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Summary 23 

Promoter-proximal polymerase pausing is a key process regulating gene expression. In latent 24 

HIV-1 cells, it prevents viral transcription and is essential for latency maintenance, while in 25 

acutely infected cells the viral factor Tat releases paused polymerase to induce viral expression. 26 

Pausing is fundamental for HIV-1, but how it contributes to bursting and stochastic viral 27 

reactivation is unclear. Here, we performed single molecule imaging of HIV-1 transcription, and 28 

we developed a quantitative analysis method that manages multiple time scales from seconds to 29 

days, and that rapidly fits many models of promoter dynamics. We found that RNA polymerases 30 

enter a long-lived pause at latent HIV-1 promoters (>20 minutes), thereby effectively limiting 31 

viral transcription. Surprisingly and in contrast to current models, pausing appears stochastic and 32 

not obligatory, with only a small fraction of the polymerases undergoing long-lived pausing in 33 

absence of Tat. One consequence of stochastic pausing is that HIV-1 transcription occurs in 34 

bursts in latent cells, thereby facilitating latency exit and providing a rationale for the 35 

stochasticity of viral rebounds. 36 

37 

38 

39 
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Introduction 40 

Transcription initiation is a complex process that comprises chromatin opening, assembly of a 41 

pre-initiation complex (PIC), polymerase recruitment and finally its maturation into an 42 

elongation-competent form (see 1 for review). In Drosophila and mammals, this last step is highly 43 

regulated and appears to be a key point in the control of gene expression (2 for review). RNA 44 

polymerase II (RNAPII) is recruited by the PIC in a hypo-phosphorylated form and is then loaded 45 

on a short stretch of single stranded DNA, which is melted by TFIIH. The initiating polymerase 46 

starts elongating about a dozen of nucleotides and must undergo a number of modifications 47 

before leaving the promoter and entering productive elongation 3. First, the TFIIH-associated 48 

CDK7 kinase phosphorylates the Serine 5 of the heptad repeats of the C-terminal domain (CTD) 49 

of RNAPII, thereby disrupting interaction with Mediator and facilitating promoter escape (4,5 for 50 

reviews). The S5 phosphorylated CTD also recruits the RNA capping enzymes that access the 51 

RNA 5'-end when it emerges from the polymerase 6. The polymerase then transcribes an 52 

additional 10-80 nucleotides and typically enters a paused state. Two factors appear particularly 53 

important to trigger pausing, in relation with TFIID 7: DSIF (DRB sensitivity-inducing factor), 54 

which is composed of SPT4 and SPT5, and NELF (negative elongation factor), a four subunit 55 

complex that also interacts with the cap via the cap-binding complex 8 (CBC). A recent structure 56 

of the pausing complex indicates that the RNA-DNA hybrid adopts a tilted conformation within 57 

the polymerase that prevents further nucleotide addition 9. This structure is stabilized by NELF 58 

and DSIF, which also prevent binding of TFIIS, a factor that can trigger cleavage of the RNA at 59 

the active site to restart backtracked polymerases 10. Release from the paused state requires the 60 

positive transcription elongation factor b (P-TEFb), which is composed of Cyclin T1 or T2 61 

associated with the kinase CDK9 11, sometimes in association with the super-elongation complex 62 
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12,13 (SEC). P-TEFb is activated by CDK7 4,5,14 and it phosphorylates a number of components of 63 

the pausing complex to enable formation of an elongation-competent polymerase 9,15,16. 64 

Phosphorylation of NELF triggers its dissociation from the polymerase, and this frees a binding 65 

site for PAF, an elongation factor that is required for transcription through chromatin. P-TEFb 66 

also phosphorylates the RNA polymerase CTD on its Serine 2, as well as the linker between the 67 

polymerase core and the CTD, creating a binding site for the elongation factor SPT6 9. DSIF 68 

functions both as a repressor and activator of elongation, and it is also phosphorylated by P-TEFb 69 

(17 and ref therein). The structures of the paused and active elongation complex show that DSIF 70 

adopts different conformations in the two complexes. In particular, phosphorylated DSIF frees 71 

the nascent RNA and allows the polymerase to clamp around the DNA, promoting elongation 72 

while preventing release of the polymerase from DNA. Overall, P-TEFb mediated 73 

phosphorylation thus disrupts the pausing complex and triggers formation of an active elongation 74 

complex comprising the polymerase associated to DSIF, SPT6, and PAF. 75 

 While pausing is thought to be a key regulatory point for many cellular promoters in 76 

mammals and Drosophila, it is often revealed by a peak of RNAPII near the promoter that can in 77 

fact correspond to different molecular processes 18, such as slow elongation, polymerase arrest, or 78 

defective processivity (i.e. abortive initiation). Recent efforts have been made to clarify these 79 

mechanisms by measuring pausing duration. These studies indicated that pausing time vary from 80 

less than a minute up to an hour in Drosophila, depending on the promoter 19-23. This revealed a 81 

surprising variability in pausing kinetics, with widely different regulatory potential. 82 

 Another major finding of the last 15 years is that transcription is a discontinuous process 83 

in vivo (24 see 25,26  for reviews), with "active" genes going through active and inactive periods in 84 

a stochastic manner, a phenomenon also called transcriptional noise or gene bursting. In 85 

particular, recent evidences suggest that for many genes, expression levels are dynamically 86 
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encoded in the time domain by controlling the periods during which a gene is active, rather than 87 

by regulating the initiation rate 27-29. Major efforts have been made to decipher the causes of gene 88 

bursting and in particular the molecular status of the postulated ON and OFF states. Indeed, the 89 

transitions between these states are kinetically rate limiting and therefore represent key regulatory 90 

checkpoints. However, despite these efforts and the importance of pausing in regulating gene 91 

expression, how pausing affects gene bursting remains not understood. 92 

 An important implication of gene bursting is that it creates cell-to-cell heterogeneity and 93 

this has multiple consequences on the phenotypes of single cells or multicellular organisms. For 94 

instance, stochasticity in the expression of Heat-Shock genes in yeasts is thought to help a 95 

fraction of the yeast population survive sublethal stresses 30, while in C. Elegans, mutations in a 96 

small gene regulatory network create a high expression variability, ultimately leading to variable 97 

phenotypic penetrance of the mutation 31. In the case of HIV-1, transcriptional noise is thought to 98 

play a crucial role in the control of latency. Indeed, HIV-1 infection generates latent cells that can 99 

persist in the body for decades and can re-establish viral propagation when antiviral treatments 100 

are interrupted. Previous studies from the Siliciano and Weinberger labs have shown that latency 101 

exit is stochastic and linked to random fluctuations of viral transcription 32-34. How the viral 102 

promoter creates bursts of gene expression in latent cells is not understood, but nevertheless 103 

fundamental as it is triggering latency exit. A better knowledge of mechanistic and quantitative 104 

aspects of the reactivation dynamics is indeed essential for the development of new strategies in 105 

combinatorial anti-retroviral therapies such as “shock and kill” and “block and lock”. 106 

 The ability of the virus to alternate between acute and latent forms lies in a positive 107 

transcriptional feedback loop established by the viral protein Tat (32, see 35,36 for reviews). In 108 

latent cells, Tat levels are very low and viral transcription remains silent or also low. In acutely 109 

infected cells, Tat levels are elevated, strongly inducing viral transcription. It is well established 110 
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that in absence of Tat or when Tat levels are low, P-TEFb is limiting for viral transcription and 111 

the polymerases that initiate transcription enter a paused state after transcribing about 60 112 

nucleotides and fail to enter productive elongation (reviewed in 35,36; Figure 1A, left). Tat 113 

alleviates this block by binding both P-TEFb and the TAR stem-loop at the 5'-end of nascent 114 

HIV-1 RNAs, leading to the formation of a ternary complex that promotes elongation by 115 

recruiting P-TEFb and its associated super-elongation complex to paused polymerases 11-13 116 

(Figure 1A, right). The HIV-1 promoter is thus strictly regulated at the level of pausing and P-117 

TEFb recruitment, and these steps are controlled by Tat, which overall can activate viral 118 

transcription by more than 100 fold. These properties make HIV-1 an attractive model to 119 

decipher how pausing affects gene bursting, with direct relevance for HIV-1 latency and 120 

pathogenesis 37,38. 121 

 Here, we imaged HIV-1 transcription in live cells at the level of single polymerases. We 122 

characterized the effect of pausing on gene bursting by modulating the levels of Tat, which 123 

controls pausing at the HIV-1 promoter. We provide the first fully quantitative description of the 124 

stochastic activity of the HIV-1 promoter in basal and induced conditions, on timescales ranging 125 

from second to tens of hour. Surprisingly, we found that promoter-proximal pausing is a 126 

stochastic event that generates large viral bursts even in cells that do not express Tat. In HIV-1 127 

latent cells with a functional but inactive Tat loop, stochastic pausing may be a key phenomenon 128 

that determines latency exit.  129 

 130 

  131 
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Results 132 

Single molecule imaging of HIV-1 transcription with different levels of the pause release 133 

factor Tat 134 

We previously developed an improved MS2 tagging system based on a 128xMS2 tag and 135 

designed for long term tracking of single RNAs 28. To image viral transcription, we inserted this 136 

tag in the intron of an HIV-1 vector that had all the viral sequences responsible for transcription 137 

and RNA processing (Figure 1A-B). The corresponding pre-mRNA splices entirely post-138 

transcriptionally, enabling imaging of transcription independently of splicing 28,39. The high 139 

number of MS2 stem-loops present in this reporter allows for a 5-fold increase in signal as 140 

compared to our original 24xMS2 repeat 40. This enables the use of a low illumination power to 141 

limit photo-bleaching, allowing to capture five times more images while still detecting single 142 

RNA molecules. By using the 128xMS2 tag and monitoring the brightness of the transcription 143 

site over time, it is possible to measure promoter activity with a temporal resolution in the second 144 

range and for hours.  145 

 It has been demonstrated by numerous studies that the HIV-1 promoter is regulated at the 146 

level of promoter proximal pausing (see 35,36 for reviews). Indeed, latent cells do not express a 147 

significant amount of Tat and in this case, polymerases that start transcribing are blocked ~60 148 

nucleotides downstream the transcription start site and do not enter productive elongation. This 149 

block is relieved by Tat, which directly alleviates pausing by recruiting P-TEFb to the nascent 150 

viral RNAs and allowing polymerases to elongate throughout the entire viral genome. To 151 

characterize how pausing affects HIV-1 transcription, we therefore created isogenic cell lines 152 

expressing different levels of Tat. These lines all contained the 128xMS2 reporter integrated at 153 

the same chromosomal location. We previously generated a HeLa cell line that expressed in trans 154 
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a saturating amount of Tat (High Tat cells). In these cells, transcription was high and a further 155 

increase in the amount of Tat did not lead to more viral transcription 28. We then created two new 156 

reporter cell lines with low levels of Tat to mimic the situation of latent cells where Tat is not 157 

expressed or only at very low levels 35,36. The first cell line expresses Tat from the second cistron 158 

of a bicistronic vector (referred to as Low Tat cells), and Tat was not detected by Western blot 159 

although it promoted HIV-1 transcription by 2.7 fold (Figure 1C-E and Figure S1A). The second 160 

cell line entirely lacked Tat (referred to as No Tat). We first determined the expression levels of 161 

the HIV-1 reporter by performing smFISH experiments with probes binding the 128xMS2 repeat. 162 

We found that expression of the HIV-1 reporter depended on Tat as expected (Figure 1C-E), as 163 

the number of pre-mRNA molecules present in the nucleoplasm dropped from ~500 copies per 164 

nucleus in High Tat cells, to ~50 and ~20 in Low Tat and No Tat cells, respectively. This was 165 

mirrored by a similar decrease in the level of the nascent RNAs present at the transcription sites, 166 

with a mean of 32 copies for the High Tat cells, and only 5 and 1.8 for the Low Tat and No Tat 167 

cells, respectively (Figure 1C-E).  168 

Next, we aimed at confirming that pausing was limiting viral transcription in No Tat cells. 169 

To this end, we overexpressed the two subunit of P-TEFb, Cdk9 and Cyclin T1, by transient 170 

transfection. We observed that this increased viral transcription as previously reported in other 171 

cellular systems (Figure S1B; 41). Then, we fused CDK9 to a fluorescent catalytically inactive 172 

Cas9 variant (dCas9-tagBFP), and we transfected the resulting construct in No Tat cells together 173 

with vectors expressing three Cas9 guide RNAs targeting the HIV-1 promoter. By performing 174 

smFISH with probes against the 128xMS2 repeat, we found that expressing dCas9-CDK9-175 

tagBFP alone increased HIV-1 RNA levels by 4 fold, while further targeting it to the HIV-1 176 

promoter with three guide RNAs led to a 10-fold increase in expression (Figure S1C). Moreover, 177 

the basal HIV-1 transcriptional activity in No Tat cells was blocked when P-TEFb was 178 
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inactivated with KM05283, a drug that specifically inhibits CDK9 kinase activity (Figure S2A). 179 

This indicated that P-TEFb was both required for basal transcription and also limiting viral 180 

expression, providing functional indications that pausing was limiting in No Tat cells. Next, we 181 

tested whether the basal viral transcription observed without Tat was due to sporadic activation of 182 

the NF-κB pathway, as it is a well-known activator of the HIV-1 promoter that can recruit P-183 

TEFb 42,43. We treated cells with BAY11-7082, a drug that inhibits the IKK kinase and traps NF-184 

κB subunits in the cytoplasm. No difference in HIV-1 expression was seen after 16h of treatment, 185 

indicating that the basal viral transcription was independent of NF-κB (Figure S2B-C). Taken 186 

together, these data indicate that in our cellular system, the basal HIV-1 transcription occurring in 187 

absence of Tat is P-TEFb dependent, and that the recruitment of this factor is a key step limiting 188 

viral transcription, as expected from a large body of previous studies.  189 

 190 

The absence of Tat does not affect the formation of polymerase convoys but creates long 191 

inactive periods  192 

When Tat is in excess, HIV-1 transcription occurs in the form of polymerase convoys, i. e. sets of 193 

closely spaced polymerases that transcribe the gene together (see schematic in Figure 2D; 28). In 194 

average, the Tat-activated HIV-1 promoter produces convoys of 19 polymerases, each 195 

polymerase spaced every ~4 seconds, with a convoy being fired every ~2 minutes. In order to 196 

characterize how a limiting amount of Tat affects the viral transcriptional output, we performed 197 

live-cell imaging using MCP-GFP and monitored the brightness of transcription sites over time. 198 

The single molecules of unspliced pre-mRNA present in the nucleoplasm were used to calibrate 199 

the signal at the transcription site, which could then be expressed as an absolute number of RNA 200 

molecules (Figure 2). We previously showed that the Tat-activated HIV-1 promoter fluctuates on 201 
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time scales ranging from minutes to hours, and we therefore recorded two types of movies to 202 

cover the entire temporal range of transcriptional fluctuations 28. 'Short movies' capture one 203 

image stack every 3 seconds for 15 to 20 minutes, and they allow a detailed characterization of 204 

rapid transcriptional fluctuations such as polymerase convoys. 'Long movies' last for 8 hours with 205 

a rate of one image stack every three minutes, and they allow to measure the frequency and 206 

duration of long inactive periods. Note that since a nascent RNA resides 2.8 minutes at the 207 

transcription site 28, this frame rate ensures that all the initiation events are detected in the long 208 

movies.  209 

 In the short movies, we observed transient increases in the brightness of transcription sites 210 

for all three cell lines: High Tat, Low Tat and No Tat (Figure 2A-C). They were in the minute 211 

range and quantification of the signals indicated that they corresponded to the synthesis of 212 

multiple RNA molecules (Figure 2A-C). Thus, viral transcription occurred in large bursts even in 213 

absence of Tat, resulting in the formation of polymerase convoys. To better characterize these 214 

rapid fluctuations,  we focused on transcription cycles in which an inactive transcription site 215 

transiently turned on, and we fitted these data with a model of polymerase convoys (28; see 216 

schematic in Figure 2D).  Surprisingly, the convoys formed in the Low Tat and No Tat cells were 217 

roughly similar to those formed when Tat was saturating (19 polymerases initiating every 4 218 

seconds in High Tat cells, compared to 14 polymerases every 6 s in Low Tat cells and 12 219 

polymerases every 8 s in absence of Tat; Figure 2E). This result was unexpected because 220 

decreasing Tat levels should increase pausing, which should increase in lag time between 221 

successive polymerases, possibly until convoys are no longer formed. It is also interesting to note 222 

that the differences observed at this rapid time-scale were small and could not account for the 30 223 

fold difference in expression induced by Tat (Figure 1C-E). 224 
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 Next, we analyzed fluctuations on slow time scales using long movies. The HIV-1 225 

promoter was almost always active in cells expressing an excess of Tat (Figure 3A-B, left 226 

panels). In contrast, No Tat and Low Tat cells displayed long inactive periods that lasted for hours 227 

(Figure 3A-B, middle and right panels). In addition, active periods were brief and rare, yet 228 

yielded initiation of multiple polymerases in the form of convoys as for High Tat cells (see 229 

Figure 3A). The activity of the HIV-1 promoter in absence of Tat thus occurs mainly in the form 230 

of sparse, yet large bursts, with long inactive period explaining most of the difference in promoter 231 

activity with and without Tat.  232 

 233 

Development of a novel analysis pipeline to characterize the fluctuations of promoter 234 

activity on multiple timescales 235 

The fluctuations of promoter activity arise from stochastic transitions between active and inactive 236 

promoter states (25,26; Figure 4A). These transitions correspond to steps that are kinetically rate-237 

limiting, and the characterization of these promoter states can thus yield important information on 238 

how promoters function and are regulated. To better understand how pausing and Tat control the 239 

activity of the HIV-1 promoter, we turned to machine learning and modeling approaches with the 240 

aim of elucidating how the promoter switches between active and inactive states. The analysis of 241 

the fluctuations of transcription sites brightness can be done by auto-correlation strategies 44,45. 242 

This gives a direct measurement of the dwell time of the nascent RNAs and allows to estimate the 243 

elongation and 3'-end processing rates. However, there is currently no theoretical framework that 244 

can easily extend autocorrelation methods to models containing multiple promoter states besides 245 

a simple ON/OFF switch. In addition, correlation approaches are difficult to use when 246 

fluctuations are slow and approach the recording time of the movies. Other analysis strategies 247 

hypothesize a theoretical transition model and infer parameters using Bayesian or maximum 248 
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likelihood approaches 29,46-48. These strategies rarely compare several models and do not directly 249 

characterize features such as polymerase convoys. To circumvent these difficulties, we turned to 250 

the direct analysis of polymerase waiting times, i.e. the lag time between two successive initiation 251 

events. Indeed, transcription can be modelled as a continuous time Markov chain in which a 252 

promoter stochastically switches between various non-productive states until it reaches an active 253 

state where it can initiate transcription (Figure 4A). In this case, waiting times between 254 

successive initiation events are interesting to consider because their distribution directly relates to 255 

transition rates of the Markov chain (see Supplemental Text). Moreover, we obtained for many 256 

different models the closed-form equations expressing the distribution of waiting times as a 257 

function of the model parameters (for full solutions to this direct problem, see Methods and 258 

Supplemental Text), as well as closed-form equations allowing to compute the model parameters 259 

directly from the distribution of waiting times, the so-called inverse problem (for full solutions, 260 

see Methods and Supplemental Text). In particular, if we consider a class of models containing 261 

several consecutive OFF states and one ON state that can initiate transcription (Figure 4A), the 262 

survival function of polymerase waiting times, which is one minus their cumulative distribution, 263 

is the sum of several exponentials with the number of exponentials corresponding to the number 264 

of promoter states (Figure 4A; see Supplemental Text). Thus, by fitting the survival function with 265 

various sums of exponentials, one can determine the number of states in the promoter model. In 266 

addition, the rates of promoter switching can be directly calculated from the coefficients of the 267 

fitted sum of exponentials (see Methods and Supplemental Text, inverse problem). Hence, if the 268 

distribution of waiting times can be extracted from the experimental data, it is straightforward to 269 

determine both the number of promoter states, as well as the rates of switching between these 270 

states. 271 

 272 
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Calculation of polymerase waiting times from short and long movies 273 

We first reasoned that the inactive periods seen in the long movies correspond to long polymerase 274 

waiting times (Figure 3A-B). Since the frame rate is 3 minutes while a nascent RNA remains 2.8 275 

minutes at the transcription site 28, these movies should detect all initiation events and thus to 276 

measure all the polymerase waiting times longer than 3 minutes. The short waiting times could be 277 

calculated from the short movies, which have a much higher frame rate (3 seconds). However, a 278 

difficulty is that the signal generated by a polymerase persists several minutes after it initiated, as 279 

the labelled nascent RNA leaves the transcription site only after it is transcribed to the end of the 280 

gene and 3'-end processed (see schematic in Figure 2D). Consequently, if the next polymerase 281 

appears before the nascent RNA disappears, the transcription site remains continuously 282 

fluorescent and it is not possible to directly calculate the polymerase waiting times. To 283 

circumvent this difficulty, we reasoned that the intensity of transcription sites over time is the 284 

result of the convolution of two functions: the signal produced by a single polymerase and the 285 

time sequence of firing events (see 25 and Figure 4B, left panels). The signal produced by a single 286 

polymerase depends on the polymerase elongation rate and the rate of 3'-end formation, which 287 

we determined previously for this HIV-1 reporter gene 28,39. If we assume that all polymerases 288 

behave identically, it is thus possible to calculate the temporal position of polymerase initiation 289 

events by finding the best sequence of these events that reproduces the experimental 290 

transcriptional fluctuations (Figure 4B). It should thus be possible to extract polymerase waiting 291 

times from the short movies, keeping in mind that the waiting times longer than the movie will be 292 

truncated and require a correction (see Supplemental Text). 293 

Altogether, the long movies give access to waiting times longer than the frame rate 294 

(waiting times in the 3 min-10h range), and the short movies provide waiting times shorter than 295 

the movie length (in the 3s-20min range). The combination of these movies thus allows to 296 
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reconstruct and estimate the distribution of polymerase waiting times over 4 logarithmic decades, 297 

i.e. 3s-10h   (see Supplemental Text for the reconstruction procedure). This analysis pipeline has 298 

three advantages. First, by determining the number of exponentials required to fit the survival 299 

function, one can directly determine the number of promoter states in the model. Second, given 300 

that equations describing the distribution of waiting times can be obtained for many models, it is 301 

straightforward to fit these models and to estimate which model best fits the experimental data. 302 

Finally, this pipeline enables to combine data acquired at multiple time-scales, from seconds to 303 

ten hours, and therefore provides an ideal framework to quantify transcriptional dynamics in live 304 

cells.   305 

 306 

Validation of the analysis pipeline by simulations 307 

To evaluate the precision and reliability of the analysis pipeline, we first tested the performance 308 

of the deconvolution algorithm on simulated datasets. The initiation times of several polymerases 309 

were simulated and the signal of an imaginary transcription site was calculated using 310 

experimentally measured elongation and 3'-end processing rates 28,39. We then added a realistic 311 

amount of noise and tested the ability of the deconvolution algorithm to reconstruct the proper 312 

initiation timing from the noisy signal (Figure 5A and Supplemental Text). The algorithm is 313 

composed of two parts: a genetic algorithm to obtain the rough position of initiation events, and 314 

by a local optimization to refine the position of initiation events. In both presence and absence of 315 

noise, the combination of the two steps allowed an accurate positioning of the initiation events. 316 

