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November 23, 2020

Abstract

We propose a new model that describes the dynamics of epidemic spreading on connected

graphs. Our model consists in a PDE-ODE system where at each vertex of the graph we have a

standard SIR model and connexions between vertices are given by heat equations on the edges

supplemented with Robin like boundary conditions at the vertices modeling exchanges between

incident edges and the associated vertex. We describe the main properties of the system, and

also derive the final total population of infected individuals. We present a semi-implicit in time

numerical scheme based on finite differences in space which preserves the main properties of the

continuous model such as the uniqueness and positivity of solutions and the conservation of the

total population. We also illustrate our results with a selection of numerical simulations for a

selection of connected graphs.

AMS classification: 34D05, 35Q92, 35B40, 92-10, 92D30.

Keywords: SIR model, graph, diffusion equation.

1 Introduction

Classical SIR compartment models are cornerstone models of epidemiology which allow one to

study the evolution of an infected population at a given spatial scale (e.g. whole countries, regions,

counties or cities). Such models date back to the pioneer work of Kermack and McKendrick [15]

and describe the evolution of susceptible (S) and infected (I) populations which eventually become

removed (R) via systems of ordinary differential equations which typically take the form
S′(t) = −τS(t)I(t),

I ′(t) = τS(t)I(t)− ηI(t),

R′(t) = ηI(t),

(1.1)

where τ > 0 is a contact rate between susceptible and infected populations, and 1/η > 0 is the

average infectious period; see [12] for a review on SIR models. These models have been used in the
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Figure 1: Map of France with an illustration of a connected graph connecting major cities.

past to reproduce data of epidemic outbreaks such as the bubonic plague [15], malaria [19], SARS

influenza [6, 18] and most recently COVID-19 [16, 20, 21]; see also [20] for other applications.

In classical SIR models such as (1.1), interactions among the infected population are oversimpli-

fied, and when taken into account they typically involve transfer matrices of populations of infected

between various uniform patches [17, 18, 26]. Our interest lies in the understanding of the intri-

cate interplay between spatial effects and heterogeneous interactions among infected populations.

Schematically, we propose a model composed of cities linked by a given transportation network

(roads, railroads or rivers), see Figure 1 for an illustration in the case of France. It will turn out

that the appropriate theoretical framework will be graph theory where each vertices of the graph

will be thought as the cities and the edges the lines of transportation. In a first approximation, we

will assume that infected populations are only subject to spatial diffusion along the lines, as it is

traditionally assumed in classical spatial SIR models [1, 3, 9, 22]. As a consequence, in our model,

the dynamics of the epidemic only takes place in the cities. Interactions are then modeled by flux

exchanges between cities and lines where we assume that some fraction of infected individuals can

either leave a city to be on a line, or leave a line and stop in a city, or pass from one line to another

through a city. The typical question that we address here can easily be stated as follows. Given

a connected graph of cities linked by roads and an initial configuration of infected individuals,

how does the epidemic spread into the network and what is the eventual final configuration of the

infected population? Our aim here is to gain insight into this spreading aspect at the fundamental

mathematical level of a SIR type model that incorporates the possibility of infected individuals to

travel along a specific given transportation network.

Our framework is at the crossroad of models that take into account lines of transportation such as

recent reaction-diffusion models that study propagation of epidemics along lines with fast diffusion

[3] and models that incorporate networks with more sophisticated interactions dynamics [2, 4, 5, 25].

On a formal level, our proposed model can be thought of as being a one-dimensional version of
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the planar reaction-diffusion system of [3] with a line of fast diffusion in the case of one city and

one line of transportation. Actually, the graph structure of the transportation network provides a

natural embedding into a planar spatial domain. From a mathematical point of view, our model

shares also some similarities with the PDE-ODE model of [8] which studies the spread of airborne

diseases where the movement of pathogens in the air is assumed to follow a linear diffusion.

2 Model formulation and main results

Throughout, we denote by G = (V, E) a compact metric graph, i.e. a collection of vertices V and

edges E and further assume that G is finite and connected. Each edge e ∈ E is identified with

a segment Ωe = [0, `e] with `e ∈ (0,∞), where `e is the finite length of the edge. A real valued

function u : G −→ R is a collection of one dimensional maps defined for each edge e ∈ E :

ue : Ωe −→ R.

For future references, we define BC(G,R) the space of bounded continuous functions on G as

BC(G,R) :=
⊕
e∈E

BC(Ωe,R),

and similarly BCk(G,R) with k ≥ 1. We define the L∞ norm on G for u ∈ BC(G,R) as

‖u‖∞ := max
e∈E

sup
x∈Ωe

|ue(x)|.

2.1 A SIR model on compact connected graph

Given a graph G, we let Xv(t) := (Sv(t), Iv(t), Rv(t)) ∈ R3, for each v ∈ V, where Sv(t) represents

the population of susceptible individuals, Iv(t) the population of infected individuals and Rv(t) the

population of susceptible individuals at vertex v ∈ V and time t > 0. We assume that Xv evolves

according to a SIR model of the form
S′v(t) = −τvSv(t)Iv(t),
I ′v(t) = τvSv(t)Iv(t)− ηvIv(t) +

∑
e∼v

αveue(t, v)− λvIv(t),

R′v(t) = ηvIv(t),

(2.1)

where τv, ηv > 0 are the intrinsic parameters of the epidemic which may depend on the vertex v. The

contribution −λvIv(t) in the right-hand side of the equation for the infected population traduces

the fact that infected individuals can leave the vertex v to incident edges whereas
∑

e∼v α
v
eue(t, v)

reflects the contribution of incoming infected individuals from incident edges. Here, e ∼ v denotes

the edges incident to the vertex v and

λv :=
∑
e∼v

λve ,
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such that λveIv(t) infected individuals leave vertex v to edge e. We have assumed that only the

infected population is subject to movement, and we think of Sv being an ambiant population whose

movement does not affect its distribution. We recover the standard SIR model (1.1) by considering

the trivial graph G = ({v}, ∅). Throughout the manuscript, we will assume the following standing

hypothesis on the coefficients αve and λve in (2.1).

Hypothesis 2.1. For each (e, v) ∈ E × V we assume that

αve ∈ (0, 1) and λve ∈ (0, 1),

together with ∑
e∼v

λve ∈ (0, 1) and
∑
e∼v

αve ∈ (0, 1).

Next, for each e ∈ E , we let de > 0 and we assume that ue evolves according to

∂tue(t, x) = de∂
2
xue(t, x), t > 0, x ∈

◦
Ωe. (2.2)

Assuming that infected individuals have local diffusion along the edges of the graph is a first

approximation, and this can be viewed as a limiting Brownian movement of individuals. We shall

come back to this modeling hypothesis later in the manuscript, but possible extensions could be to

incorporate nonlocal diffusion or transport terms.

It now remains to model the exchanges of infected individuals at the vertices. Fo each v ∈ V, we

associate an integer δv ≥ 1 which we refer to as its degree (i.e. number of edges incident to the

vertex v). We define uv(t) ∈ Rδv as the column vector function

uv(t) := (ue(t, v))e∼v,

where we recall that e ∼ v denotes the edges incident to the vertex v, and thus ue(t, v) is the

corresponding limit value of ue at x = v. Define also ∂nuv(t) ∈ Rδv as the column vector function

∂nuv(t) := (∂nue(t, v))e∼v,

where ∂nue(t, v) is the outwardly normal derivative of ue at the vertex v. Our boundary conditions

at the vertex v that link (2.1) and (2.2) are described by

Dv∂nuv(t) +Kvuv(t) = ΛvIv(t), (2.3)

where Dv ∈Mδv(R) is the diagonal matrix Dv = diag[(de)e∼v] and Kv ∈Mδv(R) whose structure

will be specified below. Formally, (2.3) traduces the balance of fluxes of infected individuals at

the vertex v, and we will demonstrate this heuristic rigorously by showing in the forthcoming

Subsection 2.4 the conservation of total population.
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2.2 Assumptions on the connectivity matrices Kv

We now precise the form of the matrix Kv entering in the boundary condition (2.3). Essentially, Kv

gathers two contributions. One contribution comes from the exchanges between infected individuals

at the vertex with the incoming infected individuals for the incident edges. The second contribution

traduces exchanges between edges. Indeed we allow infected individuals to pass from one edge to

another one. More precisely, we have that Kv splits into two parts

Kv := Av +Nv,

where the matrix Av ∈ Mδv(R) is the diagonal matrix Av = diag(αve)e∼v while the matrix Nv ∈
Mδv(R) is such that the sum of each column is zero. More precisely, if we label by e ∼ v =

(e1, · · · , eδv) the edges incident to the vertex v, we have that for all i = 1, · · · , δv

(Nv)i,i =
∑
j 6=i

νvei,ej

and for i 6= j = 1, · · · , δv
(Nv)i,j = −νvej ,ei .

In the case δv = 3, we get

Nv =

ν
v
e1,e2 + νve1,e3 −νve2,e1 −νve3,e1
−νve1,e2 νve2,e1 + νve2,e3 −νve3,e2
−νve1,e3 −νve2,e3 νve3,e1 + νve3,e2

 ,

see Figure 2 for an illustration in that case.

Furthermore, for the diagonal term we will use the shorthand notation

(Nv)e,e =
∑
e′ 6=e

νve,e′ .

The fact that Nv ∈ Mδv(R) is such that the sum of each column is zero precisely traduces the

fact that there is the conservation of infected individuals through exchanges between incident edges

at each vertex. And, we remark that it implies that the matrix Kv has a strict column diagonal

dominance in the sense that for each i = 1, · · · , δv
δv∑
j=1

(Kv)ei,ej = αvei > 0,

because of this specific structure of Nv. From now on we also assume that Kv has a diagonal

dominance with respect to its lines. This property will be crucial later on in the proof of existence

of solutions. As a consequence, we impose the following running assumptions on the matrices Kv.

Hypothesis 2.2. For each v ∈ V and (e, e′) ∈ E × E, we assume that

νve,e′ ∈ [0, 1).
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Figure 2: Schematic illustration of the exchanges at a given vertex v with δv = 3.

Furthermore, we impose that for all v ∈ V∑
e′ 6=e

νve′,e < αve +
∑
e′ 6=e

νve,e′ ,

together with

(Kv)e,e := αve +
∑
e′ 6=e

νve,e′ ∈ (0, 1),

for each e ∼ v.

Remark 2.3. If the exchanges between the edges are symmetric, that is for each v ∈ V the matrices

Nv are symmetric, that is

νve,e′ = νve′,e, ∀(e, e′) ∈ E × E ,

then Hypothesis 2.2 is automatically satisfied.

2.3 Initial configuration

Finally, we complement our coupled PDE-ODE (2.1)-(2.2)-(2.3) with some initial conditions. We

assume that at t = 0, we have

u(t = 0, ·) = u0 ∈ BC(G,R),

such that for e ∈ E ,

u0
e(x) ≥ 0, x ∈ Ωe.

On the other hand, for the ODE system (2.1), we suppose that

(Sv(t = 0), Iv(t = 0), Rv(t = 0)) = (S0
v , I

0
v , 0) ≥ 0, ∀v ∈ V.
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We further assume that (2.3) is satisfied at t = 0

Dv∂nu
0
v +Kvu

0
v = ΛvI

0
v,

with obvious notations u0
v := (u0

e(v))e∼v and I0
v := (I0

v , · · · , I0
v )t. Last, we impose that the initial

total population of infected individuals is strictly positive,∑
v∈V

I0
v > 0,

and that susceptible individuals are initially present at each vertex of the graph

S0
v > 0, ∀v ∈ V.

