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EXISTENCE, UNIQUENESS AND REGULARITY FOR THE
STOCHASTIC ERICKSEN-LESLIE EQUATION

ANNE DE BOUARD, ANTOINE HOCQUET, AND ANDREAS PROHL

Abstract. We investigate existence and uniqueness for the liquid crystal flow
driven by colored noise on the two-dimensional torus. After giving a natural
uniqueness criterion, we prove local solvability in Lp-based spaces, for every p > 2.
Thanks to a bootstrap principle together with a Gyöngy-Krylov-type compactness
argument, this will ultimately lead us to prove the existence of a particular class
of global solutions which are partially regular, strong in the probabilistic sense,
and taking values in the “critical space” L2 ×H1.

Keywords— stochastic partial differential equations, liquid crystals, non-linear parabolic

equations, harmonic maps

Mathematics Subject Classification — 60H15, 76A15, 35K55, 58E20

1. Introduction

1.1. Motivations. Let T > 0 and T2 = (0, 1)2. The simplified incompressible
Ericksen-Leslie equations (EL) model the combined dynamics of a director field
u : [0, T ]× T2 → S2 (also refered to as “molecular orientation”) and a velocity field
v : [0, T ]× T2 → R2 of a thermotropic nematic liquid crystal which is contained in
the domain T2. The director field gives an averaged orientation of the constituent
molecules (“mesogens”) of the liquid crystal phase to e.g. predict the evolution of a
texture that exhibits several defects, and which could possibly annihilate or nucleate
due to a nontrivial fluid flow dynamics [28]. In this work, we include a stochastic
forcing term to the simplified Ericksen-Leslie equations to account for thermal fluc-
tuation effects [22, 5, 3]. The noise acts on the molecular orientation so that the
system is written as

dv −
(
∆v − v · ∇v − div(∇u�∇u)−∇π

)
dt = 0

divv = 0

du−
(
∆u− v · ∇u+ |∇u|2u

)
dt = νu× ◦dWt

|u|R3 = 1 a.e.

in (0, T ]× T2, (SEL)

where π is the hydrostatic pressure while ν ≥ 0 denotes a constant, and we assume
that (v(0), u(0)) is given with finite energy. In the above, W (ω, t, x) stands for
an R3-valued, spatially correlated Wiener process which models random forces on
the mesogens in the liquid crystal. The noise term appears inside a Stratonovitch
integral, which allows the process u ≡ u(ω, t, x) to be S2-valued. Throughout the
paper, we will denote by (∇u�∇u) the 2× 2 matrix whose entries are given by

(∇u�∇u)i,j = 〈 ∂u
∂xi

,
∂u

∂xj
〉R3 , for 1 ≤ i, j ≤ 2 .

Date: September 29, 2020.
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The velocity process v ≡ v(ω, t, x) is divergence-free, and is driven by a non-trivial
director field in the random Navier-Stokes equation. The system (SEL) is supposed
to model (small-scale) fluctuating rotations of elongated molecules which are em-
bedded into a liquid; a major motivation here is to study the stability of texture in
the nematic phase, and mechanisms which trigger changes in the orientation of the
director field.

The system (EL) of nonlinear PDEs (i.e., ν = 0 in (SEL)) couples the convected
harmonic map flow with the incompressible Navier-Stokes equation through the term
−div(∇u � ∇u). Its non-trivial interplay is essentially due to the latter quadratic
term, since weak solutions of the harmonic map heat equation (i.e., v ≡ 0 and
ν = 0 in (SEL)3) might exhibit a singular behavior at finite time T1 > 0. Accord-
ing to [31, 32], such a singularity manifests as concentration of the “local energy”
supx∈T2

1
2

´
Bρ(x)

(|v(t, y)|2 + |∇u(t, y)|2) dy of the regular local solution as t gets close

to T1. This local solution may however be continued to a weak solution which is
global in time, by choosing the weak limit w- limt↑T1 u(t, ·) in H1(T2,S2) as new
initial value for times t ≥ T1, and then proceeding inductively. This construction
was used by Lin, Lin and Wang [20], Lin and Wang [25], or Hong [16]. A partially
regular weak solution of (EL) was constructed, for which there exist at most finitely
many times 0 < T1 < . . . < TL <∞ such that the local energy concentrates, i.e.,

lim inf
t↑Tj

sup
x∈T2

1

2

ˆ
Bρ(x)

[
|v(t, y)|2 + |∇u(t, y)|2

]
dy ≥ ε1, ∀ ρ > 0 , (1.1)

for some geometric quantity ε1 > 0 (depending only on the domain). We also
mention the works of Lin and Liu [18, 19] (see also [34]) where (EL) is approximated
via a Ginzburg-Landau penalization term, allowing to relax the constaint |u| = 1.
In this setting, the third equation in (SEL) changes, for some positive ε, to

duε =
(

∆uε − [vε · ∇]uε − 1

ε
f(uε)

)
dt+ ν uε × ◦dW, in T2 × (0,∞) (1.2)

where f(x) = ∇F (x) and F (x) = 1
4

´
T2

∣∣|x|2 − 1
∣∣2 dx. For ν = 0, the director field

uε is more regular, which allows to construct a weak solution by a Galerkin method
through uniform bounds for the related energy [18, 19]; however, passing to the limit
ε ↓ 0 is an open problem, mostly due to the quadratic term in the first equation
in (SEL) that was discussed above; see also [19, Thm. 7.1] for the deterministic case.

Solvability of the SPDE given by a stochastic perturbation of the penalized (EL)
equation is established in [3]; the authors use the Lyapunov structure of the problem
to construct a global strong solution by continuation of a local in time mild solution,
and Itô’s formula to verify P-a.s. non-negativity of 1−|u| in space and time; a weak
martingale solution to the 3D system is constructed by a Galerkin method in [2],
and it is is shown to be the unique strong solution in the two-dimensional setting.
All these results were obtained for ε > 0 fixed.

In this work, we construct a partially regular, global solution for (SEL), which is
strong in the usual probabilistic sense, and which for any time lies in the critical
space L2(T2;R2) × H1(T2;R3), see Definition 1.1 below. In addition, we will see
that the solutions of (SEL) are unique under some integrability property which, to
the best of our knowledge, is new even in the deterministic context (it suffices to let
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ν = 0 in (SEL)). Thanks to a classical interpolation inequality (see (2.1)), the par-
tially regular solutions constructed above fulfill (correspondingly) the integrability
condition (1.16), which implies in turn that these solutions are unique in the class
described in Theorem 1.2.

From the point of view of stochastic analysis, the strategy employed to prove our
main existence theorem (i.e. Theorem 1.2 below) benefits from the arguments of
the second author’s previous contribution [15]. While some of the key ideas (e.g.
local energy estimates and bootstrap) may appear to be directly adapted from the
proof of Theorem 2 in [15], we point out that the presence of a velocity component
requires to face a significant amount of hurdles, due to two basic facts. First, the
local energy step requires to test (SEL) formally against a localization function of
the form 1B(x,ρ), which fails to be divergence-free in general. This in turn requires a
careful analysis of the “pressure” term, which will be carried out in Section 4.2. This
particular pitfall is also responsible for increasing the complexity of the bootstrap
argument done in Section 5.3, in comparison with that of the stochastic harmonic
map flow. Second, taking the limit in the equation as the mollification of the data
(v(0), u(0), ψ) is removed requires a calculation trick which unveils additional can-
cellations between the nonlinearities associated with two different solutions. To
the best of our knowledge, this observation (summarized succinctly in the formula
(6.17)) is new in this context. The resulting convergence which is stated in Corol-
lary 6.1 is here particularly emphasized, which also has the merit to fill a gap in
[15] concerning the uniform integrability property (6.24) (the counterpart for the
stochastic harmonic map flow is obtained by ignoring the velocity).

An interesting extension of the model (SEL) could include an additive noise term
dVt in the right hand side of the velocity equation. In fact if V is a divergence-
free, L2(T2;R2)-Wiener process, it is easy to convince oneself that, modulo some
notational difficulties, the proofs below could be carried out mutatis mutandis. Since
the paper is already rather technical, we here stuck to (SEL) and leave the proof
of such an extension to the reader. We nevertheless point out that, due to the
important scale differences between the velocity and the molecular orientation, our
model (SEL) is physically relevant, as for instance discussed in [22]. Similarly, it
should be possible to deal with more general domains and boundary conditions, but
we chose to restrict ourselves to the torus for simplicity.

After completing the manuscript, we were told about the existence of [4], which
deals with local existence and uniqueness of strong solutions to equations (SEL)
with in addition a (multiplicative) correlated noise in the Navier-Stokes equation,
using arguments similar to those of Section 3. However, although the equation in
[4] is more general than (SEL), our results go further in the analysis, since we have
a better control on the bubbling time (see Section 6.3), and we are able to construct
a unique global weak solution.

Organization of the paper. Section 1.2 introduces the used notations, while
in Section 1.3 we define two different notions of solution and provide our main
solvability results (theorems 1.1 and 1.2). For the reader’s convenience, in Section
1.4 we will explain the main ideas in the proof of Theorem 1.2 and provide a “sketch
of proof”. The proof of Theorem 1.1 will be given in Section 2. Section 3 shows local
solvability for (SEL), using a fixed point argument in the case where the data are
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“subcritical”. In Section 4, we derive a priori estimates, while a bootstrap principle
will be shown in Section 5. The proof of Theorem 1.2 will be addressed in Section 6.
Finally, computational details related to Itô-Stratonovitch corrections of the form
(1.10) will be given in Appendix A.

1.2. Notation. Throughout the paper the symbol T ∈ (0,∞) refers to a fixed,
deterministic time horizon. If u, v are measurable maps, the notation “u × w”
refers to the pointwise vector product, namely for each i ∈ {1, 2, 3} ' Z/3Z we let
(u× w)i := ui+1wi+2 − ui+2wi+1.

For p ∈ [1,∞], we will denote by Lp the usual Lebesgue spaces. We will make use
of the Sobolev-Slobodeckij spaces Wα,p defined as usual for α ≥ 0 and by duality

as Wα,p = (W−α, p
p−1 )∗ whenever p ∈ (1,∞] and α < 0. For notational simplicity, we

also denote Hα := Wα,2, for α ∈ R. Throughout the paper, we denote by T2 ≡ (0, 1)2

the two-dimensional torus, and for d ≥ 1 the notations

Lp(T2;Rd), Wα,p(T2;Rd), Hα(T2;Rd) ,

will be used as shorthands for the spaces Lpper(R2;Rd), Wα,p
per (R2;Rd), Hα

per(R2;Rd),

consisting of 1-periodic elements f : R2 → Rd that belong to the corresponding local
Sobolev space (endowed with the appropriate topology). For any square-integrable
f, g : T2 → Rd, we denote

〈f, g〉 :=

ˆ
T2

f(x) · g(x)dx ≡
∑d

i=1

ˆ
(0,1)2

f i(x)gi(x)dx,

and we denote by the same bracket the bilinear mapping

〈·, ·〉 : (Wα,p(T2;Rd))∗ ×Wα,p(T2;Rd) −→ R, (f, g) 7−→ 〈f, g〉 := f(g).

Given a Banach space E, the space of continuous paths u : [0, T ] → E, endowed
with the supremum norm will be denoted by C(0, T ;E). If p ∈ [1,∞) we similarly
denote Lp(0, T ;E) the space of Bochner p-integrable functions with values in E.

Following [33], we introduce the linear space

V := {f ∈ C∞(T2;R2), divf = 0} .

For p ∈ (1,∞] and α ∈ R, we denote by Wα,p the completion of V with respect
to the norm of Wα,p(T2;R2), and we further let Hα := Wα,2. For α = 0 we will
also use the notation Lp := W0,p. Similarly, and in order to distinguish between
the velocity component v and the molecular orientation u, we adopt the notations
Wα,p := Wα,p(T2;R3), Hα := Wα,2(T2;R3), and Lp := Lp(T2;R3).

Given a two-dimensional vector field f ∈ L2(T2;R2), we denote by Pf its linear
projection onto the space L2 and the same notation is used for its unique extension
as a linear map P : Wα,p(T2;R2) → Wα,p for every α ∈ R and p ∈ (1,∞]. For
convenience, note that Pf is explicitly given on the torus by the formula

P̂f(k) =

(
id− kkT

k2
1 + k2

2

)
f̂(k) , k ≡ (k1, k2) ∈ Z2 , (1.3)

where f̂(k) :=
´
T2 f(x) exp(2iπk · x)dx denotes the spatial Fourier Transform, and

we further recall that P is continuous (see for instance [23]).



STOCHASTIC ERICKSEN-LESLIE EQUATION 5

When p ∈ (1,∞] we further denote by A : D(A) ⊂ W−1,p → W−1,p the Stokes
operator, that is the operator defined as

Av = −P∆v, for v ∈ D(A) := W1,p .

If in addition I denotes a fixed time-interval we define the Banach spaces

V α
I := C(I;Hα) ∩ L2(I;Hα+1), and U α

I := C(I; Hα) ∩ L2(I; Hα+1). (1.4)

The notation “v ∈ V α
loc;I” means that v belongs to V α

J for every compact interval J ⊂
I. Whenever I = [0, T ] for some deterministic T > 0, we also use the abbreviation
V α
T := V α

[0,T ]. We will use similar notations for U .

Given a Banach space B, the set of random variables on a probability space
(Ω,A,P) (i.e. measurable maps from Ω→ B w.r.t. A) will be denoted by L0(Ω;B).
If 0 ≤ τ1 < τ2 ≤ T are stopping times with respect to some filtration on Ω, we use
the notation

v ∈ L0(Ω; V α
loc;[τ1,τ2))

if and only if v(· ∧ σ) ∈ L0(Ω; V α
[τ1,T ]) for every stopping time τ1 ≤ σ < τ2, and we

define the space U α
loc;[τ1,τ2) in a similar fashion. Similarly, if z : Ω × [0, T ] → X is a

stochastic process with values in some Banach space X, τ > 0 is a stopping time,
and q ∈ [1,∞], we write z ∈ Lq(Ω;C([0, τ);X)) to indicate that the stopped process
z(· ∧ σ) belongs to Lq(Ω;C(0, T ;X)) for any stopping time σ < τ.

Given a Hilbert space K, we denote by L2(L2, K) the class of Hilbert-Schmidt
linear maps Θ : L2 → K, i.e. such that

|Θ|2L2(L2,K) :=
∑
l∈N

|Θfl|2K <∞ ,

where in the sequel (fl)l∈N is a given orthonormal basis of the Hilbert space L2(T2;R).
Similarly, given a Banach space Y, we denote by γ(Y ) the space of γ-radonifying
operators from L2 to Y, namely Θ ∈ γ(Y ) if and only if

|Θ|2γ(Y ) :=

ˆ
Ω̃

∣∣∣∣∣∑
l∈N

γl(ω̃)Θfl

∣∣∣∣∣
2

Y

P̂(dω̂) <∞ ,

for every independent, identically distributed normal family (γl)l∈N on some proba-

bility space (Ω̂, Â, P̂).

1.3. Assumption on the noise and main results. Before we introduce an appro-
priate notion of solution for (SEL), we need to make some assumptions on the noise
term. In what follows, we will denote by (Ω,A,P, (Ft)t∈[0,T ]) a filtered probability
space satisfying the usual assumptions.

Assumption 1.1. Assume that we are given ψ ∈ L2(L2, H1), and let W : Ω ×
[0, T ]→ H1 be the (Ft)-adapted Wiener process given by the infinite series

W (ω, t, x) =
∑
l∈N

Bl(ω, t)ψfl(x) , (1.5)

where (fl)l∈N denotes a fixed complete orthonormal system for the Hilbert space
L2(T2;R), while (Bl)l∈N is a given family of independent and identically distributed
Brownian motions in R3.
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In the sequel, we will make use of the notation

ψl := ψfl ∈ L2(T2;R), (1.6)

while for j = 1, 2, 3, we set

ψj
l := ψlej ∈ L2, (1.7)

where

(e1, e2, e3) is the canonical basis of R3. (1.8)

Note that Assumption 1.1 leads to the following expression for the covariance of W :

E [〈W (t), a〉〈W (s), b〉] = min(t, s)
3∑

i,j=1

〈ψ∗ai, ψ∗bj〉L2(T2;R), (1.9)

for all a, b ∈ L2, and every (s, t) ∈ [0, T ]2.
In order to define a solution (v, u) of (SEL), it is convenient to switch to an Itô

equation. For Φ ∈ C1(L2; L2(L2, L2)), we have the Itô-Stratonovitch conversion
formula:ˆ

Φ(u) ◦ dW =

ˆ
Φ(u)dW +

1

2

ˆ ∑
l∈N

3∑
j=1

[Φ′(u) · (u×ψj
l )
]
(ψj

l )dt, (1.10)

where ψj
l is as in (1.7) and here “◦” denotes the usual Stratonovitch product. In

particular, an immediate computation using (A.1) gives the formula
´
u × ◦dW =´

u× dW +
´
Fψudt where we denote

Fψ(x) := −
∑
l∈N

ψl(x)2, x ∈ T2. (1.11)

Definition 1.1. Let P be a filtered probability space (Ω,A,P, (Ft)t∈[0,T ]), and de-
note by W (ω, t, x) an L2-Wiener process whose covariance verifies (1.9) for some
ψ ∈ L2(L2, L2).

We will call (v, u) a solution with respect to (P,W ) if the following properties
are fulfilled:

(i) (v, u) : Ω × [0, T ] → H−1 × L2 is a progressively measurable process with
respect to the filtration (Ft)t∈[0,T ], such that in addition

v ∈ L0(Ω; V −1
loc;[τ1,τ2)), u ∈ L0(Ω; U 0

loc;[τ1,τ2)),

(in particular we have divv = 0 by definition of the spaces V −1 and H−1);
(ii) the following constraint holds on u:

|u(ω, t, x)| = 1 for almost every (ω, t, x) ∈ Ω× [0, T ]× T2; (1.12)

(iii) we have

E
[ˆ T

0

(
|v · ∇v|2H−2 + |∇u�∇u|2H−1 + |∆u+ u|∇u|2|2H−1

)
ds

]
<∞ ; (1.13)

(iv) for every t ∈ [0, T ], P-a.s.:

v(t)− v(0) +

ˆ t

0

[
Av + P(v · ∇v + div∇u�∇u)

]
ds = 0 (1.14)
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and

u(t)− u(0)−
ˆ t

0

[
∆u+ |∇u|2u− v · ∇u+ Fψu

]
ds =

ˆ t

0

u× dW (s) , (1.15)

where (1.14) is to be understood in the Bochner sense in H−2, while the
integrals in (1.15) are taken in the Bochner sense (respectively Itô sense), in
H−1.

