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Abstract

This work investigates the possibility to identify two crystal plasticity viscoplastic pa-
rameters K and n using two different outputs produced by the high velocity impact of a
sphere onto a metallic sample: the shot displacement and the different components of the
induced residual stress field on a cross-section under the dent. The identifiability of the two
parameters using either the shot displacement, the residual stress field or the combination of
both outputs is investigated using the sensitivity of each field to a variation of the coefficients
as well as an identifiability indicator, I, representative of the problem well posedness.

This work demonstrates that identification of K and n using only the displacement curve
is an ill-posed problem, even when combining the displacements obtained with different im-
pact conditions. The residual stress field under the dent is proved to be rich enough to obtain
the two coefficients using any of the in-plane stress components. Combining two stress com-
ponents for identification results only in a slightly better conditioning of the problem. Finally,
combining the shot displacement curve with a single component of the residual stress field ob-
tained for the same test greatly improves the value of I. This result demonstrates that those
two outputs provide complementary information for identification of the two coefficients.
Keywords: Identifiability analysis, Impact test, Crystal Plasticity Finite Element, Residual
stress
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Introduction

Crystal plasticity Finite Element (CPFE) frameworks such as the well-known Meric-
Cailletaud model [20] provide insights on the strain mechanisms occurring at the grain scale
considering the contribution of an average dislocation density on each slip system. Such
models have been increasingly used for process modeling, such as shot-peening [9,12,21,25],
to predict the residual stress and hardening distributions induced at the grain scale, as it
drives the material’s fatigue behaviour [21,27].

However, identification of the numerous material parameters involved in such frameworks
represents a challenge due to the low scale involved in such simulation. Thorough identifia-
bility analyses have therefore been performed by several authors [16, 22] to ensure that the
tests used for identification contains sufficient information to represent the contribution of
each parameters to the materials plastic behaviour.

In the seminal work of Meric et al. [20], identification was performed using cyclic tensile
testing. However, the author did not investigate the well-posedness of the problem. Ger-
ard et al. [15] performed identification of the Meric-Cailletaud interaction matrix coefficients
using strain fields obtained by Digital Image Correlation (DIC) on tensile tests. Further
analyses performed by Guery et al. [16] revealed that such methodology could only pro-
vide two isotropic hardening coefficients and three interaction matrix parameters. Renner
et al. [22] investigated the identifiability of all the Meric-Cailletaud plastic parameters when
using the residual topography left by Berkovich nanoindentations measured by Atomic Force
Microscopy (AFM). Their study revealed that a single topography was not sufficient to obtain
all the parameters. However, the authors demonstrated that combining three different to-
pographies induced by indenting along three different crystal orientations would be sufficient
to obtain the six interaction matrix parameters.

Identification of such parameters at high strain rates represent an additional challenge
as it requires to perform high strain rate experiments at a small scale. It could however be
of crucial importance when modeling manufacturing processes such as shot-peening as the
process could involve strain rates up to 105 s−1 [19]. Previous studies modeling the process
with crystal plasticity frameworks used parameters obtained with Split Hopkinson Pressure
Bar (SHPB) tests [12, 25]. However SHPB is not local as the solicited volume ranges from a
few cubic millimeters to a few cubic centimeters [2].

Breumier et al. [7] performed high strain rate microcompression tests to identify the
Meric-Cailletaud viscoplastic parameters at the crystal scale. The authors obtained a unique
solution of the parameters at high strain rates. However, the strain rate involved in the test
was not higher than 102 s−1 which is a few order of magnitudes lower than the process range.
Also, the Norton law used in the Meric-Cailletaud framework to represent the materials
strain rate dependency represents an approximation that is only relevant on small strain rate
ranges [18]. Identification in the process conditions is therefore necessary.

Single shot impacts have been scarcely used for material parameters identification [13].
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The test however provides several outputs induced by high strain rate plastic deformations
such as the shot displacement before and after the impact, the impact dent topography as well
as the residual stresses induced by the impact. Indeed, advances over the past twenty years in
High Resolution Electron BackScattered Diffraction (HR-EBSD) residual stress estimations
opened the possibility to estimate stress variations under the impact dent that could be
compared with Finite Element Analyses (FEA) [1, 9, 10].

This work investigates the possibility to identify the Meric-Cailletaud viscoplastic pa-
rameters using several outputs induced by controlled impact tests on copper single crystal
specimen. This work is purely numerical and lays down the basis of an identification pro-
cedure using the outputs provided by a new shot peening test rig developed recently by the
authors [8]. The test consists in projecting an industrial shot media onto a target surface
with a wide range of velocities. The shot is filmed by two high frequency cameras and its
three dimensional trajectory is reconstructed using an in-house code [5] with a 200 µm accu-
racy. The test therefore provides sufficient information to be reproduced in FEA. The shot
displacement curve and the residual stress field measured by HR-EBSD under the impact
dent could therefore be used for parameter identification.

This article is organized as follows: Section 1 details the numerical model and identifia-
bility analysis methodology used in this study. Section 2 analyses the identifiability of the
viscoplastic parameters using the shot displacement curve and the residual stress field under
the impact dent. Section 3 discusses the results of the identifiability analyses and finally,
section 4 concludes the work.