This in turn implies that the total population is initially

M0 :=
∑
e∈E

∫
Ωe

u0
e(x)dx+

∑
v∈V

(
S0
v + I0

v

)
> 0.

2.4 Conservation of total population

Assuming that there is a solution to (u, (Xv)v∈V) to (2.1)-(2.2)-(2.3), we have that the total mass

of the system M(t) defined as

M(t) :=
∑
e∈E

∫
Ωe

ue(t, x)dx+
∑
v∈V

(Sv(t) + Iv(t) +Rv(t))

is a conserved quantity and thus independent of t.

To see that, we first remark that(
S′v(t) + I ′v(t) +R′v(t)

)
=
∑
e∼v

αveue(t, v)− λvIv(t) = 〈Avuv(t),1δv〉 − 〈ΛvIv(t),1δv〉

with

1δv := (1, · · · , 1)t ∈ Rδv ,

and 〈·, ·〉 is the standard Euclidean inner product on Rδv . On the other hand let us define

m(t) :=
∑
e∈E

∫
Ωe

ue(t, x)dx,

and assume that u is a classical solution of (2.2), which we will prove in the next section, and
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compute

m′(t) =
∑
e∈E

∫
Ωe

∂tue(t, x)dx =
∑
e∈E

de [∂xue(t, x)]∂Ωe

=
∑
v∈V
〈Dv∂nuv(t),1δv〉

=
∑
v∈V
〈ΛvIv(t)−Kvuv(t),1δv〉

=
∑
v∈V
〈ΛvIv(t)−Avuv(t),1δv〉 −

∑
v∈V
〈Nvuv(t),1δv〉︸ ︷︷ ︸

=0

= −
∑
v∈V

(
S′v(t) + I ′v(t) +R′v(t)

)
.

The fact that ∑
v∈V
〈Nvuv(t),1δv〉 = 0

is a direct consequence on the specific structure of each matrix Nv and the fact that the sum of

each column is zero. We therefore conclude that M ′(t) = 0 and∑
e∈E

∫
Ωe

ue(t, x)dx+
∑
v∈V

(Sv(t) + Iv(t) +Rv(t)) = M0, ∀t ≥ 0.

Biological interpretation. Our model is thus consistent with the conservation of the total

population as it is traditionally the case for SIR model in the case of zero natality/mortality rate.

The exchanges between the vertices and the edges exactly compensate each other as is natural.

2.5 Main results and outline of the paper

We now present our main results regarding our model (2.1)-(2.2)-(2.3). At this stage of the presen-

tation, we remain formal and refer to the following sections for precise statements and assumptions.

Main result 1: Existence and uniqueness of classical solutions. We prove in Theorem 1

below that for each well prepared initial condition our model (2.1)-(2.2)-(2.3) admits a unique

positive classical solution which is global in time. We remark that the system (2.1)-(2.2)-(2.3) is

not standard as it couples a system of PDEs to ODEs at each vertices through inhomogeneous

Robin boundary conditions. As a consequence, the existence and uniqueness of classical solutions

has to be proved. This analysis is conducted in Section 3.

Main result 2: Long time behavior of the solutions. We fully characterize the long time

behavior of the unique solution of our model. More precisely, we prove that the final total population

of infected individuals at each vertex, denoted by I∞v , is a well defined quantity: 0 < I∞v <∞ for
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v ∈ V and (I∞v )v∈V are solutions of a system of cV + 1 implicit equations, where cV stands for the

cardinal of V, which belong to the parametrized submanifold∑
v∈V

(
S0
ve
−τvI∞v + ηvI∞v

)
= M0,

where M0 is the initial total mass. We refer to Theorem 2 for a precise statement. We also present

further qualitative results on the final total configuration (I∞v )v∈V in the fully symmetric case where

we obtain closed form formula (see Lemma 4.3) and in the case of two vertices where we manage to

obtain sharp bounds on the final total populations of infected individuals (see Lemma 4.4). In each

case, we manage to relate these quantities to standard basic and effective reproductive number for

classical SIR model. The aforementioned results are proved in Section 4.

Main result 3: A mass preserving semi-implicit numerical scheme. We propose and

analyze a semi-implicit in time numerical scheme based on finite differences in space which has the

property to preserve a discrete total mass associated to the discretization. We prove that if the

time discretization constant is smaller than a universal constant depending only on the parameters

of the system (and not on the space discretization constant) and if Nv is symmetric for each v ∈ V,

then our mass preserving semi-implicit numerical scheme is well-posed and preserves the positivity

of the solutions. We refer to Section 5 for a presentation of the numerical scheme and Theorem 3

for a precise statement of our main result.

Main result 4: Numerical results for various types of graphs. We illustrate our theoretical

findings with selection of numerical simulations for various types of graphs in Section 6. We

respectively study the case of 2 vertices and 1 edge, 3 vertices and 3 edges (closed graph), 4 vertices

and 3 edges (star-shape graph) and N + 1 vertices and N edges with N being arbitrarily large

(lattice graph). Most notably, in the last case, we show the propagation of the epidemics across

the vertices of the graph in the form of a traveling wave.

3 The Cauchy problem: existence and uniqueness of classical so-

lutions

This section is devoted to the proof of the following main theorem which guarantees that our model

is well-posed.

Theorem 1. For each (S0
v , I

0
v ) ≥ 0 with S0

v > 0,
∑

v∈V I
0
v > 0 and u0 ∈ BC(G,R+) that satisfy the

boundary condition (2.3), there exists a unique positive global solution (Sv, Iv, Rv) ∈ C 1(R+,R+ ×
R+ × R+) and u ∈ C 1,2(R+

∗ × G,R+).

The proof of Theorem 1 is divided into two parts. We first prove the existence of positive global

classical solutions and then show that such constructed solutions are unique. We look for solutions
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that satisfy (2.1)-(2.2)-(2.3) in the classical sense, and we always assume that (S0
v , I

0
v ) ≥ 0 with

S0
v > 0,

∑
v∈V I

0
v > 0 and u0 ∈ BC(G,R+), that is for all e ∈ E , u0

e ≥ 0 is bounded continuous on

Ωe. We further assume that the initial conditions satisfy the boundary condition (2.3). We remark

that the system (2.1)-(2.2)-(2.3) is not standard as it couples a system PDEs to ODEs at each

vertices through inhomogeneous Robin boundary conditions. As a consequence, the well-posedness

of the Cauchy problem has to be proved.

Remark 3.1. Our existence and uniqueness result extends trivially in the case that parameters

τv > 0, αve ∈ (0, 1), λve ∈ (0, 1) and νve,e′ ∈ [0, 1) are continuous functions of time satisfying

τv(t) > 0, αve(t) ∈ (0, 1), λve(t) ∈ (0, 1) and νve,e′(t) ∈ [0, 1) together with Hypotheses 2.1-2.2 verified

at all times t > 0.

3.1 Existence

In this section, we construct a classical solution to (2.1)-(2.2)-(2.3) through a limiting argument.

We will obtain a solution (u, (Xv)v∈V) has the limit of a subsequence of solution ((un, (Xn
v )v∈V))n≥0

of the following problems

dSnv (t)

dt
= −τvSnv (t)Inv (t),

dInv (t)

dt
= τvS

n
v (t)Inv (t)− (ηv + λv)I

n
v (t) +

∑
e∼v

αveu
n−1
e (t, v),

dRnv (t)

dt
= ηvI

n
v (t),

t > 0, ∀v ∈ V, (3.1)

with

Dv∂nu
n
v (t) +Kvu

n
v (t) = ΛvI

n
v (t), t > 0, ∀v ∈ V, (3.2)

and

∂tu
n
e (t, x) = de∂

2
xu

n
e (t, x), t > 0, x ∈

◦
Ωe, ∀e ∈ E . (3.3)

starting from u0 ∈ BC(G,R+) and (X0
v )v∈V . Note that (3.1)-(3.2)(3.3) is supplemented by the

same initial condition (u0, (X0
v )v∈V) at each step. We proceed along three main steps.

Step #1: solvability of (3.1)-(3.2)-(3.3). We first show that (3.1)-(3.2)-(3.3) admits a unique

solution. It can be done by induction. Assume that at step n− 1, we have constructed a solution

(un−1, (Xn−1
v )v∈V) such that for each t 7→ un−1

e (t, v) is continuous, then we get the existence of a

unique solution of (3.1) which is C 1 in time. Next we solve the system of PDEs (3.3)-(3.2) whose

coupling comes from the boundary conditions and owing that now the right-hand side of (3.2)

can be seen as given inhomogeneous term of class C 1 in time. As both Dv and Kv are invertible

matrices, we get the existence of a classical solution un ∈ C 1,2 which then ensures that t 7→ une (t, v)

is continuous.
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Step #2: a priori estimates. Let 0 < T < 1 be fixed. We first show by a recursive argument

that 0 < Snv , 0 ≤ Inv , 0 ≤ Rnv for each v ∈ V and 0 ≤ une for each e ∈ E . It is trivial at n = 0. Let

assume that is it true at n− 1. We start from (3.1) and a direct integration gives

Snv (t) = S0
ve
−τv

∫ t
0 I

n
v (s)ds > 0,

Inv (t) = I0
ve
−(ηv+λv)t+

∫ t
0 S

n
v (s)ds +

∑
e∼v

αve

∫ t

0
e−(ηv+λv)(t−s)+

∫ t
s S

n
v (τ)dτun−1

e (s, v)ds ≥ 0,

Rnv (t) = ηv

∫ t

0
Inv (s)ds ≥ 0.

Now owing that 0 ≤ Inv for each v ∈ V, the maximum principle implies that une ≥ 0 for each e ∈ E .

Assume by contradiction that e∗ ∈ E is the component which reaches a negative minimum, namely

une∗(t∗, x∗) = −δ < 0 with une∗(t, x) > −δ for t < t∗ and x ∈ Ωe∗ and for each e 6= e∗ we have

une (t, x) > −δ for t ≤ t∗ and x ∈ Ωe. We know that x∗ ∈ ∂Ωe∗ and let denote v∗ = x∗ ∈ V the

vertex where this occurs. The Hopf lemma implies that ∂nu
n
e∗(t∗, v∗) < 0. Inspecting the boundary

condition (3.2) at v∗, we obtain that

de∗∂nu
n
e∗(t∗, v∗) + αv∗e∗u

n
e∗(t∗, v∗) +

(∑
e∼e∗

νv∗e∗,e

)
une∗(t∗, v∗)−

∑
e∼e∗

νv∗e,e∗u
n
e (t∗, v∗) = λv∗e∗I

n
v∗(t),

which writes

0 > de∗∂nu
n
e∗(t∗, v∗) + δ

(∑
e∼e∗

νv∗e,e∗ − αv∗e∗ −
∑
e∼e∗

νv∗e∗,e

)
−
∑
e∼e∗

νv∗e,e∗(δ + une (t∗, v∗)) = λv∗e∗I
n
v∗(t) ≥ 0,

and leads to a contradiction. Here we have used the fact that∑
e∼e∗

νv∗e,e∗ ≤ αv∗e∗ +
∑
e∼e∗

νv∗e∗,e,

from Hypothesis 2.2 on the matrices (Kv)v∈V .

Next, from the positivity of solutions, we obtain some uniform L∞ bounds. More precisely, we

claim that there exists a constant K > 0 depending only on (T, I0
v , S

0
v , ‖u0‖∞) such that

0 ≤ Snv (t), Inv (t), Rnv (t) ≤ K, and

∣∣∣∣dSnv (t)

dt

∣∣∣∣ , ∣∣∣∣dInv (t)

dt

∣∣∣∣ , ∣∣∣∣dRnv (t)

dt

∣∣∣∣ ≤ K 0 < t ≤ T,

and

0 ≤ une (t, x) ≤ K, 0 < t ≤ T, x ∈ Ωe.