Furthermore, let τ1 and τ2 be two stopping times with respect to (Ft)t∈[0,T ] such
that P-as 0 ≤ τ1 < τ2 ≤ T. We will say that (v, u) is a local solution on [τ1, τ2),
provided (i), (ii) and (iii) hold, but (iv) is replaced by the relations (1.14)-(1.15) for
t ∈ [τ1(ω), τ2(ω)), for P-almost every ω ∈ Ω.

Having this notion at hand, we are now in position to state our first main theorem.
The following result is concerned with uniqueness of weak solutions, conditionally to
appropriate moment bounds. As already alluded to, the corresponding uniqueness
criterion will be crucially used in the existence part. It is however of interest in its
own right, whether or not stochasticity.

Theorem 1.1 (Uniqueness). Fix a stochastic basis (P,W ) as in Definition 1.1.
Let (vj, uj), j = 1, 2, be solutions with respect to (P,W ), starting from the same
initial datum (v(0), u(0)) ∈ H−1 × L2. Assume that ψ ∈ L2(L2, L2) and suppose
furthermore that for j = 1, 2, it holds

vj ∈ L4(Ω;L4(0, T ;L4)), uj ∈ L4(Ω;L4(0, T ; W1,4)) . (1.16)

Then, we have (v1, u1) = (v2, u2).

Before we state our second result, we need another (stronger) notion of solution.

Definition 1.2 (strong solution). Fix a stochastic basis (P,W ),P = (Ω,A, (Ft)t∈[0,T ]),
and let τ1 and τ2 be two stopping times with respect to (Ft)t∈[0,T ] such that 0 ≤
τ1 < τ2 ≤ T, P-a.s. We say that (v, u) is a strong solution of (SEL) on [τ1, τ2) if the
following holds

(i) (v, u) is a local solution on [τ1, τ2) with respect to (P,W ), in the sense of
Definition 1.1;

(ii) it has the additional regularity

v ∈ L0(Ω; V 0
loc;[τ1,τ2)), u ∈ L0(Ω; U 1

loc;[τ1,τ2)) .

We are interested in a special class of local strong solutions, which is uniquely
caracterized by the “forward bubbling” property. In [15], these were referred to as
“Struwe solutions”, in analogy with the deterministic theory in [31].

Theorem 1.2 (Existence and uniqueness of strong solutions). Let (v0, u0) ∈ L2×H1,
ψ ∈ L2(L2, H1), and assume that |u0|R3 = 1 almost everywhere. Fix a stochastic
basis (P,W ), where P = (Ω,A,P) and (W,ψ) satisfies Assumption 1.1.

There exists a solution (v, u) of (SEL), starting from the initial datum (v0, u0),
and a random variable J ∈ L0(Ω;N) such that the following properties hold:

(P1) There is a sequence of stopping times 0 ≡ τ0 < τ1 < · · · < τJ ≡ T with the
property that for each j ∈ {0, . . . , J − 1},

(v, u)|[τj ,τj+1) is supported in V 0
loc,[τj ,τj+1) ×U 1

loc,[τj ,τj+1),

and has moments of all order in this space. In particular the solution is
strong on each subinterval [τj, τj+1) for j ∈ {0, . . . , J − 1}.
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(P2) For each j ∈ {0, . . . , J − 1}, the random variable (v(τj+1), u(τj+1)) belongs
to the space L2(Ω,L2 ×H1). Moreover, for every sequence of stopping times
{σkj , k ∈ N} such that P(σkj ↗ τj+1) = 1, we have

(v(σkj ), u(σkj )) −→
k→∞

(v(τj+1), u(τj+1)) weakly in L2(Ω;L2 ×H1) .

(P3) The solution (v, u) may become singular at t = τj+1 − 0, for each j ∈
{0, . . . , J − 1}. Namely, we have the alternative that either P(J = 1) = 1, or
P(J > 1) > 0 in which case the solution “bubbles forward” in the following
sense:

inf
ρ>0

sup
t↗τj+1

sup
x∈T2

ˆ
B(x,ρ)

(|v(t, y)|2 + |∇u(t, y)|2)dy > 0 ,

P-a.s. on {τj+1 < T}. (1.17)

(P4) The above solution is unique in the class described by (P1),(P2) and (P3).

1.4. Strategy of the proof of Theorem 1.2. The existence part generalizes ar-
guments for the deterministic case from [20, 16, 25] to the SPDE (SEL), and benefits
from [15]. As it turns out, solutions are arbitrarily regular in the space-like variable
(as permitted by the data), as could be easily seen by a higher order generaliza-
tion of Theorem 5.1. As this fact does not play any specific role in the proof of
Theorem 1.2, we will restrict ourselves to show that, under the assumptions that
(v(0), u(0)) ∈ H2 × H3 and ψ ∈ L2(L2, H3), the full trajectory takes values in
H2×H3, up to t = ζ(ρ), where ζ(ρ) denotes the concentration time defined in (5.1)
for any fixed ρ > 0. This property will be obtained as a consequence of the bootstrap
argument shown in Section 5.

Before proving Theorem 1.2, we will first need local solvability results in the
“subcritical case” i.e. when

(v(0), u(0)) ∈ Lp ×W1,p, and ψ ∈ γ(Wα,p) with α > 2/p,

for some p > 2. For ψ ∈ L2(L2, Hα), α being sufficiently large, (v(0), u(0)) ∈
Ws−1,p×Ws,p with s ∈ [1, 3] and p > 2, we show that the Cauchy problem for (SEL)
is locally well-posed, i.e. up to some stopping time τ s,p, and that the trajectories of
(v, u) belong to C([0, τ s,p);Ws−1,p ×Ws,p). The proof of these facts will be done in
Section 3 via a fixed point argument and for an appropriate mild formulation for
(SEL).

The proof of Theorem 1.2 will be addressed progressively in sections 4, 5 and 6.
These steps are summarized below.

Step 1: A priori estimates. In a first step, we shall collect a priori estimates on the
“energy” E(t) := 1

2
(|v(t)|2L2 + |∇u(t)|2L2) associated to a strong solution (v, u). To

prove this, we use the fact that the quantity

1

2

(
|v(t)|2L2 + |∇u(t)|2L2

)
+

ˆ t

0

(|∇v(s)|2L2 + |∆u+ u|∇u|2|2L2(s))ds , (1.18)

modulo correction by a suitable semi-martingale term, is preserved along the flow.
In particular, the energy estimate comes with an L2

t (L
2
x) estimate on the “tension”

T := ∆u+ u|∇u|2 . (1.19)
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We will also derive “local estimates” for this energy, where the locality is to be under-
stood in the spatial sense, i.e. on small balls B(x, ρ) for x ∈ T2 and ρ > 0. These esti-
mate will also prove useful in Section 6.3, when we will show that the concentration
time is non-trivial for a limit of approximate solutions, i.e. P(ζ(lim vn, limun; ρ) =
0) = 0.

Step 2: Bootstrap. In a second step, we will prove a priori estimates that are local in
time, i.e. up to some energy-concentration time ζ(v, u; ρ) > 0. Given a local solution
(v, u, τ) and ρ > 0, the energy-concentration time ζ(v, u; ρ) is defined as the first
time t ∈ [0, τ) such that there exists x ∈ T2 for which the local energy

ε(t, ρ, x) :=
1

2

ˆ
B(x,ρ)

(|v(t, y)|2 + |∇u(t, y)|2)dy

attains a threshold ε1 > 0 (the exact value of ε1 is related to the optimal constant in
(1.20)). The core of the argument is then to show that, for this value of ε1 and for
every t ≤ ζ(v, u; ρ), the L2(0, T ; H2)-norm of u(·∧ζ) has moments of arbitrary order,
estimated above by a constant that only depends on E(0), |ψ|L2(L2,H1) and ρ. This
fact will follow from the very definition of ζ(v, u; ρ), and the following inequality due
to Struwe [31]: if u ∈ L2(0, T ; H2), it holds

¨
[0,T ]×T2

|∇u|4dydt ≤ µ1

 sup
t∈[0,T ]
x∈T2

ˆ

y∈B(x,ρ)

|∇u(t, y)|2dy

 ¨

[0,T ]×T2

(
|∆u|2+

|∇u|2

ρ2

)
dydt

(1.20)
The L2

t (H
2
x)-estimate then follows rather easily from (1.18), (1.20) and the fact that,

since T ⊥ u (as can be seen from the norm constraint |u|R3 = 1 a.e.), it holds

|T |2R3 = T ·∆u = |∆u|2R3 − |∇u|4R3×2 .

Together with the estimate on the energy E, this will allow us to obtain suitable
bounds in the “critical space” V 0

T ×U 1
T , locally in time.

Step 3: Construction of the local strong solution by approximation. We will approx-
imate the equation (SEL) by considering the local solution (vn, un, τn) to a problem
with smooth data (vn(0), un(0);ψn). The existence and uniqueness of such local so-
lutions for each n ∈ N is ensured by the previous local solvability results. By the
above steps, for any δ < 1, the image laws of the sequence {(vn, un), n ∈ N} forms
a weakly compact set in the space V δ−1

loc × U δ
loc and therefore there exists – up to

a change of probability space in the use of the Skorohod embedding theorem – a
limiting process (v̂, û) which will be shown to provide a local strong solution. This
solution is regular enough to satisfy the assumptions of the uniqueness theorem, and
therefore, any jointly converging subsequence ((vn` , un`), (vm` , um`)) should, in the
limit, be supported on the diagonal of V 0

loc×U 1
loc. By Gyöngy-Krylov Theorem, this

will show that the solution is in fact probabilistically strong, up to the singular time
ζ(v, u; ρ) = limn→∞ ζ(vn, un; ρ). The local solution (v, u; τ) will be then constructed
by letting τ1 := limρ→0 ζ(v, u; ρ), and then by induction on each [τj, τj+1), by taking
as initial datum the weak limit of (v, u) as t↗ τj (see the details in Section 6.4).
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2. Proof of uniqueness

2.1. Main interpolation inequality. The following well-known interpolation in-
equality will be crucial in the sequel: there exists a constant µ0 > 0, such that for
every φ ∈ H1,

ˆ
T2

|φ|4dx ≤ µ0

(ˆ
T2

|φ|2dx

)(ˆ
T2

[
|φ|2 + |∇φ|2

]
dx

)
. (2.1)

For a proof, we refer e.g. to [24, II Thm. 2.2].

2.2. Proof of Theorem 1.1. Let (v1, u1), (v2, u2) be two solutions with respect
to (P,W ), starting from the same initial datum. Denote further by g = v1 − v2,
f = u1 − u2, and U = u1 + u2. We have the system

dg + Agdt = P
[
− g · ∇v2 − v1 · ∇g − div(∇f �∇u2 +∇u1 �∇f)

]
dt

df −∆fdt =
[
f |∇u1|2 + u2∇f · ∇U − g · ∇u1 − v2 · ∇f

]
dt+ f × ◦dW

g(0) = f(0) = 0 .

Our strategy is to apply the Itô Formula [27, Theorem 4.2.5], for a suitable “Gelfand
triple” V ⊂ H ⊂ V ∗.

By Definition 1.1, the stochastic processes

Y := P
[
− g · ∇v2 − v1 · ∇g − div(∇f �∇u2 +∇u1 �∇f)

]
Ỹ := f |∇u1|2 + u2∇f · ∇U − g · ∇u1 − v2 · ∇f
Z := u× (ψ(·)) ,

are progressively measurable. Furthermore, using (1.13) we see that Z ∈ L2(Ω ×
[0, T ]; L2(L2, L2)), and thus

(0, Z) ∈ L2(Ω× [0, T ]; L2(U ; L2)), where U = {0} × L2 .

Next, observe that the shifted operator

Λ := I + A, (2.2)

defines a continuous isomorphism between H1 and H−1 (as is classical, see e.g. [12])
and introduce the spaces H := H−1 × L2, V := L2 ×H1, where H is endowed with
the norm

|(g, f)|H := |Λ−1/2g|2L2 + |f |2L2 . (2.3)

With this definition, the Riesz isomorphism i : H → H∗ allows for the identification
V ∗ ' H−2 × H−1. As a consequence, using (1.16), it is easily seen that (Y, Ỹ ) ∈
L2(Ω × [0, T ];V ∗) and therefore we have all in hand to apply [27, Theorem 4.2.5].
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This yields the relation:

1

2
(|Λ−1/2g(t)|2L2 + |f(t)|2L2) +

ˆ t

0

(|g|2L2 + |∇f |2L2)ds

=

¨
[0,t]×T2

[
Λ−1/2(−g · ∇v2) · Λ−1/2g − Λ−1/2(v1 · ∇g) · Λ−1/2g

+ (∇f �∇u2) · ∇Λ−1g + (∇u1 �∇f) · ∇Λ−1g

+ |f |2|∇u1|2 + u2 · f(∇f · ∇U)− f · (g · ∇u1)− f · (v2 · ∇f)
]
dxds

=
∑8

γ=1
Iγ ,

and we now evaluate each term separately. Concerning the first term, we have using
that divg = 0

I1 =

¨
[0,t]×T2

(
Λ−1/2∂i(g

ivj2)
)
(Λ−1/2gj)dxds

≤ C

ˆ t

0

|∂i(giv2)|W−1,4/3|g|W−1,4ds

≤ C

ˆ t

0

|g|L2|v2|L4|g|W−1,4ds .

(2.4)

Now, observe that an immediate generalization of (2.1) yields the existence of µ̃0 > 0
such that for any φ ∈ W−1,4 :

|φ|2W−1,4 ≤ µ̃0|φ|H−1 |φ|L2 . (2.5)

Whence, making use of Young inequality in (2.4) together with (2.5), one obtains

I1 ≤ ε

ˆ t

0

|g|2L2ds+ C(ε, µ̃0)

ˆ t

0

|v2|2L4|g|H−1|g|L2ds

≤ 2ε

ˆ t

0

|g|2L2ds+ C̃(ε, µ̃0)

ˆ t

0

|v2|4L4|g|2H−1ds ,

for any ε > 0. Similar computations give for the second term

I2 = −
¨

[0,t]×T2

(
Λ−1/2∂i(v

i
1g)
)
(Λ−1/2g)dxds

≤ C

ˆ t

0

|v1|L4|g|L2|g|W−1,4ds

≤ ε

ˆ t

0

|g|2L2ds+ C(ε, µ̃0)

ˆ t

0

|v1|2L4|g|H−1|g|L2ds .

≤ 2ε

ˆ t

0

|g|2L2ds+ C̃(ε, µ̃0)

ˆ t

0

|v1|4L4|g|2H−1ds ,
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ε > 0 being arbitrary. For the third term, we have using (2.5):

I3 ≤
ˆ t

0

|∇f |L2|∇u2|L4 |∇Λ−1g|L4ds

≤ ε

ˆ t

0

|∇f |2L2ds+ C(ε)

ˆ t

0

|∇u2|2L4|g|2W−1,4ds

≤ ε

ˆ t

0

|∇f |2L2ds+ C(ε, µ̃0)

ˆ t

0

|∇u2|2L4|g|H−1|g|L2ds

≤ ε

ˆ t

0

(|∇f |2L2 + |g|2)ds+ C̃(ε, µ̃0)

ˆ t

0

|∇u2|4L4|g|2H−1ds ,

for any ε > 0, and the same computations as above yield for the fourth term:

I4 ≤ C

ˆ t

0

|∇u1|L4|∇f |L2|g|W−1,4ds

≤ ε

ˆ t

0

|∇f |2L2ds+ C(ε, µ̃0)

ˆ t

0

|∇u1|2L4|g|H−1|g|L2ds

≤ ε

ˆ t

0

(|∇f |2L2 + |g|2)ds+ C(ε, µ̃0)

ˆ t

0

|∇u1|4L4|g|2H−1ds .

Next, using this time (2.1), we have for any ε > 0 :

I5 ≤
ˆ t

0

|f |2L4|∇u1|2L4ds

≤ µ0

ˆ t

0

|f |L2(|f |L2 + |∇f |L2)|∇u1|2L4ds

≤ ε

ˆ t

0

|∇f |2L2ds+ C(ε, µ0)

ˆ t

0

(|∇u1|2L4 + |∇u1|4L4)|f |2L2ds

≤ ε

ˆ t

0

|∇f |2L2ds+ C̃(ε, µ0)

ˆ t

0

(1 + |∇u1|4L4)|f |2L2ds

Similarly, using |u2|R3 = 1 and (2.1), we have

I6 ≤
ˆ t

0

|f |L4|∇f |L2|∇U |L4ds

≤ ε

ˆ t

0

|∇f |2L2ds+ C(ε)

ˆ t

0

|f |2L4|∇U |2L4

≤ ε

ˆ t

0

|∇f |2L2ds+ C(ε, µ0)

ˆ t

0

|f |L2(|f |L2 + |∇f |L2)|∇U |2L4

≤ 2ε

ˆ t

0

|∇f |2L2ds+ C̃(ε, µ0)

ˆ t

0

(1 + |∇U |4L4)|f |2L2ds
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while

I7 ≤
ˆ t

0

|f |L4|g|L2|∇u1|L4ds

≤ ε

ˆ t

0

|g|2L2ds+ C(ε, µ0)

ˆ t

0

|f |L2(|f |L2 + |∇f |L2)|∇u1|2L4ds

≤ ε

ˆ t

0

(|g|2L2 + |∇f |2L2)ds+ C̃(ε, µ0)

ˆ t

0

(1 + |∇u1|4L4)|f |2L2ds

Using again (2.1) with Hölder and Young Inequalities, we have finally

I8 ≤
ˆ t

0

|f |L4 |v2|L4|∇f |L2ds

≤ ε

ˆ t

0

|∇f |2L2ds+ C(ε)µ0

ˆ t

0

|f |L2(|f |L2 + |∇f |L2)|v2|2L4ds

≤ 2ε

ˆ t

0

|∇f |2L2ds+ C(ε, µ0)

ˆ t

0

(1 + |v2|4L4)|f |2L2ds .

Conclusion. Since |Λ−1/2g|L2 and |g|H−1 are equivalent quantities, we see that pro-
vided ε > 0 is chosen sufficiently small, the summation of all the above contributions
leads to the relation

Ψ(t) ≤ C

ˆ t

0

∑
j=1,2

(1 + |vj(s)|4L4 + |∇uj(s)|4L4)Ψ(s)ds

where Ψ(t) := sups∈[0,t]
1
2
(|Λ−1/2g(s)|2L2 +|f(s)|2H1) and C > 0 is a universal constant.