1 Methods

1.1 Material constitutive framework

The material constitutive behaviour which parameters are investigated is the Meric-
Cailletaud large-strain formulation crystal plasticity framework [20]. The model was fully
detailed in previous works [7, 9] but is here recalled for better readability. The deformation
gradient F is decomposed between its elastic and plastic contributions, respectively Fe and
Fp, as:

F = Fe · Fp, (1)

where · denotes the dot product. The plastic part is related to the slips occurring in the
different slip systems through

Ḟp · (Fp)−1 =
N∑
s=1

γ̇sms ⊗ ns, (2)

where γ̇s is the s-th slip system shear strain rate, N is the number of activable slip systems
and ms and ns are unit vectors representing respectively the slip direction and the slip plane

3



h1 h2 h3 h4 h5 h6
Self-hardening Coplanar Hirth lock Collinear Glissile Lomer junction

1 4.4 4.75 4.75 4.75 5

Table 1: Hardening interaction matrix parameters used for copper [20]

C11 (MPa) C22 (MPa) C44 (MPa)
159,300 122,000 81,000

Table 2: Elastic coefficients used for copper [20]

K (MPa s1/n) n R0 (MPa) Q (MPa) b

10.35 7.41 10 6 15

Table 3: Norton law and isotropic hardening parameters used for copper [7,11]

normal.
The shear stress τ s contributing to dislocation glide on a given system is related to the

system’s shear strain rate according to a Norton law where

γ̇s =
〈
fs(τ s)
K

〉n
, (3)

with < . > being the Macaulay brackets and K and n being material constants, that accounts
for the material’s strain rate sensitivity. An isotropic hardening term rs is added to the flow
rule fs as

fs = |τ s| − rs. (4)

The hardening term rs results from the interactions between the different dislocation slip
systems modeled by

rs = R0 +
N∑
q=1

hsq(Rq −R0), (5)

with
Rq = R0 +Q(1− e−vqb), (6)

where R0 is the critical resolved shear stress, Q and b are two phenomenological constants,
vq is the accumulated plastic slip for the q-th system and hsq is the interaction coefficient
between systems (s) and (q).

Most of the constitutive parameters used as a reference in this study are those provided
in the work of Casals et al. [11]. The values of the K and n coefficients are those identified
by Breumier et al. [7] using high strain rate microcompression experiments. Tables 1, 2 and
3 summarizes the different coefficients used in this study.
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1.2 Finite element model

The impact is modeled using Abaqus dynamic explicit solver with an automatic time step
procedure. The model geometry and mesh is presented in Figure 1. The mesh is divided in
three different zones: (i) a refined mesh zone close to the contact to accurately describe the
stress gradient in the plastic zone, (ii) an extended mesh zone surrounding the refined mesh
zone to limit border effects and (iii) an infinite CIN3D8 element mesh zone surrounding the
geometry to damp residual elastic stress waves. The mesh is blocked at the bottom and an
initial velocity V0 is imposed to the shot. The total simulation time is taken as two times the
impact duration to ensure that the obtained residual stress field is at equilibrium.

The size of the refined mesh zone is chosen so as to contain all the plastic deformations
following the same methodology as the one presented by Breumier et al. [9]. The substrate
is modeled using linear reduced integration hexahedric elements (C3D8R) to prevent locking
effects due to incompressible plastic flow [14]. The mesh density is chosen by a convergence
study based on the displacement curve and the residual stress field sensitivity as further
detailed in Appendix A and in section 2.2.

The shot to be used in future experiments will be 1 mm 440C stainless steel bearing balls.
The shot is therefore modeled as infinitely rigid as copper is very ductile and less rigid than
the shot material. The contact between the shot and the sample is modeled using Abaqus
general contact with a hard contact normal component and a penalty frictional tangential
component with a friction coefficient of 0.2. Only half of the shot is modeled and its moment
of inertia IM is calculated as:

IM = 2
5mshotr

2, (7)

Figure 1: Finite element model used for impact simulations. The sample geometry is divided in three
zones: a refined mesh zone at the impact location, surrounded by an extended mesh zone to limit the
effect of boundary conditions and infinite elements around the sample to damp residual stress field
oscillations. An initial velocity V0 is imposed to the shot.
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Test name Crystal orientation Shot velocity (m s−1)
Condition 1 [100] 40
Condition 2 [100] 80
Condition 3 [110] 40

Table 4: Modeled impact test conditions

where m is the shot mass estimated as:

mshot = ρshot
4
3πr

3, (8)

where r is the shot radius and ρshot is the shot density taken as 7.110−3 g mm−3. The initial
shot velocity is imposed at the rigid body reference point with values of successively 40 m s−1

and 80 m s−1 to study the influence of the strain rate on the identifiability.
The sample material is modeled using the Meric-Cailletaud crystal plasticity finite element

framework [20] detailed in section 1.1. Impacts are simulated with the impacted surface
normals oriented successively along the [100] and [110] crystal orientations to study the
influence of crystal plasticity anisotropy on parameters’ identifiability. Table 4 summarizes
the three different impact conditions tested. Copper density is taken as 8.98 10−3 g mm−3.

1.3 Identifiability analysis

Assessing the possibility to identify a model constitutive parameters using a given set of
observations consists in demonstrating that the problem to solve is well-posed e.g. (i) that
there is a reasonably low number of admissible solutions, (ii) that each identified parameters
have a distinct influence on the model’s outputs and (iii) that those outputs are sufficiently
sensitive to each of the parameters with similar amplitudes. These conditions are investigated
for the identification of the Meric-Cailletaud K and n viscoplastic parameters using either
the shot displacement u(t) or the residual stress field in the cross section under the impact
dent.