First, using (3.1) we obtain that

dSnv (t)

dt
+

dInv (t)

dt
+

dRnv (t)

dt
= −λvInv (t) +

∑
e∼v

αveu
n−1
e (t, v),

which gives that

0 ≤ Snv (t) + Inv (t) +Rnv (t) ≤ S0
v + I0

v + T‖un−1‖∞, 0 < t ≤ T,

11



together with∣∣∣∣dSnv (t)

dt

∣∣∣∣ , ∣∣∣∣dInv (t)

dt

∣∣∣∣ , ∣∣∣∣dRnv (t)

dt

∣∣∣∣ ≤ C‖un−1‖∞(1 + T + T 2‖un−1‖∞) 0 < t ≤ T,

which in turn implies that

‖un‖∞ ≤ C̃T‖un−1‖∞(1 + T + T 2‖un−1‖∞),

for C, C̃ > 0 only depend on the initial condition (u0, (X0
v )v∈V) and the parameters of the system.

We now claim that by induction, we have for all 0 < t ≤ T ,

0 ≤ Snv (t) + Inv (t) +Rnv (t) ≤ Ĉ
an∑
p=0

T p,

∣∣∣∣dSnv (t)

dt

∣∣∣∣ , ∣∣∣∣dInv (t)

dt

∣∣∣∣ , ∣∣∣∣dRnv (t)

dt

∣∣∣∣ ≤ Ĉ 2an∑
p=0

T p,

‖un‖∞ ≤ Ĉ
2an∑
p=0

T p+1,

with an = 2 + 2an−1 for n ≥ 2 and a1 = 1 for some Ĉ > 0 only depending on (u0, (X0
v )v∈V). As

0 < T < 1, we get that

0 ≤ Snv (t) + Inv (t) +Rnv (t) ≤ ĈT , 0 < t ≤ T,

together with

‖un‖∞,
∣∣∣∣dSnv (t)

dt

∣∣∣∣ , ∣∣∣∣dInv (t)

dt

∣∣∣∣ , ∣∣∣∣dRnv (t)

dt

∣∣∣∣ ≤ ĈT ,
for some constant ĈT > 0 depending on (T, u0, (X0

v )v∈V).

Step #3: existence of a solution. Parabolic Schauder estimates give that the time derivative

and the space derivatives up to order 2 of un are uniformly Hölder continuous in compact sets. As

a consequence, we can use the Arzela-Ascoli theorem to show that (un, (Xn
v )v∈V) converges (up to

sequences) toward (u, (Xv)v∈V) in C1,2
loc ((0, T )×G)×C1

loc((0, T ))×C1
loc((0, T ))×C1

loc((0, T )). Passing

to the limit n → +∞ in (3.1)-(3.2)-(3.3) we get that (u, (Xv)v∈V) satisfies (2.1)-(2.2) subject to

boundary conditions (2.3).

As a by product of the proof we get that for the just constructed solution (u, (Xv)v∈V) we have the

uniform bounds:

0 < Sv(t) ≤ S0
v , 0 < t ≤ T, v ∈ V,

and

0 ≤ Iv(t), Rv(t) 0 < t ≤ T,

together with

0 ≤ ue(t, x), 0 < t ≤ T, x ∈ Ωe, e ∈ E .

12



The fact that Iv(t) ≥ 0 implies thanks to the strong maximum principle that in fact

0 < ue(t, x), 0 < t ≤ T, x ∈ Ωe, e ∈ E ,

which in turn gives that Iv(t) > 0 for each v ∈ V since

Inv (t) = I0
ve
−(ηv+λv)t+

∫ t
0 S

n
v (s)ds +

∑
e∼v

αve

∫ t

0
e−(ηv+λv)(t−s)+

∫ t
s S

n
v (τ)dτun−1

e (s, v)ds > 0.

Finally, we use the conservation of mass which tells us that∑
e∈E

∫
Ωe

ue(t, x)dx+
∑
v∈V

(Sv(t) + Iv(t) +Rv(t)) = M0 > 0, 0 < t ≤ T,

such that both Iv(t) and Rv(t) are uniformly bounded in time, together with their derivatives. This

also implies that there exists a constant M > 0, depending only (u0, (X0
v )v∈V) such that

0 < u(t, x) ≤M, 0 < t ≤M, x ∈ Ωe.

Using again parabolic regularity, we obtain the solution (u, (Xv)v∈V) is global in time and satisfies

(2.1)-(2.2)-(2.3) in the classical sense.

3.2 Uniqueness

Let assume that (u, (Xv)v∈V) and (ũ, (X̃v)v∈V) are two classical solutions to (2.2)-(2.3)-(2.1) starting

from the same initial datum (u0, (X0
v )v∈V). We denote (û, (X̂v)v∈V) where for each e ∈ E

ûe = ue − ũe,

and each v ∈ V
X̂v = (Ŝv, Îv, R̂v) = (Sv − S̃v, Iv − Ĩv, Rv − R̃v).

By linearity, we get that for e ∈ E

∂tûe = de∂
2
xûe, t > 0, x ∈

◦
Ωe,

together with

Dv∂nûv(t) +Kvûv(t) = Λv Îv(t), t > 0, v ∈ V.

On the other, one computes that X̂v satisfies for each v ∈ V
Ŝ′v(t) = −τv

(
Sv(t)Îv(t) + Ŝv(t)Ĩv(t)

)
,

Î ′v(t) = τv

(
Sv(t)Îv(t) + Ŝv(t)Ĩv(t)

)
− ηv Îv(t) +

∑
e∼v

αve ûe(t, v)− λv Îv(t),

R̂′v(t) = ηv Îv(t),

13



We define the energy

E (t) :=
1

2

∑
e∈E

∫
Ωe

(ûe(t, x))2 dx+
1

2

∑
v∈V

(
Ŝv(t)

2 + Îv(t)
2 + R̂v(t)

2
)
,

and note that E (0) = 0 by definition. Next, differentiating E (t), we obtain

E ′(t) =
∑
e∈E

∫
Ωe

ûe(t, x)∂tûe(t, x)dx+
∑
v∈V

(
Ŝv(t)Ŝ

′
v(t) + Îv(t)Î

′
v(t) + R̂v(t)R̂

′
v(t)

)
:= Eu(t) + EX(t).

On the one hand, we have

Eu(t) =
∑
e∈E

∫
Ωe

ûe(t, x)∂tûe(t, x)dx =
∑
e∈E

de

∫
Ωe

ûe(t, x)∂2
xûe(t, x)dx

= −
∑
e∈E

de

∫
Ωe

(∂xûe(t, x))2 dx+
∑
e∈E

de [ûe(t, x)∂tûe(t, x)]∂Ωe

≤
∑
v∈V
〈Dv∂nûv(t), ûv(t)〉

=
∑
v∈V
〈Λv Îv(t)−Kvûv(t), ûv(t)〉

=
∑
v∈V
〈Λv Îv(t)−Avûv(t), ûv(t)〉 −

∑
v∈V
〈Nvûv(t), ûv(t)〉

≤
∑
v∈V
〈Λv Îv(t)−Avûv(t), ûv(t)〉,

as Nv is symmetric positive. On the other hand, we compute

Eu(t) =
∑
v∈V

(
Ŝv(t)Ŝ

′
v(t) + Îv(t)Î

′
v(t) + R̂v(t)R̂

′
v(t)

)
=
∑
v∈V

τv

(
Sv(t)Îv(t)Ŝv(t) + Ŝv(t)

2Ĩv(t) + Sv(t)Îv(t)
2 + Ŝv(t)Ĩv(t)Îv(t)

)
−
∑
v∈V

ηv Îv(t)
2 −

∑
v∈V

λv Îv(t)
2 +

∑
v∈V

Îv(t)
∑
e∼v

αve ûe(t, v) +
∑
v∈V

ηvR̂v(t)Îv(t)

≤ CE (t) +
∑
v∈V

Îv(t)
∑
e∼v

αve ûe(t, v),

where C > 0 is some large positive constant. Next, we see that∑
v∈V

Îv(t)
∑
e∼v

αve ûe(t, v) =
∑
v∈V
〈Îv(t), Avûv(t)〉,

such that we obtain

E ′(t) ≤ CE (t) +
∑
v∈V
〈Λv Îv(t)−Avûv(t), ûv(t)〉+

∑
v∈V
〈Îv(t), Avûv(t)〉.
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Next, if we denote ŵv(t) := 1
2A
−1/2
v (Λv +Av) Îv(t)−A1/2

v ûv(t), we compute

0 ≤
∑
v∈V
〈ŵv(t), ŵv(t)〉 =

1

4

∑
v∈V
〈A−1

v (Λv +Av)
2 Îv(t), Îv(t)〉 −

∑
v∈V
〈(Λv +Av) Îv(t), ûv(t)〉

+
∑
v∈V
〈Avûv(t), ûv(t)〉

=
1

4

∑
v∈V
〈A−1

v (Λv +Av)
2 Îv(t), Îv(t)〉 −

∑
v∈V
〈Λv Îv(t)−Avûv(t), ûv(t)〉

−
∑
v∈V
〈Îv(t), Avûv(t)〉.

As a consequence, we get

E ′(t) ≤ CE (t) +
1

4

∑
v∈V
〈A−1

v (Λv +Av)
2 Îv(t), Îv(t)〉 −

∑
v∈V
〈ŵv(t), ŵv(t)〉

≤ C̃E (t),

for some C̃ > 0 and we conclude that E (t) = 0 for all time which then implies that û = 0 and

X̂v = 0.

4 Long-time behavior of the solutions

Throughout this section, we denote by (u, (Xv)v∈V) the unique positive bounded classical solution

of the Cauchy problem (2.1)-(2.2)-(2.3) as given by Theorem 1 and which further satisfies the

conservation of total population, namely∑
e∈E

∫
Ωe

ue(t, x)dx+
∑
v∈V

(Sv(t) + Iv(t) +Rv(t)) = M0 > 0, ∀t > 0.

4.1 Final total populations: general results

As 0 < Sv(t) < S0
v and Sv(t) is strictly decreasing, it asymptotically converges towards a limit that

we denote

S∞v := lim
t→+∞

Sv(t), v ∈ V.

Furthermore, as Rv(t) is strictly increasing and uniformly bounded, it asymptotically converges

towards a limit that is denoted

0 < R∞v := lim
t→+∞

Rv(t) <∞, v ∈ V.

But as for each t > 0

Rv(t) = ηv

∫ t

0
Iv(s)ds,
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this implies that

Iv(t) :=

∫ t

0
Iv(s)ds −→ I∞v =

R∞v
ηv

<∞ as t→ +∞,

which in turn proves that

I∞v = lim
t→+∞

Iv(t) = 0.

If one recall the notation m(t) for the total population on the edges then we have

m(t) =
∑
e∈E

∫
Ωe

ue(t, x)dx,

and it verifies ∑
v∈V

(Sv(t) + Iv(t) +Rv(t)) +m(t) =
∑
v∈V

(
S0
v + I0

v

)
+
∑
e∈E

∫
Ωe

u0
e(x)dx.