Applying Gronwall Lemma for P-a.e. ω ∈ Ω, we find that f = g = 0. This ends the
proof of Theorem 1.1. �

3. Local solvability

This section is devoted to the proof of existence and uniqueness of local solutions.
In order to express this as a fixed point problem, it will be convenient to switch to
a mild form for (SEL). As seen for instance in [10, Section 6], mild solutions that
are sufficiently regular (in a sense made precise below) are also strong solutions in
the usual sense.

We shall say that a triplet (v, u; τ) is a local mild solution to (SEL) if τ > 0
denotes a stopping time, such that for some p > 2, the following holds:

(M1) for any stopping time 0 < ζ < τ the couple (v(·∧ ζ), u(·∧ ζ)) is progressively
measurable as a process with values in Lp ×W1,p;

(M2) P-almost surely on {t < τ}:

v(t) = e−tAv0 +

ˆ t

0

eA(s−t)P(−v · ∇v − div(∇u�∇u))ds (3.1)

u(t) = et∆u0 +

ˆ t

0

e∆(t−s)(u|∇u|2 − v · ∇u+ Fψu)ds+

ˆ t

0

e∆(t−s) [u× dW ] , (3.2)

where the above correspond to Bochner integral in Lp, respectively in W1,p,
and Itô integral in W1,p.

As will be seen below, the condition (M1) ensures the summability of the integrals
in (M2).

Our main result in this section is the following.
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Theorem 3.1. Let p ∈ (2,∞), s ∈ [1, 3], fix α > 2/p, and q > 2/α. For every
ψ ∈ γ(W s+α,p) and (v0, u0) ∈ Ws−1,p ×Ws,p with |u0|R3 = 1 almost everywhere,
there exists a local mild solution (v, u; τ s,p) to (SEL), unique in the space

Lq
(
Ω;C

(
[0, τ s,p);Ws−1,p

))
× Lq

(
Ω;C

(
[0, τ s,p); Ws,p

))
.

The existence time τ s,p > 0 is maximal in the sense that

on {τ s,p < T}: lim sup
t→τs,p

max (|v(t)|W s−1,p , |u(t)|W s,p) =∞.

Moreover, if p > 2 and s ≥ 2, then u satisfies the spherical constraint (1.12) for
a.e. (ω, t, x) ∈ Ω× [0, T ]× T2 such that 0 ≤ t < τ p,s(ω).

Remark 3.1. In particular, by Theorem 3.1 if p > 2 and s ≥ 2, then (v, u) takes
values in the domain of the linear part, and thus (v, u) is a strong solution in the
usual analytic (and probabilistic) sense, see [10, Chapter 6]. It is also a solution in
the sense of Definition 1.1 (the properties (i), (iii) and (iv) are immediate in this
case).

Prior to proving Theorem 3.1, we need some preparatory steps.

3.1. Hypercontractivity bounds. We will make use of the following well-known
inequality. Let k ∈ Z and assume that Λ : D(Λ) ⊂ Hk → Hk, is a negative self-
adjoint operator such that for any 1 < p <∞, the semigroup etΛ extends canonically
to a strongly continuous, analytic semigroup on W k,p, 1 < p < ∞. Then, for any
t ∈ (0, 1], k − 2 ≤ α, β ≤ k + 2 and 1 < p, q <∞ it holds the estimate

|etΛ|L (Wα,p,Wβ,q) ≤
C

t
β−α
2

+ 1
p
− 1
q

, (3.3)

where the constant C depends only on the largest spectral value of Λ. Note that
such semigroups are in some references referred to as “hypercontractive” or “Lp-
contractive” – see, e.g., [30, Theorem X.55].

Proof of (3.3). The inequality (3.3) is well-known in principle, hence we only provide
references. The case p = q = 2 is treated for instance in [26, Theorem 5.2]. The
general case follows by interpolation and duality, as can be seen for instance in [29,
p. 25]. �

Note that −A (resp. ∆) with k = 1 (resp. k = 2) satisfies the above assumptions
(this is standard for the Laplacian; for the Stokes operator, we refer to [12]).

3.2. Stochastic parabolic estimates. We now recall some well-known stochastic
parabolic estimates: consider the solution, of the equation{

dZ −∆Zdt = Ψ(t)dξ

Z(0) = 0,
(3.4)

(Itô sense) where ξ ≡
∑

k∈N Bk(t)fk is a cylindrical Wiener process and the unknown
is a continuous process Z : Ω × [0, T ] → H. Under suitable assumptions on Ψ (see
the proposition below) the solution of (3.4) is written as the stochastic convolution
process:

Z(t) :=

ˆ t

0

e(t−s)∆Ψ(s)dξ(s), t ∈ [0, T ]. (3.5)

The following result is proven in [6], see also [17].
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Proposition 3.1. Let α ≥ 0, p ∈ [2,∞), r ≥ 1, and assume we are given a pro-
gressively measurable process Ψ : Ω × [0, T ] → L2(L2, L2) such that Ψ belongs to
Lr
(
Ω;Lr(0, T ; γ(Wα,p))

)
. The following holds:

(i) for each p > 2, every δ ∈ [0, 1− 2/r) and λ ∈ [0, 1− 1/r− δ/2), the stochas-
tic convolution (3.5) is well-defined and belongs to Lr(Ω;Cλ(0, T ;Wα+δ,p)).
Moreover, it holds

E
[
‖Z‖rCλ(0,T ;Wα+δ,p)

]
≤ CE

[
‖Ψ‖rLr(0,T ;γ(Wα,p))

]
.

(ii) For each p ≥ 2, δ ∈ (0, 1), Z is well-defined and belongs to Lr(Ω;Lr(0, T ;Wα+δ,p)).
It holds as well:

E
[
‖Z‖rLr(0,T ;Wα+δ,p)

]
≤ CE

[
‖Ψ‖rLr(0,T ;γ(Wα,p))

]
.

The above constants do not depend on Ψ in the indicated classes.

We can now proceed to the proof of the main theorem.

3.3. Proof of Theorem 3.1. Let p > 2. We shall first let s = 1, and show that the
conclusions of the above theorem hold in this particular case. The proof is based on
a contraction mapping principle for a truncated version of (SEL), into the Banach
space

Xq,T := Lq
(
Ω;C

(
0, T ;Lp

))
× Lq

(
Ω;C

(
0, T ; W1,p

))
, (3.6)

where T > 0 and q ≥ 2 are parameters to be fixed later. It is endowed with the
product norm 9(X1, X2)9Xq,T := 9X1 9q,T,Lp +9X29q,T,W1,p where for convenience,
whenever E is a Banach space and X : Ω × [0, T ] → E is a stochastic process, we
shall denote

9X9q,T,E := E

[
sup
t∈[0,T ]

∣∣X(t)
∣∣q
E

]1/q

.

Because the noise term cannot be estimated pathwise, we define a cut-off function
θ ∈ C∞c ((0,∞),R), such that

Suppθ ⊂ (0, 2), 0 ≤ θ ≤ 1 and θ(x) = 1 for all 0 ≤ x ≤ 1 , (3.7)

and for R > 0, x ∈ R+, we denote

θR(x) = θ
( x
R

)
.

Next, we fix X0 ≡ (v0, u0) ∈ Lp×W1,p and solve a problem where the non-linearity
is truncated, that is: given R > 0 for any (w, y) ∈ Xq,T , we define the map

ΓX0,R : Xq,T → Xq,T , (w, y) 7→ ΓX0,R(w, y) := (v, u) ,

where for every 0 ≤ t ≤ T, a.s.:

v(t) = e−tAv0 −
ˆ t

0

e(s−t)AP
[
ΘR

(
w · ∇w + div(∇y �∇y)

)]
ds

u(t) = et∆u0 +

ˆ t

0

e(t−s)∆[ΘR

(
y|∇y|2 + w · ∇y

)
+ Fψy

]
ds+

ˆ t

0

e(t−s)∆(y × dW
)
,

(3.8)
and we make use of the following abbreviation

ΘR(t) := θR
(

max(|w(t)|Lp , |y(t)|W 1,p)
)
.
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In the sequel, we shall consider R > 0 as fixed, and show that provided T is suffi-
ciently small, depending only on R, then:

(P1) for q > 2/α, ΓX0,R maps Xq,T into itself;
(P2) ΓX0,R is a contraction in Xq,T .

Then, Picard Theorem yields existence and uniqueness of a fixed point (vR, uR),
solution to (3.1)-(3.2) up to the stopping time τR := inf{t ∈ [0, T ], |w(t)|Lp =
R or |y(t)|W 1,p = R}.

Step 1: proof of (P1). For the velocity component, we have for every t ≤ T :

|v(t)|Lp ≤ C(p, T )|v0|Lp +
∣∣∣ˆ t

0

ΘR(s)e(s−t)AP[w(s) · ∇w(s)]ds
∣∣∣
Lp

+
∣∣∣ˆ t

0

ΘR(s)e(s−t)APdiv(∇u�∇u(s))ds
∣∣∣
Lp

=: C(p, T )|v0|Lp + |I1|Lp + |I2|Lp .

The first term is estimated as follows: since w is divergence-free, we have for each
i = 1, 2, the relation [w · ∇]wi ≡

∑2
j=1w

j∂jw
i =

∑2
j=1 ∂j(w

jwi). Using in addition

(3.3), we have for the first term

|I1|Lp ≤
ˆ t

0

ΘR(s)
|P
∑2

j=1 ∂j(w
j(s)w(s))|W−1,p/2

(t− s)1/2+1/p
ds

≤ C(P, p)T 1/2−1/p sup
s∈[0,t]

(
ΘR(s)|w(s)|2Lp

)
≤ C(P, p)T 1/2−1/pR2,

by continuity of P : W−1,p → W−1,p since p > 1. Whence, for some universal
constant C > 0, it holds:

9 I19q,T,Lp ≤ CT 1/2−1/pR2 . (3.9)

Similarly, we have for the second term

|I2|Lp ≤
ˆ t

0

ΘR(s)
|Pdiv(∇y(s)�∇y(s))|W−1,p/2

(t− s)1/2+1/p
ds

≤ C(P, p)T 1/2−1/p sup
s∈[0,t]

(
ΘR(s)|∇y(s)�∇y(s)|Lp/2

)
≤ C(P, p)T 1/2−1/p sup

s∈[0,t]

(
ΘR(s)|∇y(s)|2Lp

)
≤ C(P, p)T 1/2−1/pR2 ,

and therefore:

9 I29q,T,Lp ≤ CT 1/2−1/pR2 . (3.10)
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Next, for t ∈ [0, T ], almost surely, we write

|u(t)|W 1,p ≤ Cp|u0|W 1,p +
∣∣∣ ˆ t

0

ΘR(s)e(t−s)∆(y(s)|∇y(s)|2
)
ds
∣∣∣
W 1,p

+
∣∣∣ˆ t

0

ΘR(s)e(t−s)∆(w · ∇y(s)
)
ds
∣∣∣
W 1,p

+
∣∣∣ˆ t

0

e(t−s)∆(Fψy(s)
)
ds
∣∣∣
W 1,p

+
∣∣∣ˆ t

0

e(t−s)∆y(s)× dW
∣∣∣
W 1,p

=: Cp|u0|W 1,p +
∑6

i=3
|Ii|W 1,p .

Making use of (3.3) and the Sobolev inequality |f |L∞ ≤ Cp|f |W 1,p for p > 2, the
first term above is estimated as follows:

|I3|W 1,p ≤ C

ˆ t

0

ΘR(s)
|y(s)|∇y(s)|2|Lp/2

(t− s)1/2+1/p
ds

≤ CT 1/2−1/p sup
s≤t

(ΘR(s)|y|L∞|∇y|2Lp)

≤ CT 1/2−1/p sup
0≤s≤T

(
ΘR(s)|y(s)|3W 1,p

)
.

Consequently it holds true that

9 I39q,T,W1,p ≤ CT 1/2−1/pR3 . (3.11)

Similarly, we have

|I5|W 1,p ≤
ˆ t

0

C

(t− s)1/2+1/p
|y(s)|L∞ds

∣∣∣∑
l≥1

(ψfl)
2
∣∣∣
Lp/2

≤ C ′T 1/2−1/p|ψ|2γ(Lp) sup
s∈[0,T ]

|y(s)|W 1,p ,

and hence,
9 I59q,T,W1,p ≤ CT 1/2−1/p|ψ|2γ(Lp)R. (3.12)

Concerning the transport term, we have

|I4|W 1,p ≤ C

ˆ t

0

ΘR(s) |(w(s) · ∇)y(s)|Lp/2
(t− s)1/2+1/p

ds

≤ C

ˆ T

0

ΘR(s) |w(s)|Lp |y(s)|W 1,p

(t− s)1/2+1/p
ds ,

and thus:
9 I49q,T,W1,p ≤ CT 1/2−1/pR2. (3.13)

The treatment of the stochastic convolution I6 ≡
´ ·

0
e(·−s)∆y(s) × dW works as

follows: letting ε > 0 such that

min(α, 1) > ε >
2

p
, (3.14)

then the stochastic estimates (Proposition 3.1) with λ = 0, δ = 1− ε imply

E
[
‖I6‖qC(0,T ;W1,p)

]
≤ CTE

[
‖y × ψ‖qC(0,T ;γ(Wε,p))

]
≤ CT |ψ|qγ(W ε,p)E

[
‖y‖qC(0,T ;Wε,p)

]
,
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since the space W ε,p, where ε, p are subject to conditions (3.14), is an algebra. Hence,
we end up with the estimate:

9 I69q,T,W1,p ≤ C1/qT 1/q|ψ|γ(Wα,p) 9 y 9q,T,W1,p . (3.15)

Summing the estimates (3.9), (3.10), (3.11), (3.13), (3.12) and (3.15), we obtain
(P1).

Step 2: proof of (P2). For j = 1, 2, take (wj, yj) ∈ Xq,T , let (vj, uj) := ΓX0,R(wj, yj),
and denote by

Θj
R(t) := θR

(
max(|wj(t)|Lp , |yj(t)|W 1,p)

)
.

We also define

τj := inf{s ∈ [0, T ] : max(|wj(s)|Lp , |yj(s)|W 1,p) = R} . (3.16)

For the velocity component, we write

v1(t)− v2(t) =

ˆ t

0

e(s−t)AP
(

Θ1
Rw1 · ∇w1 −Θ2

Rw2 · ∇w2

)
ds

+

ˆ t

0

e(s−t)APdiv
(

Θ1
R∇y1 �∇y1 −Θ2

R∇y2 �∇y2

)
ds

=: ∆1 +∆2.

To estimate the first term, we can assume without loss of generality that τ1 ≤ τ2.
This gives

|∆1|Lp ≤ C

ˆ τ2

0

(Θ1
R −Θ2

R)

∣∣∣P∑2
j=1 ∂j(w

j
2w2)

∣∣∣
W−1,p/2

(t− s)
1
2

+ 1
p

ds

+ C

ˆ τ2

0

Θ1
R

∣∣∣P∑2
j=1 ∂j(w

j
1w1 − wj2w2)

∣∣∣
W−1,p/2

(t− s)
1
2

+ 1
p

ds

= I + II .

Thanks to the continuity of P, and the fact that x, y 7→ max(x, y) is Lipshitz, we
have

|I|Lq(Ω) ≤ C(P, p)T 1/2−1/p sup
s∈[0,T ]

(
ΘR(s)|w2(s)|2Lp

)
× |θ

′|L∞
R

(9w1 − w2 9q,T,Lp + 9 y1 − y29q,T,W1,p)

≤ CRT 1/2−1/p|θ′|L∞ 9 (w1 − w2, y1 − y2) 9Xq,T .

On the other hand, we have

II ≤ C(P, p)

ˆ τ2

0

Θ1
R

∣∣∣∑2
j=1 ∂j

[
(wj1(s)− wj2(s))w1(s)

]∣∣∣
W−1,p/2

(t− s)
1
2

+ 1
p

ds

+ C(P, p)

ˆ τ2

0

Θ1
R

∣∣∣∑2
j=1 ∂j[w

j
2(w1(s)− w2(s))]

∣∣∣
W−1,p/2

(t− s)
1
2

+ 1
p

ds ,
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which yields the estimate |II|Lq(Ω) ≤ CT 1/2−1/pR9w1−w2 9q,T,Lp . Hence, we obtain
that

9∆19q,T,Lp ≤ CT 1/2−1/pR 9 (w1 − w2, y1 − y2)9Xq,T (3.17)

The second term is similar: assuming without loss of generality that τ1 ≤ τ2, we
have

|∆2|Lp ≤
ˆ τ2

0

|Θ1
R −Θ2

R||e(s−t)APdiv(∇y2 �∇y2)|Lpds

+

ˆ τ1

0

Θ1
R|e(s−t)APdiv(∇(y1 − y2)�∇y1)|Lpds

+

ˆ τ1

0

Θ1
R|e(s−t)APdiv(∇y2 �∇(y1 − y2))|Lpds

=: I + II + III .

By a similar argument as before, we have for the first term:

|I|Lq(Ω) ≤ C(P, p)|θ′|L∞T 1/2−1/pR 9 (w1 − w2, y1 − y2) 9Xq,T .

Next, proceeding as for ∆1, it is easy to see that:

E

[
sup
t∈[0,T ]

(II(t) + III(t))q

]1/q

≤ CRT 1/2−1/p 9 y1 − y2 9q,T,W1,p .

Hence, we end up with the estimate:

9∆29q,T,Lp ≤ CRT 1/2−1/p 9 (w1 − w2, y1 − y2)9Xq,T (3.18)

We now proceed to the evaluation of the second component. We write

(u1−u2)(t) =

ˆ t

0

e(t−s)∆(Θ1
Ry1|∇y1|2 −Θ2

Ry2|∇y2|2
)
ds

−
ˆ t

0

e(t−s)∆(Θ1
Rw1 · ∇y1 −Θ2

Rw2 · ∇y2

)
ds

+

ˆ t

0

e(t−s)∆(Fψ(y1 − y2)
)
ds+

ˆ t

0

e(t−s)∆(y1 − y2)× dW

= ∆3 +∆4 +∆5 +∆6 .

