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Abstract. This paper investigates a discretization scheme for mean curvature motion on
point cloud varifolds with particular emphasis on singular evolutions. To define the varifold
a local covariance analysis is applied to compute an approximate tangent plane for the points
in the cloud. The core ingredient of the mean curvature motion model is the regularization of
the first variation of the varifold via convolution with kernels with small stencil. Consistency
with the evolution velocity for a smooth surface is proven if a sufficiently small stencil and a
regular sampling are taking into account. Furthermore, an implicit and a semiimplicit time
discretization are derived. The implicit scheme comes with discrete barrier properties known
for the smooth, continuous evolution, whereas the semiimplicit still ensures in all our numerical
experiments very good approximation properties while being easy to implement. It is shown
that the proposed method is robust with respect to noise and recovers the evolution of smooth
curves as well as the formation of singularities such as triple points in 2D or minimal cones in
3D.

Primary 49Q20; Secondary 35K55, 53A70, 53E10.
Point cloud varifolds, Mean curvature motion, Regularization, Singular evolution, Time

discretization.

1. Introduction

In this paper we study the discretization of mean curvature motion for point cloud varifolds.

Point clouds are the raw output data of 3D laser scanning devices and instead of applying a

meshing algorithm which approximates the point cloud with a triangular surface we aim for

geometry processing methods directly on the raw data. Particular emphasis is on a proper

treatment of possibly noisy point distributions and geometric singularities such as triple points

or crease lines.

The direct processing of point clouds has intensively been studied in the literature. Using the

normal cycle from geometric measure theory Cohen-Steiner and Morvan [CSM06] were able to

robustly compute the shape operator of a triangular mesh and they gave explicit error bounds.

Yang and Qian [YQ07] used a moving least square approach to compute curvature quantities on

point cloud surfaces. In [CCSLT09] Chazal et al. investigated the curvature estimation problem

in particular for point cloud data. They showed that different curvature measures can stably

be computed for compact sets with positive µ-reach using distance functions to the set and

evaluating curvatures on them. Mérigot et al. [MOG11] used a covariance analysis based on

the local Voronoi tesselation to compute a robust discrete curvature for a point cloud surface.

Yang et al. [YLHP06] used barycenters of spherical neighbourhoods on multiple scales to derive
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formulas for the principle curvatures of a surface. This approach is based on the observation

that the vector offset between barycenters for different radii of the balls or spheres depends

on the surface curvature. Chazal et al. [CCSLT09] followed the same approach and showed

how this can be used to obtain approximations of generalized notions of curvature proposed by

Federer.

In the processing of discrete surfaces the evolution by mean curvature motion is a fundamental

tool and one of the basic fairing algorithms [DMSB99]. For the numerical discretization of mean

curvature motion for hypersurfaces there are three widespread approaches corresponding to the

representation of the hypersurfaces as a triangular surface [Dzi91, DDE05, BGN08], a level

set [MBO94, ES91, Sme03], or a diffusive phase field interface [FP03, ESS06, BP12]. For the

representation of surfaces by point clouds a mean curvature motion scheme has been derived in

[CRT04] based on the reconstruction of a local triangulation. In [SC20] a special type of surface

covering is defined for point clouds, which enable the stable evaluation of surface Laplacians

and associated evolution problems.

The varifold perspective has been used in the context of curve or surface matching in [KCC17]

based on earlier work in [CT13]. Here, a set of simplices and simplex normals is encoded as a

measure on Rn × Sn−1 and equipped with the structure of a reproducing kernel Hilbert space

with suitable kernels for the position in Rn and the orientation in Sn−1. This approach is then

used for the registration of curves and surfaces without point to point correspondence. A recent

overview of these tools in the context of diffeomorphic registration can be found in [CCG+20].

In the context of this paper, we adopt a varifold perspective on point clouds and take ad-

vantage of the framework developped in [BLM17] to estimate mean curvature with theoretical

convergence guarantees. More precisely, we define a point cloud varifold by applying a local

covariance analysis on the input set of points. This allows us to assign an approximate tan-

gent space as well as a weight to each point. This leads to a natural varifold structure where

point clouds are encoded through a weightes sum of Dirac masses plus orientation. We can

subsequently consider the first variation of such a varifold and apply a suitable regularization

via the convolution with a kernel with small stencil. The resulting regularized first variation is

considered as the motion field for the mean curvature flow and an implicit and a semiimplicit

time discretization are derived.

A particularity when processing directly point clouds is that it allows topological changes,

concentration and merging of points very naturally. As consequence, while the formation of a

triple point is a singularity at the continuous level, it is not from the point of view of point

cloud evolution. We take advantage of this feature to recover some well–known minimizing sets

like Steiner trees connecting the vertices of a square in 2D and minimal cones over the edges

of a tetrahedron, which is known to be one of the basic minimal cones in 3D together with the

plane and the triple junction of half-planes [Tay76]. Furthermore, we compute minimal area

sets spanned by the edges of a cube . However, while we can compare the limit set for time

tending to infinity with sets that are known to be minimal (or at least with competitors with

respect to surface area measures), the theoretical context for the evolution is not clear. As we
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are dealing with a mean curvature discretization derived thanks to varifolds tools, it is very

natural to think of Brakke flow [Bra78] and the more recent approach by Kim and Tonegawa

[KT17]. Nevertheless, while the computation of the mean curvature is performed in the varifold

setting, the motion is not entirely defined. Indeed, we only flow the positions according to mean

curvature, and tangents and masses are implicitly defined given the new positions. Concretely,

we compute the masses from the positions assumping a multiplicity 1 everywhere. Assuming a

unit multiplicity is reasonnable when starting from a compact hypersurface, indeed, it has been

proven in [ES95] that for almost all neighbouring level sets, there exists a unique Brakke flow,

with unit multiplicity for almost all times.

We emphasize that results on existence and uniqueness beyond the creation of singularities

are mostly obtained under the asumption that the set evolving by mean curvature can be

represented as the boundary of some open set (which is in general not the case for Brakke flow).

We mention two major approaches: in [CGG91, ES91] the issue is tackled through so-called

viscosity solutions while [Ilm93] is based on the Allen-Cahn phase field model. In the case of

planar networks, the flow has been studied in [MNT04] starting from a regular network, that

is restricted to triple point singularities, and more recently the case of more general junctions

could be handled in [INS19]. Note that in our simulations, we observe that four junctions

in the initial data instantaneously split into two triple junctions, consistently with what is

expected for planar networks. On the numerical side, all parametric (mesh based) approaches

work with a fixed topology an enable under this constraint very good approximation results,

e.g. in [Bra92, PP93, SW19] with the drawback that there is an a priori choice or a required

combinatorial optimization among all possible layouts of the smooth patches.

The paper is organized as follows. In Section 2 we recall classical facts concerning varifolds,

focusing on the so-called first variation and generalized mean curvature. Using a regularization

via convolution, we define in Section 3 the generalized mean curvature model for point clouds

varifolds and establish its consistency in Proposition 3.3. Its stability is then investigated in

Section 4, resulting in Theorem 4.7 and convergence stated in Corollary 4.8. Section 5 describes

how we define a point cloud varifold from a set of points i.e. how we compute tangent planes

and weights for each point. Furthermore, we define time continuous curvature motion of point

clouds, study planar and spherical comparison principles, and derive implicit and semiimplicit

time discretization schemes. Finally in Section 6 we present numerical results and discuss

properties of the derived scheme.

2. Varifolds and generalized mean curvature

In this section we will review the basic notions of d-varifolds in Rn and first variation of such

varifolds. Of particular interest for this paper will be the case of generalized curves in R2 (d = 1,

n = 2) and generalized surfaces in R3 (d = 2, n = 3). The d–dimensional Hausdorff measure in

Rn is denoted by Hd, and the space of continuous compactly supported function between two

metric spaces by Cc(X,Y ) and Cc(X) if Y = R. The d–Grassmannian

Gd,n = {d–vector subspace of Rn} .
3



is embedded into n×n matrices via the mapping that associates with the d–subspace P ∈ Gd,n
the orthogonal projector ΠP onto P . The operator norm on matrices consequently induces a

distance on Gd,n. With this notation at hand let us give the definition of a d-varifold.

Definition 2.1 (Varifold). A d–varifold in an open set Ω ⊂ Rn is a Radon measure in Ω×Gd,n.

For detailed discussions on varifolds and underlying geometric measure theory tools we refer

to [Sim83], [AFP00]. We thereafter consider s–varifolds in the whole space Ω = Rn. Such mea-

sures can be understood as a coupling of spatial (in Rn) and directional (in Gd,n) information.

Integrating on all possible directions, that is on the whole Grassmannian, allows to select the

spatial information encoded in a d–varifold V : the resulting Radon measure denoted by ‖V ‖ is

called the mass of V and is defined in Rn as

‖V ‖(A) = V (A×Gd,n) .

for all Borel sets A ⊂ Rn.

In this paper, we will focus on two types of varifolds: varifolds associated with a smooth d–

submanifold of Rn (referred to as smooth varifolds, see Definition 2.2) and varifolds associated

with a finite set of points in Rn, positive weights and tangent d–planes in Gd,n (referred to as

point cloud varifolds, see Definition 2.4).

Definition 2.2 (Smooth varifold). The d–varifold V associated with a d–submanifold M ⊂ Rn

is defined by

(1) V (B) = Hd ({x ∈M : (x, TxM) ∈ B}) ,

for every Borel set B ⊂ Rn × Gd,n. Here, TxM denotes the tangent plane at x. In this case,

‖V ‖ = Hd|M . We will use the notation V = Hd|M ⊗ δTxM for the varifold defined in (1).

Smooth varifolds are a particular case of rectifiable varifolds (see [Sim83]).

Remark 2.3. As a d-varifold is a Radon measure, it can be equivalently defined by its action

on continuous compactly supported functions: V is the smooth varifold associated with M

according to Definition 2.2 if and only if for every ϕ ∈ Cc(Rn ×Gd,n),∫
(x,S)∈Rn×Gd,n

ϕ(x, S) dV (x, S) =

∫
x∈Rn∩M

∫
S∈Gd,n

ϕ(x, S)dδTxM (S) dHd(x)

=

∫
M
ϕ(x, TxM) dHd(x) .

Definition 2.4 (Point cloud varifold). Given a finite set of points {xi}Ni=1 ⊂ Rn, masses

(weights) {mi}Ni=1 ⊂ R∗+ and space of directions {Pi}Ni=1 ⊂ Gd,n, we associate the d–varifold

V =
N∑
i=1

miδ(xi,Pi) and in this case ‖V ‖ =

N∑
i=1

miδxi .

Note that Pi can be any set of directions in Gd,n, however if the points {xi}i sample some

surface or submanifold M , then {Pi}i can be thought as tangent planes TxiM .
4



As in the case of smooth varifolds, we can define a point cloud varifold through its action on

compactly supported continuous functions. Indeed, we have for ϕ ∈ Cc(Rn ×Gd,n)∫
ϕdV =

N∑
i=1

miϕ(xi, Pi) .

The set of d–varifolds is endowed with a weak notion of mean curvature which we eventually

define in Definition 2.7. At first, let us introduce the first variation, which is well–defined for

any d–varifold. For this purpose we need the following differential operators: let P ∈ Gd,n,

ΠP be the orthogonal projection onto P and (τ1, . . . , τd) be an orthonormal basis of P , let

X = (X1, . . . , Xn) ∈ C1(Rn,Rn) be a vector field of class C1, ϕ ∈ C1(Rn) and (e1, . . . , en) be

the canonical basis of Rn, then

∇Pϕ = ΠP (∇ϕ) and divPX =

n∑
i=1

ΠP (∇Xi) · ei =

d∑
i=1

DXτi · τi .

Now, with these differential operators at hand we can define the first variation:

Definition 2.5 (First variation of a varifold, [All72]). The first variation of a d–varifold V in

Rn is the distribution of order 1

δV : C1
c(Rn,Rn) → R

X 7→
∫
Rn×Gd,n

divSX(x) dV (x, S)

Remark 2.6. We could equivalently define the first variation based on scalar test functions.

Indeed, with a slight misuse of notation define for ϕ ∈ C1
c(Rn),

δV (ϕ) := (δV (ϕe1), . . . , δV (ϕen)) =

n∑
i=1

δV (ϕei)ei so that δV (X) =

n∑
i=1

δV (X · ei) · ei .