The above computations shows that m(t) has a limit as t −→ +∞, that we denote m∞ and which

satisfies ∑
v∈V

(S∞v +R∞v ) +m∞ =
∑
v∈V

(
S0
v + I0

v

)
+
∑
e∈E

∫
Ωe

u0
e(x)dx. (4.1)

We shall also keep in mind that

S∞v = S0
ve
−τvI∞v = S0

ve
− τv
ηv
R∞v , or R∞v = −ηv

τv
ln
S∞v
S0
v

, v ∈ V

And so if we introduce the function Ψv(x) := x− ηv
τv

lnx, then the above conservation of mass can

be written as ∑
v∈V

Ψv(S
∞
v ) +m∞ =

∑
v∈V

(
I0
v + Ψv(S

0
v)
)

+
∑
e∈E

∫
Ωe

u0
e(x)dx.

On the other, one can compute that

dm(t)

dt
=
∑
v∈V

λvIv(t)−
∑
v∈V
〈Avuv(t),1δv〉,

such that

m(t) +
∑
v∈V

∫ t

0
〈Avuv(s),1δv〉ds =

∑
e∈E

∫
Ωe

u0
e(x)dx+

∑
v∈V

λvIv(t).

Now, as m(t) and each Iv(t) are convergent we deduce that all
∫ t

0 uv(s)ds are also convergent so

that

m∞ +
∑
v∈V

∫ ∞
0
〈Avuv(s),1δv〉ds =

∑
e∈E

∫
Ωe

u0
e(x)dx+

∑
v∈V

λvI∞v , (4.2)

and ∫ ∞
0

uv(s)ds <∞, v ∈ V,

which proves that

uv(t) −→ 0 as t→ +∞, v ∈ V.
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And the boundary conditions imply that

∂nuv(t) −→ 0 as t→ +∞, v ∈ V.

Next, we define the sequence of functions une (t, x) = ue(t + n, x) for each e ∈ E and Xn
v (t) =

Xv(t + n) for each v ∈ V which are uniformly bounded such that one can extract a convergent

subsequence. On the one hand we have that lim
n→∞

Xn
v (t) = X∞v = (S∞v , 0, R

∞
v ) and on the other if

u∞e (t, x) = lim
n→∞

une (t, x) it is solution of

∂tu
∞
e (t, x) = de∂

2
xu
∞
e (t, x),

with the boundary conditions

∂nu
∞
v (t) = u∞v (t) = 0δv , v ∈ V.

This then shows that u∞e (t, x) = 0, t > 0 and x ∈
◦
Ωe for each e ∈ E . As there is unicity of the

limit, we deduce that

lim
t→+∞

ue(t, x) = 0, e ∈ E .
From which we also get that m∞ = 0 and that∑

v∈V
Ψv(S

∞
v ) =

∑
v∈V

(
I0
v + Ψv(S

0
v)
)

+
∑
e∈E

∫
Ωe

u0
e(x)dx.

This implies that each Ψv(S
∞
v ) is bounded, we get that S∞v > 0 for all v ∈ V.

We also get from (4.2), that∑
v∈V

∫ ∞
0
〈Avuv(s),1δv〉ds =

∑
e∈E

∫
Ωe

u0
e(x)dx+

∑
v∈V

λvI∞v .

Finally, we use the fact that

dIv(t)

dt
+

dSv(t)

dt
− ηv + λv

τv

d lnSv(t)

dt
=
∑
e∼v

αveue(t, v), v ∈ V,

to obtain that

Iv(t) + Sv(t)−
ηv + λv
τv

lnSv(t)− I0
v − S0

v +
ηv + λv
τv

lnS0
v =

∑
e∼v

αve

∫ t

0
ue(s, v)ds, v ∈ V.

As a consequence, the final total populations of infected individuals at each vertices satisfy the

following scalar differential equation

dIv(t)
dt

= S0
v

(
1− e−τvIv(t)

)
− ηvIv(t) + I0

v +
∑
e∼v

αve

∫ t

0
ue(s, v)ds− λvIv(t), v ∈ V. (4.3)

Passing to the limit as t→ +∞, we get

0 = S0
v

(
1− e−τvI∞v

)
− ηvI∞v + I0

v +
∑
e∼v

αve

∫ ∞
0

ue(s, v)ds− λvI∞v , v ∈ V.

To summarize, we have proved the following result.
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Theorem 2. For each (S0
v , I

0
v ) ≥ 0 with S0

v > 0,
∑

v∈V I
0
v > 0 and u0 ∈ BC(G,R+) that satisfy the

boundary condition (2.3), the long time behavior of the unique corresponding solution (u, (Xv)v∈V)

is given by

lim
t→+∞

ue(t, x) = 0, x ∈ Ωe, e ∈ E , with

∫ ∞
0

ue(s, v)ds < +∞, (v, e) ∈ G,

and

lim
t→+∞

(Sv(t), Iv(t), Rv(t)) =
(
S0
ve
−τvI∞v , 0, ηvI∞v

)
, v ∈ V, (4.4)

where the final total populations of infected individuals 0 < I∞v < ∞ at each vertices v ∈ V are

solutions of the system
S0
ve
−τvI∞v + ηvI∞v = I0

v + S0
v +

∑
e∼v

αve

∫ ∞
0

ue(s, v)ds− λvI∞v , v ∈ V,

∑
v∈V

∫ ∞
0
〈Avuv(s),1δv〉ds =

∑
e∈E

∫
Ωe

u0
e(x)dx+

∑
v∈V

λvI∞v .
(4.5)

As a consequence, (I∞v )v∈V belongs to the parametrized submanifold given by∑
v∈V

(
S0
ve
−τvI∞v + ηvI∞v

)
= M0. (4.6)

Remark 4.1. Equivalently, (S∞v )v∈V belongs to the parametrized submanifold given by∑
v∈V

(
S∞v −

ηv
τv

log (S∞v ) +
ηv
τv

log
(
S0
v

))
= M0, (4.7)

and (R∞v )v∈V belongs to the parametrized submanifold given by∑
v∈V

(
S0
v exp(−τv/ηv R∞v ) +R∞v

)
= M0. (4.8)

The equations (4.6), (4.7), and (4.8) also read
∑

v∈V (S∞v +R∞v ) = M0, which is nothing but (4.1)

since we have proved that m∞ = 0.

Remark 4.2. If we assume that τ = τv > 0 and η = ηv > 0 are independent of v ∈ V and let

S̃v = τ/η Sv, R̃∞v = exp(−τ/η R∞v ) and Ĩ∞v = exp(−τI∞v ). Then, equations (4.6), (4.7), and (4.8)

are respectively equivalent to ∏
v∈V

exp
(
S̃∞v

) S̃0
v

S̃∞v
= exp

(
τ

η
M0

)
,

∏
v∈V

exp
(
S̃0
vR̃
∞
v

)
R̃∞v

= exp

(
τ

η
M0

)
,

and ∏
v∈V

exp
(
S̃0
v Ĩ∞v

)
Ĩ∞v

= exp

(
τ

η
M0

)
.

The common right hand side features τ
η M

0 that is nothing but the traditional basic reproductive

number R0.
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4.2 Final total populations of infected individuals: further properties

The aim of this section is to present further qualitative results on the final total configuration

(I∞v )v∈V in the fully symmetric case where one can obtain closed form formula and in the case of

two vertices where we manage to obtain sharp bounds on the final total populations of infected

individuals. In each case, we manage to relate these quantities to standard basic and effective

reproductive number for classical SIR model [10].

Fully symmetric case. We assume that the length `e of every edge e ∈ E is equal to a reference

length `. For every e ∈ E , the diffusion coefficient de is equal to d. We moreover suppose that

for every vertex v ∈ V, S0
v = S0, I0

v = I0 and R0
v = R0. We also assume that τ = τv > 0 and

η = ηv > 0 are independent of v ∈ V. In the same spirit, λve = λ and αve = α for every e ∈ E and

v ∈ V. We also assume νvei,ej = ν for every edges incident to the vertex v. Finally, the components

u0
e of initial condition on each edges e ∈ E are supposed to be even with respect to the center of

the interval Ωe = [0, `]. Thanks to all these assumptions, I∞v does not depend on the vertex v ∈ V
and we set I∞v = I∞. Let us recall the notation cV for the cardinal of the set V. The parametrized

submanifold given by (4.6) becomes

S∞ +R∞ = S0e−τI
∞

+ ηI∞ = M̃0,

where M̃0 = M0/cV . We can transform this relation as

S0e−τI
∞

+
η

τ
τI∞ − M̃0 = 0. (4.9)

Let I = −τI∞. We have to solve

S0eI − η

τ
I − M̃0 = 0.

The solutions are given in terms of Lambert W function that is the multivalued inverse relation

of the function f(w) = wew for w ∈ C [7]. Let us recall how to compute the real solutions of

the equation αex + βx + γ = 0 for (α, β, γ) ∈ R∗ × R∗ × R. Let ∆ = α/β exp(−γ/β) be the

discriminant. If ∆ ≥ 0 or ∆ = − exp(−1), the solution is unique and x = −W0(∆) − γ/β where

W0 is the principal branch. If ∆ ∈ (− exp(−1), 0), there are two solutions x0 = −W0(∆)−γ/β and

x−1 = −W−1(∆)− γ/β, where W−1 is another branch. When ∆ < − exp(−1), there is no solution.

In our symmetric case, the discriminant writes

∆ = −S
0τ

η
exp

(
−M̃

0τ

η

)
.

Since ∆ < 0, there exist solutions to (4.9) if ∆ ≥ − exp(−1), which is equivalent to

exp

(
M̃0τ

η
− 1

)
≥ S0τ

η
. (4.10)
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We recall that when we consider the standard SIR model (meaning in the context of this paper

that we consider an isolated vertex), we can define the effective reproductive number Re and the

basic reproductive number R0 respectively given by

Re :=
S0τ

η
, and R0 :=

M0τ

η
, (4.11)

see [10, 12, 26] for further properties of effective and basic reproductive numbers. If we denote

R̃0 = M̃0τ/η, the equation (4.10) reads

exp
(
R̃0 − 1

)
≥ Re.

This inequality is satisfied as long as S0 ≤ M̃0, which is always true since M0 =
∑

e∈E
∫

Ωe
u0
e(x)dx+

cV
(
S0 + I0

)
≥ cVS0. Since ∆ = −Re exp(−R̃0), the solutions are

I0,−1 = −W0,−1

(
−Re exp(−R̃0)

)
− R̃0,

and so

I∞0,−1 = W0,−1

(
−Re exp(−R̃0)

)
/τ + R̃0/τ.

Both W0,−1

(
−Re exp(−R̃0)

)
< 0. However, we can show that I∞0 > 0 and I∞−1 < 0. Thus, the

only possibility is

I∞ = W0

(
−Re exp(−R̃0)

)
/τ + R̃0/τ.

We also have access to S∞ and R∞ thanks to (4.4). Since exp(−W0(x)) = W0(x)/x, we obtain

S∞ = −η
τ
W0

(
−Re exp(−R̃0)

)
,

and

R∞ =
η

τ
W0

(
−Re exp(−R̃0)

)
+ M̃0.

We can summarize these results in the following lemma.

Lemma 4.3 (Fully symmetric case.). Assume that our model is fully symmetric, then the final

total population of infected individuals as given by Theorem 2 is independent on the vertex that is

I∞v = I∞ for each v ∈ V, and I∞ has the following closed form formula

I∞ =
W0 (−Re exp(−R0/cV))

τ
+

R0

cV τ
,

where Re and R0 are respectively the effective and basic reproductive number defined in (4.11) and

cV the cardinal of V. See Figure 3 for an illustration.
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Figure 3: Schematic visualisation (red star) of I∞ = I∞v1 = I∞v2 , resp. S∞ = S∞v1 = S∞v2 , in the (Iv1 , Iv2)

plane, resp. in the (Sv1 , Sv2)-plane, in the fully symmetric case. The asymptotic value I∞, resp. S∞, lies

at the intersection of the diagonal Iv1 = Iv2 , resp. Sv1 = Sv2 , and the implicit curve given by (4.6), resp.