A typical numerical unidirectional shot displacement curve is shown in Figure 2. The
curve can be divided in three parts:

• Before impact where the shot velocity vbefore is almost constant.

• During the impact where the velocity decreases and changes sign when the shot starts
to rebound.

• After impact where the shot velocity vafter reaches a lower constant value.

The velocity measured before and after the impact, combined with the impact event
duration, are representative of the energy absorbed by the material during the impact which
is mainly dissipated by plastic deformation and elastic wave propagation, if temperature
effects are negligible [17].
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In reality, the shot trajectory is three dimensional and three different curves have to
be analyzed for the three different space directions. However, this study only focuses on
unidirectional impacts as it only aims at laying the basis of an identifiability analysis and
identification methodology.

The displacement curve sensitivity to a constitutive parameter variation is defined as
follows:

∂u

∂θi
(t) = 1

max(|u|)ε
√
T

(u(θi + εθi, t)− u(θi, t)) , (9)

where u(t) is the shot displacement at time t, ε is the perturbation factor, θi is the consti-
tutive parameter to be identified and T is the number of acquisition points taken as 100.
The overline notation designates dimensionless quantities, as u and θi are rendered dimen-
sionless in equation 9 respectively by dividing by max(|u|) and by the use of a dimensionless
perturbation factor ε.

Figure 2: Typical single impact displacement curve with respect to time obtained by finite element
simulations. The shot velocity vbefore is constant before the impact. Then, it progressively decreases
and changes sign when the shot starts to rebound to finally reach a constant velocity vafter after the
impact.

(a) (b) (c)

Figure 3: Typical residual stress field in the cross-section under the impact dent obtained for the
reference material after an impact of a shot propelled at 40 m·s−1 along the [100] crystal orientation
and interpolated on a 80 × 80 regular grid. (a) σxx, (b) σyy and (c) σxy components.
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Figures 3 (a), (b) and (c) show respectively the variation of the σxx, σyy and σxy residual
stresses under the impact dent obtained numerically using the reference material’s coefficient,
for an impact along the [100] crystal orientation at 40 m·s−1. The identifiability analysis is
conducted on the stress values at the integration point of elements positioned in the cross-
section of the middle of the impacted sample. As future identification will be performed by
comparing numerical results with experimental EBSD fields, the stress field at the integration
point is linearly interpolated on a regular square grid. A 80 × 80 grid is used for the
identifiability analysis to match with the grid size used for the finite element simulation. Note
that linear interpolation is chosen to remain consistent with the use of C3D8R elements.

The sensitivity of a given stress component σij under the impact dent center, to a variation
of parameter θ, is defined as:

∂σij

∂θ
(x, y) = 1

max(|σij |)ε
√
N

(σij(θ + εθ, x, y)− σij(θ, x, y)) , (10)

where N is the number of sampled points on the grid taken as 6400, x and y are the 2D
spatial coordinates in the cross-section plane. Note that a constant uncertainty is assumed
both for the stress and shot displacement value in equations 9 and 10 as the sensitivity value
is normalized by the maximum value of u and σij to provide sensitivity values that can be
compared for output of different natures. The absolute variation of each output is considered
instead of the relative one, as the latter would have given too much weight to low displacement
and stress values. Indeed, low displacement values represents the contact onset and the end
of the contact where no plastic straining occurs. Low residual stress values are also found in
the sample where no deformation event occurs.

The sole analysis of the sensitivity values is not sufficient to assess that a problem solution
is unique and stable. The identifiability of the identified coefficients is therefore assessed in
this work by computing the identifiability index I presented in the work of Richard et al. [23],
defined as:

I = log10

(
λmax
λmin

)
, (11)

where λmax and λmin are the extremal eigenvalues of the approximated dimensionless hessian
matrix close to the cost function minimum, defined as:

H ij =
N∑
p=0

∂y

∂θi
(xp)

∂y

∂θj
(xp), (12)

where N is the number of acquisition points, ∂y

∂θi
(xp) is the sensitivity of the observation y

to the parameter θi for the acquisition point xp. In the above, y(xp) can therefore designate
either u(tp) or σij(xp, yp). According to Richard et al. [23], a value of I < 2 is representative
of a good conditioning of the inverse problem. Note that this value is only an indication. In
practice, I provides a quantitative comparison of the wealth of information given by various
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observation fields, considering that, the lower the value, the better the problem will be posed.

2 Results

2.1 Displacement curves

Figure 4 (a) shows the evolution of the displacement sensitivity with respect to time when
varying the coefficients K and n respectively by 5% of their initial values. The figure reveals
that K and n have an opposite influence on the displacement. However, the absolute value
of the sensitivity is very similar for the two variables, suggesting a strong correlation of their

(a)

(b)

Figure 4: Sensitivity of the displacement to a 5% variation of K and n for a shot propelled at 40 m s−1

along the [100] orientation, at 80 m s−1 along the [100] orientation and at 40 m s−1 along the [110]
orientation. (a) Evolution with respect to time of the sensitivity of the displacement to a 5% variation
of K and n. (b) L2 norm of the sensitivity variation over the whole time domain. The displacement
curve is at least twice as sensitive to a variation of K than a variation of n. The two variables present
a similar absolute sensitivity variation.
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Figure 5: Evolution of I with the number of acquisition points. The value of I converges to a constant
value for a very low number of acquisition points for the three test conditions.

influence on the shot displacement. Figure 4 (b) shows the L2 norm of the sensitivity for the
two variables. The figure reveals that K has a much stronger influence on the displacement
than n for the tested impact conditions.

