect. In general, the UT cloud effect is a strong heating of the UT during 

daytime and a strong lower tropospheric heating during nighttime, leading to opposite vertical gradients. 

4.2 Relation between regional surface temperature and MCSs 

A necessary condition for the onset of tropical deep convection, particularly over ocean, is a surface temperature (Tsurf) above 465 

a threshold of about 300 K (e. g. Gray, 1968; Graham and Barnett, 1987, Aumann et al., 2018), though other factors, such as 

available humidity (which may increase with low-level level convergence), also affect the convective process. Though the 

shading of the thick anvils may cause some surface cooling during day, slightly offset by the thinner cirrus (Wall et al., 2018), 

MCSs should be deeper over warm regions (here defined by Tsurf > 302 K) than over cool regions (Tsurf < 300 K). As in a 

changing climate the extension of warm regions may slightly increase, we compare in this section the properties of MCSs over 470 

warmer and over cooler regions.  

Figure 7 presents geographical maps of UT cloud occurrence, average precipitable water and surface temperature, separately 

during nighttime (1:30 AM LT) and during daytime (1:30 PM LT). MCSs are most frequent over the West Pacific ocean, 

including Indonesia, over the Amazon region and over Central Africa. These are also the moistest regions. The West Pacific 

region is also characterized by the warmest Tsurf values. While over the oceanic region we do not observe a diurnal difference 475 

in UT cloud occurrence, over the two land regions UT clouds are more frequent during night, as convection starts in the early 

evening and cirrus anvils develop during night.  
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In Figure 8, distributions of the properties of maritime and continental MCSs are then compared between the warm regions 

and cool regions. Since the size of the MCSs may be very large (Protopapadaki et al., 2017), we only use the 50% warmest 

underlying grid cells to determine the mean Tsurf. In general, these warm regions are also more humid according to the 480 

distributions of precipitable water (from ERA-Interim), also shown in Figure 8. As expected, both, maritime and continental 

MCSs overlying warm regions have colder convective cores, which means that their convective depth is larger, and also have 

more often a larger horizontal extent, in agreement with a regional study by Horvath and Soden (2008), than those overlying 

cool regions. The area occupied by the thin cirrus surrounding their anvils is also larger for the first case. This can be explained 

by i) a larger relative humidity at higher altitude and ii) additional UT humidification originating from the convection.  485 

The tropics-wide 24-hr mean net radiative heating effect of the MCSs depends on their frequency, height, horizontal extent 

and emissivity structure. In order to study the first aspect, Figure 9 contrasts the effect of mid- / low-level clouds and UT 

clouds, when these are present, and also shows the resulting overall cloud effect, over cool and warm regions, respectively. 

Furthermore, the effects of MCSs, of the thin cirrus linked to the MCSs and of all thin cirrus are distinguished. First of all, 

over warm regions, clouds, when present, have a heating effect over most of the troposphere, and this heating is mostly driven 490 

by MCSs. This can be seen from the fact that the profiles of the present MCSs and those of all clouds are very similar. Over 

cool regions mid- and in particular low-level clouds (over ocean) also play an important role, with much less heating between 

200 and 900 hPa than the one of UT clouds. Over warm regions, the UT thin cirrus heating linked to convection is larger than 

the one of all thin cirrus, which indicates more and slightly thicker thin cirrus linked to convection than those produced in situ.  

The influence of emissivity structure is investigated by considering the 24-hr mean net heating / cooling effects of the different 495 

parts of the MCSs, convective core (Cb), Cirrus anvil (Ci) and surrounding thin Cirrus (thin Ci), when MCSs are present. 