(4.7).

Case of two vertices. In this simple case, it is possible to build explicit formulas to deal with

the implicit submanifold equations (4.6), (4.7), and (4.8). Let R0,vk := M0 τvk/ηvk and Re,vk :=

S0
vk
τvk/ηvk , k = 1, 2 be respectively the local to vertex vk basic and effective reproductive number.

Then,

S∞v1 = −ηv1
τv1

W

− exp (−R0,v1) Re,v1 (Re,v2)
τv1ηv2
τv2ηv1

exp
(
S∞v2 τv1/ηv1

)
(
S∞v2 τv2/ηv2

) τv1ηv2
τv2ηv1

 , (4.12)

where the Lambert W function W can be either W0 or W−1. Indeed, the argument of W being

negative, two solutions have to be considered. We obviously also have

S∞v2 = −ηv2
τv2

W

− exp (−R0,v2) Re,v2 (Re,v1)
τv2ηv1
τv1ηv2

exp
(
S∞v1 τv2/ηv2

)
(
S∞v1 τv1/ηv1

) τv2ηv1
τv1ηv2

 , (4.13)

Due to the definition of the domain of the Lambert W function, the argument has to be greater

than − exp(−1). So, the following inequality must be satisfied for S∞v2 (respectively of S∞v1 )

− exp (−R0,v1) Re,v1 (Re,v2)
τv1ηv2
τv2ηv1(

S∞v2 τv2/ηv2
) τv1ηv2
τv2ηv1 exp

(
−S∞v2 τv1/ηv1

) ≥ − exp(−1).

Solving the equality part of this inequality, we find that

S∞v2 = −ηv2
τv2

W

(
− (Re,v1)

τv2ηv1
τv1ηv2 Re,v2 exp

(
τv2ηv1
τv1ηv2

(1−R0,v1)

))
.

This equation has to be verified both for W0 and W−1. Let Σv2
0,−1 be defined by

Σv2
0,−1 := −ηv2

τv2
W0,−1 (Av2) ,
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where

Av2 = (Re,v1)
τv2ηv1
τv1ηv2 Re,v2 exp

(
τv2ηv1
τv1ηv2

(1−R0,v1)

)
(4.14)

Then, the domain of S∞v1 as a function of S∞v2 is

S∞v2 ∈
[
min

(
Σv2
−1,Σ

v2
0

)
,max

(
Σv2
−1,Σ

v2
0

)]
.

Concerning S∞v2 as a function of S∞v1 , we have

S∞v1 ∈
[
min

(
Σv1
−1,Σ

v1
0

)
,max

(
Σv1
−1,Σ

v1
0

)]
,

with

Σv1
0,−1 := −ηv1

τv1
W0,−1 (Av1) ,

where

Av1 = Re,v1 (Re,v2)
τv1ηv2
τv2ηv1 exp

(
τv1ηv2
τv2ηv1

(1−R0,v2)

)
. (4.15)

Thus,(
S∞v1 , S

∞
v2

)
∈ ΩS :=

[
min

(
Σv1
−1,Σ

v1
0

)
,max

(
Σv1
−1,Σ

v1
0

)]
×
[
min

(
Σv2
−1,Σ

v2
0

)
,max

(
Σv2
−1,Σ

v2
0

)]
.

We present on Figure 4 (left) the functions W0 and W−1 defining S∞v2 as a function of S∞v1 and the

domain ΩS for a given set of the parameters and initial conditions. We refer to Section 5 for details

regarding the numerical integration of the model and Section 6 for further numerical results on the

case of two vertices.

Actually, we can reduce the domain of validity of (4.12)-(4.13) for S∞v1 and S∞v2 . Indeed, we know

that Svk , k = 1, 2, decay with respect to time, so S∞vk < Svk . Moreover, the sum S∞v1 + S∞v2 < M0.

Thus, we have(
S∞v1 , S

∞
v2

)
∈ ωS := [min

(
Σv1
−1,Σ

v1
0

)
, S0

v1 ]× [min
(
Σv2
−1,Σ

v2
0

)
, S0

v2 ] ∩
{
S∞v1 + S∞v2 < M0

}
.

The domain ωS is drawn on Figure 4 (right).

Concerning I∞v1 and I∞v2 , we can perform the same analysis. Let

J∞v1 = −R0,v1 +
τv1ηv2
τv2ηv1

(
Re,v2 exp−τv2I

∞
v2 +τv2I∞v2

)
,

and

J∞v2 = −R0,v2 +
τv2ηv1
τv1ηv2

(
Re,v1 exp−τv1I

∞
v1 +τv1I∞v1

)
.

We obtain for k = 1, 2,

I∞vk =
1

τvk
W
(
−Re,vk exp

(
J∞vk

))
− J

∞
vk

τvk
,

still with W equal to W−1 and W0. Let ι1−1,0 and ι2−1,0 be defined by

ιv1−1,0 =
W−1,0 (−Av1)

τv1
+

τv1ηv2
τv2ηv1

(R0,v2 − 1− log (Re,v2))

τv1
, (4.16)
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Figure 4: Location of S∞v1 and S∞v2 together with the visualisation of the domains ΩS (left) and ωS (right).

The final configuration of susceptible individuals (S∞v1 , S
∞
v2

) lies on the closed curve parametrized by the two

branches of the Lambert W function (blue and red curve). We note that
(
S∞v1 , S

∞
v2

)
∈ ωS as indicated by

the red star on the right figure. Values of the parameters are d = 10−3, λ1 = λ2 = 6/10, α1 = α2 = 1/8,

τv1 = 1, τv2 = 9/10, ηv1 = 2/5, ηv2 = 2/6, and initial conditions are set to: I01 = I02 = 10−6, S1
0 = 3/4− I01 ,

S2
0 = 1/4− I01 and u0(x) = 0. The mass M0 is therefore equal to 1.

and

ιv2−1,0 =
W−1,0 (−Av2)

τv2
+

τv2ηv1
τv1ηv2

(R0,v1 − 1− log (Re,v1))

τv2
, (4.17)

with Av1 and Av2 given by (4.14) and (4.15). Then,

(I∞v1 , I∞v2 ) ∈ [min
(
ιv1−1, ι

v1
0

)
,max

(
ιv1−1, ι

v1
0

)
]× [min

(
ιv2−1, ι

v2
0

)
,max

(
ιv2−1, ι

v2
0

)
].

We can show that min
(
ιvk−1, ι

vk
0

)
< 0 for k = 1, 2. So, we can reduce this domain since I∞vk > 0. So,

we define the domain ωI

(I∞v1 , I∞v2 ) ∈ ωI := [0,max
(
ιv1−1, ι

v1
0

)
]× [0,max

(
ιv2−1, ι

v2
0

)
].

As a consequence, we have proved the following lemma.

Lemma 4.4. Case of two vertices. Assume that |V| = 2 and |E| = 1. The final total population of

infected individuals at each vertex I∞vk , k = 1, 2 can be expressed as

I∞vk =
1

τvk
W
(
−Re,vk exp

(
J∞vk

))
− J

∞
vk

τvk
,

with

J∞vk = −R0,vk +
τvkηvj
τvjηvk

(
Re,vj exp

−τvjI
∞
vj +τvjI∞vj

)
, k 6= j ∈ {1, 2} ,
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Figure 5: Location of I∞k and R∞vk , k = 1, 2, and visualisation of the domains ωI (left), and domain ωR

(right). In both cases, (I∞1 , I∞2 ) ∈ ωI and (R∞1 , R
∞
2 ) ∈ ωR are represented by a red star. Values of the

parameters and initial conditions are similar to Figure 4.

where R0,vk := M0 τvk/ηvk and Re,vk := S0
vk
τvk/ηvk , k = 1, 2. Furthermore, we have the sharp

bound

(I∞v1 , I∞v2 ) ∈ ωI := [0,max
(
ιv1−1, ι

v1
0

)
]× [0,max

(
ιv2−1, ι

v2
0

)
],

with ιvk−1,0, k = 1, 2 defined in (4.16)-(4.17). See Figure 5 for an illustration.

Remark 4.5. As the solutions R∞vk , k = 1, 2, are simply given by R∞vk = ηvkI∞vk , if we let ρvk−1,0 :=

ηιvk−1,0 then we have

(R∞v1 , R
∞
v2 ) ∈ ωR := [0,max

(
ρv1−1, ρ

v1
0

)
]× [0,max

(
ρv2−1, ρ

v2
0

)
].

We represent on Figure 5 the domain ωR.

5 A semi-implicit numerical scheme which preserves total mass

In this section, we propose a semi-implicit in time numerical scheme based on finite differences in

space which has the property to preserve the discrete total mass.

5.1 Notations

For each e ∈ E , we denote δxe > 0 the space discretization of each edge, and Je ∈ N the number

of points of the corresponding discretization. For each i = 1, · · · , Je, the space grid on each edge is

given by xi = (i − 1)δxe with `e = (Je − 1)δxe. And we let J :=
∑

e∈E Je ∈ N. Let δt > 0 be the

time discretization and denote tm = mδt for m ≥ 0.

24



For a given function u ∈ C 1,2(R+ ×G,R+), its space-time discretization is given by some sequence

of vectors

u ∼ (Um)m≥0, with Um = (Um1 , · · · , UmJ )t ∈ RJ.

For each e ∈ E , there exists an integer je ∈ N such that

ue(tm, xi) ∼ Umje+i, i = 1, · · · , Je, m ≥ 0.

We approximate the laplacian on each edge via finite differences. That is, for each e ∈ E ,

∂2
xue(tm, xi) ∼

Umje+i−1 − 2Umje+i + Umje+i+1

δx2
e

, i = 2, · · · , Je − 1, m ≥ 1,

where we have only considered the interior points of the discretized domain. Let us now precise

how we approximate the laplacian at a given vertex v ∈ V of the graph. So let v ∈ V such that

there are δv edges incident to the vertex. We locally label e ∼ v = (e1, · · · , eδv) all these incident

edges. For each v ∈ V, we introduce the map σv : {e1, · · · , eδv} → {1, · · · ,J} such that σv(ek)

corresponds to the global index of the grid discretization associated to the vertex v on edge ek.

Finally, we denote by n(σv(ek)) the global index of the nearest neighbor on edge ek to the vertex v.

Note that either n(σv(ek)) = σv(ek) − 1 or n(σv(ek)) = σv(ek) + 1. To approximate the laplacian

at a given vertex v ∈ V on edge ek, we use the following formula

∂2
xuek(tm, v) ∼

U∗,mσv(ek) − 2Umσv(ek) + Umn(σv(ek))

δx2
ek

:= Zmv,k, k = 1, · · · , δv, m ≥ 1.

The unknown U∗,mσv(ek) can be expressed by discretization of the boundary condition as follows. For

each v ∈ V with e ∼ v = (e1, · · · , eδv), we approximate the normal derivative ∂nuek(tm, v) as

∂nuek(tm, v) ∼
U∗,mσv(ek) − Umn(σv(ek))

2δxek
, k = 1, · · · , δv, m ≥ 1.