 Next, we validated the entire analysis pipeline by simulating a three state branched 317 

promoter model with the Gillespie algorithm, using several realistic sets of parameters (i.e. 318 

corresponding to values obtained with our cell lines, see below). We computed the brightness of 319 

many statistically equivalent imaginary transcription sites as above, and added different amounts 320 
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of noise (1x, 2x and 4x), with the 1x condition corresponding to the noise observed in our 321 

experimental data (Figure 5B, upper panels; see Supplemental Text). The intensities of the 322 

simulated transcription sites were then resampled to create artificial short and long movies, which 323 

were treated exactly as real data. Simulated short movies were deconvolved and the distribution 324 

of waiting times was computed separately for the short and long movies. These distributions were 325 

then combined to reconstruct the entire distribution of waiting times (Figure 5B, middle panels), 326 

which was fitted to a sum of three exponentials to calculate the parameters of the promoter 327 

model. In absence of noise, all the model parameters were recovered accurately and with high 328 

precision (i.e. a small confidence interval), for the three sets of parameter value used to generate 329 

the artificial data (Figure 5B, lower panels). With the 1x and 2x amount of noise, parameter 330 

recovery was still accurate, while for the 4x noise condition, some parameters were recovered 331 

with a low precision, in particular those corresponding to rapid transition rates. Overall, these 332 

simulations indicated that our analysis pipeline worked well, even with complex promoter 333 

models, and was robust with respect to noise. 334 

 335 

Modeling indicates that pausing is stochastic and that pauses are long-lived  336 

We analyzed the movies produced from cells expressing different amounts of Tat and created 337 

several models describing how the HIV-1 promoter may operate. The simplest model has two 338 

promoter states, ON and OFF as shown in Figure 6A, and assumes that once initiated, RNAPII 339 

enters directly into productive elongation without a pausing step. This would likely be the case 340 

when expression of Tat is high and pausing not rate-limiting, but not when Tat is limiting or 341 

absent. We thus created a model that included a pausing step. It consisted of the same simple 342 

model with two promoter states (OFF and ON), but with initiating polymerases undergoing an 343 

obligatory pause (PAUSE), before either progressing into elongation or aborting (Figure 6A 344 
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middle; model M3). Note that once the polymerase exits the pause or aborts, the promoter goes 345 

immediately back in the ON state. A large body of work indicates that Tat is promoting 346 

elongation by recruiting P-TEFb and in agreement, P-TEFb is limiting for HIV-1 transcription in 347 

the Low Tat and No Tat cells used here (Figure S1B-C). Therefore, we expected to have a high 348 

abortion rate (kabort) and/or a low rate of pause release (krelease) in absence of Tat, and the opposite 349 

when Tat is abundant. Conversely, the rates of switching between the ON and OFF state should 350 

not be much affected by the amount of Tat.  351 

 For the obligatory pausing model, the symbolic solution describing the distribution of 352 

polymerase waiting times is the sum of three exponentials, but with one of the five parameter 353 

being constrained and expressed as a function of the others (see Supplemental Text section 4.6). 354 

After fitting the experimental distributions of polymerase waiting times using this symbolic 355 

solution, we estimated the quality of the fit with three criteria: (i) the sum of squared residuals, 356 

evaluated from the function minimized during the fit (i.e. the objective function, with the inverse 357 

of its minimal value giving the fit score); (ii) the certainty of the value of the fitted model 358 

parameters, evaluated by their confidence intervals; (iii) the realistic nature of the parameter 359 

values, and in particular the pausing times and the effects of Tat. According to these 360 

considerations, the fit of the 3 state model with an obligatory pause was poor, and this was the 361 

case of all the Tat cell lines. First, the model scores were low and not better than the simple 2 362 

state model without pause, even in the Low Tat / No Tat cell lines were P-TEFb recruitment 363 

limits viral transcription (Figure 6B-C). Second, the uncertainty in some parameter was high, as 364 

shown by the large confidence intervals of the parameters of the fitted exponentials (see Table 4 365 

of Supplemental Text). Third, the pausing time, estimated from the rates of pause release and 366 

transcription abortion, was short (Figure 6D; less than 10 seconds whether Tat was present or 367 

not), while most of the regulation induced by Tat occurred at the transition between the ON and 368 
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OFF state and not pausing (see Figure 17 of the Supplemental Text). It is also interesting to note 369 

that the fitted abortion rate was found to be > 100 fold faster than the rate of pause release (Figure 370 

17 of Supplemental Text). Because the promoter goes directly to the ON state upon abortion or 371 

pause release, a high abortion or release rate creates a collapse between the ON and PAUSE 372 

states and therefore simplifies the 3 state model with pause into a simple 2 state ON/OFF model 373 

without pause. This explains why these two models have identical scores and fitted survival 374 

functions (Figure 6B, compare curves with  '+' and 'x'). In order to try improving the model with 375 

obligatory pause, we made a four state model having two successive OFF states, one ON state 376 

and an obligatory pause (Model M4; see Figure 18 of Supplemental Text). This model fitted the 377 

data better and had a better overall score (see value of the objective function in Table 5 of the 378 

Supplemental text). However, it suffered from similar flaws as the previous model (see Figure 18 379 

of Supplemental Text): (i) short pausing time whether Tat was present or not (<10 s); and (ii) 380 

high abortion rates, which similarly collapsed the 4 state model with an obligatory pause into a 3 381 

state model without pause. Overall, increasing the number of OFF states in the model with an 382 

obligatory pause still yields short pausing times not regulated by Tat. Thus, an obligatory pause 383 

does not provide a benefit over a model without pause, with most of the effect of Tat occurring at 384 

the level of transitions between OFF and ON states. It is important to realize that given the high 385 

degree of bursting without Tat, with polymerases rapidly succeeding one another to form 386 

convoys during periods of gene activity (Figure 2), an obligatory pause necessarily means that 387 

pausing is short. In addition, since Tat mainly affects long inactive periods (Figure 3B), short 388 

pauses mean that the regulation by Tat cannot be on pausing, but rather on other steps able to 389 

produce long OFF periods. Hence, the occurrence of polymerase convoys in absence of Tat 390 

implies that an obligatory pause cannot be the step regulated by Tat to increase transcription. 391 
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 This questioned the validity of the model and we thus sought for alternatives. In the 392 

previous models, pausing is an obligatory step, but it could be imagined that pausing is a 393 

facultative step, for instance if entry into the pause is stochastic. In this case, initiating 394 

polymerases have the choice of either directly progressing into productive elongation or entering 395 

a paused state, from which they can exit by either aborting or entering elongation (Figure 6A 396 

right, model M2+). To test this model, we first used a simplified variant of model M2+, in which 397 

polymerases systematically abort when exiting a facultative pause (model M2, see Figure 1 of the 398 

Supplemental Text). This model could fit the data from all the three cell lines, High Tat, Low Tat 399 

and No Tat (Figure 6B), with scores higher than the 3- or 4-state models with an obligatory pause 400 

(Figure 6C; Table 5 of Supplemental Text). Moreover, all parameters had a high precision with 401 

small confidence intervals (see Table 2 of Supplemental Text), and the model correctly predicted 402 

the number of pre-mRNA per cell (Figure 6E), with only a slight under-estimation for the High 403 

Tat cells. The fitted parameters indicate that pausing is infrequent, even in cells lacking Tat 404 

(Figure 6D). This implies that the fate of the paused polymerase will only marginally affect the 405 

promoter output, indicating that models in which the paused polymerase enters productive 406 

elongation would give similar results. Because the simplified model M2 is symmetrical, it is not 407 

possible to determine with certainty which parameters correspond to the ON-OFF transition, and 408 

which correspond to the ON-facultative pause. Nevertheless, both possibilities indicate a long 409 

pausing time from 15 minutes to 3h in No Tat cells, which is regulated by Tat as it decreases to 410 

either 1 or 15 minutes in High Tat cells. Pausing is also always predicted to be infrequent, 411 

varying from one every 20 to 180 polymerases in No Tat cells, down to one every 40 to 3900 in 412 

High Tat cells (Figure 6D).  413 

 414 

Measurement of pausing duration by biochemical approaches. 415 
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To further assess models with obligatory or stochastic pausing, we attempted to test their most 416 

discriminative prediction. Obligatory pausing predicts a pausing time in the second range, while 417 

facultative pausing predicts a duration in the hour or sub-hour range (Figure 6D). Pausing 418 

duration can be estimated by measuring RNAPII residency time, and this can be achieved by 419 

performing chromatin immunoprecipitation (ChIP) during a time-course with Triptolide, a drug 420 

that inhibits TFIIH and prevents loading new polymerases without removing the ones that already 421 

initiated. We treated High Tat and No Tat cells with Triptolide for up to an hour and performed 422 

an RNAPII ChIP experiment. We analyzed the HIV-1 promoter as well as the GAPDH promoter, 423 

as a constitutively active control gene (Figure 7A). In the High Tat cells, similar levels of 424 

RNAPII were found on both the GAPDH and the viral promoters, while about 6-fold less 425 

polymerases was found on the HIV-1 promoter in absence of Tat, consistent with previous results 426 

(Figure S3; 49). Most importantly, treatment with Triptolide led to the rapid disappearance of 427 

RNAPII at the GAPDH promoter, with only ~20% of the signal remaining after 10 min of 428 

treatment (Figure 7A). Interestingly, the kinetics observed at the HIV-1 promoter were dependent 429 

on Tat. In High Tat cells, the RNAPII signal also decreased rapidly and this was consistent with 430 

the rapid succession of polymerase firing that we measured in live cells (on every 4-6 seconds; 431 

28). In contrast, the polymerases remained associated a much longer time with the viral promoter 432 

in absence of Tat, with 88% of the signal remaining after 10 minutes of treatment (Figure 7A). 433 

Extrapolation of the half-life of the promoter-associated polymerases indicated 10 minutes for the 434 

GAPDH promoter and for the HIV-1 promoter when Tat levels are high. However, this half-life 435 

raised to 38 minutes for the HIV-1 promoter when Tat was absent, consistent with a long pause. 436 

These long values may moreover be underestimated as hour-long treatment with Triptolide were 437 

shown to cause degradation of RNA polymerase II in human cells 50. Altogether, these data verify 438 

a key discriminative prediction of the facultative pausing model, namely that paused polymerases 439 
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exhibit a half-life in the sub hour range and not in the second range as expected from an 440 

obligatory pausing scenario. 441 

 Next, we wished to determine whether long pausing time requires a specific feature of the 442 

HIV-1 promoter or could be induced at any promoter by depleting P-TEFb. We thus repeated the 443 

GAPDH RNAPII ChIP time course, but pretreated cell with the Cdk9 inhibitor KM05382 for 2h 444 

before performing the Triptolide time course. The residency time of RNAPII at the GAPDH 445 

promoter was similarly short whether cells were pretreated with KM05382 or not (Figure 7B), 446 

indicating that the lack of P-TEFb activity is not sufficient in itself to induce long pauses. This 447 

suggests that the HIV-1 promoter likely has additional features that specify this property. 448 

449 
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Discussion 450 

Cells latently infected with HIV-1 prevent patients from clearing the virus, as the stochastic 451 

activation of these cells can re-establish viral propagation 32,34. Latent cells do not express the 452 

viral genome and pausing of RNA polymerases at the viral promoter is a key block that prevents 453 

HIV-1 transcription 35-38. Pausing thus plays a fundamental role in HIV-1 biology, and yet, how it 454 

contributes to bursting and stochastic reactivation of the virus is not known. Here, we harnessed 455 

the power of single molecule transcriptional imaging and modeling to study how pausing affects 456 

HIV-1 transcription in single cells. We find that pausing is a stochastic process, and modeling as 457 

well as biochemical experiments indicate that it is long lived inhibitory state that impacts only a 458 

small fraction of the initiating polymerases. Stochastic pausing therefore generates viral 459 

transcriptional bursts in absence of Tat, which may cause viral reactivation, latency exit and viral 460 

rebounds in patients.  461 

 462 

A frequentist approach accurately and robustly model transcriptional fluctuations  463 

Single molecule transcription imaging is a powerful technique that becomes indispensable for 464 

understanding transcriptional regulation in vivo. However, the signal produced by this technique 465 

integrates processes with widely distributed timescales, and not directly accessible by simple data 466 

processing.  Hence, new modeling methods are needed to cope with the multiscale nature of 467 

transcription. To this end, we developed a new machine learning and modeling method. Using 468 

numerical deconvolution, this approach generates a time map of transcriptional initiation events 469 

indicating, for each transcription site, when RNAPII molecules start producing an mRNA. This 470 

feature is unique in our analysis pipeline and not available in other approaches that directly fit a 471 

particular transcription model to experimental data 29,45-48. Our method generates a multiscale 472 
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cumulative distribution function of polymerase waiting times, which separate successive 473 

transcription initiation events. This distribution function has the unique advantage of integrating 474 

temporal information on transcriptional processes with an unprecedented dynamic range from 475 

seconds to days. Moreover, we have analytically solved the inverse problem consisting in 476 

computing the model parameters as a function of the waiting time distribution, for a large number 477 

of models. By allowing easy and quick comparison of many different models of promoter 478 

dynamics, this method removes a bottleneck essential for hypothesis testing in gene regulation 479 

studies.      480 

 481 

Polymerase pausing generates long-lived inactive states that limit HIV-1 transcription 482 

P-TEFb is an essential elongation factor that is required for both the basal and Tat-induced 483 

activity of the HIV-1 promoter 11,35,36. By default, the HIV-1 promoter leads to pausing and 484 

inefficient elongation, and Tat functions as a promoter specific elongation factor by recruiting P-485 

TEFb to the nascent viral RNAs. When Tat is present in saturating concentrations, we observe 486 

that polymerases initiate rapidly, one after another (every 4-6s in average; 28). This indicates that 487 

the maturation of initiating polymerases into a processive complex is rapid, in agreement with the 488 

fact that P-TEFb recruitment is not rate-limiting when Tat is abundant. When Tat is limiting or 489 

absent, we observe a biphasic behavior. HIV-1 promoters are mostly inactive, and yet sometimes 490 

transcribe the viral genome in brief pulses containing tens of polymerases. These polymerases are 491 

fired in rapid succession (one every 7-15s), and they form convoys resembling the ones observed 492 

when Tat is saturating. Modelling the imaging data in Low Tat and No Tat cells confirms this 493 

biphasic behavior and further indicates that in average, 20-35 polymerases initiate during active 494 

periods of 5 minutes, followed by inactive periods of 20 minutes or 3h. Given that pausing is 495 

limiting transcription in the absence of Tat, these long inactive periods are likely caused by long-496 
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lived pauses at the HIV-1 promoter. Indeed, direct measurements of RNAPII residency time at 497 

the HIV-1 promoter indicate that the absence of Tat generates long pauses in the sub-hour range, 498 

which are therefore responsible for at least some of the long periods without viral transcription.  499 

Recent genome-wide data obtained in Drosophila with Triptolide time-course experiments 500 

indicate that the half-life of polymerases at cellular promoters varies from less than a minute to 501 

about an hour 19-23. Analysis of a series of promoter variants further indicates that an initiator 502 

element with a G at position +2 is a key determinant of long pausing time (>40 minutes; 51). It is 503 

not known whether this rule also applies to vertebrates, but it is worth noting that the HIV-1 504 

promoter has an unusual initiator element required for Tat activation that contains a G at +2 52. 505 

Moreover, inhibiting P-TEFb does not generate long pauses at the GAPDH promoter, suggesting 506 

that some promoter specific features exist. In the future, it will be interesting to determine 507 

whether long-lived and short-lived paused polymerases have a similar 3D structure. Indeed, 508 

recent data in NELF KO cells suggests that polymerases can have several pausing sites and states 509 

53. Because of their half-life, long-lived paused polymerase may display additional features such 510 

as backtracking or other stabilizing properties, and backtracking was indeed shown to occur at the 511 

pause site in the case of HIV-1 54. Long-lived paused polymerases are especially interesting 512 

because of their properties, which effectively limit transcription but maintain the promoter in an 513 

open state 22.  514 

 515 

Stochastic pausing generates transcriptional bursting 516 

In the traditional model of transcription initiation, polymerase pausing is an obligatory step 517 

during the formation of the elongation complex 2,55. In contrast, our live cell data on HIV-1 518 

transcription suggest that pausing is a stochastic event that occurs rarely: 1 every 20-180 519 

polymerase in absence of Tat and down to 1 every 40-3900 when Tat is abundant. A model 520 
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reconciling these views would be the existence of two fates during pausing: a pause could lead to 521 

either rapid enzyme maturation, or to a long-lived inactive state that would inhibit further 522 

transcription. In this scenario, the polymerases initiating at the HIV-1 promoter would mature 523 

into a processive elongation complex but would have a low probability of entering a long-lived 524 

paused state (Figure 7C). A key feature of this model is that long-lived pauses are stochastic, and 525 

this changes the nature of this process as long-lived pauses would not be a step required for 526 

proper polymerase maturation but an inhibitory state preventing transcription. In essence, 527 

stochastic long-lived pauses are analogous to an inactive promoter state (Figure 7C). In the case 528 

of HIV-1, long-lived pauses would be a key regulatory step in transcriptional regulation, and by 529 

ensuring an efficient recruitment of P-TEFb, Tat would drastically reduce the probability of long 530 

inhibitory pauses (see model in Figure 7C). This is consistent with the fact that the HIV-1 531 

promoter is fully occupied in a model of latent cells 56, even if in some cases Tat can slightly 532 

enhance PIC occupancy 49. It is also consistent with the known function of Tat as a P-TEFb/SEC 533 

recruiting factor, with a major function in reducing pausing. 534 

  The basal activity of the HIV-1 promoter requires P-TEFb and it is surprising that the 535 

factors responsible for P-TEFb recruitment in absence of Tat allow for the firing of a series of 536 

polymerases before switching back to a long inactive state. Indeed, the HIV-1 promoter is active 537 

for periods of ~ 5 minutes in absence of Tat, firing 20 polymerases on average. A possibility to 538 

explain this behavior would be a switching mechanism, in which P-TEFb would be present and 539 

active for several minutes at the HIV-1 promoter, and then leave for long time periods. Our data 540 

show that NF-κB is not involved in the basal transcriptional activity of HIV-1 in our cellular 541 

system, and we can thus rule out sporadic activation of this pathway as a cause of transcriptional 542 

bursts in absence of Tat. Another possibility would involve the diffusion dynamics of P-TEFb. 543 
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Indeed, it has been shown that P-TEFb is a local explorer that repetitively visit the same location  544 

57, and recent data further suggest that P-TEFb undergoes transient liquid-liquid phase transitions 545 

58. FRAP studies showed that the residency time of P-TEFb is 11 seconds at the HIV-1 promoter 546 

in absence of Tat 59, and 55 seconds at the transcription site of a CMV-based reporter 58. While 547 

this is too short to explain the 5 minutes active periods without Tat, single particle tracking of P-548 

TEFb subunits indicate a wide range of binding times 58. Moreover, P-TEFb also might exchange 549 

rapidly from longer-lasting liquid condensates. It is also possible that other phenomena are 550 

responsible for P-TEFb recruitment, or that long pauses arise from an inherently stochastic and 551 

inefficient process.  552 

 The stochastic nature of long-lived polymerase pausing and their low probability has 553 

important consequences for HIV-1 pathogenesis. There are evidences that the stochastic 554 

activation of the viral promoter is responsible for the stochasticity of latency exit, at least in part 555 

32-34,37. Moreover, latent viruses do not express Tat or at very low levels 35,36, and we show that in 556 

these conditions the spontaneous release of a long-lived pause leads to the synthesis of a large 557 

series of viral RNAs. In some cases, this may be sufficient to activate the viral promoter and to 558 

initiate the Tat positive feedback loop, leading to acute viral replication. The stochastic nature of 559 

long-lived pausing may thus be an important feature of HIV-1 regulation that favorizes 560 

spontaneous latency exit 34,37,38. It is also possible that even if the viral RNAs produced do not 561 

initiate the Tat-feedback loop, they may still produce a small amount of viral particles, which 562 

may infect naive cells and could thus participate in the viral rebounds or viremia blips seen in 563 

patients. It is also important to note that quiescent memory T cells have a low P-TEFb activity 564 

35,36, possibly leading to very long periods without HIV-1 transcription. Finally, stochastic 565 

pausing has also been reported in developing Drosophila embryos, where it may finely tune gene 566 
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expression after zygotic genome activation (see accompanying paper). Stochastic pausing may be 567 

a general property of cellular promoters important for gene regulation. 568 

  569 
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Methods 570 

Cell culture and drug treatments 571 

HeLa Flp-in H9 cells (a kind gift of S. Emiliani) were maintained in DMEM supplemented with 572 

10% fetal bovine serum, penicillin/streptomycin (10 U/ml) and glutamin (2.9 mg/ml), in a 573 

humidified CO2 incubator at 37°C. Cells were transfected with the indicated plasmids with 574 

JetPrime (Polyplus), following manufacturer recommendations. Drugs were used at the following 575 

concentrations: Triptolide, 1 μM; KM05382 100 μM; BAY11-7082, 2 μM. 576 

Stable expression of MCP-GFP was achieved by retroviral-mediated integration of a self-577 

inactivating vector containing an internal ubiquitin promoter (as described in 28). The MCP used 578 

dimerizes in solution and contained the deltaFG deletion, the V29I mutation, and an SV40 NLS. 579 

MCP-GFP expressing cells were grown as pool of clones and FACS-sorted to select cells 580 

expressing low levels of fluorescence. Isogenic stable cell lines expressing the 128xMS2 HIV-1 581 

reporter gene were created using the Flp-In system and a HeLa H9 strain expressing various 582 

levels of Tat (see below) and MCP-GFP. Flp-In integrants were selected on hygromycin (150 583 

μg/ml). For each construct, several individual clones were picked and analyzed by in situ 584 

hybridization.  585 

No Tat cells expressed the 128xMS2 HIV-1 reporter gene but did not express any Tat 586 

protein. To obtain low level of Tat expression, a Tat-Flag fused to an Auxin-inducible degron 587 

(AID)  and cloned as a second cistron after auxin receptor F-box protein AFB2 and instead of 588 

GFP in a previously described vector AAV-CAGGS-eGFP 60. The resulting vector was integrated 589 

in genomic AAVS1 site using CRISPR-Cas9 and clones were selected using puromycin as 590 

described 60. Cells were not treated with Auxin. 591 
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High Tat cells 28 were created using the plasmid pSpoII-Tat. In this plasmid, the CMV 592 

promoter transcribes a Tat-Flag cDNA followed by an IRES-Neo selectable marker. Following 593 

Neomycin selection (400 μg/ml), expression levels of individual clones were verified by western 594 

blotting and by immunofluorescence to ensure homogeneity both between clones and between 595 

cells of a clone. 596 

 597 

Plasmids 598 

Sequences of the plasmids are available upon request. The 128xMS2 HIV-1 reporter and High 599 

Tat expression vector were described previously 28. AAV-CAGGS-eGFP vector, used to obtain 600 

low Tat cells, Cas9 encoding vector and AAVS1-site targeting RNA-guides were obtained from 601 

Dr. G. M. Church 60. pcDNA3-CDK9-GFP and pcDNA3-CyclinT1-GFP plasmids were obtained 602 

by Gateway technology, CDK9 and Cyclin-T1 were amplified by PCR from the vectors provided 603 

by Dr. L. Lania 61. pHR-SFFV-dCas9-BFP plasmid used for CDK9 cloning is #46911 from 604 