These are shown in Figure 10, for all tropical MCSs, separately over ocean and over land, and those over cool and warm 

regions, respectively. As already seen in Figure 3, the shape of the vertical profiles is quite different for the three parts of the 

MCSs. In the UT (at a height above 200 hPa), we observe an average cooling of about -2 K/day above the convective cores 

and a less strong cooling above the cirrus anvil, while the thin cirrus heat the UT by about 0.7 K/day. The troposphere below 500 

the height of 200 hPa is strongly heated by the convective cores, much less heated by the cirrus anvils and even less by the 

surrounding thin cirrus. However, as the convective cores only cover a small fraction of the systems (about 10% on average), 

the average heating effect of the MCSs is about the one of the cirrus anvils. On average, the profiles of the three parts of the 

MCSs have a similar shape over ocean and over land, but the net effect of the MCSs over ocean is slightly larger than over 

land, because the convective core fraction is smaller and the thin cirrus proportion is larger for the latter. The difference in 505 

shape of the heating profiles between cool and warm regions is larger for oceanic MCSs. For the latter, the shape of the heating 

profiles strengthens the hypothesis of MCSs with larger convective depth above the warm regions, with a cooling of the thicker 

parts of the MCSs shifted further up into the UT by 50 hPa, while the heating is extended over a broader vertical layer between 
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550 to 200 hPa. On the other hand, over both, ocean and land, the thin cirrus net radiative heating of the UT of about 0.6 K/day 

is only connected to the deeper convective systems over the warm regions.  510 

Gasparini et al. (2019) found that the vertical structure of the radiative heating within the anvil promotes its spreading and 

maintenance. The spreading then influences the heating gradients within the MCSs. To illustrate probable differences in 

horizontal gradients within the MCSs over cool and warm regions, we present in Figure 11 the difference of mean net radiative 

HR between cirrus anvil and convective cores as well as between surrounding thin cirrus and cirrus anvil, both divided by the 

distance between these parts, assuming a system with a circular surface. This is only a very rough estimate, and to test the 515 

robustness we present averages over all MCSs and over those which have more probably a circular surface: MCSs with only 

one convective core and a core fraction larger than 0.05. In both cases, the ‘horizontal heating / cooling gradients’ within the 

MCSs seem to be slightly smaller in the warm regions than in the cool regions. The effects are stronger for the confirmed 

single core MCSs, which corroborates the quality of our data. While the horizontal effect is slightly larger over land, over 

ocean we also observe a slight vertical shift in the horizontal gradients (Figure S12). The effect is larger in the SW and therefore 520 

larger during daytime than during nighttime (Figure S13). This difference in ‘horizontal gradient’ can be solely understood by 

the larger anvil size and therefore larger distance between the average HRs between the different parts of the MCSs, and not 

by a larger emissivity of the anvil and the surrounding thin cirrus, as on the contrary the average anvil emissivity is slightly 

smaller in the warm regions than in the cold regions (Figure S14). The latter is in agreement with a study of Del Genio et al. 

(2005), which revealed a decreasing detrainment and increasing precipitation efficiency within maritime MCSs when the 525 

underlying Tsurf increases. 

4.3 Changes in tropical heating and in MCSs in dependence of global surface temperature anomaly  

In section 4.2 we have shown that the heating in the warmer tropical regions is mostly influenced by MCSs. In this section we 

look at variations in MCSs and in tropical heating and try to relate these to global Tsurf anomalies and to phenomena which 

influence the interannual variability. The time period covered by AIRS observations may still not be long enough for climate 530 

change attribution, and in particular during most of this period global Tsurf was quite stable. However, when comparing to 

linearly increasing CO2 concentration, we perceive the Tsurf anomalies undulating around and thus slightly increasing (Figure 