Using (2.3), and denoting Imv the time approximation of Iv(tm), we obtain the following expression

for U∗,mσv(ek)

U∗,mσv(ek) = Umn(σv(ek)) −
2δxek
dek

(
αvekU

m
σv(ek) +

δv∑
l=1

(Nv)klU
m
σv(el)

− λvekI
m
v

)
, k = 1, · · · , δv, m ≥ 1.

As a consequence, we obtain that for each k = 1, · · · , δv and m ≥ 1

Zmv,k =
2Umn(σv(ek)) − 2Umσv(ek)

δx2
ek

− 2

dekδxek

(
αvekU

m
σv(ek) +

δv∑
l=1

(Nv)klU
m
σv(el)

− λvekI
m
v

)
.

25



5.2 The semi-implicit numerical scheme

We introduce the following scheme for each m ≥ 0

Um+1
je+i

= Umje+i + deδt

(
Um+1
je+i−1 − 2Um+1

je+i
+ Um+1

je+i+1

δx2
e

)
, i = 2, · · · , Je − 1, e ∈ E ,

Um+1
σv(ek) = Umσv(ek) + dekδtZm+1

v,k , k = 1, · · · , δv, v ∈ V,

Sm+1
v = Smv − δtτvSm+1

v Imv ,

Im+1
v = Imv + δt

(
τvS

m+1
v Imv − ηvIm+1

v

)
+ δt

(
δv∑
k=1

αvekU
m+1
σv(ek) − λvI

m+1
v

)
,

Rm+1
v = Rmv + δtηvI

m+1
v ,

(5.1)

initialized with U0 ∈ RJ and some (S0
v , I

0
v , R

0
v)v∈V . One can find similar semi-implicit discretization

for the SIR part of the model in [23].

Well-posedness and positivity. We prove that the numerical scheme defined through (5.1) is

well defined and preserves positivity under some condition on δt. Indeed, we first remark that the

equation for Sm+1
v and Im+1

v in (5.1) can be used to obtain that

Sm+1
v =

Smv
1 + δtτvImv

,

Im+1
v =

Imv + δtτvI
m
v (Smv + Imv )(

1 + δt(ηv + λv)
)

(1 + δtτvImv )
+

δt

1 + δt(ηv + λv)

δv∑
l=1

αvelU
m+1
σv(el)

,

such that Zm+1
v,k can be expressed only in terms of elements of Um+1 as

Zm+1
v,k =

2Um+1
n(σv(ek)) − 2Um+1

σv(ek)

δx2
ek

− 2

dekδxek

(
αvekU

m+1
σv(ek) +

δv∑
l=1

(Nv)klU
m+1
σv(el)

− δtλvek
1 + δt(ηv + λv)

δv∑
l=1

αvelU
m+1
σv(el)

)

+
2λvek

dekδxek

(
Imv + δtτvI

m
v (Smv + Imv )(

1 + δt(ηv + λv)
)

(1 + δtτvImv )

)
.

As a consequence, there exists a matrix A ∈MJ(R) such that

(IJ +A)Um+1 = Um + Ym,

where Ym ∈ RJ is such that

Ymj =


2δtλvek
δxek

(
Imv + δtτvI

m
v (Smv + Imv )(

1 + δt(ηv + λv)
)

(1 + δtτvImv )

)
, if j = σv(ek),

0 , otherwise.

Lemma 5.1. There exists a constant C0 > 0, which only depends on the parameters of the system,

such that if 0 < δt < C0 then we have
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• IJ +A is invertible;

• if Nv is symmetric for each v ∈ V, then given V ∈ RJ with V ≥ 0, the unique solution U ∈ RJ

of (IJ +A)U = V also satisfies U ≥ 0.

Proof. Let U ∈ RJ 6= 0 be such that (IJ + A)U = 0. Without loss of generality, assume that

Uj0 = maxj=1,··· ,J Uj > 0. If there exists e ∈ E such that j0 = je + i0 for some i0 ∈ {2, · · · , Je − 1},
then we have

Uj0 +
deδt

δx2
e

(2Uj0 − Uj0−1 − Uj0+1) = 0,

which is a contradiction by definition of Uj0 . Next if j0 is such that there is v ∈ V and k ∈ {1, · · · , δv}
such that j0 = σv(ek), then we have

Uσv(ek)+
2dekδt

δx2
ek

(Uσv(ek)−Un(σv(ek))) = − 2δt

δxek

(
αvekUσv(ek) +

δv∑
l=1

(Nv)klUσv(el) −
δtλvek

1 + δt(ηv + λv)

δv∑
l=1

αvelUσv(el)

)
.

The left-hand side of the above equality is strictly positive and we claim that the right-hand side

is negative. We use the fact that (Nv)kl = −νvel,ek when k 6= l and (Nv)kk =
∑

j 6=k ν
v
ek,ej

δv∑
l=1

(Nv)klUσv(el) =

∑
j 6=k

νvek,ej

Uσv(ek) −
∑
l 6=k

νvel,ekUσv(el)

=

∑
j 6=k

νvek,ej −
∑
l 6=k

νvel,ek

Uσv(ek) +
∑
l 6=k

νvel,ek
(
Uσv(ek) − Uσv(el)

)
.

As a consequence, we deduce that

Uvk := αvekUσv(ek) +

δv∑
l=1

(Nv)klUσv(el) −
δtλvek

1 + δt(ηv + λv)

δv∑
l=1

αvelUσv(el)

=

αvek +
∑
j 6=k

νvek,ej −
∑
l 6=k

νvel,ek −
δtλvek

1 + δt(ηv + λv)

δv∑
l=1

αvel

Uσv(ek) +
∑
l 6=k

νvel,ek
(
Uσv(ek) − Uσv(el)

)
+

δtλvek
1 + δt(ηv + λv)

δv∑
l=1

αvel
(
Uσv(ek) − Uσv(el)

)
.

The last two terms are positive by definition of Uj0 = Uσv(ek) = maxj=1,··· ,J Uj > 0. Now using

Hypothesis 2.2, we have that

αvek +
∑
j 6=k

νvek,ej −
∑
l 6=k

νvel,ek > 0,

such that the term in bracket is positive provided that

δtλvek
1 + δt(ηv + λv)

δv∑
l=1

αvel < αvek +
∑
j 6=k

νvek,ej −
∑
l 6=k

νvel,ek ,
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or equivalently

δt

λvek δv∑
l=1

αvel − (ηv + λv)

αvek +
∑
j 6=k

νvek,ej −
∑
l 6=k

νvel,ek

 < αvek +
∑
j 6=k

νvek,ej −
∑
l 6=k

νvel,ek .

As a consequence, we impose that

0 < δt < min
v∈V

min
k=1,··· ,δv

αvek +
∑

j 6=k ν
v
ek,ej
−∑l 6=k ν

v
el,ek[

λvek
∑δv

l=1 α
v
el
− (ηv + λv)

(
αvek +

∑
j 6=k ν

v
ek,ej
−∑l 6=k ν

v
el,ek

)]
+

,

where it is understood that when the positive part is zero there is no condition on δt. And we have

reached a contradiction since

0 < Uσv(ek) +
2dekδt

δx2
ek

(Uσv(ek) − Un(σv(ek))) = − 2δt

δxek
Uvk < 0.

This shows that IJ +A is invertible.

Next let U ∈ RJ be the unique solution of (IJ +A)U = V with V ≥ 0. We denote by U− ∈ RJ the

vector with components given by

U−j = min(0, Uj), j = 1, · · · ,J.

Our aim is to evaluate 〈(IJ +A)U,U−〉J where 〈·, ·〉J is the following scalar product on RJ:

〈U, V 〉J :=
∑
e∈E

(
Je−1∑
i=2

Uje+iVje+i

)
+

1

2

∑
v∈V

(
δv∑
k=1

Uσv(ek)Vσv(ek)

)
.

We divide 〈(IJ +A)U,U−〉J into three parts:

〈(IJ +A)U,U−〉J = Q1 +Q2 +Q3,

where

Q1 :=
∑
e∈E

Je−1∑
i=2

(
Uje+i +

deδt

δx2
e

(2Uje+i − Uje+i−1 − Uje+i+1)

)
U−je+i,

Q2 :=
1

2

∑
v∈V

δv∑
k=1

(
Uσv(ek) +

2dekδt

δx2
ek

(
Uσv(ek) − Un(σv(ek))

))
U−σv(ek),

Q3 := δt
∑
v∈V

δv∑
k=1

1

δxek

(
αvekUσv(ek) +

δv∑
l=1

(Nv)klUσv(el) −
δtλvek

1 + δt(ηv + λv)

δv∑
l=1

αvelUσv(el)

)
U−σv(ek).

The first and second terms are handled as follows

Q1 +Q2 = 〈U,U−〉J +
∑
e∈E

deδt

δx2
e

Je−1∑
i=1

(Uje+i+1 − Uje+i)
(
U−je+i+1 − U−je+i

)
≥ 0.
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For the third term Q3, if we further assume that Nv is symmetric, then the matrix Kv = Av +Nv

is symmetric positive definite, and thus for each v ∈ V there exists some βv > 0 such that

δv∑
k=1

1

δxek

(
αvekUσv(ek) +

δv∑
l=1

(Nv)klUσv(el)

)
U−σv(ek) ≥ βv

δv∑
k=1

1

δxek
Uσv(ek)U

−
σv(ek),

while there exists ωv > 0 such that(
δv∑
k=1

λek
δxek

U−σv(ek)

)(
δv∑
l=1

αvelUσv(el)

)
≤ ωv

δv∑
k=1

1

δxek
Uσv(ek)U

−
σv(ek).

And thus, we get an estimate for Q3 of the form

Q3 ≥ δt
∑
v∈V

[(
βv −

δtωv

1 + δt(ηv + λv)

) δv∑
k=1

1

δxek
Uσv(ek)U

−
σv(ek)

]
,

which is positive provided that δt is small enough. As a consequence, we have proved that

0 ≤ 〈(IJ +A)U,U−〉J = 〈V,U−〉J ≤ 0,

which implies that U− = 0 and thus U ≥ 0.

The previous lemma demonstrates the well-posedness of our numerical scheme (5.1). It also ensures

that if we start with positive initial conditions U0 ≥ 0 and S0
v > 0, I0

v ≥ 0 with
∑

v∈V I
0
v > 0 and

R0
v ≥ 0, then for all m ≥ 1 we also have that Um ≥ 0, Smv > 0, Imv ≥ 0 and Rmv ≥ 0, provided

δt > 0 is small enough and Nv is symmetric for each v ∈ V.

Preservation of total discrete mass. For any U ∈ RJ, we define the following quantity

trapJ(U) :=
∑
e∈E

δxe

(
Je−1∑
i=2

Uje+i

)
+

1

2

∑
v∈V

δxek

(
δv∑
k=1

Uσv(ek)

)
.

The expression trapJ(U) is simply the trapezoidal rule applied to the elements of U adapted to our

graph G. From (5.1), we get that

trapJ(Um+1) = trapJ(Um) + δt
∑
e∈E

de
δxe

(
Je−1∑
i=2

(
Um+1
je+i−1 − 2Um+1

je+i
+ Um+1

je+i+1

))

+
δt

2

∑
v∈V

δxekdek

(
δv∑
k=1

Zm+1
v,k

)
.

Upon denoting Z1,m
v,k the following quantity

Z1,m
v,k :=

2Umn(σv(ek)) − 2Umσv(ek)

δx2
ek
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we get that

1

2

∑
v∈V

δxekdek

(
δv∑
k=1

Z1,m+1
v,k

)
=
∑
v∈V

dek
δxek

(
δv∑
k=1

Um+1
n(σv(ek)) − U

m+1
σv(ek)

)
.