Moreover, divS(ϕei) = ∇Sϕ · ei and finally δV (ϕ) =

∫
Rn×Gd,n

∇Sϕ(x) dV (x, S).

Let M ⊂ Rn be a closed C2 d–submanifold, if V = Hd|M ⊗ δTxM is the smooth varifold

naturally associated with M , then by definition of V (see Remark 2.3),∫
Rn×Gd,n

divSX(x) dV (x, S) =

∫
M

divTxMX(x) dHd(x) ,

and thus, thanks to the divergence theorem we obtain for every X ∈ C1
c(Rn,Rn),

δV (X) =

∫
M

divTxMX(x) dHd(x) = −
∫
M
H(x) ·X(x) dHd(x) ,

where H is the mean curvature vector of M . In this case δV is more regular than a distribution

of order 1, it is a distribution of order 0 and can be identified thanks to Riesz theorem with the

vector valued Radon measure

(2) −H(x)Hd|M (x) = −H(x) ‖V ‖(x) .

Actually, as soon as V is a d–varifold (not necessarily associated with a smooth submanifold)

whose first variation is a distribution of order 0 (V is then said to have locally bounded first

variation), then there is a weak counter-part to the divergence theorem. Indeed, for such a

varifold, we can identify the distribution δV with the associated Radon measure provided by
5



Riesz theorem. Then, thanks to the Radon-Nikodym decomposition of δV with respect to the

mass ‖V ‖, there exist a vector field denoted δV
‖V ‖ ∈ L1

loc(‖V ‖) and a Radon measure (δV )s

singular with respect to ‖V ‖ (which might vanish) such that the decomposition

(3) δV =
δV

‖V ‖
(x) ‖V ‖+ (δV )s

holds. Comparing (2) and (3) the generalized mean curvature vector naturally arises as the

Radon-Nikodym derivative H = − δV

‖V ‖
. Let us resume the previous observations in the following

definition.

Definition 2.7 (Generalized mean curvature, [All72]). Let V be a d–varifold in Rn. Assume

that V has locally bounded first variation, i.e. ∀K ⊂ Rn compact set, ∃ cK > 0 such that for

every X ∈ C1
c(Rn,Rn) supported in K,

(4) |δV (X)| 6 cK sup
K
|X| .

Then δV can be identified with a Radon measure and the generalized mean curvature vector H

is defined as the Radon-Nikodym derivative of δV with respect to ‖V ‖, moreover, for ‖V ‖–a.e.

x and for B(x, r) denoting the open ball of radius r centred at x we get

H(x) = − lim
r→0+

δV (B(x, r))

‖V ‖(B(x, r))
.

See Section 2.4 in [AFP00] for more details on differentiation of Radon measures. Notice

that both classical and the generalized mean curvature coincide in the case of a smooth varifold

associated with a closed C2 manifold as shown above (2). Let us now consider an example

involving a triple point singularity.

Example 2.8 (Junction of half-lines). Let u1, u2, u3 be unit vectors of R2 and Di for i ∈ {1, 2, 3}
be the half-line {tui : t ∈ R+} and Vi = H1

|Di ⊗ δspan(ui) be the smooth 1–varifold associated

with Di. Then V = V1 + V2 + V3 is a 1–varifold spatially supported by the union of three

half-lines meeting at 0 and by linearity δV = δV1 + δV2 + δV3. Now, we obtain δVi = −uiδ0 for

i ∈ {1, 2, 3}. Indeed, for X ∈ C1
c(R2,R2) and for t ∈ R+,

divspan(ui)X(tui) = DX(tui)ui · ui and DX(tui)ui =
d

dt
(X(tui)), therefore:

δVi(X) =

∫
Di

divspan(ui)X dH1 =

∫ +∞

t=0

d

dt
(X(tui)) dt · ui = −X(0) · ui = −δ0(X) · ui .

We eventually obtain δV = −(u1 +u2 +u3)δ0 and in particular δV = 0 if and only if 0 is a triple

point with angles 2
3π formed by the half-lines. Otherwise, if u1 +u2 +u3 6= 0, the singularity in

0 produces a non-zero singular curvature (δV )s = −(u1 + u2 + u3)δ0.

We emphasize that the notion of first variation is well–defined for any d–varifold while the

notion of generalized mean curvature requires some additional regularity of the varifold: it can

be defined only if V has locally bounded first variation in the sense of (4) that is equivalent

to requiring that δV identifies with a (vector–valued) Radon measure thanks to Riesz repres-

netation theorem. In the previous example, though singular with respect to the mass measure

‖V ‖ = H1
|D1

+ H1
|D2

+ H1
|D3

, the first variation δV = −(u1 + u2 + u3)δ0 is a Dirac mass that

6



is, in particular, a Radon measure. Unfortunately, the first variation of a point cloud varifold

does not meet this asumption, as we now explain. Let us consider a very simple point cloud

1–varifold in R consisting of one single point x1 = 0 weighted by mass m1 = 1 and with P1 = R:

V = δ(0,R). For X ∈ C1
c(R,R) we obtain in this case

δV (X) =

∫
R

divRX dδ0 = divRX(0) = X ′(0) = δ0(X ′) = −(δ0)′(X) .

It is well–known that the distributional derivative of a Dirac mass is not a Radon measure.

In fact, this observation directly extends to any point cloud varifold V =
∑N

i=1miδ(xi,Pi) and

the first variation of V is never locally bounded (take test functions whose support contains a

single point xi). This was the motivation for introducing in [BLM17] approximate counterparts

of first variation and generalized mean curvature via convolution. In this paper we will make

extensive use of these notions. We hence summarize in the next section what is needed within

the scope of this paper.

3. Regularization via convolution

In the first part of this section we recall a regularization of the generalized mean curvature

(see Definition 3.2) based on the convolution of both first variation and mass with appropriately

chosen kernels. The original definition of this regularized mean curvature from [BLM17] ensures

consistency for a very large class of varifolds (rectifiable varfifolds with locally bounded first

variation). In the second part of the section, we will introduce several variants of a regularized

mean curvature vector which are all consistent with the mean curvature vector of a smooth

hypersurface (see Proposition 3.3). The difference lays in the choice of a projection operator

denoted by Π hereafter. As we will see in sections 5.3 and 6 the concrete choice of the projection

operator Π matters on one hand in the presence of singularities and on the other hand for the

numerical stability of the time discrete scheme.

From now on and for the sake of simplicity, we only consider varifolds with finite mass, that is

‖V ‖(Rn) <∞ (as ‖V ‖ is a Radon measure, ‖V ‖ is finite when restricted to any bounded open

set). We refer to [BLM17] for additional details on steps leading to the notion of approximate

mean curvature (see Definition 3.2) that we now briefly sketch.

Let us consider fixed functions ρ, ξ ∈ C∞(R), which are nonnegative even and compactly sup-

ported in [−1, 1]. We additionnaly assume that ρ and ξ are positive in ]0, 1[ and ρ is nonincreas-

ing in [0, 1]. Then we define associated mollifiers (ρε)ε>0, (ξε)ε>0 in Rn as follows, for x ∈ Rn,

ε > 0, ρε(x) = ε−nρ(|x|/ε) and ξε(x) = ε−nξ(|x|/ε) . Following [BLM17], we additionaly assume

that for all s ∈]− 1, 1[,

(5) nξ(s) = −sρ′(s) .

For instance we can choose

ρ(s) = exp

(
1

s2 − 1

)
and ξ(s) =

2

n

s2

(s2 − 1)2
exp

(
1

s2 − 1

)
for s ∈]− 1, 1[ .
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The ε–regularized first variation is then defined as the convolution of δV with ρε: for X ∈
C1
c(Rn,Rn),

(δV ∗ ρε) (X) := δV (X ∗ ρε) with (X ∗ ρε)(x) :=

∫
y∈Rn

ρε(x− y)X(y) dy .

Easy computations lead to (δV ∗ ρε) (X) =

∫
Rn
gε(x) ·X(x) dx, where

gε(x) =
1

εn+1

∫
Rn×Gd,n

ρ′
(
|y − x|
ε

)
ΠS

(
y − x
|y − x|

)
dV (y, S) =: δV ∗ ρε(x) for x ∈ Rn .(6)

Consequently δV ∗ ρε identifies with its Lebesgue L1–density gε ∈ L1
loc(Rn).

Remark 3.1. Note that ρ′(|z|) z
|z| −−−→|z|→0

0 thanks to ρ′(0) = 0.

In order to define a regularized generalized mean curvature, it remains to write the Radon-

Nikodym decomposition of the regularized first variation δV ∗ρε with respect to the regularized

mass ‖V ‖ ∗ ξε. As for the first variation, we identify ‖V ‖ ∗ ξε with the associated Lebesgue

L1–density function defined as

‖V ‖ ∗ ξε(x) =
1

εn

∫
Rn
ξ

(
|y − x|
ε

)
d‖V ‖(y), x ∈ Rn .

Considered as Radon measures, both δV ∗ ρε and ‖V ‖ ∗ ξε are absolutely continuous with

respect to Lebesgue measure and consequently the Radon-Nykodym decomposition of δV ∗ ρε
with respect to ‖V ‖ ∗ ξε is

δV ∗ ρε =
δV ∗ ρε(x)

‖V ‖ ∗ ξε(x)
(‖V ‖ ∗ ξε) =

δV ∗ ρε(x)

‖V ‖ ∗ ρε(x)︸ ︷︷ ︸
→ δV

‖V ‖

‖V ‖ ∗ ρε(x)

‖V ‖ ∗ ξε(x)︸ ︷︷ ︸
→
∫ 1

0 ρ(s)sd−1 ds∫ 1
0 ξ(s)s

d−1 ds
=
n

d

(‖V ‖ ∗ ξε)

Finally, we obtain the following definition for the approximate mean curvature

Definition 3.2 (Approximate mean curvature ([BLM17], 4.1)). Let V be a d–varifold in Rn,

for x ∈ Rn, ε > 0, we define

(7) Hε(x, V ) := −d
n

δV ∗ ρε(x)

‖V ‖ ∗ ξε(x)

which we refer to as ε–approximate curvature.

The ratio d
n is due to the particular choice of ξ and ρ fulfilling (5). Note that we could take

other kernel functions not necessarily satisfying relation (5)) to regularize the first variation

δV and the mass ‖V ‖ (e.g. the same kernel both for the variation and the mass). In this

case the consistency when ε → 0 would still hold replacing d/n in (7) by the appropriate

constant. Nevertheless, (5) gives better numerical results that can be understood by expanding

|H(x)−Hε(x, V )| when ε→ 0 (see [BLM17]). We point out that this very same asumption (5)

on the kernels enables us to prove a discrete maximum principle on our time discrete scheme

(see Proposition 5.4).
8



Finally, let us remark that no asumption on δV is necessary to define Hε(·, V ). It is well–

defined even if δV is not locally bounded. In particular for a point cloud varifold V =
N∑
j=1

mjδ(xj ,Pj) we obtain for i ∈ {1, . . . , N}

Hε(xi, V ) = − d

nε

N∑
j=1,j 6=i

mjρ
′
(
|xj − xi|

ε

)
ΠPj

(
xj − xi
|xj − xi|

)
N∑
j=1

mjξ

(
|xj − xi|

ε

) .

In addition to consistency when ε→ 0, it is furthermore possible to state stability and con-

vergence results with respect to a localized flat distance between varifolds (see [BLM17], thm

4.3 & 4.5). When dealing with smooth objects, expression (7) can be modified in various ways

preserving its consistency. In the rest of this section, we investigate several variants of approx-

imate mean curvatures and establish their consistency with the classical mean curvature for

smooth hypersurfaces in Proposition 3.3. While their is no significant benefit from considering

those variants for computing an approximate curvature on a smooth hypersurface, they lead to

numerical schemes for curvature flow behaving quite differently as shown in Section 5.3 and 6.

More precisely, replacing ΠS in (6) by some linear operator Π : Rn → Rn that may depend

on x0, x ∈ Rn and S ∈ Gd,n we take into account

(8) HΠ
ε (x0, V ) = − d

nε

∫
Rn×Gd,n

ρ′
(
|x− x0|

ε

)
Π(x− x0)

|x− x0|
dV (x, S)∫

Rn
ξ

(
|x− x0|

ε

)
d‖V ‖(x)

.