Now, linearity and Step 1 provide the bound

9∆5 +∆69q,T,W1,p ≤ 9y1 − y2 9q,T,W1,p C
(
T 1/2−1/p|ψ|2γ(Lp) + T |ψ|γ(Wα,p)

)
. (3.19)

Next, recalling (3.16) and assuming without loss of generality that τ1 ≤ τ2, we
have for the third term:

|∆3|W 1,p ≤
ˆ τ2

0

∣∣∣e(t−s)∆
(

Θ1
Ry1|∇y1|2 −Θ2

Ry2|∇y2|2
)∣∣∣

W 1,p
ds

≤
ˆ τ2

0

(Θ1
R −Θ2

R)
∣∣∣e(t−s)∆(y2|∇y2|2)

∣∣∣
W 1,p

ds

+

ˆ τ2

0

Θ1
R

∣∣∣e(t−s)∆(y1|∇y1|2 − y2|∇y2|2)
∣∣∣
W 1,p

ds

= I + II .

Proceeding as for the velocity component, we can estimate the first term as

|I|Lq(Ω) ≤ C ′R2T 1/2−1/p|θ′|L∞ 9 (w1 − w2, y1 − y2) 9Xq,T .
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For the second term, using again (3.3), we have

II ≤ C

ˆ τ2

0

Θ1
R

∣∣∣(y1 − y2)|∇y1|2
∣∣∣
Lp/2

(t− s)1/2+1/p
ds

+ C

ˆ τ2

0

Θ1
R

∣∣∣y2(|∇y1|2 − |∇y2|2)
∣∣∣
Lp/2

(t− s)1/2+1/p
ds

= II′ + III .

Since W1,p ↪→ L∞, it holds immediately

|II′|Lq(Ω) ≤ CR2T 1/2−1/p 9 y1 − y2 9q,T,W1,p .

Similarly, we have

|III|Lq(Ω) ≤ E
[( ˆ τ2

0

Θ1
R

∣∣y2∇(y1 − y2) · ∇(y1 + y2)
∣∣
Lp/2

(t− s)1/2+1/p
ds
)q]1/q

≤ CR2T 1/2−1/p 9 y1 − y2 9q,T,W1,p .

Finally, we see that there is a universal constant C > 0 such that:

9∆39q,T,W1,p ≤ CR2T 1/2−1/p 9 (w1 − w2, y1 − y2) 9Xq,T . (3.20)

For the fourth term, it is again sufficient to assume that τ1 ≤ τ2. But in this case
it holds

|∆4|W 1,p ≤
ˆ τ2

0

∣∣∣e(t−s)∆(Θ1
Rw1 · ∇y1 −Θ2

Rw2 · ∇y2

)∣∣∣
W 1,p

ds

≤
ˆ τ2

0

|Θ1
R −Θ2

R|
∣∣∣e(t−s)∆w2 · ∇y2

∣∣∣
W 1,p

ds

+

ˆ τ2

0

Θ1
R

∣∣∣e(t−s)∆(w1 · ∇y1 − w2 · ∇y2)
∣∣∣
W 1,p

ds .

Whence, we obtain as before:

9∆49q,T,W 1,p ≤ CR2|θ′|L∞T 1/2−1/p 9 (w1 − w2, y1 − y2)9Xq,T

+ E
[( ˆ T

0

Θ1
R

∣∣e(t−s)∆[(w1 − w2) · ∇y2

]∣∣
W 1,pds

)q]1/q

+ E
[( ˆ T

0

Θ1
R

∣∣e(t−s)∆[w1 · ∇(y1 − y2)
]∣∣
W 1,pds

)q]1/q

≤ C ′R2T 1/2−1/p 9 (w1 − w2, y1 − y2) 9Xq,T .

Hence, it follows that for some universal constant C > 0 :

9∆49q,T,W1,p ≤ CR2T 1/2−1/p 9 (w1 − w2, y1 − y2) 9Xq,T . (3.21)

Summing the estimates (3.17), (3.18), (3.20), (3.21) and (3.19), we see that there
exists a constant C(p, |ψ|γ(Wα,p)) > 0 such that

9 Γ(w1, y1)− Γ(w2, y2)9Xq,T

≤ C(p, |ψ|γ(Wα,p))(1 +R2)
(
T 1/2−1/p + T

)
9 (w1, y1)− (w2, y2) 9Xq,T .

If we choose T such that

0 < T ≤ T ∗(R) := min
(
1, 4C(p, |ψ|γ(Wα,p))(1 +R2)

)− 2p
p−2 ,
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then ΓX0,R : Xq,T → Xq,T is a contraction. This proves (P2).

Step 3: definition of the maximal solution. Using a localization procedure (see [7,
Theorem 4.1]) we can build a maximal solution as follows: we define the stopping
times

τm = inf
{
t ∈ [0, T ], max

(
|vm(t)|Lp , |um(t)|W 1,p

)
≥ m

}
, (3.22)

and show that the sequence {τm}m∈N is non-decreasing and that

(vm+1(t), um+1(t)) = (vm(t), um(t)) for t ∈ [0, τm], a.s.

Since the proof of these properties does not involve any new idea compared to steps 1
and 2, we leave the details to the reader. The maximal solution (v;u, τ ≡ supm≥0 τm)
is then defined by “gluing together” (vm, um) for each m ≥ 1.

Step 4: General case. It is sufficient to let s = 3 (the general case follows by inter-
polation).

Let (v, u) ∈ Lq
(
Ω;C([0, τ p,1);Lp ×W1,p)

)
be the solution provided by the above

fixed point, and assume that X0 = (v0, u0) belongs to W2,p×W3,p. For (w̃, ỹ) ∈ Xq,T ,
define (ṽ, ũ) := Γ∆

X0,R
(w̃, ỹ) via the relation

ṽ(t) = e−tA∆v0 +

ˆ t

0

θR(max(|w̃(s)|Lp , |ỹ(s)|W 1,p))

× eA(s−t)P[−w̃ · ∇v − 2∇v · ∇2v − v · ∇w̃
− div(∇ỹ �∇u+ 2∇2u�∇2u+∇u�∇ỹ)]ds

ũ(t) = et∆∆u0 +

ˆ t

0

θR(max(|w̃(s)|Lp , |ỹ(s)|W 1,p))

× e∆(t−s)(ỹ|∇u|2 + 4∇u · ∇2u∇u+ 2u(∇ỹ +∇2u · ∇2u)

− w̃ · ∇u− 2∇v · ∇2u− v · ∇ỹ + ∆Fψu+ 2∇Fψ · ∇u+ Fψỹ
)
ds

+

ˆ t

0

e∆(t−s) [ỹ × dW + 2∇u× d∇W + u× d∆W ] ,

Using similar arguments as that of Step 1 and Step 2, it can be shown that the
map Γ∆

X0,R
admits a unique fixed point (ṽ, ũ), for every R > 0. Moreover, observing

that ∆ commutes with e·A and with P (see (1.3)), it is immediately checked that
on {max(|ṽ(t)|Lp , |ũ(t)|W 1,p) ≤ R}, we have ṽ(t) = ∆v(t) while ũ(t) = ∆u(t), which
shows the claimed regularity on (v, u).

The details of the proof being similar to step 1 and step 2 (the difficulties are
merely notational), we leave them to the reader.

Step 5: spherical constraint. For p > 2 and s ≥ 2, if (v, u) is defined as above, we can
see it as a continuous path with values in the Hilbert space H := H−1×L2. Because
(v, u) takes values in the domain of L := (A,−∆), it is in fact a strong solution in
the sense of [10, p. 160] (up to the stopping time τ p,s). Hence, it is possible to apply
Itô Formula to the functional F (v, u) := 1

2
|1 − |u|2|2L2 (which is clearly of class C2

from D(L) ≡ H1 ×H2 to R). Using the identity ∆(|u|2 − 1) = 2u · ∆u + 2|∇u|2,
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this gives

1

2

ˆ
T2

(|u(t)|2 − 1)2dx

=

¨
[0,t]×T2

[
2|u|2(|u|2 − 1)|∇u|2 + 2u ·∆u(|u|2 − 1)− 2u · ∂iuvi(|u|2 − 1)

]
dxds

=

¨
[0,t]×T2

[
2(|u|2 − 1)2|∇u|2 − 2|∇(|u|2 − 1)|2 − 2u · ∂iuvi(|u|2 − 1)

]
dxds

≤ 4

ˆ t

0

|∇u(s)|2L∞F (v(s), u(s))ds− 2

¨
[0,t]×T2

u · ∂iuvi(|u|2 − 1)dxds

= I + II .
(3.23)

As seen by integration by parts, using that divv = 0 we have

II := −
¨

[0,t]×T2

2u·∂iuvi(|u|2−1)dxds = −
¨

[0,t]×T2

∂i(|u|2−1)vi(|u|2−1)dxds = −II ,

and therefore II = 0. Next, by Gronwall Lemma applied to (3.23), we see that
provided 0 ≤ t < τ s,p is such thatˆ t

0

|∇u(s)|2L∞ds <∞, (3.24)

(which is always true by the Sobolev embedding W p,s ↪→ W 1,∞ for p > 2 and s ≥ 2)
then one has F (v(t), u(t)) = 0. This proves the norm constraint (1.12). �

4. A priori estimates

Our purpose in this section is to obtain suitable a priori estimates associated to
(SEL), assuming that the solution at hand is regular enough. We divide them into
two categories, namely the “global estimates”, i.e. estimates on the whole time inter-
val, and the “local estimates”, i.e. estimates on small balls B(x, ρ) ⊂ T2. Estimates
that are local in the time-like variable will be obtained in Section 5 below.

We start by stating an important byproduct of (2.1). Note that in [31], the left
hand side below is a gradient, which is unnecessary (as can be immediately seen in
the details of the proof).

Proposition 4.1 (Struwe [31], Lemma 3.1). There exists a constant µ1 > 0, such
that for all v ∈ C(0, T ;H1(T2)), for all ρ > 0:

¨

[0,T ]×T2

|v|4dydt ≤ µ1

 sup
t∈[0,T ]
x∈T2

ˆ

y∈B(x,ρ)

|v(t, y)|2dy

 ¨

[0,T ]×T2

(
|∇v|2 +

|v|2

ρ2

)
dydt .

(4.1)

4.1. Global estimates. Let us first introduce some notation.

Notation 4.1. Since it plays a specific role along the proofs, we will denote the
“tension” by

Tu := ∆u+ u|∇u|2 . (4.2)
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The latter terminology is borrowed from [11], in the context of harmonic map flows.
Roughly speaking, the L2-norm of Tu measures “how far” u is from being harmonic.
Note indeed that Tu = 0 if and only if u : T2 → S2 is weakly harmonic.

An important observation is that for any u ∈ H1 with |u|R3 = 1, then Tu identifies
with the orthogonal projection of ∆u onto u⊥, that is:

Tu = ∆u− (∆u · u)u , (4.3)

where (∆u · u)u is defined in the sense of distributions.

Proposition 4.2. Let (W,ψ) be as in Assumption 1.1. Assume that (v, u) is a
strong solution to (SEL) on [0, T ], with respect to (P,W ), in the sense of Definition
1.2. Denoting by

E(t) :=
1

2

(
|v(t)|2L2 + |∇u(t)|2L2

)
,

then it holds true that for any 0 ≤ t ≤ T, a.s.:

E(t)− E(0) +

ˆ t

0

(
|∇v(s)|2L2 + |Tu(s)|2L2

)
ds = t|∇ψ|2L2(L2,L2) +X(t), (4.4)

where (X(t)) is the martingale defined by the Itô integral X(t) :=
´ t

0
〈u×d∇W,∇u〉,

t ∈ [0, T ].
Moreover, for any m ≥ 2, the following estimate holds:

E

[
sup
t∈[0,T ]

E(t)m

]
+ E

[(ˆ T

0

|∇v(t)|2L2 + |Tu(t)|2L2dt

)m]
≤ C

(
T,m, |ψ|L2(L2,H1), E(0)

)
(4.5)

where the above constant depends on the indicated quantities, but not on the indi-
vidual element (v, u).

Proof. Proof of (4.4). We can apply Itô Formula in the form given e.g. in [27,
Chapter 4] to the functional (v, u) ∈ L2 ×H1 7→ 1

2
(|v|2L2 + |∇u|2L2). It yields:

E(t)− E(0) =

ˆ t

0

〈dv, v〉+

ˆ t

0

〈∇du, ◦∇u〉

=

ˆ t

0

〈
− Av − (v · ∇)v − div(∇u�∇u), v

〉
dt

+

ˆ t

0

〈
∇(−v · ∇u+ ∆u+ |∇u|2u),∇u

〉
dt+

ˆ t

0

〈
∇(u× ◦dW ),∇u

〉
,

(4.6)
where the above Stratonovitch integral makes sense asˆ t

0

〈
∇(u× ◦dW ),∇u

〉
=

ˆ t

0

〈u× d∇W,∇u〉

+
1

2

∑
l∈N

3∑
j=1

ˆ t

0

[ 〈
(u×ψj

l )×∇ψ
j
l ,∇u

〉
+
〈
u×∇ψj

l ,∇(u×ψj
l )
〉 ]

ds

=: X(t) +

ˆ t

0

(A1(s) + A2(s))ds.

(4.7)
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As easily seen thanks to Assumption 1.1, the above trace terms are finite P-a.s.
Moreover, the computation of A1, A2, which is detailed in Appendix A leads to

A1(t) = 0 and A2(t) = 2|∇ψ|2L2(L2,L2), t ∈ [0, T ]. (4.8)

Therefore, we can rewrite (4.6) as:

E(t)− E0 −X(t)− t|∇ψ|2L2(L2,L2) +

ˆ t

0

|∇v(s)|2L2ds

=

ˆ t

0

[
− 〈v · ∇v, v〉 − 〈div(∇u�∇u), v〉

− 〈∇(v · ∇u),∇u〉 − 〈∆u,∆u+ |∇u|2u〉
]
ds

=:

ˆ t

0

[
I1 + I2 + I3 + I4

]
ds,

and we now treat each term separately.
For the first term, integration by parts gives

I1 ≡
ˆ
T2

vi∂iv
jvjdx = −

ˆ
T2

∂i(v
ivj)vjdx = −

ˆ
T2

|v|2divvdx−
ˆ
T2

vi∂iv
jvjdx ,

where we use a summation convention over repeated indices. Hence:

I1 = −I1 = 0 .

Concerning the second and third terms, we can proceed as in [18]: we have

I2 ≡ −
ˆ
T2

vi∂j(∂ju) · ∂iudx = −
ˆ
T2

∆u · (v · ∇u)dx =

ˆ
T2

∇u · ∇(v · ∇u)dx ,

so that:
I2 + I3 = 0.

By the fact that Tu ⊥ u (see (4.2)), we have the pointwise identity:(
∆u+ u|∇u|2

)
·∆u ≡ Tu ·∆u = |Tu|2R3 . (4.9)

Therefore,

I4 = −
ˆ
T2

|Tu|2 .

Summing every term above eventually yields (4.4).

Proof of (4.5). Let m ≥ 2. From the Burkholder-Davis-Gundy inequality, one can
bound X as follows:

E

[
sup
s∈[0,t]

|X(s)|m
]
≤ C(m)E

[(ˆ t

0

|ψ∗div(u×∇u)|2L2ds

)m/2]
.

Using the continuous embedding L2(L2, H1) ↪→ L (L2, H1), Hölder and Young in-
equalities, we infer

E

[
sup
s∈[0,t]

|X(s)|m
]
≤ C(|ψ|L2(L2,H1))E

[(ˆ t

0

|u×∇u|2L2ds

)m/2]

≤ C(|ψ|L2(L2,H1), T )E
[
1 +

ˆ t

0

|∇u|2mL2 ds

]
. (4.10)
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Hence, going back to (4.4), we can use (4.10), yielding for any t ∈ [0, T ] :

Φ(t) ≤ C

(
1 +

ˆ t

0

Φ(s)ds

)
,

where we denote by Φ(t) := E[sups∈[0,t] E(s)m], and where the above constant de-
pends only on E0,m, T and |ψ|L2(L2,H1). The first part of the conclusion hence follows
by Gronwall Lemma.

Using again (4.4), together with the bound obtained on Φ, we can now bound the

term E[(
´ T

0
[|∇v|2L2 + |Tu|2]dt)m] in the same way. �

4.2. Local estimates. In this paragraph, we estimate the local energy 1
2

´
B(x,ρ)

|v(t, y)|2+

|∇u(t, y)|2dy, where ρ > 0 and x ∈ T2. This step requires to test (SEL) against the
localization function 1B(x,ρ) (more exactly: a suitable regularization thereof), which
is definitely not divergence-free in general. To proceed further, we therefore need to
introduce the pressure term associated to a solution.

Let (v, u) be a strong solution in the sense of Definition 1.2 on [τ1, τ2). Using
(1.14) against test functions of the form −∇θ where θ ∈ L2(T2;R), and denoting by
π̃(ω, t) := π−

´
T2 π(ω, t, x)dx, we see from the original equation (SEL) that π̃ must

be given by the equation

∆π̃ = −∂ij(vivj)− ∂ij(∂iu · ∂ju), 〈π̃, 1〉 = 0 , (4.11)

for a.e. (ω, t) ∈ Ω× [0, T ] such that τ1(ω) ≤ t < τ2(ω). From (2.1) we see that

v ∈ L0(Ω;L4([τ1, τ2);L4)),

while

∇u ∈ L0(Ω;L4([τ1, τ2);L4)).

Therefore, using the fact that the Laplace operator is an isomorphism, from L2(T2)
to H−2(T2), when restricted to the orthogonal of constant functions, we infer from
Hölder Inequality that

π̃ ∈ L0(Ω;L2([τ1, τ2);L2)),

together with the pathwise estimate:

‖π̃(ω)‖L2(τ1;τ ′2;L2) ≤ C
(
‖v(ω)‖2

L4(τ1;τ ′2;L4) + ‖∇u(ω)‖2
L4(τ1;τ ′2;L4)

)
(4.12)

for P-a.e. ω ∈ Ω and for every stopping time τ ′2 such that τ1 ≤ τ ′2 < τ2.
On the other hand, choosing any constant c ∈ R, one can let π := π̃+ c, and with

this definition it is immediately checked that the equation

dv + (−∆v +∇π + v · ∇v + div∇u�∇u)dt = 0 (4.13)

holds for almost every ω ∈ Ω, in the sense of Bochner in H−1(T2;R2).

Proposition 4.3. Let (W,ψ) be as in Assumption 1.1. Consider ϕ ∈ C∞(T2),
0 ≤ ϕ ≤ 1, supported in the ball B(x, ρ) for some x ∈ T2 and some ρ > 0, and
assume that there exists K > 0 with

sup
y∈T2

|∇ϕ(y)| ≤ K

ρ
.