Addgene. The RNA guides were cloned in a home-made U6 expression vector with an optimized 605 

guide RNA scaffold 62. 606 

 607 

dCas9 tethering and pTEFb overexpression  608 

For P-TEFb overexpression, Hela 128xMS2 HIV-1 No Tat cells without MCP-GFP were plated 609 

on coverslips and the next day transfected with CDK9-GFP, Cyclin-T1-GFP, or both, using 610 

jetprime (polyplus). pBluescript was used as a negative control and GFP-Tat as a positive control. 611 

24-hours after transfection cells were fixed and the reporter RNA was detected by smFISH with 612 

Cy3-labeled fluorescent probes against MS2 repeats, the RNA expression was scored in 613 

transfected GFP-positive cells. 614 
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 For CDK9 tethering, RfB gateway cassette was cloned in pHR-SFFV-dCas9-BFP 615 

between dCas9 and BFP. CDK9 was next introduced by LR recombination. The resulting 616 

plasmid pHR-SFFV-dCas9-CDK9-BFP was transfected in Hela No Tat cells without MCP-GFP 617 

together with 3 RNA guides encoding plasmids as described above. pHR-SFFV-dCas9-CDK9-618 

BFP without guides and pHR-SFFV-dCas9-BFP were used as controls.  24 hours after 619 

transfection cells were fixed and subjected to smFISH with probes against 128xMS2. The 620 

numbers of RNA molecules in BFP-positive cells were counted using FISH-QUANT 63,64.  The 621 

sequences of RNA guides were as follows CCGCCTAGCATTTCATCACG, 622 

CCACGTGATGAAATGCTAGG, TGCTACAAGGGACTTTCCGC. 623 

 624 

SmFISH and RNA quantification 625 

SmFISH was performed as previously described 28, with a mix of 10 fluorescent oligos 626 

hybridizing against the MS2x32 repeat, each oligo containing four molecules of Cy3. Since each 627 

oligo bound four times across the 128xMS2 repeat, each molecule of pre-mRNA hybridized with 628 

40 oligos, thereby providing excellent single molecule detection and signal-to-noise ratios. 629 

 To obtain the number of nascent and released pre-mRNAs per cell and the distribution of 630 

this parameter in the cell population, cells processed for smFISH were imaged on a ZEISS 631 

Axioimager Z1 wide-field microscope (63X~, NA 1.4; 40X~, NA 1.3), equipped with an sCMOs 632 

Zyla 4 .2 camera (Andor) and controlled by MetaMorph (Universal Imaging). 3D image stacks 633 

were collected with a Z-spacing of 0.3 μm. Figures were prepared with Image J, Photoshop and 634 

Illustrator (Adobe), and graphs were generated with R or MatLab. 635 

 Raw, 3D smFISH images were analyzed to count the number of pre-mRNA per nuclei, 636 

using populations of >300 cells per experiment.  Briefly, nuclei were segmented using the DAPI 637 
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signal with Imjoy 65, and transcription sites (TS) were identified manually. Isolated pre-mRNA 638 

molecules located in the nucleoplasm were then detected with FISH-quant 63,64, after manual 639 

thresholding of Laplacian on Gaussian filtered image. This defined the PSF and the total light 640 

intensity of single molecules, which were averaged to obtain an average PSF. The average PSF of 641 

single RNA molecule was used to determine the number of nascent pre-mRNA molecules at the 642 

TS. 643 

 644 

Live cell imaging 645 

Cells were plated on 25 mm diameter coverslips (0.17 mm thick) in non-fluorescent media 646 

(DMEM gfp-2 with rutin; Evrogen). Coverslips were mounted in a temperature-controlled 647 

chamber with CO2 and imaged on an inverted OMXv3 Deltavision microscope in time-lapse 648 

mode. A 100x, NA 1.4 objective was used, with an intermediate 2X lens and an Evolve 512x512 649 

EMCCD camera (Photometrics). Stacks of 11 planes with a z-spacing of 0.6 μm were acquired. 650 

This spacing still allowed accurate PSF determination without excessive oversampling. 651 

Illuminating light and exposure time were set to the lowest values that still allowed visualization 652 

of single molecules of pre-mRNAs (laser at 1% of full power, exposure of 15 ms per plane). This 653 

minimizes bleaching and maximizes the number of frames that can be collected. Yet, it 654 

guarantees that transcription can be detected early on, when one or a few nascent chains are in the 655 

process of being transcribed. For short movies, one stack was recorded every 3 seconds for 15 to 656 

20 minutes. For long movies, one stack was recorded every three minutes for 8 hours.  657 

 658 

Quantification of short movies 659 
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Extract the TS signal in the short movies was done as previously described 28. We manually 660 

defined the nuclear outline and the region within which the TS is visible. The stack was corrected 661 

for photobleaching by measuring the fluorescence loss of the entire nucleus and fitting this curve 662 

with a sum of three exponentials. This fitted curve was then used to renormalize each time-point 663 

such that its nuclear intensity was equal to the intensity of the first time-point. We then filtered 664 

the image with a 2-state Gaussian filter. First, the image was convolved with a larger kernel to 665 

obtain a background image, which was then subtracted from the original image before the 666 

quantification is performed. Second, the background-subtracted image was smoothened with a 667 

smaller Kernel, which enhances the SNR of single particles to facilitate spot pre-detection. 668 

We then pre-detected the position of the TS in each frame of the filtered image by 669 

determining in the user-specified region the brightest pixel above a user-defined threshold. If no 670 

pixel was above the threshold, the last known TS position was used. Pre-detected position was 671 

manually inspected and corrected. Then the TS signal was fitted with a 3D Gaussian estimating 672 

its standard deviation σxz and σz, amplitude, background, and position. We performed two rounds 673 

of fitting: in the first round all fitting parameters were unconstrained. In the second round, the 674 

allowed range was restricted for some parameters, to reduce large fluctuations in the estimates 675 

especially for the frames with a dim or no detectable TS.  More specifically, the σxz and σz were 676 

restricted to the estimated median value +/- standard deviation from the frames where the TS 677 

could be pre-detected, and the background was restricted to the median value. The TS intensity 678 

was finally quantified by estimating the integrated intensity above background expressed in 679 

arbitrary intensity units.  680 

With the live cell acquisition settings, the illumination power was low and we could not 681 

reliably detect all individual molecules. We therefore collected right after the end of the movie 682 

one 3D stack – termed calibration stack - with increased laser intensity (50% of max intensity, 683 
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compared to 1% for the movie), which allowed reliable detection of individual RNA molecules. 684 

We also collected slices with a smaller z-spacing for a better quantification accuracy (21 slices 685 

every 300 nm). Quantification of TS site intensity in the calibration stack was done with FISH-686 

quant as follows: (a) when calculating the averaged image of single RNA molecules, we 687 

subtracted the estimated background from each cell to minimize the impact of the different 688 

backgrounds; (b) when quantifying the TS in a given cell, we rescaled the average image of 689 

single RNA molecules such that it had the same integrated intensity as the molecules detected in 690 

the analyzed cell.  691 

To calibrate the TS intensities in the entire movie, i.e. to express the TS intensity as a 692 

number of equivalent full-length transcripts, we used the fact that the last movie frame was 693 

acquired at the same time as the calibration stack. We then normalized the extracted TS intensity 694 

in the movies, IMS2, to get the nascent counts Nnasc;calib: 695 

Nnasc;calib (t) = IMS2  (t) * (Nnasc,final / Ifinal), 696 

where  Nnasc,final  stands for the estimated number of nascent transcripts in the calibration stack 697 

and Ifinal for the averaged intensity of the last 4 frames. Note that the approach was limited to 698 

movies where the TS was active at the movie end since otherwise its intensity could not be 699 

quantified. More than 100 cells were used in each condition. 700 

 701 

Quantification of long movies 702 

To quantify the long movies acquired at low frames rate (one 3D stack per 3 minutes), we used 703 

ON-quant 28, a rapid analysis tool that identified the ON and OFF periods and measured their 704 

length. This did not require an absolute quantification of the number of nascent pre-mRNAs and 705 

we therefore defined an intensity threshold, based on the mean intensity of single molecules, 706 

under which a TS is considered to be silent, and above which a TS is considered to be active. 707 
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This threshold corresponded to the intensity of 1.5 pre-mRNA. For each cell line between 100 708 

and 150 cells were analyzed. 709 

 710 

Mathematical modelling 711 

A detailed description of the algorithm can be found in the Supplemental Text, and the software 712 

algorithms are in the Supplemental file. 713 

 714 

Deconvolution and  RNAPII Positioning  715 

The RNAPII positions were found by combining a genetic algorithm with a local optimisation 716 

procedure. Before initiation of the analysis algorithm, several key parameters were established. 717 

The RNAPII elongation speed was fixed at 67 bp/s 28. The reporter construct transcript was 718 

divided into three sections consisting of the pre-MS2 fragment (PRE=700 bp), 128xMS2 loops 719 

(SEQ=2900 bp), and post-MS2 fragment (POST=1600 bp). An extra time Ppoly=100s was added 720 

to POST, corresponding to the polyadenylation signal (during this time the polymerase has 721 

finished transcription and waits on the transcription site).  The temporal resolution of short 722 

movies was 3 s/frame. This frame rate is sufficient to detect processes that occur on the order of 723 

seconds.  724 

The possible polymerase positions were discretized using a step of 30 bp. This step was 725 

chosen as it is smaller than the minimum polymerase spacing and large enough to have a 726 

reasonable computation time. For a movie of 20 min length this choice corresponds to a 727 

maximum number of 2680 positions. The deconvolution algorithm was implemented in Matlab 728 

R2020a using Global Optimization and Parallel Computing Toolboxes for optimizing RNAPII 729 

positions in parallel for all nuclei in a collection of movies. The resulting positions are stored for 730 
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analysis in the further steps of our computational pipeline. The deconvolution step is common to 731 

all of the MS2 data analysis pipelines.  732 

 733 

Long movies waiting time distribution 734 

For long movies, the low resolution (3min) does not allow RNAPII positioning. In this case we 735 

binarize the signal by considering that the transcription site is active or inactive if the measured 736 

intensity is above or below a threshold level, respectively. The inactive intervals indicate long 737 

waiting times between successive polymerases. The active intervals are used to estimate the 738 

probability that waiting times are larger than the movie resolution (see Supplemental Text).    739 

 740 

Multi-exponential regression fitting of the survival function and model reverse engineering using 741 

the survival function  742 

Data from several short movies corresponding to the same phenotypes was first pooled together. 743 

Waiting times were extracted as differences between successive RNAPII positions from all the 744 

resulting traces and the corresponding data was used to estimate the nonparametric cumulative 745 

short movie distribution function by the Meyer-Kaplan method. Data from long movies and the 746 

same phenotype are also pooled and generate the nonparametric cumulative long movie 747 

distribution function. The two conditional distribution functions are fitted together into a 748 

multiscale cumulative distribution function using the total probability theorem and estimates of 749 

two parameters pl and ps, representing the probabilities that waiting times are longer than the long 750 

movie resolution, and longer than the length of the short movie, respectively (see Figure 4 and 751 

Supplemental Text for details). 752 

 Then, a multi-exponential regression fitting of the multiscale distribution function 753 

produced a set of 2N-1 distribution parameters, where N is the number of exponentials in the 754 
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regression procedure (3 for N=2 and 5 for N=3). The regression procedure was initiated with 755 

multiple log-uniformly distributed initial guesses and followed by local gradient optimisation. It 756 

resulted in a best-fit solution with additional suboptimal solutions (local optima with objective 757 

function value larger than the best fit). 758 

 The 2N-1 distribution parameters can be computed from the 2N-1 kinetic parameters of a 759 

N state transcriptional bursting model. Conversely, a symbolic solution for the inverse problem 760 

was obtained, allowing computation of the kinetic parameters from the distribution parameters 761 

and reverse engineering of the transcriptional bursting model. In particular, it is possible to know 762 

exactly when the inverse problem is well-posed, i.e. there is a unique solution in terms of kinetic 763 

parameters for any given distribution parameters in a domain.  764 

The transcriptional bursting models used in this paper are as following: 765 

For N=2, there were 3 distribution parameters and 3 kinetic parameters.  766 

The distribution parameters are	 , , , defining the survival function 767 ( ) = + (1 − ) . 
The solution of the inverse problem for the ON-OFF telegraph model (Figure 6A) is 768 

= − , = − , = −( − ), 
 769 = +	 , = +	 , = +	 	, = 1 − , 770 

 771 

where , ,  are the initiation rate, the OFF to ON and ON to OFF transition rates, 772 

respectively.  773 

For N=3, there were 5 distribution parameters and 5 kinetic parameters.  774 

The distribution parameters are	 , , , , , defining the survival function  775 
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( ) = + + (1 − − ) . 776 

The inverse problem has a unique solution for the 3 state model (stochastic, facultative pause) 777 

with one OFF state, one PAUSE state and one ON state (Figure 6A, model M2 of Supplemental 778 

Text). Note that the kinetic parameter of Figure 6A (model M2+) are noted below as follow for 779 

model M2: kini = k3; kpause = k2-; kabort = k2+; krelease = 0. 780 

=	− , = − + − ( ) , = − + ( ) 	 ,  781 

	 = [− + + ( ) ], 	= [ − − ( ) 	 ],  782 

where 783 = +	 + , = +	 + , = +	 	 + 	 , =784 1 − − ,  785 = +	 + , = + + , = + + , 786 

and , , , , are the transcription initiation, OFF to ON, ON to OFF, PAUSE to ON, and 787 

ON to PAUSE rates, respectively.  788 

Duration of the ON, OFF, and PAUSE states can be calculated thusly:  789 

( ) = 1 	, ( ) = 	 1 , ( ) = 	 1+	  

For this model, the steady state probability to be in a given promoter state is 790 

= ∓ +	 ∓ +	 	 , = +	 	+	 	 ,
= 	+	 	+ 	 	 .	 

The alternative 3 state model with obligatory pause (Figure 6A, model M3) satisfies the 791 

following relation among distribution parameters (see Supplemental Text for a proof): 792 
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+ + (1 − − ) = 0.	 
This means that only 4 and not 5 distribution parameters are free, which further constrains the 793 

three exponential fitting. In order to infer this model, a constrained fitting was performed but the 794 

bad quality of fitting recommended rejection of the model (Figure 6B-C; see results).  795 

 796 

Testing the method with artificial data 797 

The entire computational pipeline was tested using artificial data. Artificial traces were generated 798 

by simulating the model using the Gillespie algorithm with parameter sets similar to those 799 

identified from data. The simulations generated artificial polymerase positions, from which a first 800 

version of the signal was computed by convolution. The results are provided in Figure 5 and 801 

Supplemental Text. 802 

 803 

Error intervals  804 

Distribution parameters result from multi-exponential regression fitting using gradient methods 805 

with multiple initial data. These optimization methods provide a best fit (global optimum) but 806 

also suboptimal parameter values. Using an overflow ratio (a number larger than one, in our case 807 

2) to restrict the number of suboptimal solutions, we define boundaries of the error interval as the 808 

minimum and maximum parameter value compatible with an objective function less than the best 809 

fit times the overflow.   810 

 811 

mRNA levels 812 

Steady state mRNA levels can be computed from the parameters of the multi-exponential fit. We 813 

showed in the Supplemental Text that:  814 
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= −∑ , 
where TmRNA is the mean lifetime of the mRNA. The formula is valid for all N and we have used 815 

TmRNA = 45 min 28.  816 

 817 

Chromatin immunoprecipitation 818 

High Tat and No Tat HeLa cells were treated with 1 μM of triptolide at 0, 10, 30 and 60 minutes. 819 

High Tat HeLa cells were treated with 100 μM of KM05382 during 1 hour followed by 1 μM of 820 

triptolide at 0, 10, 20 and 30 minutes. Cells were cross-linked by adding crosslinking solution 821 

(11% formaldehyde, 100 mM NaCl, 1 mM EDTA pH 8, 0.5 mM EGTA pH 8, 50 mM Hepes pH 822 

7.8) directly to cultures (1% final) and incubated for 10 min at room temperature. Then, 250 mM 823 

final glycine was added, and cultures were incubated for 5 min at room temperature. Cells were 824 

then washed four times with cold PBS, scraped in cold PBS with Protease Inhibitor cocktail and 825 

centrifuged at 1350×g for 10 min.Crude nuclei were prepared by hypotonic lysis. The pellet was 826 

resuspended in 5 mL of BufferA (50 mM Hepes pH 8.0, 85 mM KCl, 0.5% Triton-X-100, 827 

Protease Inhibitor cocktail, 1 mM PMSF), incubated on ice for 10 min and centrifuged at 1350xg 828 

for 10 min. Then, the pellet was resuspended in 5 mL of BufferA’ (50 mM Hepes pH 8.0, 85 mM 829 

KCl, Protease Inhibitor cocktail, 1 mM PMSF) and centrifuged at 1350xg for 10 min. Finally, the 830 

pellet was resuspend in 0.9 mL of Buffer B (50 mM Tris-HCl pH 8, 1% SDS, Protease Inhibitor 831 

cocktail, 1 mM PMSF), incubated on ice for 10 min and then stored at the -80°. Pellets were 832 

sonicated at 4ºC using a Bioruptor (Diagenode) to shear the chromatin to a mean length of 300 bp 833 

by repeated cycles (16 cycles of 30 s ON and 30 s OFF). After sonication cellular debris was 834 

removed by centrifugation at 20000×g for 10 min. The chromatin solution was diluted 10-fold in 835 

FA/SDS Like buffer (50 mM Hepes KOH pH 7.5, 150 mM NaCl, 1% Triton-X-100,  0.1% Na 836 
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deoxycholate, Protease Inhibitor cocktail, 1 mM PMSF) and  precleared for 1 hour at 4°C with 25 837 

μl of protein G Dynabeads (Invitrogen). The precleared chromatin solution (1.5 × 106 cells) was 838 

incubated overnight with 50 μL of BSA-blocked protein G Dynabeads (previously bound with 3 839 

ug of the corresponding antibody, POLII F-12 sc-55492 Lot K1516 Santacruz,  during 1 hour at 840 

4ºC). Samples were washed once with FA/SDS buffer (50 mM Hepes KOH pH 7.5, 150 mM 841 

NaCl, 1% Triton-X-100,  0.1% Na deoxycholate, 1 mM EDTA, 0.1% SDS, Protease Inhibitor 842 

cocktail, 1 mM PMSF), three times with FA/SDS Buffer supplemented with 300mM NaCl, once 843 

with washing Buffer (10 mM Tris-HCl pH 8, 0.25 M LiCl, 1 mM EDTA, 0.5% NP40, 0.5% Na 844 

deoxycholate) and once with TE Buffer. Elution was performed adding 125 μl of Elution Buffer 845 

(25 mM Tris-HCl pH 7.5, 5 mM EDTA,  0.5% SDS) and incubating at 65°C for 25 min. The 846 

eluates were digested with 50 μg/mL of RNase A at 37°C for 30 min and with 50 μg/ml of 847 

proteinase K at 50°C for 1 h. Then, they were incubated at 65°C overnight to reverse cross-links. 848 

DNA was recovered by phenol extraction followed by a Qiaquick purification (PCR purification 849 

columns, Qiagen, Germany). Specific sequences in the immunoprecipitates were quantified by 850 

real-time PCR using the primers listed below. The signal of each sample was normalized with the 851 

average signal obtained from the input of the same sample with each pair of primers used. Each 852 

experiment was done analysing two independent biological replicates. 853 

 854 

Primers used: 855 

GAPDH promoter F: 5' AAAGGCACTCCTGGAAACCT 856 

GAPDH promoter R: 5' GGATGGAATGAAAGGCACAC 857 

GAPDH negative control F: 5' CTAGCCTCCCGGGTTTCTCT 858 

GAPDH negative control R: 5' ACAGTCAGCCGCATCTTCTT 859 

TSS HIV1 +92 F: 5' GCTTCAAGTAGTGTGTGCCC 860 
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TSS HIV1 +92 R: 5' GCTTTCAAGTCCCTGTTCGG 861 

  862 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.25.265413doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.265413
http://creativecommons.org/licenses/by-nc-nd/4.0/


 41

References 863 

1 Schier, A. & Taatjes, D. Structure and mechanism of the RNA polymerase II transcription 864 

machinery. Genes Dev. 34, 465-488, doi:10.1101/gad.335679.119 (2020). 865 

2 Jonkers, I. & Lis, J. Getting up to speed with transcription elongation by RNA polymerase II. 866 

Nat Rev Mol Cell Biol. 16, 167-177, doi:10.1038/nrm3953 (2015). 867 

3 Harlen, K. & Churchman, L. The code and beyond: transcription regulation by the RNA 868 

polymerase II carboxy-terminal domain. Nat Rev Mol Cell Biol. 18, 263-273 (2017). 869 

4 Fisher, R. Cdk7: a kinase at the core of transcription and in the crosshairs of cancer drug 870 

discovery. Transcription 10, 47-56 (2019). 871 

5 Rimel, J. & Taatjes, D. The essential and multifunctional TFIIH complex. Protein Sci 27, 872 

1018-1037 (2018). 873 

6 Ghosh, A., Shuman, S. & Lima, C. Structural insights to how mammalian capping enzyme 874 

reads the CTD code. Mol Cell. 43, 299-310 (2011). 875 

7 Fant, C. et al. TFIID Enables RNA Polymerase II Promoter-Proximal Pausing. Mol Cell. 78, 876 

785-793 (2020). 877 

8 Narita, T. et al. NELF interacts with CBC and participates in 3' end processing of 878 

replication-dependent histone mRNAs. Mol Cell. 26, 349-365 (2007). 879 

9 Vos, S., Lucas Farnung, L., Henning Urlaub, H. & Patrick Cramer, P. Structure of paused 880 

transcription complex Pol II-DSIF-NELF. Nature 560, 601-606 (2018). 881 

10 Cheung, A. & Cramer, P. Structural basis of RNA polymerase II backtracking, arrest and 882 

reactivation. Nature 471, 249-253, doi:10.1038/nature09785 (2011). 883 

11 Wei, P., Garber, M., Fang, S., Fischer, W. & Jones, K. A novel CDK9-associated C-type 884 

cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding 885 

to TAR RNA. Cell 92, 451-462 (1998). 886 

12 He, N. et al. HIV-1 Tat and host AFF4 recruit two transcription elongation factors into a 887 

bifunctional complex for coordinated activation of HIV-1 transcription. Mol Cell. 38, 428-888 

438 (2010). 889 

13 Sobhian, B. et al. HIV-1 Tat assembles a multifunctional transcription elongation complex 890 

and stably associates with the 7SK snRNP. Mol Cell. 38, 439-451 (2010). 891 

14 Nilson, K. et al. THZ1 Reveals Roles for Cdk7 in Co-transcriptional Capping and Pausing. 892 

Mol Cell. 59, 576-587 (2015). 893 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.25.265413doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.265413
http://creativecommons.org/licenses/by-nc-nd/4.0/