We will consider Π ∈ {ΠS , −2 ΠS⊥ , 2 Id}, also post-composed with a projection onto the normal

space at x0. Notice that Π = ΠS exactly corresponds to Definition 3.2.

Proposition 3.3 (Consistency for smooth varifolds). Assume d = n− 1 and let M ⊂ Rn be a

d–submanifold of class C2, whose mean curvature vector is denoted by H : M → Rn, and let

V = Hd|M ⊗ δTxM . Then, one obtains that

HΠ
ε (x0, V ) −−−→

ε→0
H(x0) .

for all x0 ∈M and for Π ∈
{

ΠS , −2ΠS⊥ , 2Id, Π(Tx0M)⊥ ◦ΠS, −2Π(Tx0M)⊥ ◦ΠS⊥ , 2Π(Tx0M)⊥

}
.

If M is at least C3 then
∣∣HΠ

ε (x0, V )−H(x0)
∣∣ = O(ε).

Note that a corresponding result holds true for any codimension greater or equal than 1.

Nevertheless, for the sake of simplicity and because we consider only the codimension 1 case in

our numerical applications we state and prove the result only for d = n− 1.

Before we prove this proposition in the general case, let us depict the simplest case of a

quadratic curve in R2. Taking into account nξ(s) = −sρ(s) we obtain

Hε(x0, V ) =

∫
M ξ(x−x0ε ) 1

|x−x0|2 Π(x− x0) dH1∫
M ξ(x−x0ε ) dH1

9



We define M = {x = (y,−ay2) | y ∈ R} and set x0 = 0. Then the normal on M is ν = (2ay,1)√
1+4a2y2

.

For Π = 2Id we get 1
|x|2 Πx = (2y/y2,−2a)

(1+a2y2)
and thus using the symmetry in y we get Hε(x0, V ) =

(0,−2a)+O(ε2). For Π = ΠTxM , one computes 1
|x|2 Πx = 1

y2+a2y4
[(y,−ay2)− 1

1+4a2y2
(4a2y3, ay2)]

which again implies Hε(x0, V ) = (0,−2a) + O(ε2). For the other choices of Π listed in the

proposition analoguous and easy computations lead to the same approximation result.

Proof. Up to an affine isometry, we can assume that x0 = 0 and Tx0M = Rn−1×{0}. We locally

parametrize M by u : U ⊂ Rn−1 → R of class C2 on an open set U containing 0. Consequently,

for all 0 < ε < ε0 6 1 with ε0 small enough,

M ∩B(0, ε) = {(y, u(y)) ∈ U × R : |y|2 + |u(y)|2 < ε2}

and M ∩B(0, ε) is the graph of u over the open set Vε = {y ∈ U : |y|2 + |u(y)|2 < ε2} ⊂ Rn−1.

Thereby we have for the mean curvature H(0) = trace(D2u(0)en) with D2u denoting the Hessian

of u. Taking into account

(9) u(y) =
1

2
D2u(0)y · y + o(|y|2) and ∇u(y) = D2u(0)y + o(|y|) ,

we have for the normal vector ν(y) to M at (y, u(y)) ∈M ∩B(0, ε),

(10) ν(y) =
(∇u(y),−1)√
1 + |∇u(y)|2

= (1 + o(|y|))
(
D2u(0)y + o(|y|)

−1

)
=

(
D2u(0)y
−1

)
+ o(|y|) .

By definition of the approximate mean curvature (8),

∣∣HΠ
ε (0, V )−H(0)

∣∣ =

∣∣∣∣∫
Vε
fε(y, u(y))

√
1 + |∇u(y)|2 dy

∣∣∣∣∫
Vε
ξ

(
|(y, u(y))|

ε

)√
1 + |∇u(y)|2 dy

(11)

with fε(z) =
−(n− 1)

nε
ρ′
(
|z|
ε

)
Πz

|z|
−H(0)ξ

(
|z|
ε

)
.

Up to decreasing ε0 we can assume D(0, ε0) := {y ∈ Rn−1 : |y| < ε0} ⊂ U . At first, we simplify

the nominator and denominator via expansion of the area element and slightly enlarging the

integration domain. Obviously, Vε ⊂ D(0, ε) and there exists κ > 0 such that for all y ∈ D(0, ε),

|u(y)| 6 κ|y|2. For y ∈ U and |y| < η with η = ε
√

1− κ2ε2 we obtain

|y|2 + |u(y)|2 < η2 + κ2η4 = ε2(1− κ2ε2) + κ2ε4(1− κ2ε2)2 6 ε2 ,

which implies that D(0, η) ⊂ Vε . Moreover, notice that for g bounded and continuous on D(0, ε),

and using D(0, η) ⊂ Vε ⊂ D(0, ε),

(12)

∣∣∣∣∣
∫
D(0,ε)

g −
∫
Vε
g

∣∣∣∣∣ 6 sup
D(0,ε)

|g| |D(0, ε)− Vε| 6 sup
D(0,ε)

|g| |D(0, ε)−D(0, η)|

= sup
D(0,ε)

|g|ωn−1ε
n−1

(
1− (1− (κε)2)

n−1
2

)
= O(εn+1) .

As ρ′(|z|) z
|z| = ∇(ρ(|z|)) is uniformly bounded and ‖Π‖ 6 2, we infer that the continuous map

εfε((y, u(y)))
√

1 + |∇u(y)|2 is uniformly bounded in D(0, ε). Now, we apply (12) and due to
10



√
1 + |∇u(y)|2 = 1 +O(|y|2) as well as ε−1

∫
D(0,ε)O(|y|2)dy = O(εn) deduce∫

Vε
fε((y, u(y))

√
1 + |∇u(y)|2 dy =

∫
D(0,ε)

fε((y, u(y))
√

1 + |∇u(y)|2 dy + ε−1O(εn+1)

=

∫
D(0,ε)

fε((y, u(y)) dy +O(εn) .(13)

Analogously, we get for the denominator∫
Vε
ξ

(
|(y, u(y))|

ε

)√
1 + |∇u(y)|2 dy =

∫
D(0,ε)

ξ

(
|(y, u(y))|

ε

)
dy +O(εn+1) .(14)

Next, we take into account the expansion of kernels involved in (11). Thanks to (9) we deduce

|z| = |(y, u(y))| =
(
|y|2 + |u(y)|2

) 1
2 =

(
|y|2 +O(|y|4)

) 1
2 = |y|(1+O(|y|2)) so that for y ∈ D(0, ε),

ξ

(
|z|
ε

)
= ξ

(
|y|
ε

+
|y|
ε
O(|y|2)

)
= ξ

(
|y|
ε

)
+
|y|
ε
O(|y|2) = ξ

(
|y|
ε

)
+O(|y|2) ,

1

|z|
ρ′
(
|z|
ε

)
=

1

|y|+O(|y|3)

(
ρ′
(
|y|
ε

)
+O(|y|2)

)
=

1

|y|
ρ′
(
|y|
ε

)
+O(|y|) .

It remains to expand Πz for z = (y, u(y)).

Case Π = 2Id: We directly obtains Πz = 2(y, u(y)) =

(
2y

D2u(0)y · y + o(|y|2)

)
.

Case Π = −2Π(TzM)⊥: Using the expansion of the normal ν(y) from (10) we obtain

Πz = −2(z · ν(y))ν(y)

= −2

((
y

1
2D

2u(0)y · y + o(|y|2)

)
·
(
D2u(0)y + o(|y|)
−1 + o(|y|)

)) (
D2u(0)y + o(|y|)
−1 + o(|y|)

)
= −

(
D2u(0)y · y + o(|y|2)

)(D2u(0)y + o(|y|)
−1 + o(|y|)

)
=

(
o(|y|2)

D2u(0)y · y + o(|y|2)

)
.

Case Π = ΠTzM : Taking into accout the estimates in the previous two cases we achieve

Πz =
1

2

(
2Id− 2Π(TzM)⊥

)
z =

(
y + o(|y|2)

D2u(0)y · y + o(|y|2)

)
.

To summarize, in all three cases, we obtain

(15) Πz · ei = λyi + o(|y|2) ∀i ∈ {1, . . . , n− 1} and Πz · en = D2u(0)y · y + o(|y|2) ,

with λ = 2 for Π = 2Id, λ = 0 for Π = −2Π(TzM)⊥ , and λ = 1 for Π = ΠTzM . Now, applying

the co-area formula to (13) and using the above kernel expansions for z = (y, u(y)) we get∫
D(0,ε)

ξ

(
|z|
ε

)
dy =

∫
D(0,ε)

ξ

(
|y|
ε

)
+O(|y|2) dy

=

∫ ε

r=0

(
ξ
(r
ε

)
+O(r2)

)
Hn−2 (∂D(0, r)) dr

= σn−2

∫ ε

r=0
ξ
(r
ε

)
rn−2 dr +O(εn+1) ,(16)

11



where σn−2 = (n − 1)ωn−1 is the area of the unit sphere in Rn−1. Using (15) we obtain for

i ∈ {1, . . . , n− 1},∫
D(0,ε)

1

|z|
ρ′
(
|z|
ε

)
Π(z) dy · ei =

∫
D(0,ε)

[
1

|y|
ρ

(
|y|
ε

)
+O(|y|)

]
(λyi + o(|y|2)) dy

=

∫ ε

r=0

(
1

r
ρ′
(r
ε

)
+O(r)

)∫
∂D(0,r)

(λyi + o(r2)) dHn−2 dr

=

∫ ε

r=0

(
1

r
ρ′
(r
ε

)
+O(r)

)
rn−2o(r2) dr =

∫ ε

r=0
o(rn−1)dr

= o(εn) ,(17)

where we used that

∫
∂D(0,r)

yi dHn−2 vanishes. Furthermore, using the kernel expansions and

(15) we achieve∫
D(0,ε)

1

|z|
ρ′
(
|z|
ε

)
Π(z) dy · en =

ε∫
r=0

(
1

r
ρ′
(r
ε

)
+O(r)

)∫
∂D(0,r)

(D2u(0)y · y + o(r2))dHn−2dr

=

ε∫
r=0

1

r
ρ′
(r
ε

)∫
∂D(0,r)

(D2u(0)y · y) dHn−2 dr + o(εn) .(18)

Next, we verify that

∫
∂D(0,r)

(D2u(0)y·y)dHn−2 = H(0)·en
σn−2

n− 1
rn. Indeed, let {v1, . . . , vn−1} be

an orthonormal basis of Rn−1 of eigenvectors of D2u(0) associated with eigenvalues κ1, . . . , κn−1.

Then decomposing y =

n−1∑
j=1

ŷjvi in B, we have D2u(0)y · y =

n−1∑
j=1

κj ŷ
2
j and by symmetry∫

∂D(0,r)
ŷ2
j dy =

1

n− 1

∫
∂D(0,r)

|y|2 dy =
σn−2

n− 1
rn. Hence, the claim follows from

(19)

∫
∂D(0,r)

(D2u(0)y · y) dHn−2 =
n−1∑
j=1

κj
σn−2

n− 1
rn =

σn−2

n− 1
rn traceD2u(0).

Let Π ∈ {ΠS , −2ΠS⊥ , 2Id}. Gathering the above estimates ((13) to (19)) and inserting them

in (11), we conclude∣∣HΠ
ε (0, V )−H(0)|

=

(∫ ε

r=0
ξ
(r
ε

)
rn−2 dr +O(εn)

)−1 ∣∣∣∣H(0)

∫ ε

r=0

(
1

n

r

ε
ρ′
(r
ε

)
+ ξ

(r
ε

))
rn−2 dr + o(εn−1)

∣∣∣∣
=

ε−(n−1)

Cξ +O(ε)

(
|H(0)| εn−1

∫ 1

s=0

(
1

n
sρ′(s) + ξ(s)

)
sn−2 ds+ o(εn−1)

)
= 0 + o(1) ,

with Cξ =

∫ 1

s=0
ξ(s)sn−2 ds and

∫ 1

s=0

(
1

n
sρ′(s) + ξ(s)

)
sn−2 ds = 0 by asumption (5).

As H(0) is othogonal to T0M , Π(T0M)⊥H(0) = H(0) and thus for Π ∈ {ΠS ,−2ΠS⊥ , 2Id} we

have ∣∣∣Π(T0M)⊥H
Π
ε (0, V )−H(0)

∣∣∣ = o(1) .