12). A large attribution to the global Tsurf anomalies, which are closely associated with tropical Tsurf anomalies (see Figure S14 

of the supplement), is given by the El-Niño-Southern Oscillation (ENSO), the most dominant mode of interannual variability 

in the Earth’s climate system. El Niño (La Niña) events are linked to a positive (negative) tropical Tsurf anomaly. Their initiation 535 

is given by a local Tsurf anomaly (positive Tsurf anomaly in the equatorial eastern and central Pacific or negative Tsurf anomaly 

in the tropical Pacific), changing the east-west Tsurf gradient, which then affects the atmospheric circulation (reducing or 

amplifying the Walker circulation) and the distribution of clouds. However, the magnitude and also to some extent the 

geographical pattern of El Niño induced Tsurf anomalies contribute to differences in cloud and circulation anomalies (e. g. Su 
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and Jiang, 2013). The Inter-decadal Pacific Oscillation (PDO), another Tsurf anomaly in the Pacific, can be influenced by 540 

ENSO. The combination of both indices, the Oceanic Niño Index and the NCEI PDO index, both provided by the National 

Oceanic and Atmospheric Administration (NOAA), are therefore also presented in Figure 12.  

The average coverage of all UT cloud systems over the period 2003 to 2018 is 25.6%, with 6% from thin cirrus systems and 

80% of their coverage from MCSs. 48% of the latter are cold MCSs with T < 210 K. In order to estimate the changes in the 

properties of the tropical MCSs in relation with global Tsurf change, we determined the linear regression slopes between the 545 

anomalies of the MCS properties and the global Tsurf anomalies. While the coverage of the MCSs is relatively stable (or very 

slightly decreasing) with warming, with -1.3 ± 0.6 %/K, the coverage of cold MCSs relative to all MCSs significantly increases 

by +18 ± 5 %/K. The latter can also be expressed by a decreasing cloud system temperature of – 2.1 + 0.5 K/K. Furthermore, 

the surrounding thin cirrus area relative to the anvil area increases slightly by +0.041 ± 0.008 / K. The time series of 12-month 

running means of the anomalies of the coverage of cold MCSs relative to all MCSs, of the minimum convective core 550 

temperature (TCbmin) and of the area of surrounding thin cirrus relative to cirrus anvil area are also shown in Figure 12. Indeed, 

they are related to global Tsurf anomalies as well as to ENSO. 

When considering the time series of the anomalies of the vertical heating / cooling effect of the MCSs in Figure 13, we observe 

vertical dipole effects in the net during daytime, which seem to be strongly linked to ENSO variability and can be explained 

by changes in convective depth of the MCSs. The anomalies have values of about -0.4 and +0.4 K/day, respectively. During 555 

La Niña periods we observe a cooling anomaly in the UT above the height corresponding to 350 hPa and a heating anomaly 

in the atmosphere below, which suggests less strong MCSs. During El Niño periods, the HR vertical structure anomaly seems 

to suggest deeper MCSs, which moves the cooling above the thick anvils and the heating within and below upward. In the LW, 

we observe a pattern of heating and cooling anomalies above the height corresponding to 200 hPa, in accordance with ENSO, 

with more thin cirrus heating during La Niña and more thick anvil cooling during El Niño. It is interesting to note that the 560 

anomalies are slightly larger during nighttime.  

Zelinka and Hartmann (2010) found during El Niño periods a decrease of high-level cloud amount as well as an increase in 

their height which would have opposite effects on the OLR, with a dominating effect coming from the first. Therefore we also 

investigate the time series of heating / cooling anomalies for all clouds together in Figure 14. The anomalies in the upper and 

middle troposphere have the same pattern as the ones for the MCSs, only much smaller, because their relative frequency of 565 

occurrence is taken into account. In addition, we observe strong LW cooling and heating anomaly patterns in the lower 

atmosphere, linked to the occurrence of stratocumulus and stratus cloud fields. It looks like there are more extended or thicker 

stratocumulus / stratus cloud fields when the convective systems are deeper within the latitudinal band and there are less or 

less thick when the convective systems are less deep. This confirms that height and extent of MCSs on one hand and extent of 

the stratocumulus and stratus fields on the other are energetically constrained within the tropics and subtropics (e.g. Hang et 570 

al., 2019; Jakob et al., 2019). 
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5 Conclusions and Outlook 

The active lidar and radar measurements from CALIPSO and CloudSat make it possible to derive radiative HR profiles, but 

only on narrow nadir tracks. On the other hand, AIRS, also part of the A-Train satellite constellation, provides cloud properties 

with a large instantaneous horizontal coverage. By using these radiative HRs for the training and applying the resulting ANN 575 

models on cloud properties from AIRS and atmospheric and surface properties from ECMWF meteorological reanalyses, we 

constructed 3D HR fields within 30N to 30S, for the period 2003 to 2018.  