Next, we observe that

∑
e∈E

de
δxe

(
Je−1∑
i=2

(
Um+1
je+i−1 − 2Um+1

je+i
+ Um+1

je+i+1

))
+
∑
v∈V

dek
δxek

(
δv∑
k=1

Um+1
n(σv(ek)) − U

m+1
σv(ek)

)
= 0,

where the cancellation comes from the specific structure of the discretized laplacian through finite

differences. As a consequence, we have that

trapJ(Um+1) = trapJ(Um)− δt
∑
v∈V

δv∑
k=1

(
αvekU

m+1
σv(ek) +

δv∑
l=1

(Nv)klU
m+1
σv(el)

− λvekI
m+1
v

)
.

We also have that
δv∑
k=1

δv∑
l=1

(Nv)klU
m+1
σv(el)

=

δv∑
l=1

(
δv∑
k=1

(Nv)kl

)
Um+1
σv(el)

= 0,

as the sum over the lines of Nv vanishes. And thus we get

trapJ(Um+1) = trapJ(Um)− δt
∑
v∈V

(
δv∑
k=1

αvekU
m+1
σv(ek) − λvI

m+1
v

)
.

On the other hand, from (5.1) we also have

∑
v∈V

(
Sm+1
v + Im+1

v +Rm+1
v

)
=
∑
v∈V

(Smv + Imv +Rmv ) + δt
∑
v∈V

(
δv∑
k=1

αvekU
m+1
σv(ek) − λvI

m+1
v

)
.

As a conclusion, we have proved the following result.

Lemma 5.2. Let (Um, Smv , I
m
v , R

m
v ) a solution of (5.1), then we have for each m ≥ 0

trapJ(Um+1) +
∑
v∈V

(
Sm+1
v + Im+1

v +Rm+1
v

)
= trapJ(Um) +

∑
v∈V

(Smv + Imv +Rmv ) .

This is the discrete conter part of conservation of mass for the continuous model.

Now, combining Lemma 5.1-5.2, we have proved the following theorem.

Theorem 3. There exists a constant C0 > 0, which only depends on the parameters of the

system, such that if 0 < δt < C0, then the numerical scheme (5.1) defines a unique sequence

(Um, Smv , I
m
v , R

m
v )m≥0. If we further assume that Nv is symmetric for each v ∈ V, then the nu-

merical scheme (5.1) preserves the positivity of the initial condition. Finally, for each solution of

(5.1), the total discrete mass is preserved, namely for each m ≥ 0, we have

trapJ(Um+1) +
∑
v∈V

(
Sm+1
v + Im+1

v +Rm+1
v

)
= trapJ(Um) +

∑
v∈V

(Smv + Imv +Rmv ) .
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6 Numerical results for a selection of graphs

In the present section, we illustrate our theoretical results with a collection of numerical simulations

for various types of graphs. Throughout this section the time discretization is set to δt = 0.01 while

the space discretization to δxe = 0.01 for each e ∈ E .

6.1 Case of 2 vertices and 1 edge

v1 v2
• •

We first consider the case where cV = 2 and cE = 1, where cE denotes the cardinal of E . In this

setting, we recall that our model reads as follows

∂tu(t, x) = d∂2
xu(t, x), t > 0, x ∈ (0, `),

with boundary conditions {
−d∂xu(t, 0) + α1u(t, 0) = λ1I1(t),

d∂xu(t, `) + α2u(t, `) = λ2I2(t),
t > 0,

where (Si(t), Ii(t), Ri(t)), for i = 1, 2, solution of
S′i(t) = −τiSi(t)Ii(t),
I ′i(t) = τiSi(t)Ii(t)− ηiIv(t) + αiu(t, vi)− λiIi(t),
R′i(t) = ηiIi(t),

t > 0,

where v1 = 0 and v2 = `. This system is complemented by some initial condition (u0, S0
i , I

0
i , R

0
i )

with Si > 0, I0
1 + I0

2 > 0, R0
i = 0 and u0 ≥ 0 such that the boundary condition is satisfied initially.

Finally, we normalize the total mass as follows

M0 =

∫ `

0
u0(x)dx+

2∑
i=1

(
S0
i + I0

i

)
= 1.

For the numerical simulations, we have fixed initial conditions to be of the form

u0(x) =
λ1I0

α1
exp

(
−α2x

2

2d`

)
, x ∈ [0, `],

with

(S0
1 , I

0
1 , S

0
2 , I

0
2 ) =

(
S0 − I0 −

∫ `

0
u0(x)dx, I0, 1− S0, 0

)
,

where S0 and I0 may vary. In Figures 6-7-8, S0 and I0 are fixed to (S0, I0) = (1/2, 10−6), while in

Figure 10, S0 is allowed to vary and I0 is fixed to I0 = 10−6.
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Figure 6: Profiles of the solutions (Si(t), Ii(t)) together with the total population on the edge
∫ `

0
u(t, x)dx and

the total mass of the system M(t) as the parameter λ1 is varied from 0.05 to 0.95. All other parameters are

fixed and set to d = ` = 1, λ2 = 1/10, α1 = α2 = 1/4, and τ1 = τ2 = 1 with η1 = η2 = 1/3. For the initial

condition we have (S0, I0) = (1/2, 10−6).

In Figure 6, we report the profiles of the solutions (Si(t), Ii(t)) together with the total population

on the edge
∫ `

0 u(t, x)dx and the total mass of the system M(t) as the parameter λ1 is varied

from 0.05 to 0.95, while all other parameters are being kept fixed. We observe that the dynamics

of the epidemic at the second vertex is almost independent of the parameter λ1 while it has a

significant impact on the dynamics at the first vertex. Indeed, as λ1 is increased, the maximum

of infected individuals maxt≥0 I1(t) is decreased. In the last panel of the figure, we also illustrate

the conservation of total population where the fluctuations around M0 = 1 is of order 10−12.

In the top panel of Figure 7, we present the final total populations of infected individuals and

corresponding final population of susceptible individuals as λ1 is varied. The blue curve is the

location of (I∞1 , I∞2 ) respectively (S∞1 , S∞2 ) while the dark red circles indicate the numerically

computed values. We recover the fact that λ1 has a more significant impact on the final total

populations at the first vertex than it has at the second vertex. The get a better understanding

of the intricate dynamics between the epidemic at the two vertices, we also present the relative

distance ∆T := T2 − T1 between time of maximal infection Tj in each population as λ1 is varied.

We observe that ∆T is not monotone in λ1, as it first decreases and then increases. But we also

note that ∆T < 0 for λ1 ≥ 0.1 traducing the fact that the pick of the epidemic occurs at the second

vertex before it does at the first vertex, although initially I0
2 = 0. This illustrates the effect of the

diffusion of infected individuals along the edge.

Similarly, in Figure 7, we report the final total populations of infected individuals and corresponding

final population of susceptible individuals as λ2 (second panel), α1 (third panel) and α2 (bottom

panel) are varied from 0.05 to 0.95. As expected, the final total population of infected individuals

32



0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

I∞1

I∞2

λ1

0.1 0.2 0.3 0.4 0.5 0.6
0.1

0.2

0.3

0.4

0.5

0.6

S∞1

S∞2

λ1

0 0.2 0.4 0.6 0.8 1
-10

-5

0

5

λ1

∆T

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

I∞1

I∞2 λ2

0.1 0.2 0.3 0.4 0.5 0.6
0.1

0.2

0.3

0.4

0.5

0.6

S∞1

S∞2 λ2

0 0.2 0.4 0.6 0.8 1
-5

0

5

10

λ2

∆T

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

I∞1

I∞2

α1

0.1 0.2 0.3 0.4 0.5 0.6
0.1

0.2

0.3

0.4

0.5

0.6

S∞1

S∞2
α1

0 0.2 0.4 0.6 0.8 1
-10

-8

-6

-4

-2

0

2

4

6

α1

∆T

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

I∞1

I∞2
α2

0.1 0.2 0.3 0.4 0.5 0.6
0.1

0.2

0.3

0.4

0.5

0.6

S∞1

S∞2
α2

0 0.2 0.4 0.6 0.8 1
-6

-4

-2

0

2

4

6

8

10

α2

∆T

Figure 7: Final total populations of infected individuals (left) and corresponding final population of susceptible

individuals (middle) as one parameter is varied from 0.05 to 0.95 while all parameters are fixed. The blue

curve is the location of (I∞1 , I∞2 ) respectively (S∞1 , S∞2 ) while the dark red circles indicate the numerically

computed values. Right: relative distance ∆T := T2 − T1 between time of maximal infection Tj in each

population, indicated by dark red circles, as the parameter is varied from 0.05 to 0.95. Varying parameters:

λ1 (top panel), λ2 (second panel), α1 (third panel) and α2 (bottom panel).
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Figure 8: Log-plot of the relative distance ∆T = T2 − T1 between time of maximal infection Tj in each

population Ij(t) as the diffusion coefficient d and the length of the edge ` are varied while all other parameters

are fixed to λ1 = λ2 = 1/10, α1 = α2 = 1/4, and τ1 = τ2 = 1 with η1 = η2 = 1/3. For the initial condition

we have (S0, I0) = (1/2, 10−6). We note that as d becomes smaller ∆T rapidly increases as ` increases.

at the second vertex decreases as λ2 increases while at the first vertex it varies less significantly.

As α1 increases, the final total population of infected individuals at the first vertex increases while

it decreases at the second vertex. This time the relative distance ∆T := T2 − T1 between time of

maximal infection is monotonically increasing with α1. We get the opposite monotonicity properties

as α2 is varied.

In Figure 8, we investigate the joint effect of the diffusion coefficient d and the length of the edge

` on the dynamics of the epidemic at the vertices. Here, we focus on the delay between time of

maximal infection Tj in each infected population Ij(t). As expected, when the diffusion coefficient

is really small while the length is being kept at order one, ∆T takes large value: ∆T ∼ 104 when

d = 10−3 and ` = 1. Biologically, this means that when the diffusion coefficient is really small it

takes more time for infected individuals from vertex one to reach the second vertex and start an

epidemic. We also note that at fixed `, ∆T monotonically decreases as d increases, while at fixed

d, ∆T monotonically increases as ` increases.

In Figures 9-10, we vary respectively the initial population of susceptible individuals S0 and in-

fected individuals I0. We visualize the final total populations of infected individuals and corre-

sponding final population of susceptible individuals on the parameterized surfaces (I∞1 , I∞2 , S0)

and (S∞1 , S∞2 , S0), respectively (I∞1 , I∞2 , I0) and (S∞1 , S∞2 , I0), where the level sets of the param-

eterized surface are given by the conservation of total mass (4.6). We note that (I∞1 , I∞2 ) and

(S∞1 , S∞2 ) are almost independent of I0 when I0 ≤ 10−3 with sensible variations only occurring for

larger values of I0. On the other hand, we observe that as S0 is increased the final total population

of infected individuals increases at the first vertex while it decreases at the second one. The depen-

dence of (S∞1 , S∞2 ) as a function of S0 is more subtile and is presented in Figure 11. In the same

figure, we also show the location of max Ij(t) and its amplitude. We observe a strong nonlinear

dependence with respect to S0. As S0 increases, we first see that the time at which I1(t) is maximal

increases and then decreases, while max I1(t) is monotonically increasing. The converse is observed
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Figure 9: Final total populations of infected individuals (left) and corresponding final population of susceptible

individuals (right) as the initial population of susceptible individuals I0 is varied from 10−7 to 10−1 in log-

scale while S0 = 1/2 is fixed. The dark blue curves are the location of (I∞1 , I∞2 ) respectively (S∞1 , S∞2 ) for

each value of S0, while the dark red circles indicate the numerically computed values. Each dark blue curve

is a level set of the parameterized surface given by the conservation of total mass (4.6). All other parameters

are fixed to d = ` = 1, λ1 = λ2 = 1/10, α1 = α2 = 1/4, and τ1 = τ2 = 1 with η1 = η2 = 1/3.