The value of I was computed for different values of T , to ensure its independence on the
number of acquisition points. Figure 5 shows the variation of I for the three test conditions
as a function of the number of acquisition points. The values of I is stable and converges for
a very low number of acquisition points. This results from the fact that only the slope of the
displacement curve after the impact is influenced by a variation of K and n, which can be
described with a low number of acquisition points.

The value of I obtained for a perturbation of 5% with an initial shot velocity of 40 m s−1

along the [100] orientation (condition 1) was I = 3.1. This confirms that identification using
only the shot displacement curve is an ill-posed problem as the two variables have opposite
but very similar effects on the displacement. The number of possible solution for K and n is
therefore large when using only a single shot displacement curve.

Velocity (m s−1) Orientation I

40 [100] 3.1
80 [100] 3.3
40 [110] 2.7

Table 5: Values of I obtained for the three different conditions.
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However, the problem well-posedness could be improved by changing the test conditions
such as the impact velocity or the crystal orientation. To illustrate this point, similar simula-
tions have been performed along the [100] orientation with a velocity of 80 m s−1 (condition
2) and along the [110] orientation with a velocity of 40 m s−1 (condition 3).

Figures 4 (a) and (b) show the sensitivity evolution with time and the sensitivity norms
for the three conditions. The figure reveals that changing both the crystal orientation and
velocity has a higher influence on the absolute variation of K than to a variation of n.

Table 5 shows the values of I obtained for the three different conditions. For a given crystal
orientation (e.g. [100]), a higher velocity value leads to a higher value of I. This result shows
that as the velocity increases, the correlation between the sensitivities of the shot displacement
to K and n also increases, which has a negative impact on the identifiability. Inversely,
changing the orientation reduces the value of I which shows that it tends to decorelate the
effect of the two variables.

To investigate the influence of the combination of two different tests on the identifiability
value, the hessian matrix was computed as:

H
kl
ij =

T∑
p=0

∂uk

∂θi
(tp)

∂uk

∂θj
(tp) +

T∑
p=0

∂ul

∂θi
(tp)

∂ul

∂θj
(tp), (13)

where uk and ul corresponds to the displacement obtained for two of the conditions detailed

80 m s−1/[100] 40 m s−1/[110]
40 m s−1/[100] 3.0 2.7
80 m s−1/[100] 2.6

Table 6: Values of I obtained for the combination of two different conditions.

Figure 6: Relative sensitivity of the displacement to a 5% variation of K and n for the three different
test conditions. Changing the shot velocity has a larger relative influence on the sensitivity of the
displacement to a variation of n than to a variation of K and inversely when changing the crystal
orientation.
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in table 4. The values of I obtained when combining the three different tests two by two are
presented in Table 6. Note that adding information did not result in an improvement of the
identifiability in every case. The best value of I is 2.6 and is obtained when combining two
different crystal orientations with two different shot velocities.

To better understand this result, Figure 6 shows the variation of the sensitivity of the
displacement to a 5% variation of K and n relatively to the maximum sensitivity value for
each conditions and variables. The figure reveals that changing the impact velocity has a
higher influence on the relative displacement sensitivity to a variation of n than to a variation
of K. Inversely, changing the crystal orientation has a higher influence on the sensitivity to
a variation of K than to a variation of n.

However, the highest value of I obtained is not sufficiently low to lead to a well posed
problem.

2.2 Residual stress field

2.2.1 Extracting relevant sensitivity information

The sensitivity of the σxx component of the stress for an impact along the [100] orientation
at 40 m·s−1 is first considered, to investigate the different treatments that should be performed
on the residual stress field before using it for identifiability analyses. Indeed, as opposed
to the previous section, the identifiability analysis is performed on a two dimensional field
which makes the influence of numerical noise on the sensitivities correlation more difficult
to evidence. The two dimensional sensitivity variations for the two variables cannot be
superposed as in Figure 4 on a one dimensional plot to visually observe a potential correlation
of the sensitivities.

Figure 7: Evolution of the L2 norm of the difference between the σxx fields obtained with two successive
meshes. Convergence is observed for 832 000 elements.
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Also, dynamic explicit analyses induce numerical uncertainties as no residual is minimized
over the analysis [3]. Such uncertainties accumulate with the time steps resulting in small
erratic variations of the final field which should not be physically interpreted. This effect
should be even stronger when non-linear behaviors are involved such as contact or plasticity.
The influence of numerical uncertainties on the sensitivity should therefore be investigated to
account only for the parts of the sensitivity field that have a physical sense. This is not only
important to assess the well-posedness of the problem but also for the identification itself
to prevent the identification to be driven by numerical uncertainties that have no physical
meaning.