We demonstrated that non-linear ANN regression models, trained on four years of collocated data along the nadir tracks, are 

appropriate methods to estimate tropical radiative HRs from about 40 cloud, atmospheric and surface properties. Column-

integrated MAE is about 0.8 K/day (0.5 K/day) for cloudy scenes and 0.4 K/day (0.3 K/day) for clear sky in the LW (SW). 580 

When evaluating the profile shapes, developing separate models for i) Cb, ii) cirrus and thin cirrus, iii) mid- and low-level 

clouds and iv) clear sky, independently over ocean and over land, leads to a small improvement, with the mean differences 

between predicted and ‘observed’ radiative HRs well undulating around 0 K/day. The improvement is most noticeable for Cb, 

with uncertainties around the maxima of LW cooling and SW heating linked to slight vertical shifts between the different 

models. The monthly mean horizontal structures of the predicted HR fields agree well with the original ones from CALIPSO-585 

CloudSat (2B-FLXHR-LIDAR R04), but they are more obvious, due to the lateral expansion. The comparison between the 

fields determined from different models gives an indication of the uncertainty, which lies generally within 0.25 K/day per 

layer. 

The input variable normalization using maximum and minimum guarantees that the regression models produce also reliable 

results outside the training period (assuming a non-changing relationship between the input parameters and the HRs), made 590 

clear by the long-term temporal behaviour of the HRs, in particular in relation to ENSO variability.  

We confirmed that most of the total cloud net radiative heating effect in the deep tropics (15N-15S) comes from UT clouds. 

These have a 24hr mean net radiative heating effect larger than 0.25 K/day throughout the troposphere from 250 hPa 

downward, with a broad maximum of about 0.4 K/day around 330 hPa, enhancing the column-integrated latent heating 

(between 100 and 800 hPa) by 24%. This value is larger than earlier results of about 20%, using ISCCP cloud data. Our result 595 

may still be slightly underestimated, because of the not comprised diurnal variation of UT clouds, the cloud contamination of 

the clear sky scenes identified by AIRS and the slightly underestimated LW warming above 12 km in the original FLXHR-

LIDAR (R04) data linked to cirrus microphysical assumptions. However, the shape of the heating effects compared to those 

of Li et al. (2013) are significantly different, with our estimation indicating a much more vertically extended heating. This 

suggests an underestimation of the heating in the middle troposphere of the earlier result, which can be explained by the 600 

shading effect of underlying low-level clouds on ground-based measurements and by a mixture of cirrus and surrounding 

single-layer low-level clouds linked to the coarse spatial resolution. 
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Above the height corresponding to 200 hPa, the LW cooling above the opaque parts of the MCSs is compensated by thin cirrus 

heating, with half of the effect coming from those directly surrounding the anvil and the other half from in situ cirrus. In 

general, the UT cloud effect is a strong heating of the UT during daytime and a strong lower tropospheric heating during 605 

nighttime, leading to opposite vertical gradients. The heating profiles also reveal slightly lower but stronger systems over ocean 

and slightly higher systems over land, with the peak in heating located about 100 hPa higher in altitude over land than over 

ocean.  