 42

15 Vos, S. et al. Structure of activated transcription complex Pol II-DSIF-PAF-SPT6. Nature 894 

560, 607-612 (2018). 895 

16 Wada, T., Takagi, T., Yamaguchi, Y., Watanabe, D. & Handa, H. Evidence that P-TEFb 896 

alleviates the negative effect of DSIF on RNA polymerase II-dependent transcription in 897 

vitro. EMBO J. 17, 7395-7403 (1998). 898 

17 Yamada, T. et al. P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical 899 

for processive transcription elongation. Mol Cell. 21, 227-237 (2006). 900 

18 Ehrensberger, A. H., Kelly, G. P. & Svejstrup, J. Q. Mechanistic interpretation of promoter-901 

proximal peaks and RNAPII density maps. Cell 154, 713-715 (2013). 902 

19 Henriques, T. et al. Stable pausing by RNA polymerase II provides an opportunity to target 903 

and integrate regulatory signals. Mol Cell. 52, 517-528 (2013). 904 

20 Jonkers, I., Kwak, H. & Lis, J. T. Genome-wide dynamics of Pol II elongation and its 905 

interplay with promoter proximal pausing, chromatin, and exons. Elife 3, e02407 (2014). 906 

21 Buckley, M. S., Kwak, H., Zipfel, W. R. & Lis, J. T. Kinetics of promoter Pol II on Hsp70 907 

reveal stable pausing and key insights into its regulation. Genes Dev. 28, 14-19 (2014). 908 

22 Shao, W. & Zeitlinger, J. Paused RNA polymerase II inhibits new transcriptional initiation. 909 

Nat Genet. 49, 1045-1051 (2017). 910 

23 Krebs, A. R. et al. Genome-wide Single-Molecule Footprinting Reveals High RNA 911 

Polymerase II Turnover at Paused Promoters. Mol Cell. 67, 411-422 (2017). 912 

24 Chubb, J., Trcek, T., Shenoy, S. & Singer, R. Transcriptional pulsing of a developmental 913 

gene. Curr Biol. 16, 1018-1025 (2006). 914 

25 Pichon, X., Lagha, M., Mueller, F. & Bertrand, E. A Growing Toolbox to Image Gene 915 

Expression in Single Cells: Sensitive Approaches for Demanding Challenges. Mol Cell. 71, 916 

468-480, doi:10.1016/j.molcel.2018.07.022 (2018). 917 

26 Rodriguez, J. & Larson, D. Transcription in Living Cells: Molecular Mechanisms of 918 

Bursting. Annu Rev Biochem. 89, 189-212 (2020). 919 

27 Lionnet, T. et al. A transgenic mouse for in vivo detection of endogenous labeled mRNA. 920 

Nat Methods 8, 165-170 (2011). 921 

28 Tantale, K. et al. A single-molecule view of transcription reveals convoys of RNA 922 

polymerases and multi-scale bursting. Nat Commun. 7, 12248 (2016). 923 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.25.265413doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.265413
http://creativecommons.org/licenses/by-nc-nd/4.0/


 43

29 Rodriguez, J. et al. Intrinsic Dynamics of a Human Gene Reveal the Basis of Expression 924 

Heterogeneity. Cell 176, 213-226 (2019). 925 

30 Blake, W. et al. Phenotypic consequences of promoter-mediated transcriptional noise. Mol 926 

Cell. 24, 853-865, doi:10.1016/j.molcel.2006.11.003 (2006). 927 

31 Raj, A., Rifkin, S., Andersen, E. & A., v. O. Variability in gene expression underlies 928 

incomplete penetrance. Nature 463, 913-918 (2010). 929 

32 Weinberger, L., Burnett, J., Toettcher, J., Arkin, A. & Schaffer, D. Stochastic gene 930 

expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic 931 

diversity. Cell 122, 168-192 (2005). 932 

33 Ho, Y. et al. Replication-competent noninduced proviruses in the latent reservoir increase 933 

barrier to HIV-1 cure. Cell 155, 540-551 (2013). 934 

34 Rouzine, I., Razooky, B. & Weinberger, L. Stochastic variability in HIV affects viral 935 

eradication. Proc Natl Acad Sci U S A. 111, 13261-13262 (2014). 936 

35 Mbonye, U. & Jonathan Karn, J. The Molecular Basis for Human Immunodeficiency Virus 937 

Latency. Annu Rev Virol 4, 261-285 (2017). 938 

36 Shukla, A., Ramirez, N. & D'Orso, I. HIV-1 Proviral Transcription and Latency in the New 939 

Era. Viruses 12, 555, doi:10.3390/v12050555 (2020). 940 

37 Tyagi, M., Pearson, R. & Karn, J. Establishment of HIV latency in primary CD4+ cells is 941 

due to epigenetic transcriptional silencing and P-TEFb restriction. J. Virol. 84, 6425-6437 942 

(2010). 943 

38 Jiang, G. et al. Synergistic Reactivation of Latent HIV Expression by Ingenol-3-Angelate, 944 

PEP005, Targeted NF-kB Signaling in Combination with JQ1 Induced p-TEFb Activation. 945 

PLoS Pathog. 11, e1005066 (2015). 946 

39 Boireau, S. et al. The transcriptional cycle of HIV-1 in real-time and live cells. J Cell Biol 947 

179, 291-304 (2007). 948 

40 Fusco, D. et al. Single mRNA molecules demonstrate probabilistic movement in living 949 

mammalian cells. Curr Biol. 13, 161-167 (2003). 950 

41 Yedavalli, V. S., Benkirane, M. & Jeang, K. Tat and trans-activation-responsive (TAR) 951 

RNA-independent induction of HIV-1 long terminal repeat by human and murine cyclin T1 952 

requires Sp1. J Biol Chem 278, 6404-6410, doi:10.1074/jbc.M209162200 (2003). 953 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.25.265413doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.265413
http://creativecommons.org/licenses/by-nc-nd/4.0/


 44

42 Barboric, M., Nissen, R., Kanazawa, S., Jabrane-Ferrat, N. & Peterlin, B. NF-kappaB binds 954 

P-TEFb to stimulate transcriptional elongation by RNA polymerase II. Mol Cell. 8, 327-337 955 

(2001). 956 

43 West, M., Lowe, A. & Karn, J. Activation of human immunodeficiency virus transcription in 957 

T cells revisited: NF-kappaB p65 stimulates transcriptional elongation. J. Virol. 75, 8524-958 

8537 (2001). 959 

44 Larson, D., Zenklusen, D., Wu, B., Chao, J. & RH., S. Real-time observation of transcription 960 

initiation and elongation on an endogenous yeast gene. Science 332, 475-478 (2011). 961 

45 Desponds, J. et al. Precision of Readout at the hunchback Gene: Analyzing Short 962 

Transcription Time Traces in Living Fly Embryos. PLoS Comput Biol. 12, e1005256, 963 

doi:10.1371/journal.pcbi.1005256 (2016). 964 

46 Coulon, A. & Larson, D. Fluctuation Analysis: Dissecting Transcriptional Kinetics with 965 

Signal Theory. Methods Enzymol. 572, 159-191 (2016). 966 

47 Corrigan, A., Tunnacliffe, E., Cannon, D. & Chubb, J. A continuum model of transcriptional 967 

bursting. Elife 5, e13051 (2016). 968 

48 Lammers, N. et al. Multimodal transcriptional control of pattern formation in embryonic 969 

development. Proc Natl Acad Sci U S A. 117, 836-847 (2020). 970 

49 D'Orso, I. & Frankel, A. D. RNA-mediated displacement of an inhibitory snRNP complex 971 

activates transcription elongation. Nat Struct Mol Biol 17, 815-821 (2010). 972 

50 Vispé , S. et al. Triptolide is an inhibitor of RNA polymerase I and II-dependent 973 

transcription leading predominantly to down-regulation of short-lived mRNA. Mol Cancer 974 

Ther 8, 2780-2790 (2009). 975 

51 Shao, W., Alcantara, S. & Zeitlinger, J. Reporter-ChIP-nexus reveals strong contribution of 976 

the Drosophila initiator sequence to RNA polymerase pausing. Elife 8, e41461, 977 

doi:10.7554/eLife.41461 (2019). 978 

52 Rittner , K., Churcher, H. J., Gait, M. J. & Karn, J. The human immunodeficiency virus long 979 

terminal repeat includes a specialised initiator element which is required for Tat-responsive 980 

transcription. J Mol Biol 248, 562-580 (1995). 981 

53 Aoi, Y. et al. NELF Regulates a Promoter-Proximal Step Distinct from RNA Pol II Pause-982 

Release Mol Cell. 78, 261-274 (2020). 983 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.25.265413doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.265413
http://creativecommons.org/licenses/by-nc-nd/4.0/


 45

54 Palangat , M. & Landick, R. Roles of RNA:DNA hybrid stability, RNA structure, and active 984 

site conformation in pausing by human RNA polymerase II. J Mol Biol 311, 265-282 (2001). 985 

55 Wissink, E. M., Ihervaara, A., Tippens, N. D. & T., L. J. Nascent RNA Analyses: Tracking 986 

Transcription and Its Regulation. Nat Rev Genet. 20, 705-723 (2019). 987 

56 Demarchi, F., D'Agaro, P., Falaschi, A. & Giacca, M. In vivo footprinting analysis of 988 

constitutive and inducible protein-DNA interactions at the long terminal repeat of human 989 

immunodeficiency virus type 1. J Virol. 67, 7450-7460 (1992). 990 

57 Izeddin, I. et al. Single-molecule tracking in live cells reveals distinct target-search strategies 991 

of transcription factors in the nucleus.  Elife, e02230 (2014). 992 

58 Lu, H. et al. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA 993 

polymerase II. Nature 558, 318-323 (2018). 994 

59 Molle, D. et al. A real-time view of the TAR:Tat:P-TEFb complex at HIV-1 transcription 995 

sites. Retrovirology 4, 36 (2007). 996 

60 Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823-826 997 

(2013). 998 

61 Majello, B., Napolitano, G., Giordano, A. & Lania, L. Transcriptional regulation by targeted 999 

recruitment of cyclin-dependent CDK9 kinase in vivo. Oncogene 18, 4598-4605 (1999). 1000 

62 Chen, B. et al. Dynamic imaging of genomic loci in living human cells by an optimized 1001 

CRISPR/Cas system. Cell 155, 1479-1491 (2013). 1002 

63 Tsanov, N. et al. smiFISH and FISH-quant - a flexible single RNA detection approach with 1003 

super-resolution capability. Nucleic Acids Res. 44, e165 (2016). 1004 

64 Mueller, F. et al. FISH-quant: automatic counting of transcripts in 3D FISH images. Nat 1005 

Methods. 10, 277-278 (2013). 1006 

65 Ouyang, W., Mueller, F., Hjelmare, M., Lundberg, E. & Zimmer, C. ImJoy: an open-source 1007 

computational platform for the deep learning era. Nat Methods 16, 1199-1200 (2019). 1008 

 1009 

  1010 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.25.265413doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.265413
http://creativecommons.org/licenses/by-nc-nd/4.0/


 46

Figure Legends 1011 

Figure 1. Single cell characterization of HIV-1 gene expression, with and without Tat. 1012 

A-Schematic of HIV-1 transcriptional regulation. Left: in absence of Tat, pTEFb is not recruited 1013 

and polymerases binds NELF and DSIF and pause near the promoter. Right: in presence of Tat, 1014 

pTEFb, composed of Cyclin T1 and Cdk9 associated to the super elongation complex, is 1015 

recruited to the nascent TAR RNA. Cdk9 phosphorylates NELF, DSIF and RNA polymerase II, 1016 

thereby triggering pausing exit and processive elongation. 1017 

B-Schematic of the HIV-1 reporter construct. SD1: major HIV-1 splice site donor; SA7: last 1018 

HIV-1 splice site acceptor; ψ: packaging signal; RRE: Rev-responsive element; LTR: long 1019 

terminal repeat. 1020 

C- Expression of the 128xMS2 HIV-1 tagged reporter in cells expressing high levels of Tat. Left 1021 

panel: microscopy images of High Tat HeLa cells where the unspliced HIV-1 pre-mRNA is 1022 

detected by smFISH with probes against the 128xMS2 tag. Cells bear a single copy of the 1023 

reporter gene integrated with the Flp-in system. The bright spots in the nuclei correspond to 1024 

nascent RNA at their transcription sites, while the dimmer spots correspond to single pre-mRNA 1025 

molecules. Scale bar : 10 μm. Middle panel: distribution of the number of released HIV-1 pre-1026 

mRNAs per cell, in High Tat cells. Experimental RNA distribution are from smFISH data. X-1027 

axis: number of HIV-1 pre-mRNA molecules per cell; y-axis: number of cells; inset: mean 1028 

number of HIV-1 pre-mRNAs per cell. Right panel: distribution of the number of nascent HIV-1 1029 

pre-mRNAs per transcription site, in High Tat cells. Experimental RNA distribution are from 1030 

smFISH data. X-axis: number of nascent HIV-1 pre-mRNA molecules per transcription site; y-1031 

axis: number of transcription sites; inset: mean number of nascent HIV-1 pre-mRNAs per cell. 1032 
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D- Expression of the 128xMS2 HIV-1 tagged reporter in cells expressing low levels of Tat. 1033 

Legend as in C, except that experiments are from Low Tat cells. 1034 

E- Expression of the 128xMS2 HIV-1 tagged reporter in cells not expressing Tat. Legend as in C, 1035 

except that experiments are from No Tat cells. Image contrast adjustment is identical for panels 1036 

C, D and E. 1037 

 1038 

Figure 2. Fluctuation of HIV-1 transcription over short time periods, with and without Tat. 1039 

A-C Fluctuations of HIV-1 transcription over 15-20 minute periods, with one image stack 1040 

recorded every 3 seconds. Left: each graph is a single transcription site; the x-axis represents the 1041 

time (in minutes) and y-axis represents the intensity of transcription sites, expressed in equivalent 1042 

numbers of full-length pre-mRNA molecules. Right: each line is a cell and the transcription site 1043 

intensity is color-coded (scale on the right). A: High-Tat cells; B: Low-Tat cells; C: No-Tat cells. 1044 

D-Schematic of a polymerase convoy. Top: a polymerase convoy, with polymerases in orange 1045 

and the gene represented as a black horizontal arrow. Npol : number of polymerases; tspace : 1046 

spacing between successive RNA polymerases (in seconds); vel : elongation rate. Bottom: 1047 

schematics describing the different phases of a transcription cycle (left) and the position of the 1048 

polymerase convoy on the MS2 tagged gene (right; the green box is theMS2 tag). 1049 

E-Box-plots representing the parameters values of the best-fit models, measured for a set of 1050 

isolated transcription cycles in each cell line. tproc is the 3'-end RNA processing time; Npol is the 1051 

number of polymerases in the convoy; Vel is the elongation rate (in kb/min); tspace is the spacing 1052 

between successive polymerase (in seconds). The bottom line displays the first quartile, the box 1053 

corresponds to the second and third quartile, the top line to the last quartile, and the double circle 1054 

is the median. Small circles are outliers (1.5 times the inter-quartile range above or below the 1055 

upper and lower quartile, respectively). 1056 
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 1057 

Figure 3. Fluctuation of HIV-1 transcription over long time periods, with and without Tat. 1058 

A-Fluctuations of HIV-1 transcription over 8 hours, with one image stack recorded every 3 1059 

minutes. The x-axis represents the time (in hours) and y-axis represents the intensity of 1060 

transcription sites, expressed in arbitrary units. Periods of HIV-1 promoter activity are colored in 1061 

green, and periods of inactivity in red.  1062 

B-Active and inactive periods of the HIV-1 promoter, for the indicated cell lines. Each line is a 1063 

cell and the activity of the HIV-1 promoter is color-coded (green: active; red: inactive), using the 1064 

threshold shown in panel A. x-axis: time in hours. 1065 

 1066 

Figure 4. Analysis and modeling strategy for the live cell transcriptional data. 1067 

A- Determination of models for transcription initiation. Left: example of a complex promoter 1068 

models describing the different steps leading to transcription initiation and their kinetic 1069 

relationship. OFF: inactive promoter state; ON: active promoter state; orange ball: RNA 1070 

polymerase. Right: the survival function (equal to one minus the cumulative function) describes 1071 

the distribution of polymerase waiting times (delay between two successive initiation events). For 1072 

linear models such as the one depicted on the left, the survival function can be fitted by a sum of 1073 

exponentials, with the number of exponentials being equal to the number of promoter states. 1074 

Branched models also lead to sums of exponentials (see text). 1075 

B- Experimental and machine learning strategy to determine the survival function of polymerase 1076 

waiting times. Left: signals of short movies made at high temporal resolution result from the 1077 

convolution of the signal from a single polymerase and the sequence of temporal positions of 1078 

initiation events. The sequence of initiation events can thus be reconstructed by a deconvolution 1079 

numerical method, provided that the signal of a single polymerase is known. This allows to 1080 
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estimate the distribution of waiting times for waiting times shorter than the movie duration (i.e. a 1081 

conditional distribution). Right: long movies made with a lower temporal resolution, in the order 1082 

of the residency time of RNA polymerase on the gene (3 minutes), allow to estimate the 1083 

distribution of polymerase waiting times for waiting times greater than the temporal resolution. 1084 

The two conditional survival functions, short and long, can then be combined to reconstitute the 1085 

complete survival function, with the constraint that waiting times of short movies, smaller than 1086 

the frame rate of the long movie, must fill the active periods in the long movie. Finally, the 1087 

complete survival function is fitted with a sum of exponentials to determine the number of 1088 

promoter state, the kinetics of transitions between them, and the initiation rate. Multiple models 1089 

can be easily fitted to the same survival function and the most appropriate one is selected based 1090 

on parsimony, parametric indeterminacy and consistency with complementary experiments. 1091 

 1092 

Figure 5. Accuracy and robustness of the analysis and modeling pipeline. 1093 

A- Fidelity and robustness of the deconvolution method. Left panels: simulation of short movies 1094 

for an artificial set of polymerase initiation events, with noise added (bottom), or without (top). x-1095 

axis is time in minutes; y-axis is the intensity of transcription sites (expressed in number of RNA 1096 

molecules). Right panels: positions of the transcription initiation events (vertical bars), for the 1097 

original artificial data (black; bottom lines), the reconstructed data from the simulated short 1098 

movies after the genetic algorithm (GA, red, middle lines), or the final reconstruction after both 1099 

the GA and the local optimization (blue; top lines). x-axis is time in minutes. 1100 

B- Fidelity and robustness of the overall analysis pipeline. Top schematic: the linear three state 1101 

promoter model used for Monte Carlo simulations. Top graphs: examples of artificial short 1102 

movies (black lines), with various levels of noise added (red lines). Note that the noise level 1103 

measured experimentally corresponds to the 1x condition. x-axis is time in seconds; y-axis is the 1104 
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intensity of transcription sites expressed in number of RNA molecules. Middle graphs: survival 1105 

functions reconstructed from artificial short and long movies (red and green circles, respectively), 1106 

and fitted to a sum of three exponentials (black line). The theoretical survival function obtained 1107 

with the model parameters used for the simulation is shown for comparison (blue line). x-axis: 1108 

time intervals between successive initiations events, in seconds and in log10 scale. y-axis: 1109 

probability of Δt > x (log10 scale). 1110 

C- Accuracy of determining the model parameters. Graphs plot the parameters used to generate 1111 

the artificial data (x-axis), against the parameter measured by the deconvolution and fitting 1112 

procedure (y-axis). Vertical bars: confidence intervals. Three parameter sets were used, 1113 

corresponding to the values obtained with the experimental data from the High Tat cells (circles), 1114 

Low Tat cells (crosses), and No Tat cells (triangles). 1115 

 1116 

Figure 6. A facultative pausing model reproduces the live cell transcription data and 1117 

predicts a long-lived pause. 1118 

A- Schematics of the different models used to fit the live cell HIV-1 transcriptional data. Left: a 1119 

two-state ON/OFF promoter mode; middle: a three state promoter model including an obligatory 1120 

pause as traditionally represented (model M3); right: a three state promoter model with a 1121 

facultative pause (model M2+). Polymerases are represented by small orange balls. 1122 

B-Fits of the experimental survival functions. Graphs represent the survival functions 1123 

reconstructed from the live cell data for the High Tat, Low Tat and No Tat conditions, with the 1124 

part deriving from the short and long movies in red and green, respectively. Blue line: fit of the 3-1125 

state model with a facultative pause; "+": fit of the 3-state model with an obligatory pause; "x": 1126 
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fit with a facultative pause. x-axis: time intervals between successive initiations events, in 1127 

seconds and in log10 scale. y-axis: probability of Δt > x (log10 scale). 1128 

C- Model scores. The graph depicts the score of each model (inverse of the minimal value of the 1129 

fitted Objective Function), for each of the model and cell line. 1130 

D- Pausing characteristics predicted by the models. Top: predicted pausing times, for the relevant 1131 

models and cell lines (see text for details). Bottom: predicted pausing frequencies (in %), for the 1132 

indicated cell line and model. For the model with the facultative pause, the two indicated values 1133 

come from the two branches of the model that could each correspond to the paused state (see 1134 

model M2 in the Supplemental Text). 1135 

E- Features of the model with the facultative pause. Left: the graphs represent the number of 1136 

mRNA per cell measured by smFISH experiments (violet bars), or predicted from the model 1137 

parameters (blue bars). Error bars are the standard deviation for the smFISH data (estimated from 1138 

replicate measurements) and the confidence intervals for the prediction from the model. Middle: 1139 

initiation rate (in s-1), for the three cell lines. Error bars are confidence intervals. Right: fraction 1140 

of the cells with the promoter in the ON state (in %), for the three cell lines. Error bars are 1141 

confidence intervals. 1142 

 1143 

Figure 7. Biochemical measurements indicate a long-lived paused state at the HIV-1 1144 

promoter. 1145 

A- Residency time of RNA polymerase II at the HIV-1 promoter. The graph depicts the RNA 1146 

polymerase II ChIP signals at the HIV-1 and GAPDH promoters during a Triptolide time course 1147 

experiment, for the High Tat and No Tat cell lines. GAPDH TSS: transcription start site of the 1148 

human GAPDH gene; HIV-1 TSS: transcription start site of the HIV-1 promoter; Control DNA: a 1149 
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non-transcribed genomic locus. ChIP signals were measure by qPCR and values are expressed as 1150 

percent of input and normalized to the zero time point. For the control genomic regions (Control 1151 

DNA), values are normalized to that of GAPDH TSS at time zero. 1152 

B- Effect of pTEFb inhibition on the residency time of RNA polymerase II at the GAPDH 1153 

promoter. Legend as in panel A, except that the KM sample was pretreated with the Cdk9 1154 

inhibitor KM05382 for 2h before triptolide addition. 1155 

C- Model depicting the dynamics of the HIV-1 promoter and highlighting the positive and 1156 

negative effects of Tat. The numbers are from the facultative pausing model fitted to the High Tat 1157 

and No Tat data (see Figure 6C and supplemental text, Table 3). The model with facultative 1158 

pausing has two symmetrical branches (see model M2 in the Supplemental Text), and each 1159 

branch of the model could correspond to the paused state. The values indicated attribute the pause 1160 

state to the branch that is most affected by the presence of Tat. 1161 

 1162 

Supplemental Figure S1. Transcriptional activation of HIV-1 128xMS2 reporter in Hela 1163 

Flp-in cells is P-TEFb dependent. 1164 

A- Western blot of the extracts of HIV-1 128xMS2 Hela cell lines with no, low and high Tat 1165 

expression.  Tat-Flag was detected with anti-Flag antibodies; loading control is tubulin. 1166 

B- CDK9-GFP and cyclinT1-GFP activate transcription of the HIV-1 reporter. Fluorescent 1167 

microscopy images of Hela Flp-in cells with the HIV-1 128xMS2 reporter, not expression Tat nor 1168 

MCP-GFP, and co-transfected with plasmids encoding for CDK9-GFP and cyclinT1-GFP (24h 1169 

after transfection). First row from the left: RNA of HIV-1 reporter detected by smFISH with Cy3 1170 

probes against 128xMS2 tag; second row: GFP signal corresponding to the cells transfected with 1171 

CDK9-GFP and cyclinT1-GFP; third row: nuclear staining with dapi; last row: merge. Top panel: 1172 
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cells transfected with CDK9-GFP and cyclinT1-GFP. Bottom panel: control transfection with 1173 

pBluescript. The scale bar is 10 μm. 1174 

C- Tethering of CDK9 to the HIV-promoter using dCas9 leads to transcriptional activation. The 1175 

histogram shows the results of mRNA counting on smFISH images 24h after transfection the 1176 

Hela Flp-in HIV-1 128xMS2 no Tat cells (without MCP-GFP) with dCas9-CDK9-BFP fusion 1177 

and 3 RNA guides targeting the CDK9 fusion specifically to the HIV-1 promoter (middle bar); 1178 

dCas9-CDK9-BFP fusion without guides (right bar) or dCas9-BFP alone (left bar) were 1179 

transfected in control experiments. On y axis is the mRNA number. Error bars are standard errors 1180 

of the mean. 1181 

 1182 

Supplemental Figure S2. Transcriptional activation of HIV-1 reporter in the absence of Tat 1183 

depends on enzymatic activity of CDK9 and is independent of NF-κB pathway. 1184 

A- CDK9 inhibitor KM05283 inhibits HIV-1 transcription. Images of Hela Flp-in HIV-1185 

1 128xMS2 MCP-GFP no Tat cells treated with 100 μM KM05382 for 4 h, using GFP filter. Left 1186 

– non-treated control; right – 4 hours of KM05382 treatment. The scale bar is 10 μM. 1187 

B- NF-κB inhibitor BAY11-7082 does not affect HIV-1 reporter transcription. Left panel: Images 1188 

of smFISH with Cy3 labeled probes of the cells Hela Flp-in HIV-1 128xMS2 MCP-GFP no Tat. 1189 

Left - non-treated control; right -16h treatment with 2 μM BAY11-7082.  1190 

C- Histogram showing the quantification of mature and nascent RNA number on the smFISH 1191 

images after 16h inhibition of NF-kB with 2 μM BAY11-7082. On y axis is the RNA number. 1192 

Error bars are standard deviations. 1193 

 1194 

Supplemental Figure S3. RNA Pol II ChIP in presence and absence of Tat.  1195 
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The graph depicts the RNA polymerase II ChIP signals at HIV-1 and GAPDH loci for the High 1196 

Tat and No Tat cell lines. GAPDH TSS: transcription start site of the human GAPDH gene; HIV-1197 

1 TSS: transcription start site of the HIV-1 promoter; Control DNA: a non-transcribed genomic 1198 

locus. ChIP signals were measure by qPCR and values are expressed as percent of input (y axis). 1199 

The scale bar is 10 μM. 1200 

1201 
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Hybrid symbolic/numeric method for reverse engineering of

transcriptional bursting processes

Supplemental text to accompany: Stochastic pausing at latent

HIV-1 promoters generates transcriptional bursting

Tantale K., Garcia-Oliver E., L’Hostis A., Yang Y., Robert MC., Gostan T., Basu M., Kozulic-Pihrer A., Andrau JC., Muller F.,

Basyuk E., Radulescu O., Bertrand E.