Figure 7 shows the evolution of the L2 norm of the difference in horizontal components
of stress σxx between two consecutive meshes for an impact along the [100] orientation at
40 m·s−1. The figure reveals that the stress field converges for 832 000 elements, which is
consistent with the convergence study performed on the shot displacement detailed in Ap-
pendix A. However the sole convergence of the stress field is not sufficient to obtain converged
sensitivity values. Figure 8 shows the σxx sensitivity to a variation of 5% of the K coeffi-
cient for different mesh densities. The figure reveals that the sensitivity field does not seem
to converge qualitatively in a half sphere under the dent with a radius close to that of the
contact.

Sensitivity values in this zone are highly sensitive to numerical uncertainties and con-
vergence errors which result in noisy sensitivity variations. Using the field without masking

Figure 8: Evolution of the sensitivity of σxx to a variation K with the number of elements. The
sensitivity underneath the impact dent does not converge to a consistent shape.
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the noisy sensitivity values under the dent would thus artificially decorrelate the influence
of the identified coefficients on the residual stress field [6]. Such errors could result from the
explicit integration scheme, contact integration errors but also from the strong plastic strain
gradients present in such zone that could not be captured with the current mesh. This zone
should therefore not be used for identification of K and n as the stress variations would not
entirely result from a variation of each coefficients. In the following, a spherical mask, with a
radius close to that of the contact, is therefore applied to the sensitivity field to exclude the
zone where the sensitivity field does not converge.

To understand the influence of the different parts of the residual stress field on the identi-
fiability, the value of I should be computed on a well chosen path that conveniently separates
the different zone of interests of the field. The path chosen is represented in Figure 9. Only
the refined zone of the mesh is studied as no stress is present in the extended mesh zone.
The path is going back and forth between the left and the right side of the residual stress
field and moves progressively toward the impact dent where most of the plastic deformations
occurred.

The sensitivity of σxx to a variation of 5% of K and n are presented in Figure 10 (a) and
(b). The evolution of I as the length of the path represented in Figure 9 increases (from top
to bottom) is presented in Figure 10 (c). The value of I is very low when compared to that
obtained with micropillar compression curves in previous work [7], even at the bottom of the
sample where almost no plastic straining occurred.

The variations of the sensitivity at the bottom of the sample, along the path shown in
Figure 9, up to the point A indicated in Figure 10, are shown in Figure 11. The average
sensitivity to K and n are slightly different at the bottom of the sample, which could partially
explain the low value of I found in this zone. However, the amplitude of the noise on the
sensitivity variations are of the same order of magnitude as that of the average difference

Figure 9: Path chosen to compute the values of I on different parts of the field. Only the refined zone
of the mesh was studied as no stresses were present on the extended mesh zone. The path is going
back and forth between the left and the right side of the residual stress field and moves progressively
toward the impact dent.
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(a) (b) (c)

A
B

C
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B CA
B
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Figure 10: Sensitivity of σxx to a 5% variation of (a) K and (b) n. The two variables have a distinct
influence on σxx as its sensitivity variations to K and n are not similar. (c) Evolution of the value
of I computed on a path starting from the bulk and going progressively to the surface with the path
length. The very low value of I results from the noisy variation of the sensitivities which artificially
decorrelates the influence of the two variables.

Figure 11: Sensitivity variation of σxx to a 5% variation of K and n on the path shown in Figure 9
at the bottom of the sample, up to the point A indicated in Figure 10. The noise on the sensitivity
variation is of the same order of magnitude than the average value of the sensitivities, which artificially
decorelates the influence of the two coefficients.

between the sensitivity of K and n. This reveals that the residual stress field is still too
noisy to compute relevant values of the identifiability indicator, as this noise is sufficiently
substantial to artificially decorelate the influence of the two variables.

Figures 12 and 13 show the variation of the σxx sensitivity field for different values of
perturbation of K and n respectively. The figures show that the sensitivity field is relatively
noisy for low values of the perturbation. This could result from the use of a dynamic explicit
finite element scheme introducing numerical uncertainties of the same order as that of the
sensitivity for low perturbation values.
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The sensitivity fields for perturbations larger than 15% also reveal that K and n have a
non colinear effect on σxx as the two variables induce different sensitivity variations. However
such observation does not provide enough information to state on the problem well-posedness.
It only implies that the influence of the two coefficients on σxx can be differentiated but not
that the information is rich enough to obtain the two coefficients values simultaneously.

To illustrate the influence of noise, a Hamming window is applied on the residual stress
field Fourier transform to filter the high frequency noise [4]:

ω(xi, yi) =
[(

0.54− 0.46 ∗ cos
( 2πxi√

N − 1

))(
0.54− 0.46 ∗ cos

( 2πyi√
N − 1

))]r
, (14)

Where xi and yi are the discrete spatial coordinate on the field and r is a factor controlling
the window radius (e.g. the filter bandwidth).

Figure 14 shows a comparison of the sensitivity of σxx to K for different perturbation
values using a low pass filter with a hamming window radius of 10. Filtering removes the
differences between the high and low perturbations at least down to perturbation values of
10%. Figures 15 (a) and (b) show the sensitivity of σxx to K and n to a perturbation of 15%.
Figure 15 (c) shows the variation of I on a path going from the bulk to the surface. Using
the filter results in more believable values of I at the bottom of the field.