The shapes of the heating profiles for the three parts of the MCSs (convective cores, cirrus anvil and surrounding thin cirrus) 

differ significantly. The troposphere below the height of 200 hPa is strongly heated by the convective cores, much less heated 610 

by the cirrus anvils and even less by the surrounding thin cirrus. However, as the convective cores only cover a small fraction 

of the systems, the average heating effect of the MCSs is about the one of the cirrus anvils.  

Mid- and low-level clouds produce a cooling above the clouds and a heating within and below. As there are more low-level 

clouds over ocean and more mid-level clouds over land, the shapes of the net heating effect differs accordingly.  

MCSs are most frequent over the West Pacific, including Indonesia, over the Amazon region and over Central Africa. These 615 

are also the moistest regions. As expected, both, maritime and continental MCSs overlying warmer regions have colder 

convective cores, which means that their convective depth is larger, and the area occupied by the thin cirrus surrounding their 

anvils is also larger. The latter phenomenon can be explained by i) larger relative humidity at higher altitude and ii) additional 

UT humidification originating from the convection.  

Over warm regions (Tsurf > 302 K), the heating is mostly driven by MCSs, which also have a larger convective depth than the 620 

ones over cool regions (Tsurf < 300 K). The consequence is a heating over a broader vertical layer, between 550 to 200 hPa. 

The thin cirrus linked to the MCSs in these regions heat the UT by about 0.7 K/day, more than the in situ formed cirrus. The 

latter play a more important role over cool regions, as well as  mid- and low-level clouds (over ocean), with much less heating 

between 200 and 900 hPa.  

The anvil spreading influences the heating gradients within the MCSs. A rough estimate of the ‘horizontal heating / cooling 625 

gradients’ within the MCSs exhibits slightly smaller ‘horizontal gradients’ in the warm regions than in the cool regions. The 

effect is larger in the SW and therefore larger during daytime than during nighttime. This difference in ‘horizontal gradient’ 

can be solely understood by the larger anvil size.  

During the time period 2003 to 2018, a large attribution to the global Tsurf anomalies is given by ENSO, with El Niño (La Niña) 

events linked to a positive (negative) Tsurf anomaly. The time series of the anomalies of the vertical heating / cooling effect of 630 

the MCSs exhibits vertical dipole effects in the net during daytime, strongly related to ENSO variability and explained by 

changes in convective depth of the MCSs: During El Niño periods, the HR vertical structure anomaly suggests deeper MCS, 

with vertically broader heating. The LW heating and cooling anomalies above the height of 200 hPa is also in accordance with 

ENSO, with more thin cirrus heating during La Niña and more thick anvil cooling during El Niño. The cloud heating / cooling 
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anomaly patterns in the upper and middle troposphere are dominated by the MCSs, and the LW cooling / heating anomaly 635 

patterns in the lower atmosphere exhibit more stratocumulus cloud fields when there are more deep convective systems within 

the latitudinal band and less stratocumulus cloud fields when the MCSs are less deep. This confirms that height and amount 

of UT clouds on one hand and extent of the stratocumulus fields on the other are energetically constrained within the tropics 

and subtropics. 

With respect to global Tsurf anomalies, the MCS coverage is relatively stable (or very slightly decreasing) with warming, with 640 

-1.3 ± 0.6 %/K, while the coverage of cold MCSs relative to all MCSs significantly increases by +18 ± 5 %/K. Furthermore, 

the surrounding thin cirrus area relative to the anvil area increases slightly by +0.041 ± 0.008 / K.  