August 6, 2020

1 Introduction

1.1 Summary of the method

We use machine learning to derive characteristics of single cell transcription activity from MS2 data. The output

of the machine learning procedure is threefold. Using a deconvolution method and high resolution movies,

we generate a time map of transcription events indicating, for each cell, the moments when different RNAP

molecules start producing mRNA. This direct readout of transcriptional events in a cell population, represents

a unique feature of our method, not available in other methods that fit directly a particular transcription model

to the MS2 data such as methods based on the autocorrelation function [2, 5, 4], or maximal likelihood estimate

[1] or on Bayesian inference [7, 6]. The map can be used for direct characterisation of transcription features,

such as polymerase convoys and various statistics of inter-event times. A second output of the approach is a

multiscale cumulative distribution function of the waiting time separating succesive transcription events

(or the complementary function, called survival function). We provide both non-parametric Kaplan-Meyer and

parametric multi-exponential estimates of the multiscale distribution function. This distribution, obtained by

combining short, high-resolution and long, low-resolution movies, covers timescales from second to 10 hours.

The dynamical range of our method supersedes those of other extant methods that are based on much smaller
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sampling rates and/or much shorter movie lengths. The waiting time distribution is model-free, but can be

further used to identify various models of transcription dynamics. The third output of our method is the

model parameter identification, simultaneously for several models that fit the data equally well. Although

we focus on discrete transcription models based on Markovian transitions among hidden promoter states (for

different number of states and for a rich collection of transition graph topologies), our method can be extended

to the identification of more general models, including continuous or hybrid ones. Contrary to other methods

that need separate fitting procedures for different models, in our method a single parametric fit of the multiscale

waiting time distribution function is enough for identifying simultaneously a large collection of models that

are all compatible with data and perform equally well. Another novelty with respect to other model fitting

methods is the use of exact symbolic solutions, relating the parameters of the multiscale distributions to kinetic

parameters of the model. For several models there is one-to-one relation between parameters of the distribution

and kinetic parameters of the model. In this situation, the model kinetic parameters can be obtained analytically

from the parameters of the multiscale distribution. Our method also leads to uncertainty estimates of the model

parameters, based on optimal and close-to-optimal parametric fits of the multiscale distributions. As a matter of

fact, models that fit equally well, can differ in their parametric uncertainties. Therefore, parametric uncertainty

can be used as a model selection criterion that favor sure and reject uncertain models. The symbolic part of

our method also identifies situations when parametric uncertainty results from redundancy, more precisely when

there are manifolds of parameters that lead all to exactly the same goodness of fit. This is typically the situation

when the relation between parameters of the multiscale distribution and the model parameters is one to many.

Model and/or parameter uncertainty can be ultimately lifted by direct measurements of one or several kinetic

parameters by alternative methods.

1.2 Discrete Markovian models for transcription dynamics

A Markovian model of transcription dynamics includes stochastic transitions between several ON and OFF

promoter states (Figure 1). Rather generally there is a ON state and several OFF states. The promoter

transcribes only in the state ON when it can trigger several departures of RNAP molecules along DNA. The

departure of one RNAP is when the model reaches the state EL. It is considered that immediately after departure

the operator site becomes free (the transition from EL to ON is instantenous). The transitions define a continuous

time Markov chain characterized by a set of positive parameters kij representing the transition probability per

unit time (or equivalently the inverse mean transition time) from state i to state j. Given the number of states N ,
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the structure of the Markov chain is defined by the directed graph G = {(i, j)|1 ≤ i ≤ N, 1 ≤ j ≤ N, ki,j 6= 0};

several possible structures with N = 3 are shown in Figure 1. We show here how the parameters kij of a

model can be adjusted to reproduce the transcriptional bursting and RNA synthesis observed in the live cells

experiments. The parameter estimates are performed simultaneously for several possible model structures.

OFF2 OFF1 ON EL
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k−2
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+
1

k
−
1

k +
2

k −
2

k
3

fa
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(no pause,

two non-productive states)
b) M2

(eventual pause,

systematic abortion)
c) M3

(systematic pause,

eventual abortion)

Figure 1: Three state, three exponential models of transcription dynamics. Transcription dynamics is repre-

sented as transitions between two OFF and one ON promoter states. ON represents the productive state. EL

represents the elongation state which immediately liberates the promoter (from EL there is always fast return to

ON). ON may not lead systematically to EL, for instance if there is transcription pausing. In these models, the

pausing state is represented as one of the OFF state. If the pause leads systematically to transcription abortion

the pause state leads to ON (model M2); otherwise it leads both to ON and to EL, with different probabilities

(model M3). In model M1 the inactive state OFF1 can lead to another inactive state OFF2. The represented

topologies differ by the connections between different states. The constants ki are inverses of transition times,

as such a) M1: k3 is the initiation rate; b) M2: k3 is the initiation rate, k+
2 is the abortion rate, k−2 is the pause

enter rate; c) M3: k3 is the pause exit rate and k−2 is the abortion rate. All the represented models have 3

states (excepting the final elongation state), 5 kinetic parameters and their stochastic transcription activity can

be described by a three exponential survival function.

1.3 The machine learning procedure

This procedure was initially designed for MS2 data obtained from human cell cultures but it has also been

applied to in vivo study of Drosophila embryo development [3].

The machine learning procedure has several steps:
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a) The first step is the numerical deconvolution of the signal and Pol II Positioning. The signal from

each cell is a convolution between the contribution of a single polymerase and the point process (set of

time points) describing all the start transcription events. For each cell, we reconstruct the start events by

a least square optimization method performed by a genetic algorithm. We prefer optimization to Fourier

transform based deconvolution in order to avoid the Gibbs phenomenon (the signal produced by a single

polymerase is discontinuous).

b) The second step is the non-parametric estimate of the survival function. The data resulting at a) (po-

sitions of transcription start events) is used to estimate the survival function which is the complementary

cumulative distribution function of the inter-event (waiting) times. Further complexity is brought in at

this step by the utilization of two types of movies with short and long time resolution. Only short movies

data undergoes deconvolution, the long movies are used to obtain long waiting times directly. This results

into two distribution functions that are joined together (by affine transformations corresponding to the

law of total probability) to cover many decades of timescales (second to ten hours). In certain applications

the hours scale is not reachable because of biological constraints. For instance, in developmental biology,

the studied developmental stage may be too short. In this case, we use only short movies and the joining

step is not needed.

c) The third step is the multi-exponential regression of the survival function, performed by gradient op-

timization with random starting guesses, uniformly distributed in logarithmic scale (this choice is dictated

by the multiscale nature of the signal). Usually, two or three exponentials (i.e. two or three time scales)

are enough to describe our data. Chosing more than three exponentials is justified when this improves

the fit without increasing parameter uncertainty. Conversely, choosing less exponentials is justified if this

does not diminish the fit while decreasing parameter uncertainty. The first three steps of our procedure

are model-free because they make no assumption about the dynamics of the transcription regulation.

d) The last step of the procedure is the symbolic reverse engineering of transcription models from the

survival function. We consider that the transcription machinery has several discrete states among which

only one is productive. Then, the waiting time between successive transcription start events is the first

return time to the productive state. The distribution of this waiting time satisfies a system of ODEs

whose solution can be expressed as a sum of exponentials. The inverse problem consists in computing

model’s kinetic parameters from the parameters of the multi-exponential regression. We have developed
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a symbolic solution to perform this step. Our symbolic solution also tackles the ill-posed character of

the inverse problem. Indeed, although the same distribution function can be produced by several models

with different structures, the significance and the value of each parameter are different in different models.

Moreover, we know precisely how to pass from one model to another by changing the parameter values.

It is therefore enough to perform a direct independent experimental measurement of a single parameter

in order to discriminate between different models. In the case of redundant parameters (parameters not

influencing independently the observed distribution function) and parameter uncertainty, some parameters

may remain independent and can be used for model discrimination.

2 Numerical deconvolution of short movies

2.1 Description of the problem

The experimental data obtained from short movies is shown in the Figure 2 for the HIV-1 promoter. The signal

intensity from the mRNA MS2 reporter is represented as a function of time for each active transcription site. We

are interested in reconstructing from this signal the sequence of waiting times between successive transcription

start events (see Figure 3), for each transcription site.

Transcription events can not be straightforwardly detected from local features of the intensity signal because

at a given time and for the same transcription site, more than one polymerase transcribe simultaneously.

Furthermore, the signal from one polymerase does not appear immediately after initiation (see below).

One should thus consider that experimental data is a a convolution between the sequence of start events

{ti, 1 ≤ i ≤ Npol} and the signal h(t) from a polymerase molecule:

S(t) =
Npol∑
i=1

h(t− ti), (1)

where Npol is the number of polymerases contributing to the signal. Npol is not known and will be determined

by the optimization procedure (see below). The parameters ti are the initial polymerase positions on the DNA,

indicating the transcription start events.

The polymerase signal h(t) can be described as follows (see Figure 4):

i) Transcription begins when the RNA polymerase II leaves the promoter. However, no signal will be generated

yet.
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Figure 2: Short movie data for a HIV-1 promoter (no tat condition). A) fluorescence intensity vs. time for

several transcription sites (red line); the reconstructed polymerase positions and signal are indicated as vertical

cyan bars and black line, respectively. B) colormap of intensity for all transcription sites in a short movie.

Figure 3: Dynamics of the promoter changing states. Start events are represented as red bars. During a ON

period several polymerases start, forming a convoy. For this signal, two types of non-productive states, short

(OFF1) and long (OFF2) can be obseved.

ii) The fluorescence signal is generated as soon as the polymerase reaches the MS2 sequence. During the

transcription of the MS2 sequence the signal can be represented as a linear ramp-up.

iii) The signal will stay constant from the end of the MS2 sequence until when the polymerase leaves the

transcription site, when the signal falls abruptly.

In order to compute the times corresponding to the three stages we use the length (expressed in base pairs)

of the three sequences PRE, SEQ and POST (before MS2, MS2 and post MS2). These lengths depend on the

MS2 construction (the values in our HIV-1 experiments are PRE=700bp , SEQ=2900bp, POST=1600bp). The
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Figure 4: Representation of the signal from one polymerase for the HIV1-promoter. The parameters are

indicative and can change for other applications.Supplemental Figure 5
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Figure 5: Distribution of transcription initiation events can be reconstructed by deconvolution.

sequence lengths are divided by the polymerase speed Vpol to be transformed into times. For our HIV-1 promoter

we have used Vpol = 67bp/s (see main text). An extra time Ppoly = 100s is added to POST, corresponding to the

polyadenylation signal (during this time the polymerase has finished transcription and waits on the transcription

site).
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After signal calibration the unit of fluorescence represents the amplitude of the signal from one polymerase.

Using this model we want to reconstruct the sequence of initiation events by deconvolution (see Figure 5).

More precisely, we will determine Npol and ti, 1 ≤ i ≤ Npol that minimize the following objective function:

O1 =
Nexp∑
k=1

[S(kδ)− Sexp(kδ)]2, (2)

where δ is the time step (inverse frame rate), Nexp is the number of frames, S is described by (1) and Sexp is

the experimental signal. For a short movie, the frame rate is 1/3s−1, thus δ = 3s and Nexp = 400 for a movie

length of Pmax = 20min.

2.2 Discretization of the optimization problem

It is useful to use a dual representation of the polymerase positions ti in terms of seconds and base pairs on the

DNA sequence. Although the polymerase positions are in principle continuous variables, for computation reasons

we discretize them. In this dual representation, it is natural to consider that possible polymerase positions are

multiples of the minimum distance dmin between two polymerases (dmin = 30bp in our program). The precise

value of dmin is not needed. Generally, dmin should be chosen as small as possible to guarantee precision of

the polymerase positions. It should be smaller than the real minimum distance between polymerases and larger

than a value dictated by the computation costs (the computation costs increase when dmin decreases).

Using this discretization, polymerase positions are coded as a binary vector. Every possible polymerase

position will have either 1 or 0 value, which represents if there is a polymerase in the current position or not.

Considering that the polymerase speed is constant, the polymerase positions are all we need to determine the

signal. For a movie of length Pmax = 20min and for Vpoly = 67bp/s, the polymerase positions are represented

as a binary vector of length N = PmaxVpoly/dmin = 2680. Considering discretization steps larger than dmin is

also possible. In this case binary vectors are shorter and computation is faster, however the precision may be

reduced.

2.3 Solve the deconvolution problem by a genetic algorithm followed by local optimization

Every binary vector of dimension N represent the polymerase start positions and determine a value of the ob-

jective function (2). The opposite of the objective function is the fitness. The deconvolution problem represents

finding the minimum of this objective function (maximum of fitness) in the N dimensional binary space (Fig-
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ure 6). In order to solve this hard combinatorial problem, we apply first a global optimization genetic algorithm

(GA).

As shown in Figure 6 B, GA follows three steps: estimating the amount of polymerases, generating an initial

population and applying genetic algorithm. We estimate the number of polymerases Npol from the signal integral

intensity, as the ratio of integral intensities of the experimental signal and of the single polymerase signal. The

resulting amount is not an accurate number, and it is a rough estimation which can be used to accelerate next

steps. Then we prepare an initial population according to the estimation of polymerase amount. Starting with

a vector with N ’0’s, we randomly pick Npol positions and change them into ’1’s. After the preparation of initial

population, we use the genetic algorithm implemented in the GA solver provided by Matlab global optimization

toolbox. Mutation, crossover and selection are processed by the MATLAB built-in function ga (MATLAB,

version (R2013b), Natick, Massachusetts: The MathWorks Inc.). At each step, the genetic algorithm solver

selects individuals at random from the current population to be parents and uses them to produce the children

for the next generation. Over successive generations, the population “evolves” toward an optimal solution.

In order to verify this method, we implemented a test using an artificial experimental signal. We deconvolved

the artificial signal, for which we know exactly the polymerase start positions. The simulation of genetic

algorithm, as in the example of Figure 7, shows that the genetic algorithm can approximately reconstruct the

signal. However, the global minimum is not precisely reached and the polymerase start positions of simulation

are not exactly the same as the artificial ones (Figure 7).

There are various reasons why polymerases were not exactly placed into right positions as follows: the

limitation of the maximum number of iterations, the limitation of population size, the initial error in the

estimated number of polymerases, the noise generated by the algorithm, etc.. Although GA can not give a

precise result (or it is time consuming to get a precise result), it provides a solution not far from the optimal

result.

With this in mind, we use a local exhaustive search to accomplish local optimization. The idea is to

“move” a polymerase left or right relative to the GA found position to see if this improves the fitness function

(Figure 6 C). For every polymerase we find the best position which has the highest fitness value and we update

the best positions for all of them. The local optimization result is shown in Figure 7. By this method, practically

all the polymerases were arranged into the correct positions. The local optimisation method has limitations,

for instance it does not allow correction of the total number of polymerases; we suppose that this number has

already been found by the GA.
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Figure 7: Result of the deconvolution step on artifical data. A) Signal generated artificially (no noise). B)

Original polymerase positions compared to positions resulting from the genetic algorithm step and to the final

positions corrected by local optimisation (no noise). C) Signal generated artificially (noise added according to

the procedure described in Section 8). D) Original polymerase positions compared to positions resulting from

the genetic algorithm step and to the final positions corrected by local optimisation (noise added).

3 Multi-exponential regression of the distribution function

From the numerical deconvolution step, we obtain the series of intial polymerase positions, for each active

transcription site detected in the short movies.

From each transcription site we compute waiting times defined as time interval between successive positions.
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When the position is the last one in the movie, the waiting time is defined as the distance to the end of the

movie. Considering that all transcription sites are statistically equivalent, we gather the waiting times from all

sites that are active in the same short movie.

Long movies also provide waiting times by a different method, without numerical deconvolution (see below).

We consider that the transcription events form a renewal process with independent, identically distributed

waiting times ∆. This property is valid at stationarity, but not only. For instance, in Markovian models, the

property is true if after every transcription event the system allways returns to the same state. Given that

non-Markovian models can be made Markovian by adding hidden states, we believe that the property is quite

general. All the models from Figure 1 satisfy this property, because from the EL state one can only go to the

ON state.

We want to estimate the complementary cumulative distribution function (also called survival function in

survival analysis) of the waiting times defined as:

S(t) = P[∆ > t] . (3)

3.1 Waiting times from short movies: ∆s

Outliers handling

Several observed transcription sites had abnormal behaviour (too many or too few events). The decision

was made to take them off the data set as follows

1. Compute the amount of events of transcription that happened during the movie (Ev).

2. Compute the 1st and the 3rd quartile (respectively Q1 and Q3) of the distribution of Ev .

3. Only consider the transcription sites where

Q1− 2.5(Q3−Q1) < Ev < Q3 + 2.5(Q3−Q1)

Affine transformation, parameter ps
The ∆s are the waiting times deduced from the short movies, therefore they all satisfy the condition ∆s <

Pmax, where Pmax is the movie length. Therefore, this data does not reconstruct the full survival function, but

the conditional survival function S<Pmax(t) = P[∆ > t|∆ < Pmax].
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In order to compute the relation between S(t) and S<Pmax(t) we use the total probability theorem:

P[∆ > t] = P[∆ > t|∆ < Pmax] (1− P[∆ > Pmax]) + P[∆ > t|∆ > Pmax]P[∆ > Pmax] . (4)

Let us note that for t < Pmax, one has P[∆ > t|∆ > Pmax] = 1. Hence, from (4) it follows that

Ss(t) = (1− ps)S<Pmax(t) + ps, for t < Pmax, (5)

where ps = P[∆ > Pmax] is the probability that the waiting time is longer than the length of the short movie.

In other words, for short movies, the survival function is obtained from the conditional survival function by

an affine transformation.

3.2 Waiting times from long movies: ∆l

Active and inactive periods, threshold parameter

The frame rate for long movies is 1/3min−1 and the typical length is 9h. Let us notice that the deconvolution

procedure is not possible for long movies, because the number of polymerases is too large. Therefore, long waiting

times are obtained directly from the signal. For long movies, there is no need to calibrate the fluorescence

intensity, nor to deconvolve the signal. An intensity threshold is defined and a given transcription site is

considered active in a given frame if its intensity is larger than the threshold, inactive if not, see Figure 8.

Outliers handling

We define the fraction of inactivity (FI) as the ratio of cumulative total inactivity time to the total cumulative

time in the long movie and for all the transcription sites.

Some transcription sites in long movies data set also show unusual behaviours being active (FI=0) or inactive

(FI=1) during the entire movie. We exclude these outliers as we did it for the short movies, but based on the

fraction of inactivity for each transcription site.

We will only consider the transcription sites from the long movies where

Q1− 2.5(Q3−Q1) < FI < Q3 + 2.5(Q3−Q1)

Corrected waiting times, parameter ∆0

In the long movies the waiting times ∆l between successive transcription initiations correspond roughly to

the inactive periods ∆I . As a matter of fact, these waiting times can be longer than the inactive periods by a

time varying between 0 and 6min (because the signal needs about 3min to vanish and starts about 3min before
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Figure 8: Long movie data for a HIV-1 promoter (no tat condition). A) intensity of fluorescence vs. time for

several transcription sites; the real valued intensity are transformed into a binary signal (dots) by thresholding

(here the threshold value is 1200). B) intensities for all transcription sites. C) Binary valued intensities for all

transcription sites.

it is detected). This unknown time is a parameter of the method and its values are discretized to ∆0 = 0, 3, 6.

All waiting times are computed as ∆l = ∆I +∆0.

Affine transformation, parameter pl
The signal from a single polymerase lasts roughly 3min (see Figure 4). In this case, waiting times shorter
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than Pmin where Pmin is roughly 3min can not be observed. The observed conditional survival function is now

S>Pmin(t) = P[∆ > t|∆ > Pmin].

We can note that for t > Pmin, one has P[∆ < t|∆ < Pmin] = 1.

Once again, from the total probability theorem (4), it follows:

Sl(t) = plS>Pmin(t), for t > Pmin, (6)

where pl = P[∆ > Pmin] is the probability that the waiting time is longer than Pmin, Sl is the survival function

for long movies.