Up to point A, the value of I progressively rises as the sensitivity fields are almost constant
in this zone but with distinct values for the two coefficients. From point A to point B, a large
decrease of I is observed down to a value of 0.7. This is consistent with the variations of the

Figure 12: Sensitivity of σxx to a variation K for different perturbation factor (5%, 10%, 15%, 30%,
50%). The noisy variation of the sensitivity for low perturbation value result from low stress variations
of the same order of magnitude than the numerical uncertainties.
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Figure 13: Sensitivity of σxx to a variation n for different perturbation factor (5%, 10%, 15%, 30%,
50%). The sensitivity field for the higher perturbation are different than those obtained for a pertur-
bation of K. This confirms the low correlation of the two variable effects.

Figure 14: Sensitivity of σxx to a variation K for different perturbation factor (5%, 10%, 15%, 30%,
50%) after applying a low-pass filter with a radius of 10. The filter smoothened the variation of the
sensitivities and removes the noise down to pertubation of 10%.

sensitivity field observed in Figures 15 (a) and (b) as both variables seem to have a different
influence on this part of the field, with similar amplitudes. Between point B and C, a small
decrease of I is also observed due to higher variations of both sensitivity fields in different
directions.
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To assess the value of I independently of the Hamming window radius, the value of I
obtained using the whole σxx field is computed for different window radius. Figure 16 (a)
shows the evolution of I with the filter radius. The figure reveals that the value of I follows
an inverse exponential tendency and saturates for a radius of 1000.

To ensure that the value of I at saturation does not result from the Fourier space resolution
being too low, the value of I is computed with a filter radius of 3000 for different grid sizes.

(c)

A

B
C

(a) (b)

A

B

C

A

B

C

Figure 15: Sensitivity of σxx to a 15% variation of (a)K and (b)n after applying a low-pass filter with
a radius of 10. (c) Evolution of the value of I computed on a path starting from the bulk and going
progressively to the surface with the path length. The low pass filter allows to find more realistic values
of I.

(a) (b)

Figure 16: Influence of the filter on I. (a) Variation of I with the Hamming window radius. (b)
Variation of I for large Hamming window radius with the grid size. For large window radius, the
value of I saturates to a constant value. This constant values converges with the grid size for 50
points on one side of the grid.
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Figure 16 (b) shows the evolution of the value of I with the number of points on one side of
the square grid. The value of I at saturation oscillates with the mesh size until 4000 points,
which is a lower resolution than the finite element grid size on which the stress is interpolated.
Therefore the saturation of I does not result from the resolution of the Fourier space being
too coarse.

Figure 17 shows the variation of the sensitivity to (a) K and (b) n for different window
radius r on the path shown in Figure 10. The figure shows that the sensitivity variations
obtained for a large value of r represents the average variation of the non filtered sensitivity.
Therefore, the value of I is representative of the average sensitivity of σxx to K and n.
The filter only removes the high frequency variations of the field and does not add spurious
information. The corresponding value of I for the three filter radius are represented by color
dots in Figure 16.

The value of I obtained for large filter radius can therefore be considered a higher bound-
ary of the identifiability index value that can be obtained. In the following, the value of
I given for the residual stress field will therefore be the value of I that saturates with the
Hamming window radius.

To investigate the potential complementarity of the information provided by the shot
displacement and the residual stress field, the value of I obtained when combining the two

(a) (b)

Figure 17: Sensitivity of σxx to 15% a variation of (a) K and (b) n with respect to the path length
for different filter radius r. The sensitivity for high filter radius represents the average sensitivity
variation of the non filtered field.
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observation fields is computed using the following expression for the hessian matrix:

H ij =
T∑
p=0

∂u

∂θi
(tp)

∂u

∂θj
(tp) +

N∑
p=0

∂σxx

∂θi
(xp, yp)

∂σxx

∂θj
(xp, yp). (15)

Note that, in the above expression, the same weight is given to both fields as all the variables
are dimensionless. The combination of the two observation fields for the same impact along
the [100] orientation at 40 m·s−1 leads to I = 1.1 which is slightly better than the value
obtained using only the residual stress field (I = 1.4).

2.2.2 Influence of the stress component

A similar methodology is applied to study the identifiability of K and n using the other
components of the residual stress field induced by an impact. As experimental residual stress
estimations is to be provided by EBSD analyses, only the in-plane components of the stress
tensor is investigated. Figures 18 and Figures 19 (a), (b) and (c) show respectively the
sensitivity of σyy and σxy to a 15% variation of K and n and the resulting variation of I
along a path. Similar conclusions as with σxx can be drawn. Also, low values of I are found
at the bottom of the field resulting from large differences in the influence of the two variables
on this stress component.

Table 7 summarizes the value of I obtained using every grid points for large values of the
filter radius for the three different components. The low values of I demonstrate that each
component contains sufficient information for identification of the K and n coefficients.

Table 8 shows the identifiability index values obtained when combining the stress com-
ponents two by two using the following expression for the hessian matrix:

H
kl,mn
ij =

N∑
p=0

∂σkl

∂θi
(xp, yp)

∂σkl

∂θj
(xp, yp) +

N∑
p=0

∂σmn

∂θi
(xp, yp)

∂σmn

∂θj
(xp, yp), (16)

(c)(a) (b)

A

B

CA

B

C

A

B

C

Figure 18: Sensitivity of σyy to a 15% variation of (a) K and (b) n after applying a low-pass filter
with a radius of 10. (c) Evolution of the value of I. Similar conclusions as with σxx can be drawn.
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A

B

(c)(a) (b)

A

B

Figure 19: Sensitivity of σxy to a 15% variation of (a) K and (b) n after applying a low-pass filter
with a radius of 10. (c) Evolution of the value of I. The variation of the sensitivity to n up to point
A are very subtle. The value of I should therefore be interpreted with great care.