In the future, we will add the latent heating profiles derived from the Tropical Rainfall Measuring Mission (TRMM) to this 

synergistic data set, which provides for the first time a 3D view of the radiative heating profiles over a long time period,. As 

the coincidences in time with AIRS are small, we will use again machine learning techniques, similar to the ones described in 645 

this article. This data base of UT cloud systems is being constructed within the framework of the GEWEX (Global Energy and 

Water Exchanges) Process Evaluation Study on Upper Tropospheric Clouds and Convection (GEWEX UTCC PROES, 

https://gewex-utcc-proes.aeris-data.fr/) to advance our knowledge on the climate feedbacks of UT clouds. In general, climate 

feedback studies are undertaken by climate model simulations, which rely upon their representation of convection and 

detrainment. The cloud system approach has already proved its usefulness in the evaluation of a new bulk ice cloud scheme in 650 

the LMD GCM (Stubenrauch et al., 2019), and the HRs may be used to distinguish between parameterizations of ice cloud 

radiative properties. Furthermore, this data base, in particular when including the total 3D diabatic heating, will be used to 

quantify the dynamical response of the climate system to the atmospheric heating induced by the anvil cirrus, refining and 

extending the studies of Schumacher et al.(2004) and Li et al. (2013). 
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Figures 

 
Figure 1: Illustration of three dimensional Cloud System Concept, using spaceborne IR Sounder data (AIRS), providing the 
horizontal component, and lidar-radar data (CALIPSO-CloudSat), providing the vertical component, both part of NASA’s A-Train 
satellite constellation (left): Based on two independent variables retrieved by AIRS, UT cloud systems are reconstructed from 835 
adjacent elements of similar cloud height (pcld), the horizontal emissivity structure allows to directly link the properties of convective 
cores (εcld > 0.98) and cirrus anvils (right). Clear sky and low-level cloud fields are also identified (Fig. 4a of Protopapadaki et al. 
2017). A horizontally complete picture of the vertical radiative heating rates will be obtained by laterally expanding them, as they 
are only available along narrow lidar-radar tracks (dark blue). Therefore we have developed optimized ‘non-linear regression 
models’, using deep neural network learning techniques, described in section 2.5 and evaluated in section 3, to relate the most suitable 840 
cloud and atmospheric properties from IR sounder and meteorological reanalyses to these heating rates. 
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845 

 
Figure 2: Sensitivity results concerning training over different scenes (high clouds over ocean, all clouds over ocean and all clouds 
over ocean and land) for the prediction of high-level cloud LW radiative heating rates (above) and SW radiative heating rates 
(below): difference between predicted and observed vertical profiles, separately for Cb, Cirrus and thin Cirrus, as identified by 
AIRS-CIRS, over tropical ocean. 30% and 70% quantiles of the distributions are also shown.  850 
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Figure 3: Predicted LW heating rates and SW heating rates (full line), separately for Cb, Cirrus, thin Cirrus, mid-and low-level 
clouds and clear sky, as identified by AIRS-CIRS, averaged over the AIRS swaths within 30N – 30S, in January 2008. 30% and 70% 
quantiles of the distributions indicate their variability. The model has been trained individually over Cb, Ci / thin Ci and mid- / low-
level clouds, separately over ocean and land. Broken lines correspond to the average of FLXHR heating rates averaged along the 855 
CALIPSO-CloudSat nadir tracks. Night corresponds to 1:30 AM and day to 1:30 PM local time. 
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 860 
 