Finally, it is straightforward to verify that for M being at least C3 one obtains the improved

convergence estimate
∣∣HΠ

ε (0, V )−H(0)
∣∣ = O(ε). �
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In summary, consistency with the usual mean curvature holds for smooth varifolds (Propo-

sition 3.3). In the particular case Π = ΠS , consistency with the generalized mean curvature

holds almost everywhere (w.r.t. the mass measure) for rectifiable varifolds whose first variation

is a Radon measure ([BLM17]). In view of stating convergence of approximate mean curvature

Hε(·, Vi) computed on point cloud varifolds (Vi)i, when ε tends to 0 and Vi tends to a smooth

(or rectifiable with first variation Radon) varifold, we tackle the stability issue in next section.

4. Stability of the approximate mean curvature

We are now going to state a quite general stability result on the approximate mean curvature

introduced in (8). The stability will hold with respect to weak star convergence of varifolds,

assuming that the limit varifold has finite mass and is d–regular in the sense that its mass ‖V ‖ is

d–Ahlfors regular, i.e. there exists C0 > 1, r0 > 0 such that for all x ∈ spt ‖V ‖ and 0 < r 6 r0,

(20) C−1
0 rd 6 ‖V ‖(B(x, r)) 6 C0r

d .

Note that r0 can be chosen as large as needed : if condition (20) holds for some r0 > 0 then it

holds for any r1 > r0 possibly adapting the regularity constant C0.

Part of the result can be easily obtained by adapting the case Π = ΠS dealt with in [BLM17]

(Theorem 4.5), using the fact that the family of maps (indexed by x ∈ Rn)

(21) Φε
x : (y, S) 7→ 1

ε
ρ′
(
|y − x|
ε

)
Π(y − x)

|y − x|
= Π∇y

(
ρ

(
|y − x|
ε

))
for Π as in (8) is equi-Lipschitz with Lipschitz constant bounded by ε−2Lip(ρ′). The other

part of the result requires some work on weak star and weak convergence of finite Radon

measures as well as on the flat distance and Prokhorov distance that metrizes weak convergence

(see Proposition 4.4 below). The section is organized as follows, in a first part we introduce

some material on weak and weak star convergences as well as flat distance and Prokhorov

distance. In a second part we establish a general stability result (Proposition 4.6) holding in

the neighbourhood (with respect to aforementioned distances) of a d–regular varifold. Let us

emphasize that d–regularity of a Radon measure is a weak asumption when it comes to prove

stability for curvature estimates. In the third and last part, we put the results of the section

together and state a convergence theorem (Theorem 4.7 and Corollary 4.8) for the approximate

mean curvature (8) of a sequence of weak star converging varifods.

All Radon measures we consider in this section are nonnegative (and nonzero) Radon mea-

sures.

4.1. Prokhorov and flat distance.

Definition 4.1 (Weak and weak star convergence). Let (X, d) be a locally compact and sepa-

rable metric space (for us X = Rn or X = Rn ×Gd,n) and let (µi)i∈N, µ be Radon measures in

X. We say that

(i) (µi)i weak star converges to µ if for every ϕ : X → R continuous and compactly sup-

ported,

∫
ϕ dµi −−−→

i→∞

∫
ϕ dµ.

13



(ii) If in addition the measures (µi)i, µ are finite, we say that (µi)i weak converges to µ if for

every ϕ : X → R continuous and bounded,

∫
ϕ dµi −−−→

i→∞

∫
ϕ dµ.

Weak star convergence is also referred as vague convergence. By definition, weak convergence

implies weak star convergence, whereas the converse is not true in general: compactly supported

functions are blind to mass escaping at infinity or accumulating on the boundary. Consider for

instance µi = δi in R or µi = δ 1
i

in ]0, 1[. In both cases µi weak star converge to 0 but does not

weak converge.

A simple example of weak star convergence of varifolds is defined via a sequence of sawtooth

type polygonal curves Cρ of amplitude ρα for some α > 1 and frequency 1
2ρ oscillating around

the e1 axis in R2. Given these curves we define a sequence of varifolds Vρ via

Vρ(B) = (1 +ρ2(α−1))−
1
2H1({x ∈ Cρ | (x, TxCρ) ∈ B}) i.e. Vρ = (1 +ρ2(α−1))−

1
2H1
|Cρ ⊗ δTxCρ .

We denote by De1 ⊂ R2 the straight line along the e1 axis. For α > 1, the family (Vρ) converges

weak star for ρ tending to 0 to the varifold V = H1
De1
⊗ δspan(e1) that is the smooth varifold

associated with the straight line De1 . For α = 1 the weak star limit of the family of varifolds

is V = H1
De1
⊗ 1

2

(
δspan(e1+e2) + δspan(e1−e2)

)
, note that the measure in the Grassmannian is

constant along the e1 axis and consists of 2 atomic weights in the Grassmannian.

Note that finite Radon measures inherit the Banach structure of linear forms on Cc(X)

through Riesz representation theorem. However, the resulting total variation distance

dTV (µ, ν) = |µ− ν|(X) = sup

{∫
X
ϕ dµ−

∫
X
ϕ dν

∣∣∣∣ϕ ∈ Cc(X), sup |ϕ| 6 1

}
is much too strong with respect to compactness issues as well as approximation questions.

Indeed, if x, y ∈ X then whenever x 6= y, dTV (δx, δy) = 2 no matter how small d(x, y) is.

Therefore, we introduce the so-called flat distance and Prokhorov distance that behave more

consistently with weak and weak star topologies.

Definition 4.2 (Flat distance). Let (X, d) be a locally compact and separable metric space

(for us X = Rn or X = Rn ×Gd,n) and let µ, ν be Radon measures. We define the (localized)

bounded Lipschitz distance in the open set U ⊂ X:

∆U (µ, ν) := sup


∫
X
ϕdµ−

∫
X
ϕdν

∣∣∣∣∣∣
ϕ is 1–Lipschitz
supX |ϕ| 6 1
spt ϕ ⊂ U

 ,

in the case U = X, we simply denote ∆ = ∆X . Note that ∆ is a distance in the space of Radon

measures.

For balls of radius less than 1, supX |ϕ| 6 1 is automatically satisfied in Definition 4.2.

Definition 4.3 (Prokhorov distance). Let µ, ν be finite Radon measures in Rn we recall that

the Prokhorov distance is defined as

dP(µ, ν) := inf
{
δ > 0

∣∣∣ µ(A) 6 ν(Aδ) + δ and ν(A) 6 µ(Aδ) + δ, ∀A ⊂ X Borel set
}
,
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with Aδ =
⋃
x∈AB(x, δ). We introduce a slightly modified version of Prokhorov distance, for

d ∈ N∗,

ηd(µ, ν) := inf
{
δ > 0

∣∣∣ µ(B) 6 ν(Bδ) + δd and ν(B) 6 µ(Bδ) + δd, ∀B ⊂ Rn closed ball
}
.

As Radon measures we work with are d–dimensional, homogeneity considerations lead to

the modified Prokhorov distance ηd introduced in Definition 4.3. Notice that A
δ

= Aδ for a

Borel set A ⊂ Rn and then µ(A) 6 µ(A) 6 ν(Aδ) + δ and it is natural to restrict to closed

sets. Moreover, the restriction to balls is due to the convergence result we are interested in,

nevertheless, as µ and ν are Radon measures in Rn, if they coincide on balls then they are equal

(thanks to Radon-Nikodym differentiation theorem for Radon measures) and thus ηd defines a

distance among finite Radon measures. The triangular inequality is straightforward, using that

ad + bd 6 (a+ b)d for a, b > 0 and d a positive integer. The next proposition connects weak and

weak star topologies and topology induced by both Prokhorov and flat distances.

Proposition 4.4. Let (X, d) be a locally compact separable metric space (for us X = Rn or

X = Rn ×Gd,n) and let µ, (µi)i∈N be finite (nonzero) Radon measures.

(1) (µi)i weak star converges to µ and µi(X) −−−→
i→∞

µ(X) if and only if (µi) weak converges

to µ.

(2) If (µi)i weak converges to µ, then both ∆(µi, µ) −−−→
i→∞

0 and dP(µi, µ) −−−→
i→∞

0.

We refer to [AFP00][1.80] for the first point of Proposition 4.4 and [Bog07][Section 8.3] for the

second point, let us mention that considering µi
µi(X) and µ

µ(X) allows to work with probability

measures, for which the second point is more commonly stated. We now check that weak

convergence implies convergence for ηd, which is all we need in this work.

Lemma 4.5. Let µ, ν be finite Radon measures. Then

(22) ηd(µ, ν) 6

{
(∆(µ, ν))

1
d+1 if ∆(µ, ν) 6 1

(∆(µ, ν))
1
d if ∆(µ, ν) > 1

.

In particular, if (µi)i∈N is a sequence of finite Radon measures weakly converging to µ then

ηd(µi, µ) tends to 0 when i→∞.

Proof. The proof is standard, we give it for the sake of clarity. Let B = B(x, r) ⊂ Rn and let

ε > 0. We define hε : R+ → [0, 1] and ϕε : Rn → [0, 1] by

hε(t) =

 1 if 0 6 t 6 r
0 if t > r + ε
1− t−r

ε if r < t < r + ε
and for y ∈ Rn, ϕε(y) = hε(|y − x|)

so that ϕε is radial, ‖ϕε‖∞ 6 1 and ϕε is 1
ε–Lipschitz. We infer that∫

ϕε dµ−
∫
ϕε dν 6 max

(
1,

1

ε

)
∆(µ, ν) .

Consequently,

µ(B) 6
∫
ϕε dµ 6

∫
ϕε dν + max

(
1,

1

ε

)
∆(µ, ν) 6 ν(Bε) + max

(
1,

1

ε

)
∆(µ, ν) .
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If ∆(µ, ν) > 1, we can take ε = (∆(µ, ν))
1
d > 1 and we obtain ηd(µ, ν) 6 (∆(µ, ν))

1
d . If

∆(µ, ν) 6 1, we can take ε = (∆(µ, ν))
1
d+1 6 1 and we obtain ηd(µ, ν) 6 (∆(µ, ν))

1
d+1 .

The last part of the statement follows from second point of Proposition 4.4. �

4.2. A stability result. Unfortunately, stability of the approximate mean curvature does not

hold directly with respect to Prokhorov or flat distance but with respect to a combination δ(·, ·)
of both that is not a distance, defined in (23) below. Nevertheless, we prove in Theorem 4.7 (i)

that δ(V, Vi) tends to 0 when the sequence of varifolds (Vi)i weak star converge to a d–regular

varifold V . We define for V , W two d–varifolds in Rn,

(23) δ(V,W ) = sup

{
∆B(V,W )

(ηd(‖V ‖, ‖W‖) + diamB/2)d

∣∣∣∣∣B ⊂ Rn ball centered in spt ‖V ‖

}
.

Proposition 4.6. Let V be a d–regular varifold in Rn of finite mass, let x ∈ spt ‖V ‖ and let

ε ∈]0, 1[. Then for any d–varifold W and z ∈ Rn satisfying

(24) |x− z|+ ηd(‖V ‖, ‖W‖) 6 γε with γ =
1

8

(
1 + 2C

1
d
0 + C

2
d
0

) ,

where C0 > 1 is the d–regularity constant from (20), we have

(25)
∣∣HΠ

ε (z,W )−HΠ
ε (x, V )

∣∣ 6 C δ(V,W ) + |x− z|
ε2

,

where C > 0 only depends on d, n, C0, ξ and ρ.