Let (v, u) be a strong solution to (SEL) on [0, T ], with respect to (P,W ), and for
any t ∈ [0, T ], define Eϕ(t) := 1

2

´
T2 ϕ(y)2(|v(t, y)|2 + |∇u(t, y)|2)dy.



26 ANNE DE BOUARD, ANTOINE HOCQUET, AND ANDREAS PROHL

Then, there is a universal constant C0 > 0 such that for every t ∈ [0, T ], it holds

Eϕ(t)− Eϕ(0) +
1

2

¨
[0,t]×T2

ϕ2
(
|∇v|2 + |Tu|2

)
dxds

≤ C0

(
1 +

1

ρ2

)¨
[0,t]×T2

(
|v|3 + (|v|+ 1)|∇u|2 + |v||π̃|

)
dxds+Xϕ(t) + Cϕ

ψ t ,

(4.14)

where Xϕ(t) :=
´ t

0
〈ϕ∇u, ϕu × d∇W 〉, Cϕ

ψ :=
∑

l∈N
´
T2 ϕ

2(x)|∇ψfl(x)|2dx, and
π̃ ≡ π − 〈π, 1〉 is the pressure term corrected by its mean value (see the previous
discussion).

Proof. Apply Itô Formula to Eϕ. It holds

Eϕ(t)− Eϕ(s) =

ˆ t

0

〈ϕ2v, dv〉+

ˆ t

0

〈ϕ2∇u, ◦∇du〉

=

¨
[0,t]×T2

ϕ2v ·
(
∆v − v · ∇v − div(∇u�∇u)−∇π

)
dxds

+

¨
[0,t]×T2

ϕ2∇u · ∇(Tu − v · ∇u)dxds+

ˆ t

0

〈ϕ2∇u,∇(u× ◦dW )〉.

Integrating by parts and using that a.e. ∆u ·Tu = |Tu|2R3 , we get:

Eϕ(t)− Eϕ(0) +

¨
[0,t]×T2

ϕ2
(
|∇v|2 + |Tu|2

)
dxds

= −
¨

[0,t]×T2

ϕ2vjvi∂iv
jdxds−

¨
[0,t]×T2

ϕ2vdiv(∇u�∇u)dxds

−
¨

[0,t]×T2

ϕ2v · ∇πdxds− 2

¨
[0,t]×T2

ϕ(∂jϕ)∂ju
iT i

u dxds

+

¨
[0,t]×T2

∂j(ϕ
2∂ju

i)v`∂`u
idxds+

ˆ t

0

〈ϕ2∇u, u×∇ ◦ dW 〉

=:

ˆ t

0

∑6

γ=1
Iγds,

where we make use of a summation convention whenever it is convenient. We can
now fix the time variable s ∈ [0, t] and evaluate each term separately.

First, using divv = 0, we have

I1 =

ˆ
T2

ϕ(∂iϕ)(vj)2vidx.

Therefore, from the assumptions on ϕ, and since 1/ρ ≤ 1 + 1/ρ2, it holds

I1 ≤
ˆ
T2

ϕ|∇ϕ||v|3dx ≤ K
(

1 +
1

ρ2

) ˆ
T2

|v|3dx.

Similarly for the fourth term, we have by Young Inequality:

I4 ≤
K2

ρ2

ˆ
T2

|∇u|2dxds+
1

2

ˆ
T2

ϕ2|Tu|2dx,

the second term of which will be eventually absorbed to the left.
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For the third term, using that divv = 0, one can write

I3 =

ˆ
T2

2ϕ(∂iϕ)viπ̃dx

≤ K
(

1 +
1

ρ2

)ˆ
T2

|v||π̃|dx .

Taking into account similar compensations as for the global estimates, we estimate
the second and fifth terms together, which yields:

I2 + I5 = −
ˆ
T2

ϕ2v`∂j(∂ju
i∂`u

i)dx+

ˆ
T2

2ϕ(∂jϕ)∂ju
iv`∂`u

idx+

ˆ
T2

ϕ2∂jju
iv`∂`u

idx

= −
ˆ
T2

ϕ2v`∂ju
i∂j`u

idx+ 2

ˆ
T2

ϕ(∂jϕ)∂ju
iv`∂`u

idx

=: I + II

Integrating by parts and using again that divv = 0, we have

I =

ˆ
T2

ϕ(∂`ϕ)v`(∂ju
i)2dx ≤ K

(
1 +

1

ρ2

)ˆ
T2

|v||∇u|2dx ,

while the evaluation of II yields a similar bound, namely:

II ≤ K
(

1 +
1

ρ2

) ˆ
T2

|v||∇u|2dx ,

for another such constant C > 0.
Finally, computing the Stratonovitch integral as in (4.7), we have

I6 =

ˆ t

0

〈ϕ∇u, ϕu×∇dW 〉

+
1

2

∑
l∈N

3∑
j=1

ˆ t

0

[
〈ϕ2(u×ψj

l )×∇ψ
j
l ,∇u〉+ 〈ϕ2u×∇ψj

l ,∇(u×ψj
l )〉
]
ds.

Hence, similar computations as that of (A.3) and (A.4) yield that

I6 =

ˆ t

0

〈ϕ∇u, ϕu× d∇W 〉+ t
∑
l∈N

ˆ
T2

ϕ(x)2|∇ψl(x)|2dx

= Xϕ(t) + Cϕ
ψ t .

Now, gathering all the above bounds, integrating in time, and absorbing to the
left when needed, we end up with (4.14). �

5. Bootstrap

In this section, we will see that provided there is no energy concentration at some
fixed t ∈ [0, T ], then the solution can be extended continuously after t (in a suitable
space), for a positive time.

More precisely, we aim to show the following.

Theorem 5.1. Consider (W,ψ) as in Assumption 1.1 with ψ ∈ L2(L2, H3). Let
(v, u) be a strong solution to (SEL) on [0, τ) with respect to (P,W ), such that fur-
thermore (v, u) belongs to V 2

loc,[0,τ)×U 3
loc,[0,τ) and where the stopping time τ is defined
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by the property that

τ < T if and only if lim sup
t↗τ

|v(t)|H2 + |u(t)|H3 =∞.

For arbitrary ρ > 0 and ε1 ∈ (0, µ−1
1 ), denote by

ζ(v, u; ρ, ε1) := inf

{
t ∈ [0, τ) : sup

s≤t, x∈T2

ˆ
B(x,ρ)

(
|v(s, y)|2 + |∇u(s, y)|2

)
dy ≥ ε1

}
.

(5.1)
Then, for each m ∈ N, the stopped process(

v
(
· ∧ζ(v, u; ρ, ε1)

)
, u
(
· ∧ζ(v, u; ρ, ε1)

))
belongs to Lm

(
Ω; V 2

0,T ×U 3
0,T

)
and its corresponding norm is bounded in terms of

the quantities m, ρ, T , |ψ|L2(L2,H3), |u0|H3, |v0|H2 only.
In particular, for any ρ, ε1, as above, we have P(ζ(v, u; ρ, ε1) < τ) = 1.

5.1. Estimates of u in L2
loc(H

2). The first step is to show an estimate on the
quantity E[‖u

(
· ∧ζ(v, u; ρ, ε1)

)
‖mL2(0,T ;H2)], which depends only on m,T, |ψ|L2(L2,H1),

|v0|L2 and |u0|H1 .

Lemma 5.1 (L2
loc(H

2) estimate for u). Fix ε1 ∈ (0, µ−1
1 ) (µ1 > 0 being the constant

in Proposition 4.1), consider v, u,W, ψ as in Theorem 5.1 and for ρ > 0 define
ζ(v, u; ρ, ε1) as in (5.1).

For every m ≥ 2, it holds for t ∈ [0, T ] :

E

[(ˆ t∧ζ(v,u;ρ,ε1)

0

|∆u(s)|2L2ds

)m]

≤ C(ρ,m, |ψ|L2(L2,H1), T )E

[(ˆ t∧ζ(v,u;ρ,ε1)

0

|∇u|2L2ds

)]
. (5.2)

In particular, combining with Proposition 4.2, we have an estimate

E

[(ˆ T∧ζ(v,u;ρ,ε1)

0

|∆u(s)|2L2ds

)m]
≤ C(ρ,m, |ψ|L2(L2,H1), T, E(0)) . (5.3)

Proof. Since (v, u) is a solution, using (4.3), we get u ⊥ Tu so that proceeding as in
(4.9), and using that, in the weak sense,

0 ≡ ∆
( |u|2

2

)
= (∆u · u) + |∇u|2,

then it holds true that |Tu|2R3 = |∆u|2R3 − |∇u|4R2×3 . Applying now Proposition 4.2,
and expanding the tension, we obtain

E(t)− E(0) +

¨
[0,t]×T2

(|∆u|2 + |∇v|2)dxds−X(t)− tCψ

=

¨
[0,t]×T2

|∇u|4dxds.
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Next, using Proposition 4.1, we obtain for times t ≤ ζ(v, u, ρ, ε1):

E(t)− E(0) +

¨
[0,t]×T2

(|∆u|2 + |∇v|2)dxds−X(t)− tCψ

≤ µ1

(
sup

s∈[0,T ], x∈T2

ˆ
B(x,ρ)

|∇u(s, y)|2dy

)¨
[0,t]×T2

(
|∆u|2 +

C

ρ2
|∇u|2

)
dxds

≤ µ1ε1

¨
[0,t]×T2

|∆u|2dxds+
µ1ε1C

ρ2

¨
[0,t]×T2

|∇u|2dxds ,

(5.4)
Since ε1 < µ−1

1 , the first term above can be absorbed to the left, and the conclusion
follows by estimating the martingale part as in Proposition 4.2. �

Note that, in the proof of Lemma 5.1, we did not need the local estimate for the
term in the energy which involves the velocity. The control of this term will however
be important in the following estimates.

Lemma 5.2. Under the assumptions of Lemma 5.1, for any m ≥ 1, there hold the
exponential bounds:

E

[
exp

{
m sup

t∈[0,ζ(v,u;ρ,ε1)]

(|v(t)|2L2 + |∇u(t)|2L2)

}]
≤ C(m, ρ), (5.5)

E

[
exp

{
m

ˆ ζ(v,u;ρ,ε1)

0

(|∇v|2L2 + |∆u|2L2)dt

}]
≤ C(m, ρ, T, E0, |ψ|L2(L2,H1))

(5.6)

and

E

[
exp

{
m

ˆ ζ(v,u;ρ,ε1)

0

(|v|4L4 + |∇u|4L4)dt

}]
≤ C(m, ρ, T, E0, |ψ|L2(L2,H1)).

(5.7)

Proof. Fix m ≥ 1, and for simplicity denote ζ := ζ(v, u; ρ, ε1). In order to prove
(5.5), it is sufficient to observe that the random variable supt∈[0,ζ] |v(t)|2L2 + |∇u|2L2

belongs to L∞(Ω). Indeed, as a consequence of the definition of ζ in (5.1) we have

sup
t∈[0,ζ]

(|v(t)|2L2 + |∇u(t)|2L2) ≤
∑

1≤i≤Nρ

sup
t∈[0,ζ]

ˆ
B(xi,ρ)

(|v(t, y)|2 + |∇u(t, y)|2L2)dy ≤ Nρε1,

for any finite sequence {x1, . . . xNρ} such that ∪i≤NρB(xi, ρ) = T2 (note that asymp-
totically Nρ ∼ C/ρ2, but this has no importance here). This proves our claim, and
hence (5.5).

Proof of (5.6). Going back to the proof of Lemma 5.1, we see in particular from
(5.4) and (4.4) that P-a.s., for any t ∈ [0, T ] :

m

ˆ t∧ζ

0

(|∆u|2L2 + |∇v|2L2)ds ≤ C(1 +X(t ∧ ζ)), (5.8)

where the constant C > 0 depends only on the quantities ε1,m, ρ, E0, T and |ψ|L2(L2,H1).
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Next, the process S(t) := exp {mX(t)} , t ∈ [0, T ], is a submartingale, and Itô
Formula yields, for t ≤ ζ,

S(t)− S(0)−m
ˆ t

0

S(s)〈∇u, u×∇dW 〉 = m2

ˆ t

0

S(s)|ψ∗div(u×∇u)|2L2ds

≤ C(|ψ|L2(L2,H1), ρ, ε1,m)

ˆ t

0

S(s)ds.

Hence, taking the expectation, and then applying Gronwall Lemma yields the esti-
mate

sup
0≤t≤T

E [S(t ∧ ζ)] ≤ C(T, |ψ|L2(L2,H1), ρ, ε1,m)

where C is as above. Applying Doob’s inequality for submartingales, we obtain that

E
[
sup
t≤ζ

exp {mX(t)}
]
≤ C sup

t≤T
E[S(t ∧ ζ)]

for another such constant. Taking the exponential and expectation in (5.8), we end
up with the desired bound.

Proof of (5.7). By Proposition 4.1, one observes that

E
[
expm

ˆ ζ

0

(|v|4L4 + |∇u|4L4)dt

]
≤ E

[
exp

{
Cε1m

ˆ ζ

0

(|∇v|2L2 + |∆u|2L2)dt

}
exp

{
Cε1m

ρ2

ˆ ζ

0

(|v|2L2 + |∇u|2L2)dt

}]
,

and the conclusion follows by Hölder Inequality, together with (5.5) and (5.6). �

5.2. Higher regularity. Fix ρ > 0 and denote ζρ := ζ(v, u; ρ, ε1). The previous
paragraph shows that, if (v, u) is a strong solution restricted to the time interval
[0, ζρ], then a uniform bound holds for (v, u) in L2

t (H1
x)×L2

t (H
2
x), and consequently

for the pressure π ∈ L2
t (L

2
x) as well, as may be seen using (4.12). However, this is

certainly not enough to conclude that
(
v(ζρ), u(ζρ)

)
is in H2 ×H3, P-a.s., as would

be needed in order to show the moment bounds of Theorem 5.1 (at this stage it is
even uncertain that (v(ζρ), u(ζρ)) defines a random variable in H1×H2). As will be
shown below, the latter property is true for smooth enough data (v0, u0, ψ) but the
proof requires a bootstrap argument in the spirit of [31, Section 3], which is made
difficult by the presence of noise in the equation.

The first step is to show the following.

Proposition 5.1 (Higher order estimates). Under the assumptions of Lemma 5.1,
assume in addition that there exists ρ > 0, such that a.s.:

sup
x∈T2, t∈[0,T ]

ˆ
B(x,ρ)

(|v(t, y)|2 + |∇u(t, y)|2)dy < ε1 , (5.9)

and also that a.s. :

v ∈ V 1
T , u ∈ U 2

T , and ψ ∈ L2(L2, H3) . (5.10)
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Then, for every m ∈ [1,∞) we have the estimate:

E

[
sup

t∈[0,ζ(v,u;ρ,ε1)]

(
|T̂ (t)|2L2 + |∆u(t)|2L2 + |∇v(t)|2L2

)m
+
(ˆ ζ(v,u;ρ,ε1)

0

[
|∇∆u(t)|2L2 + |∇T̂ (t)|2L2 + |∇2v(t)|2L2 + |∂tv(t)|2L2

]
dt
)m]

≤ C(m, |ψ|L2(L2,H3), |u(0)|H2 , |v(0)|H1) , (5.11)

for a.e. ω ∈ Ω, where T̂ is the “corrected tension”

T̂ := ∆u+ u|∇u|2 − v · ∇u . (5.12)

Proof. For simplicity we denote by ζ := ζ(v, u; ρ, ε1).

Step 1. Pathwise Gronwall. In order to prove (5.11), we are going to apply Itô
Formula to the quantity

G(t) := |∆u(t)|2L2 + |T̂ (t)|2L2 + |∇v(t)|2L2 , t ∈ [0, ζ], (5.13)

and then conclude by applying Gronwall Lemma pathwise.
As a first step, we will show the following.

Claim. We have for any t ∈ [0, ζ] :

G(t)−G(0) +

ˆ t

0

(
|∇∆u(s)|2L2 + |∇T̂ (s)|2L2 + |∇2v(s)|2L2 + |∂tv(s)|2L2

)
ds

≤ χ(t)

(
sup
s∈[0,t]

G(s)

)
+ Y (t) , (5.14)

where we let

χ(t) := C

ˆ t

0

(|v(s)|4L4 + |∇u(s)|4L4)ds,

for a sufficiently large but universal constant C, while Y denotes the semi-martingale

Y (t) = 2

ˆ t

0

〈T̂ , ∂βu× ◦d∂βW 〉+

ˆ t

0

〈T̂ , u× ◦d∆W 〉 −
ˆ t

0

〈T̂ , vi(u× ◦d∂iW )〉

+ 2

ˆ t

0

〈∆u, ∂βu× ◦d∂βW 〉+

ˆ t

0

〈∆u, u× ◦d∆W 〉 , (5.15)

for t ∈ [0, ζ].

To prove the claim, we proceed as in [16, Lemma 6], an essential difference being
that here the (ill-defined) time derivative of u must be replaced by the corrected

tension T̂ defined in (5.12).
As a first observation note that, similarly as for T , the corrected tension is a.e.

orthogonal to u. Indeed, by definition T̂ = Tu − v · ∇u, but on the one hand we
have Tu ⊥ u, and on the other hand:

u · (−v · ∇u) = −
3∑
i=1

ui
2∑
j=1

vj∂ju
i = −1

2

2∑
j=1

vj∂j
(
|u|2
)
≡ 0 , (5.16)



32 ANNE DE BOUARD, ANTOINE HOCQUET, AND ANDREAS PROHL

hence showing T̂ ⊥ u. We will now apply Itô Formula to each of the quantities
appearing in (5.13).

First, using the semi-martingale decomposition of u and the definition (5.12), then

Itô Formula applied to the quantity 1
2
|T̂ |2L2 gives, using divv = 0:

1

2
|T̂ (t)|2L2 −

1

2
|T̂ (0)|2L2 =

ˆ t

0

〈
T̂ ,∆T̂ + T̂ |∇u|2 + u

(
∇u · ∇T̂

)〉
ds

+M(t),

(5.17)

for all 0 ≤ s ≤ t ≤ ζ, a.s. , where M denotes the semi-martingale

M(t) :=

ˆ t

0

〈T̂ ,∆(u× ◦dW ) + |∇u|2u× ◦dW + 2u∇(u× ◦dW ) · ∇u− v · ∇(u× ◦dW )〉,

:=

ˆ t

0

〈T̂ ,∆(u× ◦dW )〉+

ˆ t

0

〈T̂ , |∇u|2u× ◦dW 〉 −
ˆ t

0

〈T̂ , vi∂i(u× ◦dW )〉

= 2

ˆ t

0

〈T̂ , ∂βu× ◦d∂βW 〉+

ˆ t

0

〈T̂ , u× ◦d∆W 〉 −
ˆ t

0

〈T̂ , vi(u× ◦d∂iW )〉 ,

(5.18)

where we have used the fact that the term
´ t

0
〈T̂ , T̂ × ◦dW 〉 vanishes thanks to

orthogonality, together with
ˆ t

0

〈T̂ , u∇(u× ◦dW ) · ∇u〉 = 0 .