Figure 4: Geographical maps of LW heating rates (K/day) in 4 layers: 106-131 hPa, 200-223 hPa, 525 – 585 hPa and 850 – 900 hPa 
(from top to bottom) averaged over January 2008 at 1:30AM. Left: predicted over the AIRS swath, using the combination of the 
eight models developed for Cb, Ci / thin Ci, mid- / low-level clouds and clear sky, separately over ocean and over land. Right: from 
NASA FLXHR data along the CALIPSO-CloudSat nadir tracks.  865 
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Figure 5: Tropical mean net radiative heating effect within the troposphere of low- and mid-level clouds (red) and UT clouds (blue, 
broken line), for the latter the effect of MCSs (blue), thin cirrus surrounding MCSs (cyan, full line) and all thin cirrus (cyan, broken 870 
line) is shown separately. Left: all, middle: ocean, right: land. Cloud observations at 1:30PM local time, with SW radiation 
normalized to 24 hours, similar to Li et al. (2013). Statistics of 15 years (2004 – 2018), averaged over 15N to 15S. The sum of UT 
cloud and mid- / lowlevel cloud contributions corresponds to the total cloud heating effect, defined as the difference between total 
and clear sky heating. 
 875 
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Figure 6: Tropical mean net radiative heating effect within the troposphere of low- and mid-level clouds (red) and UT clouds (blue, 
broken line), for the latter the effect of MCSs (blue), thin cirrus surrounding MCSs (cyan, full line) and all thin cirrus (cyan, broken 
line) is shown separately. Left: all, middle: ocean, right: land. Above: at 1:30AM local time, below: at 1:30PM local time. Statistics 880 
of 15 years (2004 – 2018), averaged over 15N to 15S. 
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Figure 7: Geographical maps of occurrence frequency of UT clouds (top row), of total precipitable water in mm (middle row) and 
of surface temperature in K (bottom row), at 1:30 AM LT (left) and at 1:30 PM LT (right). Statistics of 16 years (2003-2018).  885 
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Figure 8: Normalized distributions of properties of the tropical MCSs (temperature of convective core, cloud system size, relative 890 
size of the thin cirrus within or surrounding the anvil) and atmospheric precipitable water, separately for systems with a smaller 
and a larger underlying surface temperature, over ocean (above) and over land (below), at 1:30 PM LT.   
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Figure 9: Tropical 24-hour mean cloud net radiative heating effect (magenta) within the troposphere, and separately the effect of 895 
low- and mid-level clouds (red), mesoscale convective systems (blue), thin cirrus (cyan) and all UT cloud systems (black), averaged 
over 15N to 15S, when clouds or the specific cloud types are present. Left: regions with Tsurf < 300 K, right:  regions with Tsurf > 302 
K.  
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 900 
Figure 10: Mean net radiative heating effect of MCSs, when present, and their convective cores (Cb), cirrus anvil (Ci) and 
surrounding thin cirrus (thinCi) over ocean (top) and over land (with psurf > 900 hPa, bottom), at 1:30 AM local time. In addition, 
MCSs with the 25% warmest areas of Tsurf < 300K and of Tsurf > 302K are distinguished (from left to right). Cloud observations at 
1:30PM local time, with SW radiation normalized to 24 hours. Statistics of 15 years (2004-2018), averaged over 15N to 15S. 
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Figure 11: Difference of 24-hr mean net radiative heating between cirrus anvil and convective cores (left) and between surrounding 
thin cirrus and cirrus anvil (right), divided by the distance between the centers of these MCS parts, assuming circular systems,  for 
MCSs with the 25% warmest areas of Tsurf < 300K and of Tsurf > 302K, respectively. Compared are all MCSs, defined as UT cloud 
systems with at least one convective core, and those with only one convective core with a coverage within the MCS of at least 5%. 910 
Cloud observations at 1:30PM local time, with SW radiation normalized to 24 hours. Statistics of 15 years (2004-2018), averaged 
over 15N to 15S. 
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Figure 12: Time series of 12-month running means (bold lines) and 3-month running means of anomalies of global surface 
temperature (GISTEMP v4, Lenssen et al., 2019), ENSO index combined with Inter-decadal Pacific Oscillation index (each 920 
multiplied by 0.1), as well as coverage of cold MCSs over all MCSs (multiplied by 2), area of thin cirrus over area of total cirrus 
anvil (multiplied by 2) and minimum convective core temperature (in K multiplied by -0.1). 
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Figure 13: Time series of deseasonalized anomalies of heating / cooling effect of MCSs, when present; from top to bottom: net during 925 
nighttime (1:30 AM LT), LW, SW and net during daytime (1:30 PM LT). 
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 Figure 14: Time series of deseasonalized anomalies of cloud heating / cooling effect; from top to bottom: net during nighttime (1:30 
AM LT), LW, SW and net during daytime (1:30 PM LT). 
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