Proof. We shorten notations η := ηd(‖V ‖, ‖W‖) and δ := δ(V,W ). The proof is a consequence

of the following estimates (see also [BLM17] Lemma 4.4): with B = B(x, ε+ |x− z|) and using

that ξε is 1
εn

Lip(ξ)
ε –Lipschitz, we obtain

εn
∣∣∣‖W‖ ∗ ξε(z)− ‖V ‖ ∗ ξε(x)

∣∣∣ 6 Lip(ξ)

ε
(∆B(‖W‖, ‖V ‖) + |x− z|‖V ‖ (B))

6
Lip(ξ)

ε

(
∆B(W,V ) + C0|x− z| (ε+ |x− z|)d

)
6

Lip(ξ)

ε

(
δ (ε+ |x− z|+ η)d + C0|x− z| (ε+ |x− z|)d

)
6 C0Lip(ξ)

δ + |x− z|
ε

(ε+ |x− z|+ η)d

6 C1
δ + |x− z|

ε
εd(26)

with C1 := 2dC0Lip(ξ) using ε+ |x−z|+η 6 2ε. We repeat the same argument with Φε
x defined

in (21), Lip(Φε
z) 6 ε

−2Lip(ρ′) and then∣∣∣∣∣
∫
Rn×Gd,n

Φε
z dW −

∫
Rn×Gd,n

Φε
x dV

∣∣∣∣∣ 6 Lip(ρ′)

ε2
(∆B(W,V ) + |x− z|‖V ‖ (B))

6 C2
δ + |x− z|

ε2
εd with C2 := 2dC0Lip(ρ′)(27)

Last but not least, we estimate εn‖W‖ ∗ ξε(z) from below thanks to the mass ‖V ‖ of rings of

radii comparable to ε. Thanks to the d–regularity asumption (20), it is possible to choose the

ratio of radii so that the ‖V ‖–mass of the ring is comparable to εd, and thus comparable to the
16



‖V ‖–mass of a ball of radius ε. Let us denote β = min

{
ξ(s)

∣∣∣∣ s ∈ [C−2/d
0
4 , 1

2

]}
> 0. We then

have, using (20) and the definition of η:

εn‖W‖ ∗ ξε(z) > β
(
‖W‖(B(z, ε2))− ‖W‖(B(z, C

−2/d
0

ε
4)
)

> β
([
‖V ‖(B(z, ε2 − η))− ηd

]
−
[
‖V ‖(B(z, C

−2/d
0

ε
4 + η)) + ηd

])
> β

(
‖V ‖(B(x, ε2 − (η + |x− z|)))− ‖V ‖(B(x,C

−2/d
0

ε
4 + (η + |x− z|)))− 2ηd

)
> β

(
C−1

0 2−d(ε− 2(η + |x− z|))d − C02−d
(
C
−2/d
0

ε

2
+ 2(η + |x− z|)

)d
− 2ηd

)
> βC−1

0 2−d
(

(ε− 2(η + |x− z|))d − (
ε

2
+ 2C

2/d
0 (η + |x− z|))d − (2(2C0)1/dη)d

)
︸ ︷︷ ︸

=:A

.

Using once again that ad + bd 6 (a+ b)d for a, b > 0 we estimate A as follows:

A > (ε− 2(η + |x− z|))d −
(ε

2
+ 2C

2/d
0 (η + |x− z|) + 2(2C0)1/dη

)d
and then using that for a > b > 0, ad − bd > (a − b)ad−1 with a = ε − 2(η + |x − z|) and

b = ε
2 + 2C

2/d
0 (η + |x− z|) + 2(2C0)1/dη, we get

A >
1

2

(
ε− 4(1 + (2C0)1/d + C

2/d
0 )(η + |x− z|)

)
(ε− 2(η + |x− z|))d−1︸ ︷︷ ︸

> 1
2( ε2)

d
by asumption in (24)

.

We conclude that

(28) εn‖W‖ ∗ ξε(z) > C−1
3 εd with C3 = β−1C022d+1

We similarly have

(29) εn‖V ‖ ∗ ξε(x) > C−1
3 εd .

Eventually, for Π as in (8) and using ‖Π‖ 6 2 and (20),∣∣∣∣∫ Φε
xdV

∣∣∣∣ 6 ∫
B(x,ε)×Gd,n

1

ε

∣∣∣∣ρ′( |y − x|ε

)
Π(y − x)

|y − x|

∣∣∣∣ dV (y, S) 6
2

ε
‖ρ′‖∞‖V ‖(B(x, ε))

6
2

ε
‖ρ′‖∞C0ε

d 6 C4ε
d−1 with C4 := 2C0‖ρ′‖∞(30)

We combine (26), (27), (28), (29) and (30) so that∣∣HΠ
ε (z,W )−HΠ

ε (x, V )
∣∣ =

∣∣∣∣ ∫
Φε
z dW

εn‖W‖ ∗ ξε(z)
−

∫
Φε
x dV

εn‖V ‖ ∗ ξε(x)

∣∣∣∣
6

1

εn‖W‖ ∗ ξε(z)

(∣∣∣∣∫ Φε
z dW −

∫
Φε
x dV

∣∣∣∣
+

∣∣∣∣∫ Φε
xdV

∣∣∣∣
εn‖V ‖ ∗ ξε(x)

εn
∣∣∣‖W‖ ∗ ξε(z)− ‖V ‖ ∗ ξε(x)

∣∣∣)

6 C3ε
−d
(
C2
δ + |x− z|

ε2
εd + C3ε

−dC4ε
d−1C1

δ + |x− z|
ε

εd
)

6 C3 (C2 + C1C3C4)
δ + |x− z|

ε2
,
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and C = C3 (C2 + C1C3C4) > 1 is then a constant depending on d, n, C0, ρ and ξ and in

particular uniform w.r.t. x. �

In order to establish convergence of approximate mean curvature under weak star convergence

of varifolds, it remains to prove that δ(V, Vi) tends to 0 when Vi weak star converges to V , which

is the key point of the end of the section.

4.3. Convergence of approximate mean curvature. Let us transfer the measure setting

introduced in Section 4.1 to our varifolds framework X = Rn × Gd,n. For a d–varifold V ,

the total variation is V (X) = V (Rn × Gd,n) = ‖V ‖(Rn). Let (Vi)i∈N, V be d–varifolds such

that (Vi)i weak star converges to V , with ‖V ‖(Rn) < +∞ and with support contained in a

fixed compact K × Gd,n ⊂ Rn × Gd,n. Then, ‖Vi‖ weak star converges to ‖V ‖ and moreover

‖Vi‖(Rn) → ‖V ‖(Rn). Indeed, ‖V ‖(Rn) 6 lim infi→∞ ‖Vi‖(Rn) by lower semi continuity of

total variation. And in addition, as all Vi are supported in the same compact set K ×Gd,n, we

have that

lim sup
i→∞

‖Vi‖(Rn) = lim sup
i→∞

Vi(K ×Gd,n) 6 V (K ×Gd,n) = ‖V ‖(Rn) ,

hence limi→∞ ‖Vi‖(Rn) = ‖V ‖(Rn) < +∞. Consequenlty, thanks to Proposition 4.4, (Vi)i

(resp. (‖Vi‖)i) weak converges to V (resp. ‖V ‖) and both

(31) sup
B⊂Rn ball

∆B(V, Vi) 6 ∆(V, Vi) −−→
i∞

0 and ηd(‖Vi‖, ‖V ‖) −−→
i∞

0 hold.

Theorem 4.7. Let V be a d–regular varifold in Rn with regularity constant C0 > 1 in (20)

and assume ‖V ‖(Rn) < ∞. Let (Vi)i be a sequence of d–varifolds weak star converging to V .

Assume that there exists a compact set K ⊂ Rn such that sptVi ⊂ K ×Gd,n for all i. Then,

(i) setting di := δ(V, Vi) (δ has been defined in (23)) we have

(32) di → 0 for i→∞ ;

(ii) setting ηi := ηd(‖V ‖, ‖Vi‖), there exists a constant C > 0 depending only on d, n, C0,

ξ and ρ such that: if x ∈ spt ‖V ‖ and (zi)i ⊂ Rn converges to x, then for any sequence

(εi)i ⊂]0, 1[ tending to 0 and satisfying

(33) |x− zi|+ ηi 6 γεi , for γ =
(

8(1 + (2C0)1/d + C
2/d
0 )

)−1

we have

(34)
∣∣HΠ

εi(zi, Vi)−H
Π
εi(x, V )

∣∣ 6 Cdi + |x− zi|
ε2
i

.

Note that (ii) directly follows from Proposition 4.6, and (i) again holds under the flexible

asumption that V is d–regular in the sense of (20).

Proof. Proof of (i): We first show that di → 0.

As varifolds are supported in the same compact set K ×Gd,n, we have (31), i.e.

− (Vi)i weak converges to V and the flat distance ∆(V, Vi) tends to 0, thus

sup
B⊂Rn ball

∆B(V, Vi) 6 ∆(V, Vi) −−−→
i→∞

0 ,
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− (‖Vi‖)i weak converge to ‖V ‖ and both ∆(‖Vi‖, ‖V ‖) −−−→
i→∞

0 and ηi := ηd(‖Vi‖, ‖V ‖) −−−→
i→∞

0.

Let us argue by contradiction and, up to extraction of a subsequence, assume that ∃δ̄ > 0 such

that ∀i ∈ N, di > δ̄. By definition of di, there is a sequence of balls (Bi)i ⊂ Rn, Bi = B(xi, ri)

with xi ∈ spt ‖V ‖ and ri > 0, such that for all i,

∆Bi(V, Vi) > δ̄(ri + ηi)
d .

And we already know that ∆Bi(Vi, V ) 6 ∆(V, Vi) −−−→
i→∞

0, thus (ri + ηi)
d must tend to 0 as

well, and ηi already tends to 0 so that we eventually conclude that ri −−−→
i→∞

0.

Now, from the definition of ∆Bi , ∆Bi(V, Vi) > δ̄(ri + ηi)
d implies that there exists a sequence of

1–Lipschitz functions (ϕi)i ∈ C(Rn×Gd,n) with sptϕi ⊂ Bi, ‖ϕi‖∞ 6 1 and such that for all i,

(35)

∣∣∣∣∣
∫
Bi×Gd,n

ϕi dVi −
∫
Bi×Gd,n

ϕi dV

∣∣∣∣∣ > δ̄(ri + ηi)
d .

Applying Ascoli compactness theorem in C(K × Gd,n), up to extracting a subsequence, there

exists a continuous function ϕ ∈ C(K ×Gd,n) such that ϕi −−−→
i→∞

ϕ uniformly in K ×Gd,n.

It is not difficult to see that ϕ = 0. Indeed, let us consider

X = {y ∈ K : |ϕ(y)| > 0} .

Let x ∈ X, then ∃N = Nx ∈ N such that for all i > N , |ϕi(x)| > 0 and thus x ∈ Bi. Therefore,

|x−xi| 6 ri −−−→
i→∞

0 and thus, (xi)i converges to x. Consequently X contains at most one point

and on the other hand X is open by continuity of ϕ so that X = ∅.
Coming back to (35) we first get by definition of ηi that ‖Vi‖(Bi) 6 ‖V ‖(Bηi

i ) + (ηi)
d and then

by (20)

δ̄(ri + ηi)
d < sup

K×Gd,n
|ϕi| (‖Vi‖(Bi) + ‖V ‖(Bi)) 6

(
C0(ri + ηi)

d + (ηi)
d + C0(ri)

d
)

sup
K×Gd,n

|ϕi|

6 2C0(ri + ηi)
d sup
K×Gd,n

|ϕi| .

It follows that, 0 < δ̄ <
2C0(ri + ηi)

d

(ri + ηi)d
sup

K×Gd,n
|ϕi| 6 2C0 sup

K×Gd,n
|ϕi| leading to a contradiction

since supK×Gd,n |ϕi| −−−→i→∞
supK×Gd,n |ϕ| = 0.

Proof of (ii): apply Proposition 4.6 with W = Vi. �

Eventually combining consistency (Proposition 3.3) and stability (Theorem 4.7) we obtain

the convergence of the approximate mean curvature. The following result (Corollary 4.8) is a

particular case where strong regularity of the limit varifold ensures that asumptions of both

consistency and stability are fullfilled. However, the C3 regularity asumption is stronger than

necesary and more general results essentially require to check that Proposition 3.3 and stability

Theorem 4.7 apply.

Corollary 4.8 (Convergence). Let V be a d–varifold associated with a compact d–submanifold

M ⊂ Rn without boundary of class C3. Let (Vi)i be a sequence of d–varifolds weak star

converging to V . Assume that there exists a compact set K ⊂ Rn such that sptVi ⊂ K ×Gd,n
for all i. Then, define di = δ(V, Vi) (as in (23)) and let x ∈M , (zi)i ⊂ Rn such that |x−zi| −→ 0,
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for any sequence (εi)i ⊂ (0, 1) tending to 0 and satisfying |x − zi| + ηd(‖V ‖, ‖Vi‖) = o(εi) we

have ∣∣HΠ
εi(zi, Vi)−H(x, V )

∣∣ = O

(
di + |x− zi|

ε2
i

)
+O(εi)

−−−→
i→∞

0 as soon as
√
di + |x− zi| = o(εi) .