Estimate of parameter pl
The probability pl is estimated by combining information extracted from the long and the short movies. pl

is precisely the probability that waiting times are observed as inactive periods in the long movie. Let Ninactive

and Nactive be the number of waiting times observed as inactive periods, and hidden within active periods of

the long movie, respectively. Ninactive can be determined directly from the long movie, it represents the number

of inactive periods. Nactive is obtained as the ratio Pactive/E[∆|∆ < Pmin] where Pactive is the cumulative time

of all active periods in the long movie and E[∆|∆ < Pmin] is the conditional expectancy of the waiting time

provided that this is smaller than Pmin therefore undetectable by the long movie. By definition one has

E[∆|∆ < Pmin] =
∫ Pmin

0 uf(u) du
P[∆ < Pmin] ,

where f is the probability density function of ∆. Taking the derivative of S(t) = P[∆ > t] =
∫∞
t f(u) du we get

f(t) = −S′(t). Using the integral by parts formula we find

E[∆|∆ < Pmin] = −PminS(Pmin) +
∫ Pmin

0 S(u) du
1− S(Pmin) .

Summarizing, we find

pl = Ninactive

Ninactive + Pactive(1−S(Pmin))
−PminS(Pmin)+

∫ Pmin
0 S(u) du

. (7)

Both S(t) and the integral above are computed using the survival function of the short movie. Ninactive and

Pactive are determined from the long movie data.

Estimate of parameter ps
ps is estimated by optimization. We look for the value of ps that minimizes the square distance between the

solutions (5) and (6) on the overlap interval [Pmin, Pmax].

The survival functions after calculation of pl, ps and affine transformations are shown in Figure 9.
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Figure 9: Survival functions of the waiting time after affine transformations for several values of the shift ∆0

(HIV promoter, no tat condition, see text).
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Figure 10: Multi-exponential regression (N = 3) for several values of the shift ∆0 (HIV promoter, no tat

condition, see text).

3.3 Multiexponential regression

The previously determined survival function function (5), (6) is modelled by a multiexponential function:

S(t) = A1 exp(λ1t) +A2 exp(λ2t) + . . .+ (1−A1 −A2 − . . .−An−1) exp(λnt), (8)

where A1, . . . , An−1, λ1, . . . , λn are 2n− 1 parameters.

Because limt→∞ S(t) = 0, these parameters must satisfy the constraints λi < 0, 1 ≤ i ≤ n. For practical

reasons we can consider that all λi are distinct. Degenerate cases, when two or more λi are equal can be

uniformly approximated by formula (8) with distinct λi (see the section 4.2). Up to relabelling we can consider

that |λ1| > |λ2| > . . . |λn|. Furthermore, because the complementary distribution function is always decreasing
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we have

S′(t) < 0, ∀t ≥ 0. (9)

The condition (76) implies that
∑n
i=1Aiλi < 0, where An = 1 −

∑n
i=1Ai (follows from S′(0) < 0) and that

An > 0 (this follows from limt→∞ S
′(t)exp(−λnt) = Anλn < 0 and λn < 0). The hyperplanes

∑n
i=1Aiλi = 0,

An = 0 together with other manifolds delineate the domain of valid parameters Ai. This domain depends on

the exponents λi as illustrated for n = 3 in Figure 11.
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Figure 11: Permitted values of Ai, 1 ≤ i ≤ n for n = 3 are represented in black for various λi. These parameters

values are defined by the condition S′(t) =
∑3
i=1 λiAi exp(λit) < 0, ∀t ≥ 0, where A3 = 1 − A1 − A2. The

permitted values are limited at the top right by the line A1 +A2 = 1 and at the left by the line λ1A1 + λ2A2 +

λ3(1−A1 −A2) = 0.

Like usually in machine learning, the choice of n is guided by a parcimony principle. One can start with

n = 2 and progressively increase n until the goodness of fit stops improving (at equal goodness of fit, one favors

the model with lowest complexity, lowest n and/or with lowest parameter uncertainty).

The objective function is defined as follows:

O2 = α

ns

ns∑
i=1

(S(tsi )− Ss(tsi ))2 + α

nl

nl∑
i=1

(S(tli)− Sl(tli))2 + 1− α
ns

ns∑
i=1

(log(S(tsi ))− log(Ss(tsi )))2+

+ 1− α
nl

nl∑
i=1

(log(S(tli))− log(Sl(tli)))2,

(10)

where S(t) is defined by (8); Ss and Sl are computed by (5),(6), respectively; tsi , tli are sampling times for short

and long movies, respectively; α is a positive weight representing the relative importance of the linear scale

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.25.265413doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.265413
http://creativecommons.org/licenses/by-nc-nd/4.0/


compared to the logarithmic scale in the representation of the survival function.

We minimize (10) by local optimization (Levenberg-Marquardt algorithm implemented in the Matlab func-

tion lsqnonlin) starting with Np (in our program Np = 100) random values of the regression parameters

A1, . . . , An−1, λ1, . . . , λn. The initial parameters A1, . . . , An−1 are chosen uniformly distributed in the cube

[−M,M ]n−1 (we used M = 2), whereas the initial parameters λ1, . . . , λn are all negative and log-uniformly

distributed in absolute value. More precisely, log(|λi|) are uniform in a cube (l1, l2, . . . , ln) + [−K,K]n, where

l1 < l2 < . . . < ln.

The optimization is repeated for all values of ∆0 and each time repeated Np times with different initial

parameters (Figure8). We keep the lowest valueOmin2 of (10) as well as sub-optimal solutions withO2 < 1.5Omin2 .

The suboptimal parameters are utilized to estimate the parameter uncertainty. For each parameter we compute

an uncertainty interval defined by the minimum and the maximum values over the set of all optimal and

suboptimal parameters. Uncertain parameters have large uncertainty intervals.

An example of multi-exponential fit is given in Figure 12.
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Figure 12: Results of the unconstrained three-exponential fit. First row: short movie data with reconstructed

polymerase positions. Second row: long movie data. Third row: noise interpolation. Fourth row: most optimal

fit for α = 0.30. 19
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4 Symbolic solution to the inverse problem

4.1 General model and waiting time distribution

We consider a continuous time Markov chain promoter model with N states Pi, i ∈ [1, N ]. One of these N

states, Po, is the “ON” state from which polymerase can start transcription, and all the other states are “OFF”

states (non-processive). A supplementary state PN+1, designates the start of processive elongation. From PN+1,

there is systematic return to Po. The models have parameters ki,j , 1 ≤ i, j ≤ N + 1 indicating the transition

rates from the promoter state i to the promoter state j. We consider that processive elongation immediately

frees the operator and the promoter returns to the “ON” state. In mathematical terms

kN+1,o =∞. (11)

We also consider that only one state, denoted XN , can lead to processive elongation XN+1: kN,N+1 6= 0,

ki,N+1 = 0, for 1 ≤ i ≤ N − 1. XN is not necessarily Xo, for instance it can be a paused transcription state.

Because the movies are always started when transcription sites are in the active state and supposing that

after each transcription initiation there is return to the active state, we model the experimental waiting time as

the first time when the promoter reaches the state PN+1 starting from Po. This is a first hitting time (or first

passage time) problem. Because the lifetime of the state PN+1 is zero and PN+1 is always followed by Po (see

(11)), the same waiting time is also the first return time to Po.

In order to compute the distribution of the first hitting time we use the following standard method.

Let M(t) be the state of the Markov chain at the time t. For the purposes of this calculation, we can consider

that M(t) stops when it reaches PN+1. Let Xi = P[M(t) = Pi|M(0) = Po]. Because M(t) is stopped in PN+1,

one has XN+1 = P[M(t) = PN+1|M(0) = Po] = P[∆ ≤ t]. Thus, XN+1 is the cumulative distribution function

of the waiting time ∆ to reach PN+1 from Po. The survival function of ∆ is S(t) = 1−XN+1(t).

The variables Xi(t), 1 ≤ i ≤ N + 1, satisfy the following system of linear differential equations (the master

equation):
dX

dt
= QX, (12)

with the initial conditions Xi(0) = δi,o, where δ is the Kronecker symbol; Q is the transpose transition rate

matrix whose elements are defined by Qj,i = ki,j , Qi,i = −
∑
j 6=i ki,j .

Because M(t) is stopped in PN+1, the last column of the matrix Q is zero, namely Qi,N+1 = 0.

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.25.265413doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.265413
http://creativecommons.org/licenses/by-nc-nd/4.0/


Let Q̃ the N ×N matrix obtained by eliminating the last line and the last column of the (N + 1)× (N + 1)

matrix Q.

Then X̃ = (X1, . . . , XN ) is the solution of the reduced equation

dX̃

dt
= Q̃X̃, (13)

with initial conditions Xi = δi,o and reads

X̃(t) =
N∑
i=1

Ciuie
λit, (14)

where λi and ui, i ∈ [1, N ] are eigenvalues and eigenvectors of Q̃, respectively.

Although (14) is written with the non-degenerate case in mind, when λ1 6= λ2 6= . . . 6= λN (in general (14)

is valid when Q̃ is diagonalizable), our final results, relating parameters of the survival function and kinetic

parameters, can be extended to the degenerate case by continuous extension (see Section 4.2).

Furthermore, XN+1 can be obtained from the equation

dXN+1
dt

= kN,N+1XN , (15)

with the initial condition XN+1(0) = 0.

Without restricting generality, all eigenvectors ui can be chosen such that their o-th coordinate is uio = 1.

Therefore, from (14), it follows

Xo =
N∑
i=1

Cie
λit,

and from (15) it follows

XN+1(t) = kN,N+1

N∑
i=1

Ciu
i
N

eλit − 1
λi

. (16)

From limt→∞XN+1(t) = 1 and (16) we get kN,N+1
∑N
i=1

Ciu
i
N

λi
= −1. Using again (16) we find

S(t) = 1−XN+1(t) = −kN,N+1

N∑
i=1

Ciu
i
Ne

λit

λi
=

N∑
i=1

Aie
λit. (17)

Hence

Ai = −kN,N+1u
i
NCi

λi
, 1 ≤ i ≤ N. (18)

In particular, when N = o

Ai = −ko,N+1Ci
λi

, 1 ≤ i ≤ N. (19)
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Eq(17) implies that in the non-degenerate case the survival function is a combination of exponential functions,

implying that the waiting time has a mixed exponential distribution. However, although the mixture coefficients

satisfy
∑N
i=1Ai = 1, they are not guaranteed positive in general (see Figure 11).

4.2 Degenerate case

The matrix Q̃ is a linear function in the model parameters kij . According to classical results (see Kato), the

eigenvalues of this matrix are branches of analytic functions in the parameters with only algebraic singularities.

Moreover, the number of distinct eigenvalues is constant with the exception of a zero measure set of parameter

values where this number is different. Excluding the permanently degenerate case when the matrix Q̃ has a

number of distinct eigenvalues smaller than N almost everywhere, we may consider that Q̃ has N distinct

eigenvalues except in a finite number of parameter values where it is degenerate, i.e. where λi = λj for at least

two distinct indices i 6= j.

Each degenerate case is arbitrarily close in the parameter space to a non-degenerate case. The solutions of

the linear differential system (12) are continuous in the transition rates parameters ki,j , therefore the survival

function computed in a degenerate case can be approximated by survival functions computed for non-degenerate

cases. Because all the survival functions are monotone, by Dini’s theorem, this approximation can be made

uniform for t ∈ [0, T ], for any T . Using the inequality |Ai exp(λit) − A′i exp(λ′it)| < C exp(λ′iT ), ∀t > T , where

λi ≤ λ′i < 0, we can show that the uniform approximation is valid for all times.

Let us now compute the survival function in the degenerate case.

When, in spite of having degenerate eigenvalues (there are N independent eignevectors), the matrix Q̃ is

diagonalizable, then Eqs.(14),(16),(17) hold. Therefore, in the diagonalizable case with degenerate eignevalues

the survival function is a sum of less than N exponentials.

When the matrix Q̃ is not diagonalizable (there are less than N independent eigenvectors), (14) no longer

holds.

Let gi ≤ ni be the geometric multiplicity (number of independent eigenvectors) of the eigenvalue λi. Here

ni is the algebraic multiplicity of the eigenvalue λi, representing the number of times this eigenvalue occurs as a

root of the characteristic polynomial (det(Q̃−λiI) ∼ (λ−λi)ni) and one has
∑′
i ni = N , where the sum is over

all distinct eigenvalues. Let us consider that gi < ni for at least one i. In this situation, Q̃ is not diagonalizable

but can be reduced to a Jordan normal form. For each eigenvalue, there are gi Jordan blocks. After reindexing

the eigenvalues and Jordan blocks we have N =
∑p
i=1mi, where p is the total number of Jordan blocks p =

∑′
i gi
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(the sum is over distinct λi) and mi is the dimension of a block i.

Let us remind that a generalized eigenvector v is any vector from the kernel Ker((Q̃−λi)mi). The subspace

Ker((Q̃ − λi)mi) corresponds to a Jordan block and is generated by a chain of generalized eigenvectors ui,

(Q̃−λi)ui, . . . , (Q̃−λi)mi−1ui, where ui is a generalized vector that satisfies (Q̃−λi)ui 6= 0, . . ., (Q̃−λi)mi−1ui 6=

0. Furthermore, the solution of (13) starting from any generalized vector v reads:

X̃(t) = exp(λit)
mi∑
j=1

tj−1

(j − 1)!(Q̃− λi)
j−1v. (20)

Let us consider that

X̃(0) =
p∑
i=1

mi∑
j=1

Ci,j(Q̃− λi)j−1ui.

By the definition of the generalized eignvectors, (Q̃− λi)miui = 0.

Therefore, in the non-diagonalizable case, (14) must be replaced by:

X̃(t) =
p∑
i=1

mi∑
j=1

mi+2−j∑
k=1

Ci,j exp(λit)
tk−1

(k − 1)!(Q̃− λi)
j+k−2ui. (21)

Then, (16) should be replaced by

XN+1 = kN,N+1

∫ t

0
XN (s) ds = kN,N+1

p∑
i=1

mi∑
j=1

mi+2−j∑
k=1

Ci,ju
i,j+k−2
N

γ(k, λit)
λki (k − 1)!

, (22)

where ui,jN is the N th coordinate of (Q̃− λi)jui, and γ is the incomplete gamma functions. It follows that (17)

should be replaced by

S(t) = 1−XN+1(t) = kN,N+1

p∑
i=1

mi∑
j=1

mi+2−j∑
k=1

Ci,ju
i,j+k−2
N

λki

[
1− γ(k, λit)

(k − 1)!

]
. (23)

Eq. (23) implies that in the non-diagonalizable case, the survival function is a combination of gamma

functions, implying that the waiting time has a mixed gamma distribution.

As an example illustrating this case let us consider the irreversible chain P1
k→ P2

k→ P3
kini→ P4 where P3 is

the ON state and P4 is the EL state. in this case we have

Q̃ =


−k 0 0

k −k 0

0 k −kini

 .
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There are two distinct eigenvalues λ1 = −k and λ2 = −kini. Each eigenvalue contributes with one Jordan block

of dimensions 2 and 1, respectively. The chains of generalized eigenvectors are

u1 =


−k−kini

k

1

0

 , (Q̃− λ1)u1 =


0

kini − k

k

 ,u2 =


0

0

1

 .
Suppose we want to compute the distribution of the waiting time to reach P4 starting from P1. Then

X̃(0) =


1

0

0

 = − k

k − kini


−k−kini

k

1

0

− k

(k − kini)2


0

kini − k

k

+ k2

(k − kini)2


0

0

1

 ,
and

X̃(t) =


1

0

0

 = − k

k − kini
e−kt[


−k−kini

k

1

0

+ t


0

kini − k

k

]− k

(k − kini)2 e
−kt


0

kini − k

k

+ k2

(k − kini)2 e
−kinit


0

0

1

 .
The survival function reads

S(t) = A1 [1− γ(1,−kt)] +A2 exp(−kt) +A3 exp(−kinit),

where A1 = −kini/(k − kini), A2 = −kinik/(k − kini)2, A3 = k2/(k − kini)2 satisfy A1 +A2 +A3 = 1.

The waiting time is distributed according to a mixture of gamma and exponential distributions. If kini >> k,

then A1 ≈ 1, A2, A3 ≈ 0, meaning that the waiting time is distributed according to a gamma distribution of

shape parameter 2 and scale parameter 1/k.

If in the previous model we make kini = k,

Q̃ =


−k 0 0

k −k 0

0 k −k

 .

Then, Q̃ has only one eigenvalue λ = −k and one Jordan block of dimension 3. The chain of generalized

eigenvectors is

u =


1

0

0

 , (Q̃+ kI)u =


0

k

0

 , (Q̃+ kI)2u =


0

0

k2
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The survival function reads

S(t) = 1− γ(3,−kt)
2! ,

meaning that the waiting time is distributed according to a gamma distribution with scale parameter 1/k and

shape parameter 3. This result is obvious from the structure of the model. If k = kini, in order to reach P4 from

P1 one needs three exponentially distributed steps of equal mean time 1/k; a sum of three independent equally

distributed exponential variables is a gamma distribution of shape parameter 3.

In general, if the chain contains n limiting steps of constant k, the waiting time to reach the end of the

chain starting from the beginning is distributed approximately according to a gamma distribution with shape

parameter n and scale parameter 1/k.

4.3 Inverse problem

In order to formulate a well posed inverse problem, we have to choose a structure of the model. The structure is

defined by the directed graph G whose vertices are the promoter states and such that there is an edge from i to

j if and only if ki,j 6= 0. Thus the model structure specifies which transitions are allowed between the promoter

states. We also need to specify which one of the promoter states is ON.

Given a model structure, the inverse problem consists in computing the kinetic constants ki,j , 1 ≤ i, j ≤ N

and kN,N+1 from the 2N−1 parameters of the survival function. This is possible only if there are at most 2N−1,

kinetic constants. Uniqueness and thus well-posedness of the solution is possible only if there are exactly 2N −1

parameters. However, not all models with 2N − 1 parameters have unique solutions of the inverse problem (an

example is the model M3, see Figure 1 and Section 4.6).

In order to solve the inverse problem, we must write down the equations relating the parameters ki,j , Ai and

λi.

Let us consider that all the nonzero kinetic parameters are the 2N − 1 elements of a vector k ∈ R2N−1.

Vieta’s formulas
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Let us introduce the elementary symmetric polynomials of eigenvalues

L1 =
N∑
i=1

λi (24)

L2 =
∑
i<j

λiλj (25)

... (26)

LN = λ1λ2 . . . λN (27)

The characteristic polynomial of Q̃ is

P (λ) = det(Q̃− λI) = (−1)NλN + aN−1(k)λN−1 + . . .+ a1(k)λ+ a0(k) (28)

where the coefficients ai are multivariate polynomial functions of the kinetic constants.

The coefficients of the characteristic polynomial are related to the symmetric polynomials of eigenvalues by

the so-called Vieta’s formulas. We have the following N equations for the kinetic constants:

Lj = (−1)N−jaN−j(k), j ∈ [1, N ] (29)

Eigenvectors

The eigenvectors of Q̃ are solutions of the system of linear equations (Q̃ − λI)u = 0 and are chosen of

the form u = (u1(λ,k), . . . , uo−1(λ,k), 1, uo+1(λ,k), . . . , uN (λ,k)), where un(λ,k), n ∈ [1, N − 1] are rational

functions (ratios of polynomials) of λ and k.

The initial conditions satisfied by the variables Xi provide a linear system of equations for the constants Ci:

N∑
j=1

ui(λj ,k)Cj = δi,o, i ∈ [1, N ] (30)

Let Ci(λ,k), i ∈ [1, N ] be the unique solution of (30).

From (18),(19) we get N − 1 equations for the kinetic constants k:

Ci(λ,k) = −Aiλi/(uiokN,N+1), i ∈ [1, N − 1] (31)

Inverse problem

The solution of the inverse problem is the solution of the system of 2N − 1 equations (29) and (31).

In the next sections we solve this system symbolically. When a solution of the inverse problem exists, the

kinetic parameters ki,j can be expressed as functions in λi and Ai. These functions are symmetric in the pairs
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(λi, Ai) and homogeneous of degree −1 in λi. These functions are not always rational. For instance, they

can have branching singularities, allowing, eventually, to pass from one solution to another, equivalent one. In

general, multiple solutions are equivalent with respect to symmetries of the model. For instance, the model M2

in the Figure 1 is symmetric with respect to the permutation of the two lateral chains. In this case there are

two solutions of the inverse problem, one solution being obtained from the other by permuting the parameters

k±1 with k±2 . The general solutions will be presented elsewhere. In the sequel we provide full solutions for some

models with N ≤ 4.

Recursion relations for eigenvectors

The eigenvector components ui(λj ,k) can be obtained by recursion along the structure digraph.

We consider models such that any state of the promoter is connected to the ON state, in both directions,

by directed paths on the structure digraph.

In the sequel, we discuss two representative cases.

The type I (single chain) model is a reversible chain ending with the PN state:

P1
k+

1


k−

1

P2
k+

2


k−

2

P3 . . . PN−1
k+

N−1


k−

N−1

PN
kN→

For this model, an eigenvector (b1, b2, . . . , bN ) satisfies the equations

k−1 b2 − (k+
1 + λ)b1 = 0, (32)

k+
n−1bn−1 + k−n bn+1 − (k+

n + k−n−1 + λ)bn = 0, for 2 ≤ n ≤ N − 1. (33)

We can choose b1 = 1 and then from (32) b2 = k+
1 +λ
k−

1
. Threfore, bn satisfy the recursion

b1 = 1, b2 = k+
1 + λ

k−1

bn+1 =
k+
n + k−n−1 + λ

k−n
bn −

k+
n−1
k−n

bn−1, 2 ≤ n ≤ N − 1. (34)

In order to have uio = 1 for all 1 ≤ i ≤ N , we define

un(λ,k) = bn(λ,k)
bo(λ,k) , n ∈ [1, N ], (35)

where bn are rational functions of λ and k computed with the recursion (34).

The type II model is a reversible chain with the PN state inside the chain:

P1
k+

1


k−

1

P2 . . . PN−r
k+

N−r



k−

N−r

k
N
−→

PN
k+

N−r+1



k−
N−r+1

PN−r+1 . . . PN−2
k+

N−1


k−

N−1

PN−1
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The type II model can be also described as two reversible chains branching from the PN state. We can call this

type two chain model.

For this model, an eigenvector (b1, b2, . . . , bN ) satisfies the recursion

k−1 b2 − (k+
1 + λ)b1 = 0, (36)

k+
n−1bn−1 + k−n bn+1 − (k+

n + k−n−1 + λ)bn = 0, for 2 ≤ n ≤ N − r, (37)

k+
n bn−1 + k−n+1bn+1 − (k+

n−1 + k−n + λ)bn = 0, for N − r + 1 ≤ n ≤ N − 2, (38)

k+
N−1bN−2 − (k−N−1 + λ)bN−1 = 0, (39)

The recursion (36),(37),(38),(39) can be solved in the following way:

i) Choose b1 = 1 and compute b2 from (36).

ii) Use (37) to compute bn, 3 ≤ n ≤ N − r and bN .

iii) Use (39) and (38) to compute bn, N − r + 1 ≤ n ≤ N − 1 and bN as multiples of bN−1.

iv) Determine bN−1 from bN , already computed at step ii).

Below we study several examples of type I and type II models.

4.4 Symbolic solution to the inverse problem for the M1 model (N = 3)

This model is described by the transitions P1
k+

1


k−

1

P2
k+

2


k−

2

P3
k3→. It is a type I model. In this case P3 is the ON

state. The matrix of kinetic rates reads

Q̃ =


−k+

1 k−1 0

k+
1 −(k+

2 + k−1 ) k−2

0 k+
2 −(k3 + k−2 )

 .