Recalling that T̂ ⊥ u, integration by parts yields the relation

1

2

(
|T̂ (t)|2L2 − |T̂ (0)|2L2

)
−M(t) +

ˆ t

0

|∇T̂ |2L2ds =

ˆ t

0

〈|T̂ |2, |∇u|2〉ds. (5.19)

Using (2.1), the above r.h.s. is estimated as:¨

[0,t]×T2

|T̂ |2|∇u|2dxds

≤
(ˆ t

0

|T̂ |4L4ds

ˆ t

0

|∇u|4L4ds

)1/2

≤ √µ0

(
sup
s∈[0,t]

|T̂ (s)|2L2

)1/2(ˆ t

0

|∇T̂ |2L2ds

)1/2(ˆ t

0

|∇u|4L4ds

)1/2

≤ C

(
sup
s∈[0,t]

|T̂ (s)|2L2

)
χ(t) +

1

2

ˆ t

0

|∇T̂ |2L2ds ,

by definition of χ(t). Hence, from (5.19) we obtain the bound

1

2

(
|T̂ (t)|2L2 − |T̂ (0)|2L2

)
+

1

2

ˆ t

0

|∇T̂ |2L2ds−M(t) ≤ χ(t)

(
sup
[0,t]

G(s)

)
. (5.20)

Let us now apply Itô Formula on the second term in (5.13). Using again the semi-
martingale decomposition of u, together with the second-order Leibniz Formula for
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the laplacian, it holds

1

2

(
|∆u(t)|2L2 − |∆u(0)|2L2

)
+

ˆ t

0

|∇∆u|2L2ds

=

ˆ t

0

〈|∆u|2, |∇u|2〉ds+ 4

ˆ t

0

〈∆u,∇u∇2u∇u〉ds+ 2

ˆ t

0

〈∆u, u(∇∆u · ∇u)〉ds

+ 2

ˆ t

0

〈∆u, u|∇2u|2〉ds+

ˆ t

0

〈∇∆u,∇v∇u+ v∇2u〉ds+N(t) , (5.21)

where N(t) is defined as

N(t) =

ˆ t

0

〈∆u,∆[u× ◦dW ]〉

:=

ˆ t

0

〈∆u,∆u× ◦dW 〉+ 2

ˆ t

0

〈∆u, ∂βu× ◦d∂βW 〉+

ˆ t

0

〈∆u, u× ◦d∆W 〉

= 2

ˆ t

0

〈∆u, ∂βu× ◦d∂βW 〉+

ˆ t

0

〈∆u, u× ◦d∆W 〉 ,

(5.22)
where we have made use of Leibniz Formula and orthogonality.

With the exception of the fourth term in the r.h.s. of (5.21), each term can be
evaluated by (2.1) and Hölder Inequality, in order to yield an estimate of the form
(5.14). For the fourth term, we write that

2

ˆ t

0

〈∆u, u|∇2u|2〉ds ≡ 2

¨
[0,t]×T2

(∆u·u)|∇2u|2dxds = −2

¨
[0,t]×T2

|∇u|2|∇2u|2dxds ,

using once more the identity 0 = ∆( |u
2|

2
) = u ·∆u+ |∇u|2.

Hence, using Young Inequality several times, it is easily seen that for any δ1 > 0
fixed, there is a constant C1 > 0 such that

1

2

(
|∆u(t)|2L2 − |∆u(0)|2L2

)
+

ˆ t

0

|∇∆u|2L2ds−N(t)

≤ C1

¨
[0,t]×T2

|∆u|2|∇u|2dxds+ C1

¨
[0,t]×T2

|∇2u|2|∇u|2dxds

+ δ1

ˆ t

0

|∇∆u|2L2ds+

¨
[0,t]×T2

|∇v|2|∇u|2dxds+

¨
[0,t]×T2

|v|2|∇2u|2dxds

=: I + II + III + IV + V . (5.23)

To estimate the first term, we use again (2.1), which gives:

¨
[0,t]×T2

|∆u|2|∇u|2dxds ≤
(¨

[0,t]×T2

|∆u|4dxds

)1/2(¨
[0,t]×T2

|∇u|4dxds

)1/2

≤ √µ0

(
sup
s∈[0,t]

|∆u|2L2

¨
[0,t]×T2

|∇∆u|2dxds

)1/2

χ(t)1/2

Thus, we have for any δ2 > 0:

I ≤ C2χ(t) sup
s∈[0,t]

G(s) + δ2

ˆ t

0

|∇∆u|2L2ds, (5.24)
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where C2 > 0 only depends on δ2.
Similarly, estimating the H2 norm by the Laplacian, we have for the second term

II ≡ C1

¨
[0,t]×T2

|∇2u|2|∇u|2dxds ≤ C3χ(t) sup
[0,t]

G(s) + δ3

ˆ t

0

|∇∆u|2L2ds . (5.25)

Concerning the fourth term in (5.23), we proceed similarly to obtain that

IV ≤ C4χ(t) sup
s∈[0,t]

G(s) + δ4

ˆ t

0

|∇2v|2L2ds . (5.26)

Similarly,

¨
[0,t]×T2

|v|2|∇2u|2dxds ≤ √µ0

(¨
[0,t]×T2

|v|4dxds

)1/2

×

(
sup
s∈[0,t]

|∇2u|2
¨

[0,t]×T2

|∇3u|2dxds

)1/2

and thus:

V ≤ C5χ(t) sup
s∈[0,t]

G(s) + δ5

ˆ t

0

|∇∆u|2L2ds, (5.27)

It remains to evaluate the velocity terms. First, multiply the equation on v by
∆v (which is also divergence free), and integrate on [0, t]× T2 to get:

|∇v(t)|2L2 − |∇v(0)|2L2 +

ˆ t

0

|∆v|2L2ds

=

ˆ t

0

〈
∆v,P

[
− v · ∇v − div(∇u�∇u)

]〉
ds . (5.28)

Note that, integrating by parts

−
¨

[0,t]×T2

∆v · (v · ∇v)dxds =

¨
[0,t]×T2

∆v · (v · ∇v)dxds = 0 .

Moreover, it holds for i = 1, 2 :

[div(∇u�∇u)]i = ∂jju · ∂iu+ ∂ju · ∂iju = [∆u · ∇u+
1

2
∇(|∇u|2)]i ,

and therefore
P[div(∇u�∇u)] = P[∆u · ∇u] .

The last term in (5.28) is then estimated as:ˆ t

0

〈∆v,−Pdiv(∇u�∇u)〉ds ≤ δ6

¨
[0,t]×T2

|∆v|2dxds+C6

¨
[0,t]×T2

|P[∆u·∇u]|2dxds .

Using (2.1) and the continuity of P, we have on the other hand
¨

[0,t]×T2

|P[∆u · ∇u]|2dxds ≤ C(P)

ˆ t

0

|∆u|2L4|∇u|2L4ds

≤ C7χ(t) sup
s∈[0,t]

G(s) + δ7

ˆ t

0

|∇∆u|2L2ds , (5.29)

where we have estimated the right hand side as in (5.24).
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Now, multiply the equation on v by ∂tv. Integrating over [0, t]× T2, it holds

|∇v(t)|2L2 − |∇v(0)|2L2 +

ˆ t

0

|∂tv|2L2ds

≤ −
¨

[0,t]×T2

v · ∇v · ∂tvdxds+

¨
[0,t]×T2

|∂tv||∆u||∇u|dxds

≤ δ8

¨
[0,t]×T2

|∂tv|2dxds

+ C8

(¨
[0,t]×T2

|∆u|2|∇u|2dxds+

¨
[0,t]×T2

|∇v|2|v|2dxds
)
.

=: δ8

¨
[0,t]×T2

|∂tv|2 + C8(VI + VII) .

Using again (5.24), we obtain

VI ≤ C9χ(t) sup
s∈[0,t]

G(s) + δ9

ˆ t

0

|∇∆u|2L2ds , (5.30)

while

VII ≤ C10χ(t) sup
s∈[0,t]

G(s) + δ10

ˆ t

0

|∇2v|2L2ds . (5.31)

Finally, summing the inequalities (5.18), (5.20) and (5.22)–(5.31), we obtain (5.14)
by choosing the constants δi, i = 1, . . . , 10 small enough.

Step 2: the main stochastic estimate. Using Burkholder-Davies-Gundy Inequality,
we have from Claim A.1:

E

[
sup

s∈[0,t∧ζ]
|Ŷ (s)|2m

]
≤ C(m)E [〈Y 〉(t ∧ ζ)m]

≤ C̃(m)E

[( ˆ t∧ζ

0

{
|ψ∗div(u×∇T̂ )|2L2 + |ψ∗∆(u× T̂ )|2L2 + |ψ∗∂i(viu× T̂ )|2L2

+ |ψ∗∆(−u×∆u)|2L2 + |ψ∗div(u×∇∆u)|2L2

}
ds
)m]

(5.32)

Thanks to the fact that L2(L2, Hk) ↪→ L (L2, Hk), for each k = 1, 2, 3, we deduce
from the above estimate the existence of a constant C(m, |ψ|L2(L2,H3)) > 0 so that

E

[
sup

s∈[0,t∧ζ]
|Ŷ (s)|2m

]
≤ C(m, |ψ|L2(L2,H3))E

[{ˆ t∧ζ

0

(
|∇T̂ (s)|2L2 + |T̂ (s)|2L2

+ |v(s)|2L4|T̂ (t)|2L4 + |∆u(s)|2L2 + |∇∆u(s)|2L2

)
ds
}m]

. (5.33)
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Step 3. Conclusion. By Claim A.1, we have Y (t) = A(t) + Ŷ (t) where Ŷ is a
martingale and A has finite variation. Moreover, from (A.6) together with Sobolev
embeddings and the fact that |u|R3 = 1, we infer that:

|A(t)| ≤ C
∑
l∈N

|∇ψ|2L∞
ˆ t

0

(|∇u(s)|2 + |v(s)|2 + |∆ψl|2L2)ds

≤ C(|ψ|L2(L2,H3))

ˆ t

0

(1 + |∇u(s)|2 + |v(s)|2)ds ,

(5.34)

P-a.s. for t ∈ [0, ζ]. Therefore, by (5.14) together with (5.34) and a well-known
generalization of Gronwall inequality, we deduce that P-a.s.:

G := sup
t∈[0,T∧ζ]

G(t) +

ˆ T∧ζ

0

(
|∇∆u(t)|2L2 + |∇T̂ (t)|2L2 + |∇2v(t)|2L2 + |∂tv(t)|2L2

)
dt

≤ C
[
G(0) + sup

t∈[0,T∧ζ]
|Ŷ (t)|

]
exp

{ˆ T∧ζ

0

|v(t)|4L4 + |∇u(t)|4L4dt

}
. (5.35)

Next, using (5.33) we have for any m ≥ 1 in (5.35) and for arbitrary δ > 0 :

E [Gm] ≤ C(δ)E
[
exp

{
2m

ˆ T∧ζ

0

|v(t)|4L4 + |∇u(t)|4L4dt

}]
+ δE

[
sup

t∈[0,T∧ζ]
|Ŷ (t)|2m

]

≤ C
(
δ,m, ρ, T, E0, |ψ|L2(L2,H1)

)
+ δE

[{ˆ T∧ζ

0

(
|∆u|2L2 + |∇∆u|2L2

+ |∇T̂ |2L2 + |T̂ |2L2 + |v|2L4|T̂ |2L4

)
dt
}m]

,

and the conclusion follows by (2.1) and absorption to the left, provided δ > 0 is
taken sufficiently small. �

5.3. Proof of Theorem 5.1. We now have all in hand to prove our main Theorem.
The proof is based on an idea of Debussche, De Moor and Hofmanová [8].

For convenience, we again denote ζ := ζ(v, u; ρ, ε1).

Step 1: increasing the regularity of the stochastic convolution. We define the
stochastic convolution

Z(t) :=

ˆ t

0

et∆u× dW ≡
ˆ t

0

et∆u× ψdξ, (5.36)

ξ being the cylindrical Wiener process given formally by the infinite sum
∑

l≥0 Bl(·)fl.
Note that the latter series is a well-defined element of C(H−1−ε) for any ε > 0,
where for simplicity we henceforth denote by C(Hs) := C(0, ζ;Hs), Lm(Hs) :=
Lm(0, ζ;Hs) and so on.

By Proposition 5.1, for any m ∈ (4,∞) we have

E
[
‖u‖mL∞(H2)

]
<∞, (5.37)

hence making use of the parabolic estimate (Prop. 3.1) with

δ :=
1

2
∈
(
0, 1− 2

m

)
,
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we obtain the bound

E
[
‖Z‖mC(W 2,4)

]
≤ CE

[
‖Z‖mC(H5/2)

]
≤ C ′E

[
‖u×ψ‖mLm(L2(L2,H2))

]
≤ C ′′(|ψ|L2(L2,H4), T )E

[
‖u‖mC(H2)

]
, (5.38)

where we have used the Sobolev embeddings H5/2 ↪→ W 2,4 and H4 ↪→ W 2,∞.
Next, we define y := u − Z which solves the following PDE with random coeffi-

cients:
∂ty −∆y = −v · ∇u+ u|∇u|2 := f + g. (5.39)

From (5.37) and the Sobolev embedding Theorem, we have

g ∈ Lm(Ω;C(Lp)), for any p ∈ [1,∞). (5.40)

Similarly, from Proposition 5.1, we get

E
[
‖v‖mC(H1)

]
<∞, (5.41)

and therefore, it holds as well

f ∈ Lm(Ω;C(Lp)), for any p ∈ [1,∞). (5.42)

Let p = 4. As a consequence of (5.39),(5.40),(5.42), one concludes from the stan-
dard parabolic estimates (we refer, e.g. to [21], see also [13]) that y belongs to
Lm(Ω;C(W 2,4)), together with the bound

E
[
‖y‖mC(W 2,4)

]
≤ CE

[
‖v‖mC(L8)‖∇u‖mC(L8) + ‖∇u‖2m

C(L8)

]
≤ C ′E

[
‖v‖2m

C(H1) + ‖u‖2m
C(H2)

]
.

(5.43)

Using (5.38), then (5.43) leads to better regularity for u ≡ y + Z, namely:

E
[
‖u‖mC(W 2,4)

]
≤ C(|ψ|L2(L2,H4), T )E

[
‖v‖2m

C(H1) + ‖u‖2m
C(H2)

]
. (5.44)

Step 2: increasing the regularity of the solution. From the previous step, we also
infer better regularity for the velocity term. Indeed, using the equation on v and
Sobolev embeddings, we obtain an estimate

‖v‖C(W 1,4) ≤ ‖P(v · ∇v)‖C(W−1,4) + ‖Pdiv∇u�∇u‖C(W−1,4)

≤ C
(
‖v · ∇v‖C(L4/3) + ‖∇u�∇u‖C(L4)

)
≤ C

(
‖v‖C(L4)‖∇v‖C(L2) + ‖∇u‖2

C(L8)

)
.

Hence
E
[
‖v‖mC(W 1,4)

]
≤ CE

[
‖v‖2m

C(H1) + ‖u‖2m
C(H2)

]
. (5.45)

Now, because of (5.44) we have ∇g ≡ ∇u|∇u|2 + 2u∇2u∇u ∈ Lm(Ω;C(L2)), and
because of (5.45) it holds as well ∇f ≡ −(∇v)T · ∇u − v · ∇2u ∈ Lm(Ω;C(L2)).
Therefore, we obtain that y ∈ Lm(Ω;C(H3)), and there holds

E‖y‖mC(H3) ≤ CmE
[
1 + ‖v‖2m

C(H1) + ‖u‖2m
C(H2)

]
. (5.46)

On the other hand, since u = y + Z has gained 1/2 degree of regularity, one can
repeat Step 1 to obtain

E
[
‖Z‖mC(H3)

]
≤ C(m, |ψ|L2(L2,H5), T )E

[
1 + ‖v‖2m

C(H1) + ‖u‖2m
C(H2)

]
.
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We eventually obtain the needed bound on u, namely

E
[
‖u‖mC(H3)

]
≤ C(|ψ|L2(L2,H5), T )E

[
1 + ‖v‖2m

C(H1) + ‖u‖2m
C(H2)

]
.

Finally, the bounds on v follow by reusing the parabolic estimates together with
appropriate Sobolev embeddings. This finishes the proof of Theorem 5.1. �

6. Convergence of regular approximations

6.1. Tightness and passage to the limit. We now define a sequence {Wn, n ∈ N}
of Wiener processes in L2(T2;R3) whose covariance belongs to L2(L2, Hs) for every
s ∈ R. More precisely, for each n ∈ N we let

Wn :=
∑

0≤l≤n

Bl(·)ψfl , (6.1)

for (fl)l∈N and (Bl)l∈N as in (1.5). Next, consider a sequence (wn, yn; τn) of strong
solutions of (SEL) such that

wn(0) ∈ C∞(T2;R2), divwn = 0, yn(0) ∈ C∞(T2;R3), |yn(0)|R3 = 1 a.e.

and (wn(0), yn(0))→ (v0, u0) in L2 ×H1 strong, (6.2)

solving the following regularized problem on [0, τn):{
dwn +

(
Awn + P[wn · ∇wn + div∇yn �∇yn]

)
dt = 0

dyn −
(
∆yn + yn|∇yn|2 − wn · ∇yn − Fψnyn

)
dt = yn × dWn .