Proof. As M is assumed to be compact without boundary and of class C2, then ∃C0 > 1 such

that for all x ∈M and 0 < r 6 diamM ,

C−1
0 rd 6 ‖V ‖(B(x, r)) = Hd(M ∩B(x, r)) 6 C0r

d .

Applying Theorem 4.7 and Proposition 3.3 to∣∣HΠ
εi(zi, Vi)−H(x, V )

∣∣ 6 ∣∣HΠ
εi(zi, Vi)−H

Π
εi(x, V )

∣∣+
∣∣HΠ

εi(x, V )−H(x, V )
∣∣

concludes the proof. �

In the case of a point cloud varifold V =
∑N

i=1miδ(xi,Pi), and for

(36) Π = Πij ∈ {ΠPj , −2ΠP⊥j
, 2 Id, ΠP⊥i

◦ΠPj , −2ΠP⊥i
◦ΠP⊥j

, 2ΠP⊥j
}

we rewrite the approximate mean curvature

(37) HΠ
ε (xi, V ) = −d

n

1

ε

N∑
j=1

mjρ
′
(
|xj − xi|

ε

)
Πij

(
xj − xi
|xj − xi|

)
N∑
j=1

mjξ

(
|xj − xi|

ε

) .

Proposition 3.3 leaves us with at least 6 possible choices for the definition of an approximate

mean curvature, more or less equivalently reasonable in the continuous smooth case. Our

numerical experiments in Section 6 indicate that those formulas can behave very differently

when used in the context of a time discretization for the simulation of mean curvature flows.

Remark 4.9 (k–nearest neighbours). Notice that in the use of formula (37), it is also possible

to prescribe the number k of nearest points to be considered and infer ε so that the support

of ρ
(
|· −xi|
ε

)
exactly contains xi plus k other points. It is more convenient to fix the number

of nearest points in numerical simulations, especially for point clouds that are not uniformly

sampled.

5. Mean curvature motion and comparison principles

5.1. Computation of masses and directions for point cloud varifolds. Before we discuss

the actual time discretization let us detail how we derive masses and directions from positions.

In the case of a smooth varifold V = Hd|M ⊗ δTxM associated with a d–submanifold M ⊂ Rn,

the tangent plane and the varifold are completely determined by the knowledge of M . In the

case of a point cloud varifold, there is no unique choice of masses {mi}Ni=1 and sets of directions

{Pi}Ni=1. Here, we will follow standard approaches. The ansatz to define the masses mi is as

follows. We assume that the positions {xi}i are close to some d–submanifold M and we want to

define masses {mi}i such that the resulting Radon measures µ :=
∑N

i=1miδxi and ν := Hd|M are
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close in the sense of measures. To this end, we regularize µ and ν via convolution. I.e. we define

λδ(x) = δ−nλ(|x|/δ) for λ : R → R nonnegative, even, and compactly supported in [−1, 1].

Then we renormalize the regularized µ by the regularized ν in the sense that

mi =
ν ∗ λδ(xi)
µ ∗ λδ(xi)

Unfortunately, M and thus ν are not known and we replace δnν ∗ λδ(xi) with its first order

approximation Cλδ
d with Cλ =

∫
Rd λ(|y|) dy = σd−1

∫ 1
s=0 λ(s)sd−1 ds being the volume weighted

by λ of the unit ball in Rd. From this we deduce for the masses

mi =
Cλδ

d

N∑
j=1

λ

(
|xj − xi|

δ

) .

To the best of our knowledge, there is unfortunately no general result of convergence of such

estimators, assuming for instance a control of the Hausdorff distance between M and {xi}i and

asking for {mi}i ensuring that µ and ν are close in flat distance or in Wasserstein type distance.

In our numerical experiments, we will consider either λ smooth and compactly supported or

λ = χ]−1,1[ which implies

mi =
ωdδ

d

kδ
with kδ = card {j ∈ {1, . . . , N} : |xj − xi| < δ} .

As it is usually done, sets of directions {Pi}i are computed through a local weighted linear

regression. We fix a further nonnegative and even profile kernel ζ : R→ R supported in ]− 1, 1[

and a sufficiently large parameter σ > 0 and define, based on a σ–neighbourhood of some point

xi containing kσ points, a center of mass

x̄ =
1

kσ

N∑
j=1

χ]−1,1[

(
|xj − xi|

σ

)
xj

of the points σ–close to the point xi. Furthermore, with the notation x = (x(1), . . . , x(n)) for

the n–components of x ∈ Rn, we compute the n by n covariance matrix M i = (M i
kl)k,l=1,...n of

coefficient (k, l):

M i
kl =

N∑
j=1

ζ

(
|xj − xi|

σ

)(
x

(k)
j − x̄

(k)
)(

x
(l)
j − x̄

(l)
)
.

The matrix M i is symmetric and positive semi-definite. The d eigenvectors associated with

the d highest eigenvalues provide a basis of an approximate tangent space Pi and the (n − d)

eigenvectors corresponding to the (n−d) smallest eigenvalues provide a basis of an approximate

normal space P⊥i . When using a smooth profile ζ, this way of computing tangent plane ensures

its spatial regularity. In our numerical experiments, we have chosen ζ = ξ smooth and compactly

supported in ] − 1, 1[. As pointed out in Remark 4.9 concerning ε, for practical reasons it is

advisable to fix (kε, kσ, kδ) and to define (ε, σ, δ) accordingly (as the radius of the smallest ball

containing the right number of nearest points), in this case (ε, σ, δ) vary, depending on the

sampling of the point cloud. This is what we finally have used in the applications.
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5.2. Time continuous mean curvature motion and comparison principles. Now, we

are in the position to formulate mean curvature motion for point cloud varifolds. More precisely,

given a point cloud d–varifold V =
∑

i=1 ...,N miδ(xi,Pi) in Rn, we consider the following system

of ordinary differential equations:

Find a family of varifolds (V (t))t>0 with

V (t) =

N∑
i=1

miδ(xi(t),Pi(X(t))) and X(t) = (x1(t), . . . , xN (t)) ∈ RnN

such that

(38) d
dtxi(t) = HΠ

ε (xi(t), V (t))

for prescribed initial data V (0) = V and i = 1 . . . N . Here, mi(X(t)) and Pi(X(t)) are computed

from the positions as functions of neighbouring positions (see the beginning of the current

section) while HΠ
ε is defined in (37). Thus, the evolution equation turns into

(39) d
dtxi(t) =

1

ε

N∑
j=1

ωij(t)Πij(t) (xj(t)− xi(t)) , i = 1 . . . N .

with

ωij(t) = −d
n

mj(t)ρ
′
(
|xj(t)− xi(t)|

ε

)
1

|xj(t)− xi(t)|
N∑
l=1

ml(t)ξ

(
|xl(t)− xi(t)|

ε

)
for i 6= j and ωkii = 0, where mi(t) = mi(X(t)) denotes the masses at time t. We observe that

ωij(t) > 0 since ρ is nonincreasing in [0, 1] and ξ is positive in ]0, 1[. As a first consequence of

this rewritten evolution problem we obtain the following comparison result which establishes

planar barriers for the flow.

Proposition 5.1 (planar barrier). Let (X(t))06t<T be a family of point clouds evolving ac-

cording to the flow defined in (39) up to some time T ∈]0,+∞]. Suppose that

(i) the initial point cloud X(0) = {xi(0)}Ni=1 ⊂ Rn fulfills xi(0) · ν 6 µ for i = 1 . . . N with

ν ∈ Rn, µ ∈ R,

(ii) for all 0 6 t < T , if xi(t) is a point on the boundary of the convex hull of X(t) then for

all points xj(t) such that |xj(t) − xi(t)| < ε, the vector Πij(t)(xj(t) − xi(t)) at xi(t) is

pointing inside the convex hull of X(t).

Then independently of the choices of masses mi(t) anf for all 0 6 t < T ,

xi(t) · ν 6 µ, for all i = 1 . . . N .

Proof. Assume that the point cloud X(t) is touching the plane {x ∈ Rn |x · ν = µ} at time

t > 0. Consider any xi(t) with xi(t) · ν = µ. Then, our assumption ensures that d
dtxi(t) · ν 6 0

and X(t) will not penetrate the plane. �

For Πij = 2 Id the assumption in the proposition is obviously fulfilled and for one of the

choices Πij ∈ {−2ΠP⊥j
, −2ΠP⊥i

◦ΠP⊥j
, 2ΠP⊥j

} this assumption appears to be a useful constraint
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to define {Pi}i=1,...N . For Πij ∈ {ΠPj , ΠP⊥i
◦ ΠPj} the assumption will fail in general for most

practical choices of the Pi. In fact, in this case the verification of a planar barrier depends in a

subtle way on the weights ωij .

Next, let us consider a spherical comparison principle. A sphere of radius R0 around a center

point x ∈ Rn stay spherical under mean curvature motion with radius R(t) =
√

(R0)2 − 2dt and

surfaces inside the initial sphere stay inside the evolving spheres until they become singular, e.g.

at the extinction time (see [Eck04] Proposition 3.1 and Remark 4.10 for a measure theoretic

version due to Brakke). In what follows, we will here study a discrete counter part of this

comparison principle in case of point cloud varifolds.

Proposition 5.2 (sphere comparison principle). For point cloud X0 = {x0
i }Ni=1 ⊂ Rn and z ∈

Rn define R0 = maxi=1,...,N |x0
i −z| and assume that (X(t))06t<T satisfies (38) with X(0) = X0.

Then R(t) = maxi=1,...,N |xi(t)− z| fulfills

R(t) 6

√
(R0)2 − 2d

∫ t

0
c(s)ds

with

(40)

c(t) = min

{
Πij(t)(xi(t)− xj(t)) · (xi(t)− z)

|xi(t)− xj(t)|2

∣∣∣∣ i ∈ {1, . . . , N}, |xi(t)− z| = R(t) and
j ∈ {1, . . . , N}, 0 < |xi(t)− xj(t)| < ε

}
.

Proof. Without any restriction assume z = 0 and choose any xi(t) with R(t) = |xi(t)|. Multi-

plying (39) with xi(t) we obtain

1
2

d
dt |xi(t)|

2 = d
dtxi(t) · xi(t) =

1

ε

N∑
j=1

ωij(t)Πij(t) (xj(t)− xi(t)) · xi(t)

6 −c(t)
ε

N∑
j=1

ωij(t)|xi(t)− xj(t)|2

=
c(t)d

n

N∑
j=1

mj(t)ρ
′
(
|xj(t)− xi(t)|

ε

)
|xj(t)− xi(t)|

ε
N∑
l=1

ml(t)ξ

(
|xl(t)− xi(t)|

ε

) 6 −c(t)d ,

where we have used nξ(s) = −sρ′(s) from (5). Thus, we obtain R(t)2 6 (R0)2 − 2d
∫ t

0 c(s)ds,

which proves the claim. �

For Πij = 2 Id, the constant in (44) is c(t) = 1 for all t and thus the conclusion of Propo-

sition 5.4 recovers the classical spherical comparison principle R(t) 6
√

(R0)2 − 2dt. In-

deed, dropping the dependence on time and fixing i and j according to (40) and so that

|xj − z| 6 |xi − z| = R we then obtain

(xi−xj)·(xi−z) = |xi−z|2−(xj−z)·(xi−z) > 1
2 |xi−z|

2−(xj−z)·(xi−z)+ 1
2 |xj−z|

2 = 1
2 |xi−xj |

2.

Unfortunately, regarding to other choices for Πij , c(t) strongly depends on the computation of

normals and could even be negative.
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5.3. Time discrete curvature flow. Let us now proceed with a time discretization of (38). It

is well–known, for parametric mean curvature flows for instance, that explicit time discretization

implies a restrictive stability condition, imposing small time steps. A common solution is then

to consider implicit or partially implicit time discretizations. Let us consider a time step τ > 0

and approximate the solution xi(tk) at a discrete time tk = kτ using the adopted notation

mk
i = mi(X

k), P ki = Pi(X
k), Πk

ij = Πij(P
k
i , P

k
j ) as in (36),

Xk = (xki )i=1...N ∈ RnN and V k =

N∑
i=1

mk
i δ(xki ,P

k
i ) .