The characteristic polynomial of Q̃ is P (λ) = det(Q̃ − λI) = −λ3 − (k3 + k−1 + k−2 + k+
1 + k+

2 )λ2 − (k3k
−
1 +

k3k
+
1 + k3k

+
2 + k−1 k

−
2 + k−2 k

+
1 + k+

1 k
+
2 )λ− k3k

+
1 k

+
2 .

The Vieta formulas read

k3k
+
1 k

+
2 = −L3 (40)

k3k
−
1 + k3k

+
1 + k3k

+
2 + k−1 k

−
2 + k−2 k

+
1 + k+

1 k
+
2 = L2 (41)

k3 + k−1 + k−2 + k+
1 + k+

2 = −L1 (42)
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The solution of the recursion (34) is

b1 = 1 (43)

b2 = k+
1 +λ
k−

1
(44)

b3 = k+
1 k

+
2 +(k−

1 +k+
1 +k+

2 )λ+λ2

k−
1 k

−
2

(45)

The system (30) has the solution

C1 = k+
1 k

+
2 + (k−1 + k+

1 + k+
2 )λ1 + λ2

1
(λ1 − λ2)(λ1 − λ3)

C2 = k+
1 k

+
2 + (k−1 + k+

1 + k+
2 )λ2 + λ2

2
(λ2 − λ1)(λ2 − λ3)

C3 = k+
1 k

+
2 + (k−1 + k+

1 + k+
2 )λ3 + λ2

3
(λ3 − λ1)(λ3 − λ2)

The unique solution of (29) and (31) is

k3 = −S1, (46)

k+
2 = S2

2 − S1S3
S1(−S2

1 + S2)
, (47)

k−2 = S1 −
S2
S1
, (48)

k+
1 = L3(−S2

1 + S2)
S2

2 − S1S3
, (49)

k−1 = A1A2A3S1(λ1 − λ2)2(λ1 − λ3)2(λ2 − λ3)2

(−S2
1 + S2)(S2

2 − S1S3)
, (50)

where

L1 = λ1 + λ2 + λ3, (51)

L2 = λ1λ2 + λ1λ3 + λ2λ3, (52)

L3 = λ1λ2λ3, (53)

S1 = A1λ1 +A2λ2 +A3λ3, (54)

S2 = A1λ
2
1 +A2λ

2
2 +A3λ

2
3, (55)

S3 = A1λ
3
1 +A2λ

3
3 +A3λ

3
3. (56)
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4.5 Symbolic solution to the inverse problem for the M2 model (N = 3)

This model is described by the transitions P1
k+

1


k−

1

k
3
− →

P3
k−

2


k+

2

P2. In this case P3 is the ON state. Model M2 is a type

II model. It has a matrix of kinetic rates

Q̃ =


−k+

1 0 k−1

0 −k+
2 k−2

k+
1 k+

2 −(k3 + k−1 + k−2 )

 .

The characteristic polynomial of Q̃ is P (λ) = det(Q̃ − λI) = −λ3 − (k3 + k−1 + k−2 + k+
1 + k+

2 )λ2 − (k3k
+
1 +

k3k
+
2 + k−1 k

+
2 + k−2 k

+
1 + k+

1 k
+
2 )λ− k3k

+
1 k

+
2 .

The Vieta formulas read

k3k
+
1 k

+
2 = −L3 (57)

k3k
+
1 + k3k

+
2 + k−1 k

+
2 + k−2 k

+
1 + k+

1 k
+
2 = L2 (58)

k3 + k−1 + k−2 + k+
1 + k+

2 = −L1 (59)

The solution of the recursion (36),(37),(38),(39) reads

b1 = 1 (60)

b2 = k−
2 (k+

1 +λ)
k−

1 (k+
2 +λ) (61)

b3 = k+
1 +λ
k−

1
(62)

The system (30) has the solution

C1 = k+
1 k

+
2 + (k+

1 + k+
2 )λ1 + λ2

1
(λ1 − λ2)(λ1 − λ3)

C2 = k+
1 k

+
2 + (k+

1 + k+
2 )λ2 + λ2

2
(λ2 − λ1)(λ2 − λ3)

C3 = k+
1 k

+
2 + (k+

1 + k+
2 )λ3 + λ2

3
(λ3 − λ1)(λ3 − λ2)
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Up to the permution symmetry P1 ↔ P2 the solution of (29) and (31) is unique and described by

k3 = −S1, (63)

k+
2 = 1

2

[
−L1 + S2

S1
−
√

(S1L1 − S2)2 − 4L3S1
S1

]
, (64)

k−2 = 1
2

S1 −
S2
S1

+
−S2

1L1 + S1S2 + S1L2 − L3 + S2
2
S1
− S3√

(S1L1 − S2)2 − 4L3S1

 , (65)

k+
1 = 1

2

[
−L1 + S2

S1
+
√

(S1L1 − S2)2 − 4L3S1
S1

]
, (66)

k−1 = 1
2

S1 −
S2
S1
−
−S2

1L1 + S1S2 + S1L2 − L3 + S2
2
S1
− S3√

(S1L1 − S2)2 − 4L3S1

 , (67)

4.6 Symbolic solution to the inverse problem for the M3 model (N = 3)

The chain without P4 is the same as the model M1. Like M1, M3 is a type I model. The difference is the

position of the ON state which is in the middle of the chain (P2 is the ON state).

The matrix Q̃ and its characteristic polynomial are the same as in the section 4.4. In particular, the Vieta

relations remain the same:

k3k
+
1 k

+
2 = −L3,

k3k
−
1 + k3k

+
1 + k3k

+
2 + k−1 k

−
2 + k−2 k

+
1 + k+

1 k
+
2 = L2,

k3 + k−1 + k−2 + k+
1 + k+

2 = −L1. (68)

However, instead of computing the waiting time for reaching P4 starting from P3, we compute the waiting

time for reaching P4 starting from P2. In this model, the significance of the states P2 and P3 is ON and PAUSE,

respectively. The observed waiting time is from ON to EL, therefore from P2 to P4.

We look for solutions of the master equation (13) with initial conditions X(0) = (0, 1, 0, 0).

Like in section in order to compute solutions of (13) we need the eigenvectors of Q̃. For the new initial

conditions it is convenient to impose the normalization condition u2 = 1, where ui, 1 ≤ i ≤ 3 are the components

of the eigenvector u. We get

u1 = k−1 /(k
+
1 + λ), (69)

u2 = 1, (70)

u3 = k+
2 /(k3 + k−2 + λ). (71)
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A solution of the (13) reads X(t) = C1u1 exp(λ1t)+C2u2 exp(λ2t)+C3u3 exp(λ3t). From the initial conditions,

it follows

C1
k−

1
k+

1 +λ1
+ C2

k−
1

k+
1 +λ2

+ C3
k−

1
k+

1 +λ3
= 0,

C1 + C2 + C3 = 1,

C1
k+

2
k3+k−

2 +λ1
+ C2

k+
2

k3+k−
2 +λ2

+ C3
k+

2
k3+k−

2 +λ3
= 0. (72)

The system (72) has the solution

C1 = (k+
1 + λ1)(k3 + k−2 + λ1)
(λ1 − λ2)(λ1 − λ3) ,

C2 = −(k+
1 + λ2)(k3 + k−2 + λ2)
(λ1 − λ2)(λ2 − λ3) ,

C3 = (k+
1 + λ3)(k3 + k−2 + λ3)
(λ1 − λ3)(λ2 − λ3) . (73)

X4 obeys dX4
dt = k3X3 and the survival function is

s(t) =
3∑
i=1

Aiexp(λit) = 1−X3 = −
3∑
i=1

Cik
+
2

k3λi(k3 + k−2 + λi)
exp(λit).

The relation between Ci and Ai reads:

−λiAi = k3Ciu3(λi) = k3Cik
+
2 /(k3 + k−2 + λi). (74)

By definition s(0) = 1, therefore

A1 +A2 +A3 = 1. (75)

Using (74) and (29) we can show that

A1λ1 +A2λ2 +A3λ3 = 0. (76)

Eq.76 is very important. It implies that in this case, instead of 5 independent parameters, the survival function

has only 4 independent parametersA1, λ1, λ2, λ3. Using (76) and (75) we can compute the remaining parameters

as

A2 = −λ3 +A1(λ1 − λ3)
λ2 − λ3

,

A3 = λ2 +A1(λ1 − λ2)
λ2 − λ3

. (77)
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If the condition (76) is not satisfied, then the system formed from eqs. (68) and (74) (with i = 1, 2) is

incompatible.

If the condition (76) is satisfied, then the system (68), (74) is indeterminate and has an infinity of solutions.

In this case, all the solutions can be expressed as functions of a free parameter. In the sequel we will choose k3

as free parameter. This choice leads to the following symmetric expressions:

k+
1 = L3/S2,

k+
2 = −S2/k3,

k−2 =
S2 − 2k2

3 − k3L1 ±
√
k3(k3(L2

1 − 4L2 − 4S2)− 2S3 − 2L3) + S2
2

2k3 ,

k−1 = −k3 − S3/S2 + S2/k3 − k−2 . (78)

4.7 Symbolic solution to the inverse problem for the two state ON-OFF model (N = 2)

The two states ON-OFF model (telegraph model) reads P1
k+

1


k−

1

P2
k2→.

In order to identify this model we use a two exponential fit of the survival function S(t) = A1 exp(λ1t) +

A2 exp(λ2t). Without restricting the generality, we can consider that λ1 < λ2 < 0. Then, from S′(t) ≤ 0 it

follows λ2
λ2−λ1

≤ A1 ≤ 1, A2 = 1−A1.

From the parameters of the survival function we can compute the model parameters as follows

S1 = A1λ1 +A2λ2,

S2 = A1λ
2
1 +A2λ

2
2,

S3 = A1λ
3
1 +A2λ

3
2,

k2 = −S1,

k−1 = S1 − S2/S1,

k+
1 = (S3S1 − S2

2)/S1/(S2
1 − S2). (79)

4.8 Symbolic solution to the inverse problem for the four state chain model (N = 4)

This model is described by the transitions

P1
k+

1


k−

1

P2
k+

2


k−

2

P3
k+

3


k−

3

P4
k4→ .
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In this case P4 is the ON state. The model is of type I.

We have

Q̃ =



−k+
1 k−1 0 0

k+
1 −(k+

2 + k−1 ) k−2 0

0 k+
2 −(k+

3 + k−2 ) k−3

0 0 k+
3 −(k4 + k−3 )


.

The Vieta formulas read

k4k
+
1 k

+
2 k

+
3 = L4 (80)

k4k
−
1 k
−
2 + k4k

−
2 k

+
1 + k4k

−
1 k

+
3 + k4k

+
1 k

+
2 + k4k

+
1 k

+
3 + k4k

+
2 k

+
3 + k−1 k

−
2 k
−
3 + k−2 k

−
3 k

+
1 + k−3 k

+
1 k

+
2 +

+k+
1 k

+
2 k

+
3 = −L3 (81)

k4k
−
1 + k4k

−
2 + k4k

+
1 + k4k

+
2 + k4k

+
3 + k−1 k

−
2 + k−1 k

−
3 + k−2 k

−
3 + k−2 k

+
1 + k−1 k

+
3 + k−3 k

+
1 + k−3 k

+
2 +

+k+
1 k

+
2 + k+

1 k
+
3 + k+

2 k
+
3 = L2 (82)

k4 + k−1 + k−2 + k−3 + k+
1 + k+

2 + k+
3 = −L1 (83)

The solution of the recursion (34) is

b1 = 1 (84)

b2 = k+
1 +λ
k−

1
(85)

b3 = k+
1 k

+
2 +(k−

1 +k+
1 +k+

2 )λ+λ2

k−
1 k

−
2

(86)

b4 = λ3+(k−
1 +k−

2 +k+
1 +k+

2 +k+
3 )λ2+(k−

1 k
−
2 +k−

2 k
+
1 +k−

1 k
+
3 +k+

1 k
+
2 +k+

1 k
+
3 +k+

2 k
+
3 )λ+k+

1 k
+
2 k

+
3

k−
1 k

−
2 k

−
3

(87)

The system (30) has the solution

C1 = λ3
1 + (k−1 + k−2 + k+

1 + k+
2 + k+

3 )λ2
1 + (k−1 k

−
2 + k−2 k

+
1 + k−1 k

+
3 + k+

1 k
+
2 + k+

1 k
+
3 + k+

2 k
+
3 )λ1 + k+

1 k
+
2 k

+
3

(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)

C2 = λ3
2 + (k−1 + k−2 + k+

1 + k+
2 + k+

3 )λ2
2 + (k−1 k

−
2 + k−2 k

+
1 + k−1 k

+
3 + k+

1 k
+
2 + k+

1 k
+
3 + k+

2 k
+
3 )λ2 + k+

1 k
+
2 k

+
3

(λ2 − λ1)(λ2 − λ3)(λ2 − λ4)

C3 = λ3
3 + (k−1 + k−2 + k+

1 + k+
2 + k+

3 )λ2
3 + (k−1 k

−
2 + k−2 k

+
1 + k−1 k

+
3 + k+

1 k
+
2 + k+

1 k
+
3 + k+

2 k
+
3 )λ3 + k+

1 k
+
2 k

+
3

(λ3 − λ1)(λ3 − λ2)(λ3 − λ4)

The eqs. (29) and (31) provide
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k4 = −S1 (88)

k+
3 = (S2

2 − S1S3)/(−S3
1 + S2S1) (89)

k−3 = S1 − S2/S1 (90)

k+
2 = − (−S2

1 + S2)P9
(−S2

2 + S1S3)P6
(91)

k−2 = S1P6
(−S2

2 + S1S3)(−S2
1 + S2)

(92)

k+
1 = −L4P6

P9
(93)

k−1 = (−S2
2 + S1S3)P12
P6P9

(94)

where Sn =
∑4
i=1Aiλ

n
i ,

Ln =
∑

1≤i1<i2<...<in≤4 λi1λi2 . . . λin ,P6 = L3S
3
1 − L2S

2
1S2 + L1S

2
1S3 − L4S

2
1 − 2S1S2S3 − L3S1S2 + S3

2 +

L2S
2
2 − L1S2S3 + L4S2 + S2

3 ,

P9 = L2
1S

2
2S3−L1L2S1S2S3−L1L2S

3
2 +L1L3S

2
1S3 +L1L3S1S

2
2−L1L4S1S3−L1L4S

2
2−2L1S2S

2
3 +L2

2S1S
2
2−

2L2L3S
2
1S2 +2L2L4S1S2 +L2S1S

2
3 +L2S

2
2S3 +L2

3S
3
1−2L3L4S

2
1−3L3S1S2S3 +L3S

3
2 +L2

4S1 +L4S
2
1S3−L4S1S

2
2 +

2L4S2S3 + S3
3 ,

P12 = L3
1S

3
2S3−2L2

1L2S1S
2
2S3−L2

1L2S
4
2 +L2

1L3S
2
1S2S3+L2

1L3S1S
3
2 +L2

1L3S
2
2S3+L2

1L4S
3
1S3−3L2

1L4S1S2S3−

L2
1L4S

3
2 − 3L2

1S
2
2S

2
3 +L1L

2
2S

2
1S2S3 + 2L1L

2
2S1S

3
2 −L1L2L3S

3
1S3− 3L1L2L3S

2
1S

2
2 −L1L2L3S1S2S3−L1L2L3S

3
2 −

L1L2L4S
3
1S2+L1L2L4S

2
1S3+5L1L2L4S1S

2
2+L1L2L4S2S3+4L1L2S1S2S

2
3+2L1L2S

3
2S3+L1L

2
3S

3
1S2+L1L

2
3S

2
1S3+

L1L
2
3S1S

2
2 + L1L3L4S

4
1 − 4L1L3L4S

2
1S2 − 2L1L3L4S1S3 − L1L3L4S

2
2 − L1L3S

2
1S

2
3 − 4L1L3S1S

2
2S3 + L1L3S

4
2 −

2L1L3S2S
2
3−L1L

2
4S

3
1 +3L1L

2
4S1S2 +L1L

2
4S3−L1L4S

2
1S2S3−L1L4S1S

3
2 +3L1L4S1S

2
3 +5L1L4S

2
2S3 +3L1S2S

3
3−

L3
2S

2
1S

2
2 + 2L2

2L3S
3
1S2 + L2

2L3S1S
2
2 − 2L2

2L4S
2
1S2 − L2

2L4S
2
2 − L2

2S
2
1S

2
3 − 2L2

2S1S
2
2S3 − L2L

2
3S

4
1 − 2L2L

2
3S

2
1S2 +

2L2L3L4S
3
1 + 4L2L3L4S1S2 + 5L2L3S

2
1S2S3 − L2L3S1S

3
2 + L2L3S1S

2
3 + L2L3S

2
2S3 − L2L

2
4S

2
1 − 2L2L

2
4S2 −

2L2L4S
3
1S3 + 3L2L4S

2
1S

2
2 − 4L2L4S1S2S3 − 2L2L4S

3
2 − L2L4S

2
3 − 2L2S1S

3
3 − L2S

2
2S

2
3 + L3

3S
3
1 − 3L2

3L4S
2
1 −

L2
3S

3
1S3 − 3L2

3S1S2S3 + L2
3S

3
2 + 3L3L

2
4S1 − L3L4S

3
1S2 + 5L3L4S

2
1S3 − L3L4S1S

2
2 + 3L3L4S2S3 + 3L3S1S2S

2
3 −

L3S
3
2S3 + L3S

3
3 − L3

4 − L2
4S

4
1 + 4L2

4S
2
1S2 − 4L2

4S1S3 − 2L2
4S

2
2 − 2L4S

2
1S

2
3 + 4L4S1S

2
2S3 − L4S

4
2 − 4L4S2S

2
3 − S4

3 .

Using the relation A1 +A2 +A3 +A4 = 1, the above expressions can be simplified to

P6 = −(λ1 − λ3)(λ2 − λ3)(λ1 − λ4)(λ2 − λ4)(λ3 − λ4)2A3A4(A1 + A2) − (λ1 − λ2)(λ3 − λ2)(λ1 − λ4)(λ3 −

λ4)(λ2 − λ4)2A2A4(A1 +A3)− (λ1 − λ2)(λ4 − λ2)(λ1 − λ3)(λ4 − λ3)(λ2 − λ3)2A2A3(A1 +A4)− (λ2 − λ1)(λ3 −
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λ1)(λ2−λ4)(λ3−λ4)(λ1−λ4)2A1A4(A2 +A3)− (λ2−λ1)(λ4−λ1)(λ2−λ3)(λ4−λ3)(λ1−λ3)2A1A3(A2 +A4)−

(λ3 − λ1)(λ4 − λ1)(λ3 − λ2)(λ4 − λ2)(λ1 − λ2)2A1A2(A3 +A4),

P12 = −A1A2A3A4(λ1 − λ2)2(λ1 − λ3)2(λ1 − λ4)2(λ2 − λ3)2(λ2 − λ4)2(λ3 − λ4)2.

4.9 Symbolic solution to the inverse problem for the four state model with branching

(N = 4)

This model is described by the transitions P1
k+

1


k−

1

P2
k+

2


k−

2

k
4
−→

P4
k−

3


k+

3

P3. In this case P4 is the ON state. The model is

of type II.

We have

Q̃ =



−k+
1 k−1 0 0

k+
1 −(k+

2 + k−1 ) 0 k−2

0 0 k+
3 k
−
3

0 k+
2 k+

3 −(k4 + k−3 + k−2 )


.

The Vieta formulas read

k4k
+
1 k

+
2 k

+
3 = L4 (95)

k4k
−
1 k

+
3 + k4k

+
1 k

+
2 + k4k

+
1 k

+
3 + k4k

+
2 k

+
3 + k−1 k

−
2 k

+
3 + k−2 k

+
1 k

+
3 + k−3 k

+
1 k

+
2 +

+k+
1 k

+
2 k

+
3 = −L3 (96)

k4k
−
1 + k4k

+
1 + k4k

+
2 + k4k

+
3 + k−1 k

−
2 + k−1 k

−
3 + k−2 k

+
1 + k−1 k

+
3 + k−3 k

+
1 + k−2 k

+
3 + k−3 k

+
2 +

+k+
1 k

+
2 + k+

1 k
+
3 + k+

2 k
+
3 = L2 (97)

k4 + k−1 + k−2 + k−3 + k+
1 + k+

2 + k+
3 = −L1 (98)

The eigenvectors of Q̃ are

u1 = k−
1 k

−
2

k+
1 k

+
2 +k−

1 λ+k+
1 λ+k+

2 λ+λ2 (99)

u2 = k−
2 (k+

1 +λ)
k+

1 k
+
2 +k−

1 λ+k+
1 λ+k+

2 λ+λ2 (100)

u3 = k−
3

k+
3 +λ (101)

u4 = 1 (102)
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The system (30) has the solution

C1 = −k
−
1 λ

2
1 + k+

1 λ
2
1 + k+

2 λ
2
1 + k+

3 λ
2
1 + λ3

1 + k+
1 k

+
2 k

+
3 + k−1 k

+
3 λ1 + k+

1 k
+
2 λ1 + k+

1 k
+
3 λ1 + k+

2 k
+
3 λ1

(λ1 − λ2)(λ1λ3 + λ1λ4 − λ3λ4 − λ2
1)

C2 = −(k+
3 + λ2)(k+

1 k
+
2 + k−1 λ2 + k+

1 λ2 + k+
2 λ2 + λ2

2)
(λ1 − λ2)(λ2 − λ3)(λ2 − λ4)

C3 = (k+
3 + λ3)(k+

1 k
+
2 + k−1 λ3 + k+

1 λ3 + k+
2 λ3 + λ2

3)
(λ3 − λ4)(λ1λ2 − λ1λ3 − λ2λ3 + λ2

3)

C4 = − (k+
3 + λ4)(k+

1 k
+
2 + k−1 λ4 + k+

1 λ4 + k+
2 λ4 + λ2

4)
λ1λ2

4 + λ2λ2
4 + λ3λ2

4 − λ3
4 + λ1λ2λ3 − λ1λ2λ4 − λ1λ3λ4 − λ2λ3λ4

(103)

The eqs. (29) and (31) provide

k4 = −S1

k−3 = −S1(k+
3 )3 − S1(L1 − S1)(k+

3 )2 − S1(L2 + S2 − L1S1)k+
3 − S1(L3 − S3 + L1S2 − L2S1)