(6.3)

Moreover we define the stopping time τn by the property:

P-a.s., τn = T or lim sup
t↗τn

[|wn(t)|H2 + |yn(t)|H3 ] =∞ . (6.4)

Note that the existence of such a sequence is guaranteed by Theorem 3.1. Now, fix
ε1 ∈ (0, 1/µ1) and choose a positive, non-increasing sequence

ρk → 0, k →∞.
For n, k ∈ N, define the stopping times:

ζn,k := inf
{

0 ≤ t < τn, sup
x∈T2

ˆ
B(x,ρk)

(
|wn(t, y)|2 + |∇yn(t, y)|2

)
dy ≥ ε1

}
, (6.5)

with the convention that the infimum is equal to τn whenever the above set is empty.
In the sequel, we will denote by (vn,k, un,k), k ∈ N, the process:

(vn,k(t), un,k(t)) =


(wn(t), yn(t)) if 0 ≤ t ≤ ζn,k ,(
e(ζn,k−t)A2

wn(ζn,k), e
−(t−ζn,k)∆2

yn(ζn,k)
)

if ζn,k < t ≤ T .

(6.6)

Notation 6.1. For each sequence of random variables Xk : Ω → E, k ∈ N where
E is some Polish space, we will henceforth denote by X the corresponding random
variable in the product space

∏
k∈NE. For instance, we define for each n ∈ N :

vn := {vn,k, k ∈ N}, un := {un,k, k ∈ N}, ζn := {ζn,k, k ∈ N},
and so on.
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Claim 6.1. There exists α ∈ (0, 1
2
) such that for every δ < 1 the sequence

(vn,un, ζn,Wn), n ∈ N

is tight in the space

Uδ :=
(∏
k∈N

V δ−1
T

)
×
(∏
k∈N

U δ
T

)
×
(∏
k∈N

[0, T ]
)
× Cα([0, T ];H1).

Proof. The proof relies in particular on the bound

E
[
‖vn,k‖2

V 0
T

]
− 1 ≤ E

[
sup

t∈[0,ζn,k]

|vn,k(t)|2L2 +

ˆ ζn,k

0

|∇vn,k|2L2ds

]

+ E

[
sup

t∈[ζn,k,T ]

∣∣∣eA2(ζ−t)vn,k(ζn,k)
∣∣∣2
L2

+

ˆ T

ζn,k

|eA2(ζn,k−s)∇vn,k|2L2ds

]

≤ C
(
k,E0, T, |ψ|L2(L2,H1)

)
+CE

[ˆ T

ζn,k

|vn,k|2L2

(s− ζn,k)1/2
ds

]
≤ C ′′

(
k,E0, T, |ψ|L2(L2,H1)

)
,

by (3.3) particularized for Λ := (A2,H4), and p = q = 2.
Proceeding similarly for un, one obtains as well the estimate

E
[
‖un‖2

U 1
T

]
≤ C(k,E0, T, |ψ|L2(L2,H1)).

In order to apply Aubin-Lions’ lemma, one needs first higher order estimates with
respect to the time-like variable, but in an arbitrary Sobolev space, typically of
negative order. Such estimates follow directly from the equation (6.3), and hence
the proof is omitted. The conclusion follows from Markov Inequality. �

Thanks to 6.1 and Prokhorov Theorem, we infer the existence of an extraction
n`, ` ∈ N, and a law µ supported in U1 such that

P(vn` ,un` ,ζn`
,Wn`

) → µ weakly.

Furthermore, using Skorohod Embedding Theorem (see [35]) we see that there exist

• a stochastic basis P̂ = (Ω̂, Â, P̂, (F̂t)t∈[0,T ], Ŵ ), where Ŵ is a Wiener process
in L2(T2;R3) such that (1.9) holds;
• a sequence of random variables(

v̂`, û`, ζ̂`, Ŵ`

)
∈ L0(Ω̂,U3), ` ∈ N,

such that for each ` ∈ N, identifying v̂` (resp. û`, Ŵ`) as a mapping from Ω̂×
[0, T ] to

∏
k∈N L2 (resp. to

∏
k∈N H1, H1), then the corresponding stochastic

process is predictible with respect to the filtration

F̂ `t := σ{v̂`(s), û`(s), Ŵ`(s), s ≤ t}, t ∈ [0, T ];

the element Ŵ` is an L2-Wiener process with respect to the above filtration,
and its covariance is given by (1.9) with ψn` instead of ψ; for each k ∈ N,
the random variable ζ̂`,k is a positive stopping time;

• limits (û, v̂, ζ̂, Ŵ ) ∈ U1, for every k ∈ N,
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such that the following convergences hold for each k ∈ N:

(v̂`,k, û`,k)→ (v̂k, ûk) P̂− a.s. in V δ−1
T ×U δ

T for every δ < 1, (6.7)

ζ̂`,k → ζ̂k P̂− a.s., (6.8)

Ŵ` → Ŵ P̂− a.s. in Cα([0, T ];H1) for α as above. (6.9)

Furthermore, by the Sobolev Embedding Theorem, together with Proposition 4.2
and dominated convergence, we immediately obtain

(v̂`,k,∇û`,k)→ (v̂k,∇ûk), in L2(Ω× [0, T ];Lp), for every p ∈ [1,∞) .

û`,k → ûk in L2(Ω× [0, T ];L∞) ,
(6.10)

for each k ∈ N.
In particular, making use of (6.7), (6.8), (6.9), (1.9) and dominated convergence,

it is easily seen that for each k ∈ N,

(P̂, Ŵ ; v̂k, ûk) is a martingale solution of (SEL) (6.11)

up to the stopping time t = ζ̂k, in the sense of Definition 1.1. Details are left to the
reader (see, e.g., [1]).

6.2. Improvement of the convergence. We are now going to improve the con-
vergence of (v̂`,k, û`,k) in V δ−1

loc ×U δ
loc by showing that it remains true for δ = 1.

Claim 6.2. Let (v̂`,k, û`,k) be as in the previous paragraph.
The following convergence holds

(v̂n, ûn)→ (v̂, û) in L2(Ω; V 0 ×U 1). (6.12)

Before we proceed to the proof of Claim 6.2, let us collect some inequalities.
Consider two martingale solutions (P,W1, v1, u1), and (P,W2, v2, u2) defined on the
same probability space, and up to a common stopping time κ > 0. Denote further
by g = v1 − v2 and by f = u1 − u2.

Computing Itô Formula on 1
2
|g(t)|2 we find that

1

2
|g(t)|2L2 +

ˆ t

0

|∇g|2ds =

¨
[0,t]×T2

(
− gjgi∂ivj1 − gjvi2∂igj

)
dxds+ t(v1, v2;u1, u2) ,

(6.13)
where we denote by t : (V 0

[0,κ])
2 × (U 1

[0,κ])
2 → R the operation

t : (v1, v2;u1, u2) 7→
¨

[0,t]×T2

(vj1 − v
j
2)(∆u2 · ∂ju2 −∆u1 · ∂ju1)dxds .

Proceeding as in the proof of Theorem 1.1, we have on the one’s hand:

|
¨

[0,t]×T2

−gjgi∂ivj1dxds| ≤ C(ε)

ˆ t

0

|g|2L2(1 + |∇v1|2L2)ds+ ε

ˆ t

0

|∇g|2L2ds . (6.14)

and similarly

|
¨

[0,t]×T2

−gjvi2∂igjdxds| ≤ C ′(ε)

ˆ t

0

|g|L2(1 + |v2|4L4) + ε

ˆ t

0

|∇g|2L2ds . (6.15)
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Next, applying Itô Formula to 1
2
|∇f |2L2 , we obtain

1

2
|∇f(t)|2L2 +

ˆ t

0

|∆f |2L2ds−X(t)

=

¨
[0,t]×T2

[
(−∆f · f)|∇u1|2− (∆f ·u2)(∇f ·∇(u1 +u2))

]
dxds+ q(v1, v2;u1, u2) ,

(6.16)

where q : (V 0
[0,κ])

2 × (U 1
[0,κ])

2 → R is defined as

q : (v1, v2;u1, u2) 7→
¨

[0,t]×T2

(∆ui2 −∆ui1)(vj2∂ju
i
2 − v

j
1∂ju

i
1)dxds .

Now, a crucial observation is that

t(v1, v2;u1, u2) + q(v1, v2;u1, u2)

=

¨
[0,t]×T2

[
vj1∆u2 · ∂ju2 − vj2∆u2 · ∂ju2 − vj1∆u1 · ∂ju1 + vj2∆u1 · ∂ju1

∆ui2v
j
2∂ju

i
2 −∆ui1v

j
2∂ju

i
2 −∆ui2v

j
1∂ju

i
1 + ∆ui1v

j
1∂ju

i
1

]
dxds

=

¨
[0,t]×T2

[
vj1∆u2 · ∂ju2 − vj2∆u1 · ∂ju2 + vj2∆u1 · ∂ju1 − vj1∆u2 · ∂jui1

]
dxds

=

¨
[0,t]×T2

[−gj∆u1 · ∂jf + vj1∆f · ∂jf ]dxds,

(6.17)
and hence, similar computations as above show that

|t(v1, v2;u1, u2) + q(v1, v2;u1, u2)|

≤ ε

ˆ t

0

(|∇g|2L2 + |∆f |2L2)ds+ C(ε)

ˆ t

0

(|∆u1|2L2 + |v1|4L4 + 1)(|g|2L2 + |∇f |2L2)ds .

(6.18)

The remaining term can be estimated as follows:

|
¨

[0,t]×T2

(−∆f · f)|∇u1|2dxds| ≤ ε

ˆ
|∆f |2L2ds+ C(ε)

ˆ
|∇u1|4L4|f |2L∞ds . (6.19)

Concerning the stochastic integral, we have for any m > 1 :

E

[
sup
s∈[0,t]

|X(s)|m
]
≤ C(m, |∇ψ|L2(L2,L2))E

[ˆ t

0

|∇f |2L2ds

]m/2
. (6.20)

Now, fix k ≥ 1 and for simplicity in the notations let

(v̂`, û`) := (v̂`,k, û`,k) .

Denote by

g` := v̂ − v̂`, and f` := û− û` .
From (6.10), we infer that

(v̂`,∇û`)→ (v̂,∇û), P⊗ dt almost everywhere in Lp, p ∈ [1,∞) . (6.21)

f` → 0 , P⊗ dt almost everywhere in L∞. (6.22)
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Next, upon choosing ε > 0 sufficiently small, we can sum up the inequalities (6.14),
(6.15), (6.18), (6.19) and (6.20) to obtain

E

[
ess sup
t∈[0,T ]

(|g`(t)|2L2 + |∇f`(t)|2) +

ˆ T

0

(|∇g`|2L2 + |∆f`|2L2)dt

]

≤ CE
[ ˆ T

0

(
|∇(v̂`, v̂)|2L2 + |(v̂`, v̂)|4L4 + |∆(û`, û)|2L2 + |∇(û`, û)|4L4 + 1

)
× (|g`|2L2 + |∇f`|2L2 + |f`|2L∞)dt

]
. (6.23)

We can now proceed to the proof of the main result of this paragraph.

Proof of Claim 6.2. We first need to show the following uniform integrability Prop-
erty.

There is a full measure set Ω1 ∈ A, such that for any ω ∈ Ω1 the family
(t 7→ |∇v̂`(ω, t)|2L2 + |∆û`(ω, t)|2L2)n∈N is uniformly integrable with respect to
the Lebesgue measure dt. More precisely, for every ω ∈ Ω1 and ε > 0, there
corresponds a δ(ε, ω) > 0 such that:ˆ t

s

(|∇v̂`(ω, r)|2L2 + |∆û`(ω, r)|2L2)dr ≤ ε , (6.24)

for every (s, t) ∈ [0, T ]2 such that 0 ≤ |t− s| ≤ δ(ε, ω).

Prior to show (6.24), note that ψn` is the covariance associated with Ŵ` through
(1.9). Thus

cov(Ŵ`(1), Ŵ (1)) = ψn`ψ
∗ . (6.25)

Next, for each ` ∈ N, and for every (ω, t) ∈ Ω × [0, T ], by estimating as in (5.4),
we see that there exists a constant C(ρ, |ψ|L2(L2,H1)) > 0 such that P-a.s., for any
0 ≤ s ≤ t ≤ T :

ˆ t

s

|∇v̂`(r)|2L2 + |∆û`(r)|2L2dr

≤ C sup
θ1,θ2∈[s,t]

|X`(θ1)−X`(θ2)|+ C(t− s)

(
1 + sup

θ∈[0,T ]

|∇û`(θ)|2L2

)
, (6.26)

where we denote by

X`(θ) :=

ˆ θ

0

〈∇û`, û` × d∇Ŵ`〉.

From (6.26) and Proposition 4.2 we see that, in order to show the claimed uniform
integrability, it is sufficient to show the existence of Ω1 ∈ A with full measure such
that for each ω ∈ Ω1 :

X`(ω, ·) is uniformly equi-continuous . (6.27)
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But from [10, Thm. 4.27 p. 103 & Thm. 3.15 p. 77] we see that, denoting by

X(θ) :=
´ θ

0
〈∇û, û× d∇Ŵ 〉, we have by (6.25):

E
[

sup
0≤t≤T

|X`(t)−X(t)|
]
≤ CE

[
(

ˆ T

0

|ψ∗n`div(û×∇(û` − û)|2L2dr)1/2

+ (

ˆ T

0

|ψ∗n`div((û` − û)×∇û)|2L2dr)1/2 + (

ˆ T

0

|(ψ∗n` − ψ
∗)div(û×∇û)|2L2dr)1/2

]
.

By Hölder Inequality together with (6.10), we infer that the above right hand side
converges to 0 as n, p → ∞. This shows in particular the existence of Ω̃ ∈ A with
full probability such that

ω ∈ Ω̃ ⇒ X`(ω, ·)−X(ω, ·)→ 0 strongly in C(0, T ;R).

From the converse of Ascoli-Arzela Theorem, we see that (6.27) holds if one lets
Ω1 := Ω̃. This proves uniform integrability and (6.24).

Now, making use of Proposition 4.1, we infer immediately that a similar uniform
integrability as that of (6.24) holds for the family t 7→ |v̂`(t)|4L4 + |∇û`(t)|4L4 . There-
fore, using Vitali’s convergence theorem, we see thanks to (6.21), (6.22) and (6.24)
that

ˆ T

0

(|∇(v̂`, v̂)|2L2 + |(v̂`, v̂)|4L4 + |∆(û`, û)|2L2 + |∇(û`, û)|4L4 + 1)

× (|g`|2L2 + |∇f`|2L2 + |f`|2L∞)dt −→ 0 , P-a.s.: (6.28)

By dominated convergence, we further see that (6.28) also holds in L1(Ω).
Finally, we deduce (6.12) from the inequality (6.23). Claim 6.2 is now proved. �

As a consequence of the above analysis, we observe the following.

Corollary 6.1. The whole sequence (un, vn; ζn)n∈N converges in probability to a local
strong solution (u, v; ζ), in the space V 0 × U 1 × [0, T ]. Namely, for any ε > 0 it
holds

P
(
‖vn,k − vk‖V 0(0,ζk) + ‖un,k − uk‖U 1(0,ζk) + |ζn,k − ζn| > ε

)
→n→∞ 0 .

Proof. Step 1: convergence of the processes. Using the same arguments as above, it
is immediately checked that given two sequences m` and n`, the sequence of random
variable defined by

(X`, Y`) := ((vn` ,un` , ζn`), (vm` ,um` , ζm`))

contains a subsequence converging in distribution to a law ν supported in E × E
where E denotes the Polish space

∏
k∈N V 0

T ×
∏

k∈N U 1
T ×

∏
k∈N[0, T ].

Reasoning as in the above paragraph, we see that there exists a filtered probability
space P̃ = (Ω̃, Ã, P̃; W̃ ) endowed with a Wiener process satisfying (1.9), and a

sequence of random variables (X̃`, Ỹ`) ∼ (X`, Y`), converging P̃-almost surely to an
element

(X̃, Ỹ ) :=
((

v̂, û, ζ̂
)
,
(
ˆ̂v, ˆ̂u, ˆ̂ζ

))
∈ L0(Ω̃;E × E)
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Furthermore, for any k ∈ N, the processes (v̂k, ûk) and (ˆ̂vk, ˆ̂uk) are both martingale

solutions defined on the same stochastic basis, up to the stopping time κk := ζ̂k∧ ˆ̂
ζk.

By Theorem 1.1, we infer that (v̂k, ûk)|[0,κk] = (ˆ̂vk, ˆ̂uk)|[0,κk].

Step 2: convergence of the stopping times. We now claim that

κk = ζ̂k =
ˆ̂
ζk = inf

{
t ∈ [0, T ] : sup

x∈T2

ˆ
B(x,ρk)

|∇û(t, y)|2dy ≥ ε1

}
. (6.29)

This is indeed a consequence of Claim 6.2: for any k ∈ N, since by (6.12) the
convergence û`,k →`→∞ ûk is strong in C(H1), we can write

sup
t∈[0,κk]

∣∣∣∣sup
x∈T2

ˆ
B(x,ρk)

|∇û`,k(t, y)|2dy − sup
x∈T2

ˆ
B(x,ρk)

|∇ûk(t, y)|2dy

∣∣∣∣
≤ sup

t∈[0,κk]

sup
x∈T2

ˆ
B(x,ρ)

∣∣|∇û`,k(t, y)|2 − |∇ûk(t, y)|2
∣∣ dy → 0 ,

showing that

ζ̂k ≡ a.s.− lim
`→∞

ζ̂`,k = ζ(v̂k, ûk),

where the above r.h.s. denotes the stopping time defined from the solution (v̂k, ûk)
by (5.1). This shows the claimed property.

Conclusion. As a consequence, one sees that (X, Y ) is supported on the diagonal of
E ×E. By the well known Gyöny-Krylov Lemma [14], this implies that the original
sequence (vn,un, ζn)n∈N converges in probability to an element (v,u, ζ), in the space∏

k∈N V δ−1
T ×

∏
k∈N U δ

T ×
∏

k∈N[0, T ]. �

6.3. Controlling the bubbling time. We start with a lemma.

Lemma 6.1. Consider a local strong solution (v, u) of (SEL) on [0, τ) ⊂ (0, T ],
where τ is a stopping time. For all ρ > 0, and δ ∈ [0, T ], define the random variable

ε(δ, ρ) := sup
t∈[0,δ∧τ), x∈T2

ˆ
B(x,ρ)

(
|v(t, y)|2 + |∇u(t, y)|2

)
dy,

and assume that for some constant ε1 > 0, it holds

P(ε(0, 3ρ) < ε1) = 1 . (6.30)

Furthermore, denote by π̃ the zero-mean pressure term obtained from equation (4.11).
Then, for all δ ∈ [0, T ] and every λ > 0, we have the estimate

P
(
{ε(δ, ρ) ≥ ε1 + λ} ∩ {δ < τ}

)
≤
C(ρ, T, E0, |ψ|L2(L2,H1))

λ
E
[
δ +

ˆ δ

0

(
|v|4L4 + |∇u|4L4 + |π̃|4/3

L4/3

)
ds
]

(6.31)

where the above constant depends on the indicated quantities, but not on the indi-
vidual element (v, u) such that E[supt∈[0,T ](|v(t)|2L2 + |∇u(t)|2L2)] ≤ E0.