A first natural choice is the implicit scheme (actually implicit with respect to positions Xk but

explicit with respect to masses and sets of directions):

xk+1
i = xki + τHΠ

ε (xk+1
i , V̂ k) with V̂ k =

N∑
i=1

mk
i δ(xk+1

i ,Pki ),(41)

V k+1 =
N∑
i=1

mk+1
i δ(xk+1

i ,Pk+1
i ),(42)

where in (42) the updated masses mk+1
i and tangent directions P k+1

i are computed from the

new positions Xk+1. In other words, the positions Xk+1 = (xk+1
i )i=1...N ∈ RnN must satisfy

the following equations for i = 1 . . . N

(43) xk+1
i = xki +

τ

ε

N∑
j=1

ωk+1
ij Πk

ij

(
xk+1
j − xk+1

i

)
with

ωkij = −d
n

mk
j ρ
′

(
|xkj − xki |

ε

)
1

|xkj − xki |
N∑
l=1

mk
l ξ

(
|xkl − xki |

ε

)
for i 6= j, and ωkii = 0. As for the continuous counterpart ωkij > 0. At first, we obtain as in the

time continuous case a comparison principle with planar barriers for the flow.

Proposition 5.3 (planar barrier in the time discrete case). Suppose that a sequence of point

cloud varifolds (Vk)k is solution of the implicit scheme (41). In addition,

(1) assume that the initial points X0 = {x0
i }Ni=1 ⊂ Rn fulfill x0

i · ν 6 µ for i = 1 . . . N with

ν ∈ Rn, µ ∈ R,

(2) for all k, if xki is a point on the boundary of the convex hull of Xk, then for points xkj

such that |xkj − xki | < ε assume (implicitly) that Πk
ij(x

k+1
j − xk+1

i ) at xk+1
i is pointing

inside the convex hull of Xk+1.

Then independently of the choices of masses mk
i

xki · ν 6 µ, for all i = 1 . . . N

and for all k such that V k is defined.
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Proof. The proof is analoguous to the proof of Proposition 5.1 in the time continuous case, now

considering i ∈ {1, . . . N} with xk+1
i · ν = maxj∈{1,...N} x

k+1
j · ν. �

Next, we study a fully discrete version of the sphere comparison property (cf. Proposition 5.2).

Proposition 5.4 (time discrete sphere comparison principle). Suppose that a point cloud

X0 = {x0
i }Ni=1 ⊂ Rn is contained in a ball B0 of radius R0 and centered at z and assume that

(V k)k is a sequence of point cloud varifolds which are solutions of the implicit scheme (41).

For each k > 1, define Rk = max
i∈{1,...,N}

|xki − z| and

(44) ck = min

{
Πk
ij(x

k+1
i − xk+1

j )(xk+1
i − z)

|xk+1
i − xk+1

j |2

∣∣∣∣∣ i ∈ {1, . . . , N}, |xk+1
i − z| = Rk+1 and

j ∈ {1, . . . , N}, |xk+1
i − xk+1

j | < ε

}
.

Then, independently of the choices of masses, for all k such that V k is defined, the positions

{xkj }Nj=1 ⊂ Rn are contained in the ball of center z and radius
√

(R0)2 − 2dτ
∑k

l=1 c
k.

Let us remark, that in analogy to the time continuous case ck = 1 for Πij = 2 Id and hence

τ
∑k

l=1 c
k = tk.

Proof. Without loss of generality let z = 0. Assume that at time tk the point cloud Xk satisfies

maxj=1...N |xkj | 6 Rk. We choose i ∈ {1, . . . , N} such that |xk+1
i | = maxj∈{1,...N} |xk+1

j |. and

proceed in analogy to the proof of Proposition 5.2. Thereby, one obtains

|xk+1
i |2 = xki · xk+1

i +
τ

ε

N∑
j=1

ωk+1
i0j

Πk
ij(x

k+1
j − xk+1

i ) · xk+1
i(45)

6 |xki ||xk+1
i | − ck

τ

ε

N∑
j=1

ωk+1
i0j
|xk+1
j − xk+1

i |2(46)

= |xki ||xk+1
i | − dckτ 6 1

2 |x
k+1
i |2 + 1

2 |x
k
i |2 − dckτ .

This implies (Rk+1)2 = |xk+1
i |2 6 |xki |2 − 2ckdτ 6 (Rk)2 − 2ckdτ and thus establishes the

claim. �

However, for practical reasons, we rather propose a linearized version of the previous implicit

scheme (41) in which we choose V k as the geometric reference in the discrete evolution of the

kth time step and we introduce the following semi-implicit scheme

(47) xk+1
i = xki +

τ

ε

N∑
j=1

ωkijΠ
k
ij

(
xk+1
j − xk+1

i

)
which leads to a linear system to be solved in each time step. With Xk = (xk1, . . . , x

k
N ) ∈ RnN ,

we can rewrite this linear system as

(M − τ

ε
L)Xk+1 = MXk(48)

where M is a diagonal matrix of size (nN, nN) defined as

M =

 µ1In
. . .

µN In

 with µi =

N∑
l=1

mk
l ξ

(
|xkl − xki |

ε

)
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and L is a matrix of size (nN, nN), which we can see as a matrix of (N,N) blocks L(i,j) of size

(n, n). For a fixed i, the block L(i,j) is the null matrix if |xkj − xki | > ε and

L(i,j) = −d
n

mk
j

|xkj − xki |
ρ′

(
|xkj − xki |

ε

)
Πk
ij for j 6= i ,

L(i,i) = −
N∑

j=1,j 6=i
L(i,j) =

d

n

N∑
j=1

mk
j

|xkj − xki |
ρ′

(
|xkj − xki |

ε

)
Πk
ij .

where Πk
ij is the (n, n)–matrix corresponding to the linear operator Πk

ij . The matrix (M− τ
εL) is

strongly diagonal dominant and thus an M-matrix. Hence, the system (48) is uniquely solvable

and one obtains Xk+1 = (Id− τ
εM−1L)−1Xk.

6. Numerical Results

We perform numerical tests with the semi-implicit scheme (47). First we test its consistency

and robustness to white noise in the simple case of a circle evolving through curvature flow

(Section 6.1). The absence of singularities allows us to discard most choices for the projector

Πij in (36) and we carry on the study with Πij = 2ΠP⊥i
in Section 6.2. In particular, we observe

that the implicit assumption for the discrete sphere inclusion, though not proven in this case, is

satisfied in our numerical experiment (see Figure 4e). Next we focus in Section 6.3 on curvature

flows of curves with crossings and junctions, taking advantage of the flexibility with respect to

topological changes of point cloud representation. Our curvature flow is able to converge to

both Steiner trees spanning the four vertices of a square in Figure 8. Last, in Section 6.4, we

draw our attention to surfaces and recover the minimal cone spanning the edges of a tetraedron

in the limit of our mean curvature flow as well as a candidate minimal surface spanning the

edges of a cube, see Figures 9 and 10.

Remark 6.1 (Nearest neighbour graph and kd–tree structure). From a practical perspective,

we compute neighbourhoods thanks to a kd–tree structure that is computed with the library

Nanoflann [Nan]. Note that the knowledge of the nearest neighbour graph encodes information

that can be interpreted as a discrete counterpart to the local topology of the object. Comparing

with triangulated surface, it can be seen as the counterpart to the mesh connectivity information.

In fact, in case of triangular surfaces one can either move points and obtain a new mesh with

the same connectivity structure, or one can move points and remesh the set of points, which

is a computationally demanding operation but often necessary since moving points may create

overlaps or crossings in the mesh. In a point cloud, after moving the positions of the points,

one has the same choice: one can recompute the nearest neighbour graph or leave it unchanged.

As pointed out below, this will be useful to stabilize the point cloud evolution close to triple

points. Such operations are straightforward to handle in a kd–tree.

6.1. Evolution of circles. As already mentioned when we discussed sphere comparison prin-

ciple (see Section 5.2) a circle of initial radius R0 evolves into concentric circles of radius

R(t) =
√
R2

0 − 2t at time t under mean curvature flow. A first step in order to validate our

approach is to check this property on our scheme.
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(a) Πij = ΠPj ,
t = 0, 0.03, 0.06, 0.09, 0.12

(b) Πij = ΠP⊥
i

◦ ΠPj ,

t = 0, 0.03, 0.06, 0.09, 0.12

(c) Πij = 2ΠP⊥
i

,

t = 0, 0.03, 0.06, 0.09, 0.12

(d) Πij = 2Id,
t = 0, 0.03, 0.06, 0.09, 0.117

(e) Πij = −2ΠP⊥
j

,

t = 0, 0.02, 0.03, 0.12

(f) Πij = −2ΠP⊥
i

◦ ΠP⊥
j

,

t = 0, 0.01, 0.03, 0.12

Figure 1. Comparison of the results given by the semi-implicit scheme (47) for different choices
of operator Πij . The test is performed on a circle uniformly discretized with N = 400
points, the number of points for computing the mass is fixed to kδ = 3, the number
of points for the regression is fixed to kσ = 17 and the number of points for the
computation of curvature is fixed to kε = 15, the time step is τ = 0.1/N = 0.0005.
The numerical solutions and the exact solutions in black are represented at same times
t. Simulations are stopped then resulting in clutter due to noise amplification.

We start with a circle of radius R0 = 0.5 uniformly discretized with N points. In Figure 1, we

first perform a qualitative comparison of the behaviour of the scheme depending on the operator

Πij . In Figure 1e and 1f we observe strong instabilities after short time, while in Figure 1d,

instabilities appear after longer time. Consequently, we focus on projection operators tested in

Figure 1a, 1b and 1c, that is Πij ∈
{

ΠPj , ΠP⊥i
◦ΠPj , ΠP⊥i

}
.

As a second step to validate our approach, we then test the robustness with respect to white

noise: we introduce an initial white noise of standard deviation s on the circle of radius R0 = 0.5.

In Figure 2a, we observe tangential instabilities with agglomeration of points in very short

time. In Figure 2b, we observe that noise is not smoothed but transported, which is reasonable,

given that the initial projection onto Pj makes Πij = ΠP⊥i
◦ ΠPj blind to normal noise. As a

consequence of this non-smoothing effect, the speed of evolution is considerably slowed down.

In Figure 2c and 2d we observe that noise is smoothed in a few steps. The evolution is then

close to the exact one. This is further improved in Figure 2c and in Figure 2d with even higher
27



initial noise. From this first analysis, we conclude that the most robust choice among (36) is

Πij = 2ΠP⊥i
when dealing with discretization of smooth curves. We then carry on our study

with Πij = 2ΠP⊥i
.

(a) Πij = ΠPj ,
t = 0, 0.006,
s = 0.0125.

(b) Πij = ΠP⊥
i

◦ ΠPj ,

t = 0, 0.03, 0.06, 0.09,
0.12,
s = 0.0125.

(c) Πij = 2ΠP⊥
i

,

t = 0, 0.03, 0.06, 0.09,
0.12,
s = 0.0125.

(d) Πij = 2ΠP⊥
i

,

t = 0, 0.03, 0.06, 0.09,
0.12,
s = 0.0375.

Figure 2. Comparison of the results given by the semi-implicit scheme (47) for different choices
of operator Πij when adding white noise. The test is performed on circle uniformly
discretized with N = 400 points, the number of points for computing the mass is
fixed to kδ = 3, the number of points for the regression is fixed to kσ = 17 and the
number of points for the computation of curvature is fixed to kε = 15, the time step
is τ = 0.1/N = 0.0005. The numerical solutions and the exact (black line) solutions
are represented at same times t. To the initial circle is added a Gaussian noise with
standard deviation s = 5/N = 0.0125 in 2a–2c and s = 15/N = 0.0375 in 2d.