Figure 10: Final total populations of infected individuals (left) and corresponding final population of suscep-

tible individuals (right) as the initial population of susceptible individuals S0 is varied from 0.05 to 0.95 while

I0 = 10−6 is fixed. The dark blue curves are the location of (I∞1 , I∞2 ) respectively (S∞1 , S∞2 ) for each value

of S0, while the dark red circles indicate the numerically computed values. Each dark blue curve is a level

set of the parameterized surface given by the conservation of total mass (4.6). All other parameters are fixed

to d = ` = 1, λ1 = λ2 = 1/10, α1 = α2 = 1/4, and τ1 = τ2 = 1 with η1 = η2 = 1/3.

at the second vertex.
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Figure 11: Locations of S∞1,2 (top) and max I1,2(t) (bottom left and right) as functions of S0
1,2. Values of all

other parameters are similar to Figure 10. The initial condition is of the form (S0, 1 − S0) with S0 ∈ [0, 1]

and to each initial configuration is associated a color code from blue to red. The curve in the top right panel

is a projection on the (S∞1 , S∞2 )-plane of the parametrized a curve from Figure 10, right panel.
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6.2 Case of 3 vertices and 3 edges

v1

v2

v3

•

•

•

A

B

C

Next, we consider the case of 3 vertices and 3 edges arranged in a triangular configuration. For the

numerical simulations presented in Figure 12, we have assumed full symmetry in the parameters

that is

(`e, de) = (`, d), e ∈ E , (τv, ηv) = (τ, η), v ∈ V,
(αve , λ

v
e) = (α, λ), (e, v) ∈ E × V, νve,e′ = ν, (e, e′, v) ∈ E × E × V.

Regarding the initial condition, we have chosen

(S0
1 , I

0
1 , S

0
2 , I

0
2 , S

0
3 , I

0
3 ) =

(
S0 − I0, I0, S

0, 0, S0, 0
)

v ∈ V,

for a given (S0, I0), while for each e ∈ E we have set u0
e(x) = 0 on Ωe. Note that, we have initially

a boundary layer as our initial condition does not satisfy (2.3) for small times. We remark that

the final total populations of infected individuals and corresponding final population of susceptible

individuals belong to a surface as provided by (4.6)-(4.7) from Theorem 2.

In Figure 13, we tested a different configuration. Upon labeling by A the edge between vertices v1

and v2, B the edge between vertices v2 and v3 and C the edge between vertices v1 and v3, we have

set the parameters to

α1
A = α2

B = α3
C = 0, and α2

A = α3
B = α2

C = 1/10,

while

λ1
A = λ2

B = λ3
C = 1/20, and λ2

A = λ3
B = λ2

C = 0,

and

ν1
A,C = ν2

B,A = ν3
C,B = 0, and ν1

C,A = ν2
A,B = ν3

B,C = 1/30.

The length of each edge is fixed `e = ` = 1 and (τv, ηv) = (1, 1/7) at each vertex v ∈ V. Finally, we

have set different coefficients on each edge, namely dA = 1, dB = 10−2 and dC = 10−3. Initially,

we assume that infected individuals are only present at vertex v1 and each vertex has the same

number of susceptible individuals fixed to 1/3. Finally, for each e ∈ E we have set u0
e(x) = 0 on

Ωe. We see in Figure 13 that such a configuration can generate a second wave of infection at the

first and second vertices showing that transient dynamics can be complex with multiple bumps of

infection.
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Figure 12: Final total populations of infected individuals (left) and corresponding final population of sus-

ceptible individuals (right) as ν is varied from 0.05 to 0.95. The dark blue surfaces are the location of

(I∞1 , I∞2 , I∞3 ) respectively (S∞1 , S∞2 , S∞3 ) for each value of S0, while the dark red circles indicate the numer-

ically computed values. Parameters were set to ` = d = 1, (τ, η) = (1, 1/6), and (α, λ) = (1/8, 1/10), while

the initial condition is (S0, I0) = (1, 10−6).
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Figure 13: Time plot of infected populations in the case of 3 vertices and 3 edges in a triangular configuration

between times [0, 500] (left) and a zoom for times between [150, 400] (right). We observe a second wave of

infection at the first vertex resulting from incoming infected individuals that have successively passed through

the two other vertices. This second wave is also present at the second vertex with a slight increase of I2(t)

after the second wave has reached the first vertex. Parameters values are set in the text.

6.3 Case of 4 vertices and 3 edges

v1 v2

v3

v4

• •

•

•
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Figure 14: Location of the time of maximal infection Tmax for each vertex together with the corresponding

amplitude Ijmax as a function of τlock (left) with its projection in the (Tmax, τlock)-plane (middle) and a

zoom near the turning points (right). Other parameters are set to ` = 1, d = 0.1, η = 1/8, (α, λ, ν) =

(1/8, 1/20, 1/20), Tlock = 50 and µlock = 100 with (S0, I0, ε) = (1/4, 10−6, 10−2).

Next, we consider a star-shape graph with 4 vertices and 3 edges where one vertex is connected to

the three others. In this configuration, we assume that our parameters may vary with respect to

time, modeling locked down strategies for example [11, 16]. More precisely, we will assume that

there exists Tlock and µlock such that the transmission rates can be written as

τv(t) =

{
τ , t ∈ [0, Tlock],

τ exp(−µlock(t−Tlock))+τlock
1+exp(−µlock(t−Tlock)) , t > Tlock,

for each v ∈ V and for a given 0 < τlock < τ . We will assume that the four vertices are at equal

distance such that `e = ` for each e ∈ E and that the coefficient diffusion are equal on each edge,

de = d, e ∈ E . We further assume that at the central vertex v2 exchanges are no longer allowed.

That is, we impose that

α2
e =

{
α , t ∈ [0, Tlock],

α exp(−µlock(t− Tlock)) , t > Tlock,
e ∈ E ,

while αje = α for j 6= 2 and e ∈ E , together with

λ2
e =

{
λ , t ∈ [0, Tlock],

λ exp(−µlock(t− Tlock)) , t > Tlock,
e ∈ E ,

while λje = λ for j 6= 2 and e ∈ E , and also

ν2
e,e′ =

{
ν , t ∈ [0, Tlock],

ν exp(−µlock(t− Tlock)) , t > Tlock,
(e, e′) ∈ E × E .

Finally, we set ηv = η for all v ∈ V. Regarding the initial condition, we work with

(S0
1 , I

0
1 , S

0
2 , I

0
2 , S

0
3 , I

0
3 , S

0
4 , I

0
4 ) = (S0 − I0, I0, S0, 0, S0 − ε, 0, S0 + ε, 0) ,

for given (S0, I0, ε), while for each e ∈ E we have set u0
e(x) = 0 on Ωe.

In Figure 14, we report the location of the time of maximal infection Tmax for each vertex together

with the corresponding amplitude Ijmax = maxt≥0 Ij(t) as a function of τlock. We observe that
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Figure 15: Location of the time of maximal infection Tmax for each vertex together with the corresponding

amplitude Ijmax as a function of Tlock for two configurations of initial susceptible populations at vertices v3

and v4, with ε = 10−1 (left) and ε = 10−2 (right). Other parameters are set to ` = 1, d = 0.1, η = 1/8,

(α, λ, ν) = (1/8, 1/20, 1/20), Tlock = 50 and ηlock = 0.6 with (S0, I0) = (1/4, 10−6).

below a critical value of τlock, the time of maximal infection always occurs at t = Tmax = Tlock

traducing the fact that the locked down strategy has no effect on the dynamics of the epidemic. At

each vertex, we observe the same pattern: as τlock is decreased the corresponding Ijmax is decreasing

while Tmax is increasing up to some value of τlock where we observe a sudden turning point (see

the right panel of Figure 14). We observe that τ tplock,vk , the value of the turning point, is well

approximated (actually always bounded by below) by the value at which the effective reproduction

number of each vertex is equal to 1. Indeed we have Re,vk = 1 if and only if τ cvk =
ηvk
S0
vk

, and we find

τ cv1 ' 0.5, τ cv2 = 0.5, τ cv3 ' 0.52, and τ cv4 ' 0.48,

with our specific values of the initial condition, while we have computed

τ tplock,v1 ' 0.53, τ tplock,v2 ' 0.51, τ tplock,v3 ' 0.53, and τ tplock,v4 ' 0.49.

We also point out that when τlock is below the turning point τ tplock,vk , the corresponding value of

Ijmax is below 10−3. On the other hand, in Figure 15, we present similar results but this time

τlock is fixed and Tlock varies. Above some critical value of Tlock, I
j
max saturates to a fixed value

independent of Tlock traducing the fact that the locked down strategy has no effect on the dynamics

of the epidemic if it occurs to late in time. Depending on the initial configuration of susceptible

populations at each vertex, we observe intricate nonlinear relationships on the location of the time

of maximal infection Tmax.

6.4 Case of N + 1 vertices and N edges

v1 v2 v3 v4 vN vN+1
• • • • • •

In our final example, we have considered a network of N + 1 vertices and N edges arranged in a

lattice, in the sense that vertex vj is only connected to vertices vj−1 and vj+1 via two different edges.
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Figure 16 shows the time evolution of the infected population Ivj (t) and susceptible populations

Svj (t) at each vertex for several different initial conditions when the length and diffusion coefficient

of each edge are equal. In the first case (top panel), we assume that I0
v1 > 0 while I0

vj = 0 for

all other vertices, and observe a propagation of burst of activity among infected and susceptible

populations. In the second case (middle panel), we assume that I0
vbN/2c

> 0 while I0
vj = 0 for all

other vertices, and we see the propagation of two bursts of activity among infected and susceptible

populations going leftwards and rightwards. In the last case (bottom panel), we assume that

I0
v1 = I0

vN+1
> 0 while I0

vj = 0 for all other vertices, and we note the propagation of two waves

activity which collide at the middle vertex vbN/2c. For very small values of the diffusion coefficient

d, this burst of epidemic activity seems to travel coherently and forms a coherent traveling wave,

as can be seen in Figure 17 where we represent the location of maxt>0 Ivj (t) at each vertex. Such a

traveling wave of epidemic activity share similarities with traveling waves in excitable media such

as the propagation of electrical activity along a nerve cell [13, 14] or calcium waves [24]. When

d = 10−3, they are all aligned on the same line, where for smaller values d ∈
{

10−1, 10−2
}

the

location is a nonlinear curve. We also demonstrate that larger diffusion coefficient leads to a faster

propagation of epidemic burst across vertices. Finally, we also remark that if Idmax,1 denotes the

maximum as a function of d at the first vertex, we have Id1max,1 ≤ Id2max,1 for d1 ≤ d2 while for larger

vertices j ≥ 6 we have the reverse ordering Id1max,j ≥ Id2max,j for d1 ≤ d2.

For the numerical simulations presented in Figures 16-17, we have assumed full symmetry in the

parameters that is

(`e, de) = (`, d), e ∈ E , (τv, ηv) = (τ, η), v ∈ V,
(αve , λ

v
e) = (α, λ), (e, v) ∈ E × V, νve,e′ = ν, (e, e′, v) ∈ E × E × V.

Regarding the initial condition on the edge, we have set u0
e(x) = 0 on Ωe for each e ∈ E .
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