3S1(k+
3 )2 + (2L1S1 − 2S2)k+

3 + S3 − L1S2 + L2S1
,

k+
2 = (S3

1(k+
3 )4 + (−S4

1 + L1S
3
1)(k+

3 )3 + (−L1S
4
1 + S3

1S2 + L2S
3
1 + 3S3S

2
1 − 3S1S

2
2)(k+

3 )2 + (L3S
3
1 − L2S

4
1 −

S3
1S3 + 2S3

2 − 2S1S2S3 − 2L1S1S
2
2 + 2L1S

2
1S3 + L1S

3
1S2)k+

3 + L2S
2
1S3 − L2S1S

2
2 − L1S1S2S3 + S1S

2
3 + L1S

3
2 −

S2
2S3)/(S3

1(k+
3 )3 +(S1(2S3

1 +L1S
2
1−3S2S1))(k+

3 )2 +(S1(L1S
3
1−S2

1S2 +L2S
2
1−2L1S1S2 +2S2

2))k+
3 −S1(−L3S

2
1 +

L2S1S2 − L1S
2
2 + S3S2)),

k−2 = (S2
1(k+

3 )3 + (2S3
1 +L1S

2
1 −3S2S1)(k+

3 )2 + (L1S
3
1 −S2

1S2 +L2S
2
1 −2L1S1S2 + 2S2

2)k+
3 +L3S

2
1 −L2S1S2 +

L1S
2
2 − S3S2)/((3S2

1)(k+
3 )2 + (−S1(2S2 − 2L1S1))k+

3 + S1(S3 − L1S2 + L2S1)),

k+
1 = (S3

1(k+
3 )5 + (S1(2S3

1 + L1S
2
1 − 3S2S1)− S2

1(S2 − L1S1))(k+
3 )4 + (S1(L1S

3
1 − S2

1S2 + L2S
2
1 − 2L1S1S2 +

2S2
2) + S2

1(S3 − L1S2 + L2S1)− (S2 − L1S1)(2S3
1 + L1S

2
1 − 3S2S1))(k+

3 )3 + ((S3 − L1S2 + L2S1)(2S3
1 + L1S

2
1 −

3S2S1) − S1(−L3S
2
1 + L2S1S2 − L1S

2
2 + S3S2) − (S2 − L1S1)(L1S

3
1 − S2

1S2 + L2S
2
1 − 2L1S1S2 + 2S2

2))(k+
3 )2 +

((S2−L1S1)(−L3S
2
1 +L2S1S2−L1S

2
2 +S3S2)+(S3−L1S2 +L2S1)(L1S

3
1 −S2

1S2 +L2S
2
1 −2L1S1S2 +2S2

2))k+
3 −

(S3−L1S2 +L2S1)(−L3S
2
1 +L2S1S2−L1S

2
2 +S3S2)/(S3

1(k+
3 )4 + (−S4

1 +L1S
3
1)(k+

3 )3 + (−L1S
4
1 +S3

1S2 +L2S
3
1 +

3S3S
2
1 − 3S1S

2
2)(k+

3 )2 + (L3S
3
1 −L2S

4
1 − S3

1S3 + 2S3
2 − 2S1S2S3− 2L1S1S

2
2 + 2L1S

2
1S3 +L1S

3
1S2)k+

3 +L2S
2
1S3−

L2S1S
2
2 − L1S1S2S3 + S1S

2
3 + L1S

3
2 − S2

2S3),

k−1 = −(S1(S3 − 2S2k
+
3 + 3S1(k+

3 )2 − L1S2 + L2S1 + 2L1S1k
+
3 )(L2

1S
4
1(k+

3 )3 − L2
1S

3
1S2(k+

3 )2 + L2
1S

3
1S3k

+
3 +

L2
1S

3
1(k+

3 )4−3L2
1S

2
1S2(k+

3 )3 +L2
1S

2
1S3(k+

3 )2 +3L2
1S1S

2
2(k+

3 )2−2L2
1S1S2S3k

+
3 −L2

1S
3
2k

+
3 +L2

1S
2
2S3 +L1L2S

4
1(k+

3 )2−

L1L2S
3
1S2k

+
3 + 2L1L2S

3
1(k+

3 )3 − 5L1L2S
2
1S2(k+

3 )2 + L1L2S
2
1S3k

+
3 + 4L1L2S1S

2
2k

+
3 − L1L2S1S2S3 − L1L2S

3
2 +

L1L3S
4
1k

+
3 +2L1L3S

3
1(k+

3 )2−3L1L3S
2
1S2k

+
3 +L1L3S

2
1S3 +L1L3S1S

2
2 +L1S

5
1(k+

3 )3−L1S
4
1S2(k+

3 )2 +2L1S
4
1(k+

3 )4−
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2
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1S2S3(k+

3 )2−3S2
1S2(k+

3 )5−

2S2
1S

2
3k

+
3 +3S2

1S3(k+
3 )4+4S1S

2
2S3k

+
3 +3S1S

2
2(k+

3 )4−6S1S2S3(k+
3 )3+3S1S

2
3(k+

3 )2−S4
2k

+
3 −S3

2(k+
3 )3+3S2

2S3(k+
3 )2−

3S2S
2
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+
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+
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4
1(k+
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4
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+
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+
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3
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+
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+
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2
2(k+
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2 − 2S1S2S3k

+
3 − L1S1S2S3 + S1S

2
3 + 2S3

2k
+
3 + L1S

3
2 − S2

2S3)),

where k+
3 is the solution of the cubic equation

S1(k+
3 )3 + (L1S1 − S2)(k+

3 )2 + (L2S1 − L1S2 + S3)k+
3 L4 = 0. (104)

The equation (104) has the discriminant

∆ = (S2 − L1S1)2(S3 − L1S2 + L2S1)2 + 4L4(S2 − L1S1)3

− 27L2
4S

2
1 − 4S1(S3 − L1S2 + L2S1)3 − 18L4S1(S2 − L1S1)(S3 − L1S2 + L2S1).

(105)

When ∆ < 0, there is an unique real solution

k+
3 = S2 − L1S1

3S1
+ (∆3)1/3 +

(S2−L1S1)2

9S2
1

− S3−L1S2+L2S1
3S1

∆
1/3
3

, (106)

where ∆3 = (S2−L1S1)3

27S13 − L4
2S1
− (S2−L1S1)(S3−L1S2+L2S1)

6S12 +
√
−∆/108
S2

1
.

4.10 Symbolic solution to the inverse problem for four state chain with return in state P3

(N = 4)

This model has exactly the same transitions as the 4 state chain model described in the Section 4.8 with the

difference that the ON state is P3.

Using the same methods as in Section 4.6 we show that in this case

A1λ1 +A2λ2 +A3λ3 +A4λ4 = 0. (107)
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Using (107) and A1 +A2 +A3 +A4 = 1 we can compute the remaining parameters as

A3 = −λ4 +A1(λ1 − λ4) +A2(λ2 − λ4)
λ3 − λ4

,

A4 = λ3 +A1(λ1 − λ3) +A2(λ2 − λ3)
λ3 − λ4

. (108)

If the condition (107) is not satisfied, then there is no solution to the inverse problem.

If the condition (107) is satisfied, then the inverse problem is not well posed and has an infinity of solutions.

In this case, all the solutions can be expressed as functions of a free parameter. In the sequel we will choose k4

as free parameter. Although we were able to obtain analytic solutions, these are too long to be displayed.

The following, simple relations are useful for the anaysis of this model:

k+
3 = −S2/k4,

k−3 + k−2 = −S3/S2 + S2/k4 − k4 (109)

5 Uncertainty estimation for the model parameters

In Section 3.3 we have used optimization with multiple initial parameters to estimate confidence intervals for

each parameter of the multi-exponential survival function as lower and upper bounds of optimal and sub-optimal

parameters. These intervals are presented as Ai ∈ [Amini , Amaxi ], 1 ≤ i ≤ N and λi ∈ [λmini , λmaxi ], 1 ≤ i ≤ N .

In the sections above we have shown how to compute symbolically the kinetic parameters of various models

from the parameters Ai, λi, 1 ≤ i ≤ N of the multi-exponential survival function. By applying the symbolic

mapping to the confidence intervals [Amini , Amaxi ],[λmini , λmaxi ] one can get the confidence intervals of the kinetic

parameters. However, finding intervals that bound the kinetic parameters from the confidence intervals of the

survival function parameters is a non-convex optimization problem with constraints which may prove difficult.

Therefore, in the current implementation of our software we decided to apply the symbolic mapping directly to

the entire set of optimal and sub-optimal survival function parameters obtained in Section 3.3 and compute the

lower and upper bounds of the resulting kinetic parameters.

6 Computing the mean mRNA at the steady state

The statistics of the waiting time between two successive transcription initiations can be used to compute the

statistics of the number of mRNA molecules. Each elongating polymerase will generate one molecule of mRNA
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that will survive in the average a time T ≈ 45 min. Therefore the mean mRNA number at the steady state is

simply:

mRNA[min] = 45/w, (110)

where w is the average waiting time.

The straightforward calculation

w = −
∫ ∞

0
tS′(t) dt =

∫ ∞
0

S(t) dt = −
N∑
i=1

Ai
λi
,

leads to two equivalent ways to compute the mean mRNA number, from the area under curve, or from the

parameters of the survival function

mRNA[min] = 45/AUC = −45/
N∑
i=1

Ai
λi
, (111)

where AUC is the area under curve of the survival function.

7 Computing the probability of each state at stationarity

Although the computation of the distribution of waiting times does not require stationarity conditions (successive

waiting times form a renewal process even without stationarity, as soon and as long as the model parameters

are constant in time) it is usefull to have estimates for the stationary probabilities of being in each of the

model’s state. The sojourn time in the state PN+1 being nil the probability of being in this state is also nil.

The remaining N probabilities pi = P[M(t) = Pi] , 1 ≤ i ≤ N satisfy p1 + p2 + . . . + pN = 1 and the following

homogeneous system of linear equations:

˜̃Q



p1

p2
...

pN


= 0, (112)

where ˜̃Q is obtained from Q̃ by setting kN,N+1 = 0.

A few examples follow.

For the model M1,

˜̃Q =


−k+

1 k−1 0

k+
1 −(k+

2 + k−1 ) k−2

0 k+
2 −k−2

 ,
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p1 = k−1 k
−
2

k+
1 k
−
2 + k−1 k

−
2 + k+

1 k
+
2
, (113)

p2 = k+
1 k
−
2

k+
1 k
−
2 + k−1 k

−
2 + k+

1 k
+
2
, (114)

p3 = k+
1 k

+
2

k+
1 k
−
2 + k−1 k

−
2 + k+

1 k
+
2
. (115)

For the model M2,

˜̃Q =


−k+

1 0 k−1

0 −k+
2 k−2

k+
1 k+

2 −(k−1 + k−2 )

 ,

p1 = k−1 k
+
2

k+
1 k

+
2 + k−1 k

+
2 + k+

1 k
−
2
, (116)

p2 = k+
1 k
−
2

k+
1 k

+
2 + k−1 k

+
2 + k+

1 k
−
2
, (117)

p3 = k+
1 k

+
2

k+
1 k

+
2 + k−1 k

+
2 + k+

1 k
−
2
. (118)

For the four states model,

˜̃Q =



−k+
1 k−1 0 0

k+
1 −(k+

2 + k−1 ) k−2 0

0 k+
2 −(k+

3 + k−2 ) k−3

0 0 k+
3 −k−3


,

p1 = k−1 k
−
2 k
−
3

k+
1 k

+
2 k

+
3 + k+

1 k
+
2 k
−
3 + k+

1 k
−
2 k
−
3 + k−1 k

−
2 k
−
3
, (119)

p2 = k+
1 k
−
2 k
−
3

k+
1 k

+
2 k

+
3 + k+

1 k
+
2 k
−
3 + k+

1 k
−
2 k
−
3 + k−1 k

−
2 k
−
3
, (120)

p3 = k+
1 k

+
2 k
−
3

k+
1 k

+
2 k

+
3 + k+

1 k
+
2 k
−
3 + k+

1 k
−
2 k
−
3 + k−1 k

−
2 k
−
3
, (121)

p1 = k+
1 k

+
2 k

+
3

k+
1 k

+
2 k

+
3 + k+

1 k
+
2 k
−
3 + k+

1 k
−
2 k
−
3 + k−1 k

−
2 k
−
3
. (122)

For the two states (ON-OFF) model

˜̃Q =

−k+
1 k−1

k+
1 −k−1

 ,
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p1 = k−1
k+

1 + k−1
, (123)

p2 = k+
1

k+
1 + k−1

. (124)

8 Testing the robustness of the method using artificial data

The numerical method is based on the assumption that the instrumental noise and other sources of noise are

averaged out by the algorithm and therefore can be neglected. In this subsection we use artificial data to test the

consequences of releasing this assumption. Furthermore, the optimization algorithm is stochastic and include

approximate steps such as the estimation of the parameters ps and pl, and errors resulting from the analog to

digital conversion of the long movie signals. Artificially generated data with well know parameters will also

allow us to test the fidelity of the parameter identification in our method.

Artificial data was generated by simulating the model M1 using the Gillespie algorithm. We use three

parameter sets, similar to those identified from data in the three experimental conditions (previous subsection).

The simulations generate artificial polymerase positions from which we first compute a noiseless signal using

Eq. (1).

In a second step we add to the signal a centered Gaussian noise, whose variance is similar to the one in data,

as follows

Sη(t) = S(t) + η(t), (125)

where S(t) is the noiseless signal and η(t) is the noise.

The noise estimate is obtained from the short movies data. It is defined as the difference between the

raw signal and the signal reconstructed by deconvolution (computed using Eq. (1)). We found that the noise

variance is an increasing function of the signal amplitude. By using cubic polynomial interpolation we have

derived analytic formulas for the variance in the three experimental conditions:

V ar(η) = b3S
3 + b2S

2 + b1S + b0, (126)

where bi, 0 ≤ i ≤ 3 are parameters whose values can be found in the Table 1.

We applied our algorithm to a raw signal described by (125) and obtained estimates of the kinetic parameters.

η is defined by (126) and Table 1. Together with η we have also tested the double 2η and four times 4η noise

amplitude. These estimates were compared to the know values of the parameters that were used for simulating

the artificial data. The result of the comparison is shown in Fig.13.
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Data set b0 b1 b2 b3

Low tat 0.27 0.026 0.0022 -1.5e-5

No tat -0.97 0.23 -0.0021 9.8e-6

High tat 0.27 0.026 0.0022 -1.5e-5

Table 1: Noise parameters for various experimental conditions in the study of the HIV-1 promoter.

The method faithfully retrieves the parameter values, at least for noise amplitudes comparable to the ones

determined from the data used in this study. For larger noise amplitudes some parameters may not be faithfully

retrieved. As expected, some large kinetic parameters, corresponding to small time scales are not faithfully

retrieved. However, the small parameters, corresponding to large time scales are faithfully retrieved even for

large noise amplitudes. This proves the robustness of the method with respect to noise.
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Figure 13: Testing the algorithm with artificial data for various noise amplitude. ×1 represents artificial data

with the same amplitude of noise as the real data. ×0 is the noiseless artificial data. For each comparison we

consider 3 sets of 5 parameters corresponding to the three experimental conditions in the HIV-1 data: no tat,

low tat and high tat. The survival functions (middle row) and the artificial signal (upper row) are shown only

for the no-tat conditions.
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9 Results.

9.1 Identifying the parameters of the model M2.

Model M2 corresponds to the stochastic, facultative pausing (Figure 1). The model parameters can be identified

from a unconstrained three-exponential fit (Figure 12).

The results of the fit are presented in the Table 2 and in the Figure 14.

Type OBJ mRNA k+
1 k−1 k+

2 k−2 k3

no tat optimal 0.028 16.7 6.0e-05 0.00035 0.00089 0.003 0.063

min 16.7 6.0e-05 0.00021 0.00089 0.00199 0.06

max 29.5 7.1e-05 0.00035 0.00130 0.003 0.063

low tat optimal 0.061 49.6 0.00015 0.00031 0.0012 0.0028 0.1

min 49.6 0.00015 0.00021 0.0012 0.0021 0.099

max 114 0.00022 0.00100 0.028 0.0180 0.15

high tat optimal 0.115 315 0.0015 4.9e-05 0.0100 0.0043 0.17

min 265 0.0014 4.9e-05 0.0052 0.003 0.16

max 315 0.0015 6.3e-05 0.0100 0.0043 0.17

Table 2: Results of the unconstrained three-exponential fit of the model M2. α = 0.30
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Figure 14: Results of the unconstrained three-exponential fit of the model M2. Parameter dependence on the

experimental conditions for α = 0.30. The vertical bars are uncertainty intervals.
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9.2 Identifying the parameters of the two states ON-OFF model.

In order to identify this model we use a two exponential fit of the survival function S(t) = A1 exp(λ1t) +

A2 exp(λ2t). The model parameters are computed from the survival function parameters according to the

Section 4.7.

The result of the fit is given in the Table 3 and in the Figure 15. The large values of the objective function

suggest that this model is not suitable for our data.

Type OBJ λ1 λ2 A1 A2 k2 k−1 k+
1 mRNA

no tat optimal 0.22046 -0.0478 -0.000141 0.984 0.0159 0.047 0.000755 0.000144 20.3

min -0.0478 -0.000141 0.984 0.00646 0.0444 0.000287 0.000136

max -0.0446 -0.000135 0.994 0.0159 0.047 0.000755 0.000144

low tat optimal 0.273 -0.0782 -0.00025 0.991 0.00943 0.0774 0.000733 0.000252 53.5

min -0.0782 -0.00025 0.991 0.00368 0.0719 0.000264 0.000244

max -0.0721 -0.000243 0.996 0.00943 0.0774 0.000733 0.000252

high tat optimal 0.64799 -0.12 -0.00222 0.996 0.00422 0.12 0.000488 0.00223 264.8

min -0.12 -0.00222 0.00278 0.00113 0.097 0.000105 0.00218

max -0.0971 -0.00218 0.999 0.997 0.12 0.000488 0.00223

Table 3: Results of the two-exponential fit, α = 0.30. The objective function has large values compared to the

three state model M2, for the same value of α.
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Figure 15: Results of the two-exponential fit: most optimal fit for α = 0.30.
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9.3 Identifying the parameters of the model M3

Model M3 corresponds to obligatory pausing (see Figure 1) and is identified using the constrained three-

exponential fit described in the Section 4.6. However, even if (up to errors) the three-exponential fit provides a

single best fit, the set of corresponding parameters of model M3 is a curve in the 5D space of parameters. The

inverse problem for model M3 is not well posed as the relation between the parameters of the model M3 and

the parameters of the three-exponential fit is many to one. The result of the constrained three-exponential fit

is given in the Table 4.

The dependence of the parameters of the model M3 on the undetermined parameter k3 is shown in the

Figure 17. The parameters k±2 have very large values compared to all other parameters. The model M3 is in

this case equivalent to the two states ON-OFF model and inherits the difficulty of this model to fit the data.

Type OBJ λ1 λ2 λ3 A1 A2 A3 mRNA

no tat optimal 0.22 -5660 -0.0478 -0.000141 -8.31e-06 0.984 0.0159 20.3

min -7380 -0.0708 -0.000169 -0.00232 0.984 0.0060

max -2 -0.029 -0.000121 -6e-6 1.02 0.0161

low tat optimal 0.27 -8480 -0.0782 -0.00025 -9.13e-06 0.991 0.00943 53.5

min -12500 -0.148 -0.000278 -68.3 0.99 0.00306

max -0.144 -0.0556 -0.000224 -5.27e-06 69.3 0.0125

high tat optimal 0.65 -26000 -0.12 -0.00222 -4.59e-06 0.996 0.00422 264.8

min -54200 -0.166 -0.00239 -1.49 0.994 0.000797

max -0.254 -0.0692 -0.00202 -1.74e-06 2.48 0.00647

Table 4: Results of the constrained three-exponential fit of the model M3, α = 0.30. The objective function has

large values (compared to different models and for the same α) and the fitted parameters are very uncertain.
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Figure 16: Results of the constrained three-exponential fit: most optimal fit for α = 0.30.

48

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.25.265413doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.265413
http://creativecommons.org/licenses/by-nc-nd/4.0/


No tat Low tat

10
−2

10
0

10
−3.88

10
−3.86

10
−3.84

10
−3.82

k
3

k1
+

10
−2

10
0

10
2

10
3

10
4

k
3

k 2+

10
−2

10
0

10
3

k
3

k 2−

10
−2

10
0

10
−3

10
−2

k
3

k 1−

10
−2

10
0

10
−3.64

10
−3.61

10
−3.58

k
3

k1
+

10
−2

10
0

10
2

10
3

10
4

k
3

k 2+

10
−2

10
0

10
3

k
3

k 2−

10
−2

10
0

10
−3

10
−2

k
3

k 1−

High tat

10
−2

10
0

10
−2.69

10
−2.66

10
−2.63

k
3

k1
+

10
−2

10
0

10
3

10
4

10
5

k
3

k 2+

10
−2

10
0

10
0

10
2

10
4

k
3

k 2−

10
−2

10
0

10
−2

10
0

10
2

k
3

k 1−

Figure 17: Results of the constrained three-exponential fit of the model M3. Parameter dependence on the

undetermined parameter k3 (pause exit rate) for α = 0.30. The parameters k±2 have very large values compared to

all other parameters and correspond to very fast processes (timescales smaller than 0.01s). For such parameters

the model M3 is equivalent to a two states ON-OFF model (the states ON and PAUSE can be pooled with no

information loss in the model M3). In order to ensure positivity of kinetic parameters, one needs k3 > 0.1s−1.
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9.4 Identifying the parameters of a four states model with pausing.

In order to identify four states models we use a four exponential fit of the survival function S(t) = A1 exp(λ1t)+

A2 exp(λ2t)+A3 exp(λ3t)+A4 exp(λ4t), whereA1+A2+A3+A4 = 1. Let us consider that λ1 < λ2 < λ3 < λ4 < 0.

From S′(t) ≤ 0 it follows λ1A1 + λ2A2 + λ3A3 + λ4A4 ≤ 0, A4 ≥ 0.

The model M4 is obtained by adding one more OFF state to the model M3 (see Figure 18). It corresponds

to the theoretical model described in the Section 4.10. The parameters of this model can be obtained from a

constrained four exponential fit with six free parameters λ1,λ2,λ3,λ4,A1,A2 (see Eq.(108)). Although this model

has more free parameters than the model M2, the fit quality is lower.

OFF2 OFF1 ON PAUSE EL

k+
1

k−1

k+
2

k−2

k+
3

k−3
k4

fast

Figure 18: Model M4 with two OFF states and obligatory pausing. k4 is the pause exit rate, k−3 is the

transcription abortion rate.
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Figure 19: Results of the constrained four-exponential fit of the model M4: most optimal fit for α = 0.30.
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Type OBJ λ1 λ2 λ3 λ4 A1 A2 A3 A4

no tat optimal 0.036875 -8430 -0.0636 -0.00103 -6.6e-05 -7.23e-06 0.958 0.0373 0.0043

min -19700 -0.087 -0.0121 -0.00011 -0.0698 0.869 0.0261 0.00306

max -1.02 -0.0597 -0.00103 -6.6e-05 -3.06e-06 1.02 0.126 0.00477

low tat optimal 0.078907 -5550 -0.102 -0.0018 -0.000161 -1.79e-05 0.976 0.0221 0.00226

min -36600 -1.74 -0.0487 -0.000228 -335 0.716 0.0198 0.00212

max -0.202 -0.0975 -0.00157 -0.000156 -2.97e-06 336 0.453 0.00525

high tat optimal 0.11601 -9330 -0.174 -0.0101 -0.00148 -1.82e-05 0.972 0.0281 0.000288

min -85200 -0.178 -0.0126 -0.00149 -0.0442 0.968 0.0218 0.000258

max -4.1 -0.166 -0.00681 -0.00144 -1.91e-06 1.01 0.0323 0.000349

Table 5: Results of the constrained four-exponential fit of the model M4, α = 0.3. The objective function shows

that the fit is not better than the one of the model M2, for the same α and the fitted parameters are very

uncertain.
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Figure 20: Results of the constrained four-exponential fit of the model M4. Parameter dependence on the

undetermined parameter k4 (pause exit rate) for α = 0.30. The parameters km2 and k±3 have very large values

compared to other parameters and correspond to very rapid processes (timescales smaller than 0.1s ). With

such parameters the model M4 is equivalent to a three states model with the states ON and PAUSE pooled.

For positivity of kinetic parameters one needs k4 > 0.1s−1.
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