Combining two different components of the residual stress field only slightly enhances the
identifiability index value. Finally, combining the three components resulted in I = 1.3
which is slightly higher than the best value of I obtained when combining two components of
the stress. Thus, adding additional information for identification does not result in a better
conditioning of the problem but rather dilutes the relevant information.

Figure 20 (a,c,e) shows the variations of the sensitivity to a 15% variation of K and n

on the three components of stress, respectively, on the path presented in Figure 9. For σxx
and σxy, only small variations of the sensitivity to n are observed along the path, when
compared to the sensitivity to K. The sensitivity of the two variables are therefore not as
firmly uncorrelated as those observed for σyy which explains the slightly better value of I
found for this stress component. This also explains why combining σxx and σxy does not
improve the value of I as none of these components provide additional information on the
influence of n.

Figure 20 (b,d,f) shows the value of the L2 norm of the sensitivity for the three components
of stress, respectively. All the components are at least three times more sensitive to K than
to n, which further explains why different combinations of the stress components did not

Stress component σxx σyy σxy
I 1.4 1.3 1.4

Table 7: Identifiability index values obtained for the different stress components for large Hamming
window radius.

Stress component σyy σxy
σxx 1.2 1.3
σyy 1.3

Table 8: Identifiability index values obtained for the different stress components combinations for large
Hamming window radius.
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(a) (b)

(c) (d)

(e) (f)

Figure 20: Sensitivity of the (a,b) σxx, (c,d) σyy and (e,f) σxy to a 15% variation of K and n for
a shot along the [100] orientation at 40 m s−1. (a,c,e) Evolution of the sensitivity along the path
represented in Figure 9. (b,d,f) L2 norm of the sensitivity. For σxx and σxy only small variations of
the sensitivity to n are observed along the path when compared to that of the sensitivity to K. All the
components are more sensitive to a variation of K than to a variation of n.

result in a better value of I.
Since impact along the [100] orientation and a single impact velocity seems to be sufficient

to obtain the values of K and n, identifiability for different velocities and crystal orientations
using the residual stress field was not investigated in this work.
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3 Discussion

3.1 Identifiability using only the displacement curve

As shown in Figure 6, the effect of K and n can be distinguished respectively by changing
the crystal orientation and the shot velocity. This results from the fact that K scales the
stress. Its influence thus mainly depends on the stress value, which changes with the orien-
tation. On the other hand, n acts mainly on the strain path. Its influence is therefore more
related to the total absorbed energy.

Consequently, when combining two velocities along the same crystal orientation (condi-
tions 1 and 2), only the total energy imposed to the material is varied. Therefore, combining
those two tests only provides more information on the effect of n but not on the effect of
K. Inversely, combining two different orientations with the same shot velocity only provides
more information on the effect of K but not on the effect of n. Consequently, varying the
two parameters simultaneously results in the best value of I (2.6) as the influence of both
parameters is varied.

Also, combining two displacement curves does not result in an improvement of the value
of I in every case. For instance, combining two tests at 40 m·s−1 along the [100] and [110]
orientations results in a similar value of I as when using a single test at 40 m·s−1. This
reveals that no additional information is brought by adding the second test. Renner et al. [22]
observed a similar phenomenon when combining two indentation imprint topographies for the
identification of two parameters. In some cases, combining the two topographies resulted in
a worst value of I than that obtained when using a single topography due to a dilution of
the relevant information.

The value of I obtained in this work using only the displacement curve is still too high
to assess the problem well-posedness. This might however be sufficient to obtain a first raw
estimate of the value of (K, n) that could then be refined using another observation field, such
as the residual stresses. This could be confirmed by performing identification on a virtual
material using both the displacement curve and the residual stress field.

Also, combining the displacement curve with the residual stress field for the same test
results in a lower value of I. The shot displacement is therefore an interesting complementary
observation field to use for identification.

Finally, the whole space of crystal orientation and reachable shot velocity should be
screened to find the most suitable conditions for identification. This will be performed in
future works.

3.2 Identifiability using the residual stress field

Convergence of the sensitivity field in the vicinity of the dent is not achieved in this
study, as shown in figure 8. It is interesting to note that the noisy part of the sensitivity
field corresponds to the zone where most plastic straining occurred. The more pronounced
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stress gradients are therefore also located in this zone. This explains the difficulty to obtain
converged sensitivity values under the dent. Experimentally, large plastic strains also prevent
stress estimations using HR-EBSD, as they induce noisier diffraction patterns. This zone
would therefore also have to be masked on EBSD data and would therefore not be used for
identification, even in the absence of numerical convergence issues.

The value of I provided in tables 7 and 8 are those obtained by applying a low-pass
filter with a large Hamming window radius on the residual stress field. Applying such filter
does not add any information but removes the high frequency noise resulting from numer-
ical uncertainties. However, it also removes parts of the field that should contain relevant
information for identification as slight variations of the field could result from a variation of
each parameters and not just from the quality of constitutive law integration. Such value of
I should therefore be considered as a higher boundary of the identifiability index value.