The proof of the above Lemma relies partially on the following argument, whose
proof can be found in [15]:
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For every ρ > 0, there exist a positive integer Nρ, and points

{x1
ρ, x

2
ρ, . . . , x

Nρ
ρ } ⊂ T2 fulfilling the property:

“for all x ∈ T2, there exists i ∈ {1, . . . , Nρ} with B(x, ρ) ⊂ B(xiρ, 2ρ) .”
(6.32)

Proof of Lemma 6.1. Let xiρ, 1 ≤ i ≤ Nρ be as in (6.32), and consider test functions

ϕ = ϕρ,i ∈ C∞0 (T2) with Suppϕ ⊂ B(xiρ, 3ρ) such that

1B(xiρ,2ρ) ≤ ϕ ≤ 1B(xiρ,3ρ) , sup
x∈B(xiρ,3ρ)

|∇ϕ(x)| ≤ C

ρ
, (6.33)

for some C > 0 independent of i, ρ.
By (6.30) together with (6.33), we have for every i ∈ {1, . . . , Nρ} :

Ei,ρ(0) := E[|ϕρ,iv(0)|2L2 + |ϕρ,i∇u(0)|2L2 ] < ε1

By (6.32), we see that for δ ∈ [0, τ), it holds

{
ε(δ, ρ) ≥ ε1 + λ

}
⊂
{
∃i, 1 ≤ i ≤ Nρ, sup

t∈[0,δ]

Ei,ρ(t) ≥ ε1 + λ
}

⊂ ∪Nρi=1

{
sup
t∈[0,δ]

Ei,ρ(t)− Ei,ρ(0) ≥ λ
}
.

(6.34)

But from Proposition 4.3, we have:

1

2

(
Ei,ρ(t)−Ei,ρ(0)

)
≤ C(1 +

1

ρ2
)

¨
[0,t]×T2

(
|v|3 + (|v|+ 1)|∇u|2 + |v||π − π̄|

)
ds

+X i,ρ(t) + t|ϕ∇ψ|2L2(L2,L2)

=: V i,ρ(t),

(6.35)

for t ∈ [0, τ ], a.s., where we let X i,ρ(t) :=
´ t

0
〈ϕ∇u, ϕu×∇dW 〉.

Next, from (6.34), we have the estimate

P(ε(δ, ρ) ≥ ε1 + λ) ≤ P
(
∃i ∈ {1, . . . , Nρ}, sup

t∈[0,δ]

Ei,ρ(δ)− E(0)i,ρ ≥ λ
)

≤
∑Nρ

i=1
P
(

sup
t∈[0,δ]

V i,ρ(t) ≥ λ

2

)
≤
∑Nρ

i=1

2

λ
E
[

sup
t∈[0,δ]

V i,ρ(t)
]
.

(6.36)
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Using Hölder Inequality, and then Burkholder-Davis-Gundy Inequality to estimate
the martingale term, we end up with the bound

E
[

sup
0≤t≤δ

V i,ρ(t)

]
≤ C(1 +

1

ρ2
)E

[
δ sup
t∈[0,inf(δ,τ))

(|v(t)|2L2 + |∇u(t)|2L2) +

ˆ δ

0

(|v|3L3 + |v|2L2)ds

+

ˆ δ

0

|∇u|4L4ds+

(ˆ δ

0

|v|4L4ds

)1/4(ˆ δ

0

|π̃|4/3
L4/3ds

)3/4
]

+ C(|ψ|L2(L2,H1))E
[¨

[0,δ]×T2

(ϕi,ρ)4|∇u|2ds

]1/2

+ δ|ϕi,ρ∇ψ|2L2(L2,L2)

≤ C(ρ, T, E0, |ψ|L2(L2,H1))E
[
δ +

ˆ δ

0

(
|v|4L4 + |∇u|4L4 + |π̃|4/3

L4/3

)
ds
]

(6.37)

Inserting this estimate into (6.36), we obtain (6.31). �

6.4. End of the proof of Theorem 1.2.

Step 1. We first prove the following assertion:

there exists an integer k0 such that for each k ≥ k0, the limit point ζk of the
sequence {ζ`,k, ` ∈ N} defined in (6.5) verifies

P(ζk > 0) = 1 . (6.38)

To prove (6.38), observe that since the sequence ρk converges to 0 and since the
sequence (vn,k(0), un,k(0)) converges to (vk, uk)(0) strongly in L2 ×H1, there is an
integer k0 such that for each k ≥ k0 :

sup
x∈T2

ˆ
B(x,3ρk)

(
|vn,k(0)|2 + |∇un,k(0)|2

)
dy ≤ µ−1

1

2
, uniformly in n ∈ N . (6.39)

For such k ≥ k0 we have in particular

P(ζk > 0) = 1− P(ζk = 0) = 1− lim
δ→0

P(ζk ≤ δ) (6.40)

and, according to the definition of ζn,k in (6.5), and τn in (6.4),

{ζn,k ≤ δ} ⊂ { ζn,k < τn and ζn,k ≤ δ} ∪ {ζn,k = τn and τn ≤ δ} =: Ω1 ∪ Ω2 .
(6.41)

However, by Theorem 5.1, we have P(Ω2) = 0 and therefore, Lemma 6.1 with
ε1 = 1

2
µ−1

1 yields:

P
(
{ζn,k ≤ δ}

)
= P

(
{ε(δ, ρk) ≥ µ−1

1 } ∩ {ζn,k < τn}
)

≤ 2µ1C(k, T, E0, |ψ|L2(L2,H1))E
[
δ +

ˆ δ

0

(
|vn,k|4L4 + |∇un,k|4L4 + |π̃n,k|4/3L4/3

)
ds
]
.
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Estimating the L
4/3
t (L

4/3
x )-norm of π̃ by its L2

t (L
2
x)-norm, and making use of the

estimate (4.12), we further obtain

P
(
{ζn,k ≤ δ}

)
≤ C(µ1, k, T, E0, |ψ|L2(L2,H1))E

[
δ +

ˆ δ

0

(
|vn,k|4L4 + |∇un,k|4L4

)
ds
]
,

which by (4.5), (5.3) and (2.1) goes to 0 as δ → 0, uniformly in n ∈ N.
Now, writing that for each n ∈ N:

{ζk ≤ δ} ⊂ {|ζn,k − |ζn,k − ζk|| ≤ δ} ,

it is seen that

P (ζk ≤ δ) ≤ P (ζn,k ≤ 2δ) + P (|ζn,k − ζk| ≥ δ) .

The conclusion follows by the fact that |ζn,k − ζk|
P→ 0 as n→∞, and the uniform

convergence of P(ζn,k ≤ δ) as δ → 0. This shows (6.38).

Step 2. Definition of the solution. We now define

(v?, u?)(v0, u0; t) :=

{
(vk(t), uk(t)) if t ∈ [0, ζk) for some k ∈ N.
0 otherwise.

(6.42)

Taking the limit as n → ∞ in the identity ζn,k ≤ ζn,k+1 (which holds because the
sequence ρk is non-increasing, see (6.5)), one obtains that for each k ∈ N:

ζk ≤ ζk+1,

and hence by Theorem 1.1, one sees that the definition (6.42) is not ambigu-
ous. Hence, we have defined a local strong solution (v?(v0, u0), u?(v0, u0); ζ?(v0, u0)),
where

ζ?(v0, u0) := lim
k→∞

ζk = sup
k∈N

ζk .

The proof of the property (P3), as well as the fact that the random variable J is
finite a.s., follows exactly the same steps as that of [15], and therefore we leave it to
the reader.

It is sufficient to show (P2) for j = 0, hence we let for k ∈ N :

Vk := vk(σk) and Uk := uk(σk) ,

where σk ↗ τ 1 := ζ?(v0, u0), P-a.s. Notice by Proposition 4.2 that for any m ≥ 1, the
sequence (Vk)k∈N is bounded in Lm(Ω;L2), while (Uk)k∈N is bounded in Lm(Ω; H1).
On the other hand using the equation and the fact that ζk converges a.s. to ζ?, it is
easily seen that (Vk, Uk) is a Cauchy sequence in L2(Ω;H−1)× L2(Ω; L2). In partic-
ular, the sequence (Vk, Uk) can have only one limit point in Lm(Ω;L2)×Lm(Ω; H1),
hence showing that the whole sequence converges towards a uniquely determined
couple (U, V ). This shows (P2).

In order to prove (P4), by Theorem 1.1 and the above step, it is sufficient to show
that for each j ∈ {0, . . . , J − 1},

(v, u) belongs to L4(Ω;L4(τj, τ
′
j+1;L4 ×W1,4)) , (6.43)

where τ ′j is an arbitrary stopping time such that τj ≤ τ ′j+1 < τj+1. But (6.43) holds
thanks to (2.1). This finishes the proof of Theorem 1.2. �
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Appendix A. Appendix: computation of some trace terms

In this appendix, we denote by (v, u) a strong solution of (SEL), and we further-
more assume that it is supported in V 2

T × U 3
T . By the expression “trace term” we

refer to Itô-Stratonovitch corrections of the form (1.10).
Recalling the notation (1.8), it is easy to see that for any vector ζ ∈ R3 :

3∑
i=1

(ζ × ei)× ei = −2ζ. (A.1)

Similarly, the norm constraint yields that for any index α ∈ {1, 2} :

∂α
|u|2

2
= ∂αu · u ≡ 0. (A.2)

We can now proceed to the computations.

Proof of (4.8). Using (A.1), and recalling (1.6), (1.7), we have for the first term

A1(t) =
1

2

∑
l,j,α

〈∂αu, (u×ψj
l )× ∂αψ

j
l 〉

= −
∑
l,j,α

〈∂αu, u(ψl∂αψl)〉

= 0,

(A.3)

where we have also used (A.2).
Now, from the skew-symmetry of the vector product and properties (A.1) and

(A.2), we have for the second term:

A2(t) ≡ 1

2

∑
l,j,α

[
〈u× ∂αψj

l , ∂αu×ψ
j
l 〉+ 〈u× ∂αψj

l , u× ∂αψ
j
l 〉
]

= −1

2

∑
l,j,α

[
〈(u× ∂αψj

l )×ψ
j
l , ∂αu〉+ 2〈(u× ∂αψj

l )× ∂αψ
j
l , u〉

]
=
∑
l,α

[
〈u(∂αψl)ψl, ∂αu〉+ 2|∂αψl|2L2

]
= 2

∑
l

|∇ψl|2L2 ,

(A.4)

which is the claim. �

We now aim to compute the Itô-Stratonovitch correction for the semimartingale
Y defined in (5.15). We have, using coordinates:

Y (t) = 2

ˆ t

0

〈T̂ , ∂βu× ◦d∂βW 〉+

ˆ t

0

〈T̂ , u× ◦d∆W 〉 −
ˆ t

0

〈T̂ , vi(u× ◦d∂iW )〉

+ 2

ˆ t

0

〈∆u, ∂βu× ◦d∂βW 〉+

ˆ t

0

〈∆u, u× ◦d∆W 〉 =:
∑5

γ=1
Y γ(t) , (A.5)

where we recall that T̂ = Tu − v · ∇u = ∆u+ u|∇u|2 − v · ∇u.
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Claim A.1. Under the condition ψ ∈ L2(L2, H4), the process Y is a well-defined
semi-martingale, whose decomposition writes as

Y (t) =
∑

l∈N

¨
[0,t]×T2

[
2(u× ∂αψj

l · ∂αu)(u · ∂βu× ∂βψj
l )

+ 4(∂αψl∂βψl)∂αu · ∂βu+ |∆ψl|2 − (v · ∇ψl)2

+ |∇u|2|∇ψl|2 + 2
∑
α,β

(∂αψl∂βψl)∂αu · ∂βu+ |∆ψl|2
]
dxds+ Ŷ (t) (A.6)

where Ŷ (t) is a martingale.
Moreover, its quadratic variation is estimated above as

〈Y 〉(t) ≤ C

ˆ t

0

{
|ψ∗div(u×∇T̂ )|2L2 + |ψ∗∆(u× T̂ )|2L2 + |ψ∗∂i(viu× T̂ )|2L2

+ |ψ∗∆(−u×∆u)|2L2 + |ψ∗div(u×∇∆u)|2L2

}
ds (A.7)

Proof. Computation of Y 1. Similarly as above, we have, recalling (1.10),

Y 1(t)− 2

ˆ t

0

〈T̂ , ∂βu× d∂βW 〉

=
∑

l,j

ˆ t

0

[
〈T̂ , (∂βu×ψj

l )× ∂βψ
j
l 〉+ 〈T̂ , (u× ∂βψj

l )× ∂βψ
j
l 〉

+ 〈∆u×ψj
l , ∂βu× ∂βψ

j
l 〉+ 2〈∂αu× ∂αψj

l , ∂βu× ∂βψ
j
l 〉

+ 〈u×∆ψj
l , ∂βu× ∂βψ

j
l 〉+ 〈u×ψj

l |∇u|
2, ∂βu× ∂βψj

l 〉
+ 2〈u(∂αu×ψj

l · ∂αu), ∂βu× ∂βψj
l 〉+ 2〈u(u× ∂αψj

l · ∂αu), ∂βu× ∂βψj
l 〉

− 〈vi∂iu×ψj
l , ∂βu× ∂βψ

j
l 〉 − 〈v

iu× ∂iψj
l , ∂βu× ∂βψ

j
l 〉
]
ds

=
∑

l

ˆ t

0

[∑
j

〈
T̂ , (∂βu×ψj

l )× ∂βψ
j
l − (∂βu× ∂βψj

l )×ψ
j
l

〉
+ 4〈∂αu∂αψl, ∂βu∂βψl〉+ 2〈u(u× ∂αψj

l · ∂αu), ∂βu× ∂βψj
l 〉
]
ds

=
∑

l

ˆ t

0

[
4〈∂αu∂αψl, ∂βu∂βψl〉+ 2〈u(u× ∂αψj

l · ∂αu), ∂βu× ∂βψj
l 〉
]
ds ,

thanks to (A.1).
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Computation of Y 2. We have

Y 2(t)−
ˆ t

0

〈T̂ , u× d∆W 〉

=
1

2

∑
l,j

ˆ t

0

[
〈T̂ , (u×ψj

l )×∆ψj
l 〉+ 〈∆u×ψj

l , u×∆ψj
l 〉

+ 2〈∂αu× ∂αψj
l , u×∆ψj

l 〉+ 〈u×∆ψj
l , u×∆ψj

l 〉
+ 〈u×ψj

l |∇u|
2, u×∆ψj

l 〉+ 2〈u(∂αu×ψj
l · ∂αu), u×∆ψj

l 〉
+ 〈u(u× ∂αψj

l · ∂αu), u×∆ψj
l 〉 − 〈v

i∂iu×ψj
l , u×∆ψj

l 〉

− 〈viu× ∂iψj
l , u×∆ψj

l 〉
]
ds

=
∑
l

ˆ t

0

[ ˆ
T2

|∆ψl|2dx− 〈vi∂iψl,∆ψl〉
]
ds .

Computation of Y 3. Proceeding similarly, we have

Y 3(t)−
ˆ t

0

〈T̂ , viu× d∂iW 〉

=
1

2

∑
l,j

ˆ t

0

[
〈T̂ , vi(u×ψj

l )× ∂iψ
j
l 〉+ 〈∆u×ψj

l , v
iu× ∂iψj

l 〉

+ 2〈∂αu× ∂αψj
l , v

iu× ∂iψj
l 〉+ 〈u×∆ψj

l , v
iu× ∂iψj

l 〉
+ 〈u×ψj

l |∇u|
2, viu× ∂iψj

l 〉+ 2〈u(∂αu×ψj
l · ∂αu), viu× ∂iψj

l 〉
+ 〈u(u× ∂αψj

l · ∂αu), viu× ∂iψj
l 〉 − 〈v

k∂ku×ψj
l , v

iu× ∂iψj
l 〉

− 〈vku× ∂kψj
l , v

iu× ∂iψj
l 〉
]
ds

Simplifications lead finally to

Y 3(t)−
ˆ t

0

〈T̂ , viu× d∂iW 〉

=
1

2

∑
l

ˆ t

0

[
〈∆u · u, ψlvi∂iψl〉+ 2〈∆ψl, vi∂iψl〉+ 2〈|∇u|2, vi(∂iψl)ψl〉

− 2〈vk∂kψl, vi∂iψl〉
]
ds

=
∑
l

ˆ t

0

[
〈∆ψl, vi∂iψl〉 − 〈vk∂kψl, vi∂iψl〉

]
ds .
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Computation of Y 4.. We have

Y 4(t)−
ˆ t

0

〈∆u, ∂βu× d∂βW 〉

=
1

2

∑
l,j

ˆ t

0

[
〈∆u, (∂βu×ψj

l )× ∂βψ
j
l 〉+ 〈∆u, (u× ∂βψj

l )× ∂βψ
j
l 〉

+ 〈∆u×ψj
l , ∂βu× ∂βψ

j
l 〉+ 2〈∂αu× ∂αψj

l , ∂βu× ∂βψ
j
l 〉

+ 〈u×∆ψj
l , ∂βu× ∂βψ

j
l 〉
]
ds,

=
1

2

∑
l

ˆ t

0

[
2〈|∇u|2, (∂βψl)2〉+ 4〈∂αu∂αψl, ∂βu∂βψl〉

]
ds.

Computation of Y 5. Similarly:

Y 5(t)−
ˆ t

0

〈∆u, u× d∆W 〉

=
1

2

∑
l,j

ˆ t

0

[
〈∆u, (u×ψj

l )×∆ψj
l 〉

+ 〈∆u×ψj
l , u×∆ψj

l 〉+ 2〈∂αu× ∂αψj
l , u×∆ψj

l 〉

+ |u×∆ψj
l |

2
L2

]
ds

=
1

2

∑
l

ˆ t

0

2|∆ψl|2L2ds .

Summing the above contributions, we end up with (A.6).

Quadratic variation of Y . The estimate (A.7) is a simple consequence of [10, The-
orem 4.27] applied to each Y γ, γ = 1, . . . , 5, together with the fact that 〈Y 〉(t) ≤
C
∑5

γ=1〈Y γ〉(t) . This finishes the proof. �
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