Each of the three investigated components of the residual stress field contains sufficient
information for identification of K and n with a single test in a single orientation with a
single shot velocity condition. Combining the different components only results in slight
improvements of the identifiability index. This could result from the high Hamming windows
radius used for filtering, which could remove parts of the specific relevant information of each
field. It could also indicate that the two coefficients have a similar influence on the three
components of the stress. Therefore there is no dilution of information when combining two
components as each components contains relevant information for identification. However, it
does not add any new information on the distinct influence of each parameter and therefore
does not really improve the problem conditioning.

Also, using only the bottom of the field, the zone where the most pronounced effects occur
is unused. To make better use of the whole residual stress field in future works, identification
should not be performed by comparing the target and simulated field point-wise but by
comparing well-chosen characteristics of the field. This could for instance be performed by
automatically extracting the field characteristic using image segmentation methods [24].

The value of I found for identification of K and n using the residual stress field under
the dent ranges from 1.2 to 1.4 depending on the stress component used. Breumier et al. [7]
performed similar sentivity analysis forK and n using high strain rate micropillar compression
tests. It revealed that using two stress strain curves at two different strain rate on a single
crystal orientation lead to a value of I = 1.3. As the residual stress field is a direct consequence
of the plastic straining occurring during the impact event, it contains more information
than a stress-strain curve which solely represents an average quantification of the material’s
behaviour. The value of I presented in table 7 are therefore consistent with that of the
literature.

The residual stress field under the impact dent therefore contains sufficient information
to obtain the viscoplastic parameters with a single simulation. The resulting identification
procedure would therefore be more efficient than that using micropillar compression tests
as it would require less tests to be modeled. However, HR-EBSD residual stress analyses
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remain an experimental challenge. Indeed, it requires a perfect surface preparation with
almost no subsurface residual polishing induced hardening, which could be tedious especially
on ductile materials such as copper. Also, such analyses remain mainly applicable on large
grains or single crystal samples as the elastic residual strain are obtained by comparing the
deformed crystal volume with an undeformed reference volume inside the same grain. This
study however reveals that the wealth of information provided by such residual stress fields
worth the efforts spent in sample preparation.

Also, note that only the residual stress variations in a single two-dimensional cross-section
was considered herein. Advances in 3D-EBSD methods [26] could also provide experimental
insights in the stress variation in the sample’s volume that could enrich the identification
problem.

4 Conclusion

The objective of this work was to investigate the possibility to obtain the viscoplastic
parameters of the Meric-Cailletaud framework using outputs provided by a shot impact test.
The main contributions are as follows:

• Identification ofK and n using the shot displacement curve was shown to be an ill-posed
problem.

• Combining two impacts along two different crystal orientations with two different shot
velocities slightly improved the problem well-posedness as it provided more information
on the distinct influence of the two coefficients on the displacement, which resulted in
a value of I = 2.6.

• A methodology to establish identifiability of the Meric-Cailletaud constitutive param-
eters using the residual stress field under the impact dent was established.

• Analysis of the stress sensitivity to a variation of K an n and the resulting values of
I = 1.2 when combining two stress components revealed that the two coefficients could
be identified using the residual stress induced by a single impact on a single crystal
orientation.

• Combining the residual stress field with its corresponding displacement curve reduced
the value of I from I = 1.4 when using only the residual stress field to I = 1.1. The
two observations fields are therefore complementary.

Using the residual stress field induced by an impact could therefore provide a methodology
for identification of material parameters at high strain rate as the strain rates involved by such
impact could reach the order of 105 s−1. Such parameters could then be used for modeling
of processes involving such strain rates such as shot-peening.

25



Also, identification on a virtual material with chosen coefficients will be conducted in
future works to assess the convergence of classical optimization algorithm on the solution using
different starting points. This will effectively validate the identifiability analysis presented
herein.

The possibility to obtain the K and n parameters using only the shot displacement curve
is also very promising as it is very easy to obtain experimentally. The whole crystal orienta-
tion and reachable shot velocity space will therefore be screened to investigate if particular
experimental conditions could be combined to obtain a well-posed problem using the shot
displacement.

Finally, the complementarity of the shot displacement and the impact induced residual
stress field is a very interesting results as it demonstrates the possibility to combine different
outputs of different nature for the same test to enhance the problem well-posedness. It also
demonstrates how the identifiability indicator can be used to design relevant experiments for
identification and which information is relevant to use and to combine. The complementarity
of the residual stress field and shot displacement with the imprint topography and the crystal
misorientation field beneath the dent should also be investigated in future works. Indeed,
combining these three different outputs could provide sufficient information to obtain more
than two plastic constitutive parameters, such as the six interaction matrix coefficients.
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Figure 21: (a) Impact displacement curves obtained for successively refined meshes. (b) Convergence
of the L2 norm of the difference between the displacement curves obtained with two successive meshes.
Convergence is observed for simulations with 832 000 elements.
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Appendix A: Mesh convergence study

A convergence study was first conducted to reduce the influence of numerical uncertainties
on the identification procedure. Figure 21 (a) and (b) respectively shows the displacement
curves obtained for successively refined meshes and the evolution of the L2 norm of the dif-
ference between the displacement curves obtained with two consecutive meshes. Convergence
can be observed for simulations with 832 000 elements which can be performed in 16h30 using
4 threads on an Intel Xeon Gold 6132, 2.6 GHz CPU with Abaqus 6.14 version.
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