Next, we check the first order convergence in time. To that extend, we compute for the circle

evolution the relative mean error after a time T defined as

(49) e(T ) =
1

N

N∑
i=1

|R(T )− |xi(T )||
R(T )

with R(T ) =
√
R2

0 − 2T ,

for successively smaller time steps τ = 2−k/N , k ∈ {0, 1, . . . , 8}. The test is performed on a

uniformly discretized circle of radius R0 = 0.5 with N = 400 points, the number of points used

for the computation of masses is kδ = 3, of tangent directions is kσ = 17 and of curvatures is

kε = 15. The error e(T ) is computed at time T = 0.1 while the extinction time is Text = R2
0/2 =

0.125. In Figure 3a, we observe a convergence of first order in time in the case without noise

(blue curve labelled ”without noise”), while when adding an initial noise independent of τ , the

error eT decay stabilizes and grows (green curve labelled ”fixed noise”). So as to understand

the behaviour of eT in the case of noise, we perform the same experiment, but adding a white

noise of standard deviation s =
√

2−k5/N which is linked via N to the time step size τ = 2−k/N

that is s2 = (25/N)τ (red curve labelled ”adaptive noise”). We then retrieve the first order

convergence in time previously observed without noise. Notice that due to the lack of a Lipschitz

bound for the map t 7→ R(t) near the extinction time Text = 0.125, the error tends to explode

for times close to Text as it is pointed out in Figure 3b.

We eventually study the influence of the number of points kσ used for the regression and the

number of points kε used for the computation of the curvature on a circle uniformly discretized
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with N = 400 points. Due to the symmetry of the configuration, all choices happen to be

equivalent and we hence add an initial noise of standard deviation s = 5/N = 0.0125. The

number of points used to compute the mass is 3. We compute the mean error e(T ) (49)

obtained at time T = 0.1 for a time step τ = 2−5/N = 7.8125 10−5. In each box of Figure 3c,

the error e(T ) corresponding to (kσ, kε) is given. We observe that the number of points used

to compute curvature must be large enough (at least kε = 13 in this case) to obtain acceptable

errors. The choice of kσ appears to be less crutial and kσ = 7 seems to be already sufficiently

large.

10 5 10 4 10 310 4

10 3

10 2

10 1

without noise
fixed noise
adaptive noise

(a)

0.00 0.02 0.04 0.06 0.08 0.10 0.12
0.00

0.01

0.02

0.03

0.04

0.05

0.06

(b)

kσ \ kε 7 9 13 21 37
7 0.9 0.3 0.03 0.02 0.02
9 0.03 0.1 0.008 0.01 0.009
13 0.05 0.02 0.06 0.01 0.008
21 0.06 0.03 0.01 0.03 0.005
37 0.15 0.08 0.03 0.004 0.01

(c)

Figure 3. (a) Decay of the mean error (49) at time T = 0.1 when the time step τ ∈ {2−k/N :
k = 0, . . . , 8} is refined, N = 400. Black triangle indicates slope 1 in log–log scale.
(b) Error e(t) represented with respect to time t, for τ = 6.25 10−4, in red with initial
white noise (of standard deviation 1.25 10−3) and in blue without noise. (c) Error
e(0.1) for different numbers of points kσ used for computing tangent and kε used for
computing curvature.

6.2. Evolution of more general curves. In this section, we apply our scheme (47) with

Πij = ΠP⊥i
to a point cloud varifold V =

∑N
i=1miδxi ⊗ δPi associated to the discretization with

N points of the following parametrized curve:

x(t) = (r(t) cos t, r(t) sin t) with r(t) =
1

2

(
1 + r0 sin

(
6t+

π

2

))
, r0 = 0, 4 t ∈ [0, 2π[ .

The parameter interval is uniformly discretized so that for i ∈ {0, . . . , N − 1}, xi = x(2iπ/N),

the masses mi and tangents Pi are then computed from the positions. In Figure 4, we apply

our linear semi-implicit scheme (47) (for Πij = 2ΠP⊥i
) to V both with and without noise. The

test is performed with N = 400 points, the number of points for computing the masses is set

to kδ = 7, the number of points for the regression is kσ = 19 and the number of points for

the computation of curvature is kε = 25. We finally choose the time step τ = 1/N = 0.0025.

We compare the results to a reference solution computed thanks to a usual parametric mean

curvature flow ([Dzi91]) with a fine discretization and a time step τref = 5.10−8 = 10−5τ . We
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observe a consistent evolution in Figure 4(a) to 4(d), even when some noise is added to the initial

shape. In Figure 4(e), we check that the discrete sphere inclusion, that was only established for

the fully implicit scheme (see Proposition 5.4), is however satisfied in our experiment.

(a) time t = 0 (b) time t = 0.01

(c) time t = 0.025 (d) time t = 0.05

0 0.01 0.025 0.05 0.1
t

0

0.5

0.7

R(
t)

ref. sol.
no noise
noise

(e)

Figure 4. Left figure (a) to (d): Blue and red point clouds are the results given by our scheme
without adding noise for the blue point cloud and with white noise of standard devi-
ation 5/N for the red point cloud. The black curve is the reference solution. Right
figure (e): we compute and represent the minimal radius R(t) of the circle (centered
at 0) and including the points at time t, keeping the same parameters and color code
as in the left figure. We moreover add grey dashed lines corresponding to the graph of
t 7→

√
R(t0)− 2(t− t0) for t0 ∈ {0, 0.01, 0.025, 0.05} and R(t0) is the radius obtained

for the initially noisy shape (red dots).

6.3. Singular evolutions in the plane. As we are dealing with point clouds, it is very easy to

deal with changes of topologies, especially triple points arising when curves merge are quite nat-

urally captured. Moreover, we know from [BLM17] that the approximate curvature HΠ(x0, V )

defined in (8) is not only consistent in the smooth context, but as well in presence of singular

curvature when Π = ΠS (i.e. Πij = ΠPj ). Even though there is no such rigorous consistency

property for Π ∈ {Π(Tx0M)⊥ ◦ ΠS , 2Id, 2Π(Tx0M)⊥} (i.e. Πij ∈ {Π(Pi)⊥ ◦ ΠPj , 2Id, 2Π(Pi)⊥}), we

compare in Figure 5 the behaviour of those operators in the presence of a singularity. More

precisely, we consider a junction of three infinite half lines meeting at 0 and we focus on the

values of the approximate mean curvature computed in a neighbourhood of 0. The lines are uni-

formly discretized to define a point cloud varifold V with all masses mi equal and we associate

with each point its exact tangent direction Pi : one of the three possible directions (notice that

there is no point exactly at the junction so that Pi is well–defined). In the computation each

neighbourhood contains exactly 60 points, corresponding to a disk of radius ε ' 0.20 near the
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singular point 0. We plot the approximate mean curvature vector computed at each point and

the norm of this vector is color coded according to the colorbar on the right of each plot while

the arrows indicate the direction. Notice that the length of the arrows is rescaled to improve

the readability of the plot. The plot is centered at the singularity 0 and the viewing window is

scaled such that solely the 60 points closest to the singularity are visualized. In particular the

points that are outside do not interfer with the singularity in the computations. We recall that

the expected singular curvature of such a junction is −(u1 + u2 + u3)δ0 where u1, u2, u3 are the

unit vectors pointing in the directions of the half-lines (see Example 2.8).

In Figure 5(a)–(d), the three half-lines meet with 120 degrees angles, forming a triple point

having 0 generalized mean curvature (see computations in Example 2.8). We observe that pro-

jecting onto the normal P⊥i (Figure 5(b) and (c)) ensures that the approximate mean curvature

is 0 up to a very small error 10−11 while the error term (see maximal intensity on the colorbar)

is larger 10−3 in Figure 5(a) even in this simple situation. In Figure 5(d), there is a tangential

component attracting points to the junction point. Furthermore, the arrows are aligned with

the lines and point towards 0. In Figure 5(e)–(h), the three half-lines meet with different angles

and we expect some singular curvature to be observed, which can best be seen in Figure 5(e).

0.2 0.0 0.2

0.2

0.0

0.2

0.00.0

0.003

(a) Πij = ΠPj

0.2 0.0 0.2

0.2

0.0

0.2

0.0

2e-11

(b) Πij = ΠP⊥
i

◦ ΠPj

0.2 0.0 0.2

0.2

0.0

0.2

0.0

4e-11

(c) Πij = 2ΠP⊥
i

0.2 0.0 0.2

0.2

0.0

0.2

0.0

2.4

4.8

(d) Πij = 2Id

0.2 0.0 0.2

0.2

0.0

0.2

0.0

0.7

1.4

(e) Πij = ΠPj

0.2 0.0 0.2

0.2

0.0

0.2

0.0

0.7

1.3

(f) Πij = ΠP⊥
i

◦ ΠPj

0.2 0.0 0.2

0.2

0.0

0.2

0.0

1.7

3.3

(g) Πij = 2ΠP⊥
i

0.2 0.0 0.2

0.2

0.0

0.2

0.0

2.9

5.8

(h) Πij = 2Id

Figure 5. Computed mean curvature vector at junction point depending on the chosen projec-
tion operator.

Unfortunately, choosing Πij = ΠPj leads to strong unstabilities of the curvature flow as noted

previously, see Figure 2 and we carry on with Πij = 2ΠP⊥i
. It is then possible to perform mean

curvature flow even after the creation of singularities. We propose some examples in 2D of such

evolutions. In Figure 6, we perform a test on two crossing circles. We observe that both crossing

points split up into two triple points almost instantaneously. The different curve segments then

merge until they form a single circular curve, which then follows the usual evolution. In this

evolution, the circles are discretized with a total of N = 1000 points. The number of points

used for computing curvature is kε = 31, for the tangent is kσ = 15 and for the mass is kδ = 7.
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The time step is set to τ = 1/4N = 2.5 · 10−4. In Figure 7, we perform a similar test on three

crossing circles, which allows to observe several mergers and the formation of multiple triple

points. The circles are discretized with a total of N = 1200 points. The number of points used

for computing curvature is kε = 31, for the tangent is kσ = 15 and for the mass is kδ = 7. The

time step is set to τ = 1/2N ' 4.16 · 10−4. In Figure 7(g), a zoom is shown at time 0.3 to

provide a better visualization of the triple point configuration.

(a) time 0 (b) time 0.003 (c) time 0.03 (d) time 0.05 (e) time 0.07 (f) time 0.11

Figure 6. Evolution of two crossing circles under discrete curvature flow.

(a) time 0 (b) time 0.1 (c) time 0.2

(d) time 0.3 (e) time 0.4 (f) time 0.5

(g) time 0.3 (zoomed)

Figure 7. Evolution of three circles towards one circle under discrete curvature flow.

In Figure 8, we consider an initial configuration consisting of a square whose 4 corners are

kept fixed. Evolving this point cloud under curvature flow, we aim at recovering a shortest

path connecting the 4 corners, in the limit, usually called Steiner tree. There are 2 shortest

paths in this case, because of the symmetry of the configuration of the 4 points, we hence

compare our limit configuration to one of the two Steiner trees (plotted in black in each figure)

connecting the 4 corners. The experiment is designed as follows, the initial square is discretized

with N = 300 points. The number of points used for computing curvature is kε = 41 and for

computing mass kδ = 7. The number of points used for computing tangent is kσ = 11 in the
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first evolution (Figure 8(a)–(f)) and it is kσ = 15 in the second evolution (Figure 8(g)–(l)).

The time step is fixed to τ = 1
4N . In order to help connectedness to be preserved, we do not

recompute the nearest neighbour graph (i.e. the kd–tree structure, see Remark 6.1) at each

step, but only every 25 iterations. The point cloud is depicted at times 0, 0.1, 0.2, 0.3, 0.4 and

1 as indicated in the legend. The associated Steiner tree is outlined in black and we observe

that slight parameter changes may lead to the other Steiner tree. Let us mention here, that

specific modulations of the parameters, in particular a too large kernel size for the evaluation of

the curvature, eventually leads to a loss of connectedness of the point cloud and thus one ends

up with two segments joining two pairs of opposite corners or even worse break ups.

(a) time 0 (b) time 0.1 (c) time 0.2 (d) time 0.3 (e) time 0.4 (f) time 1

(g) time 0 (h) time 0.1 (i) time 0.2 (j) time 0.3 (k) time 0.4 (l) time 1

Figure 8. Evolution of a square whose corners are fixed to one (a)–(f) or the other (g)–(l)
Steiner tree connecting the 4 fixed corners.

6.4. Singular evolutions of surfaces. We now perform numerical tests in 3D: on a surface

leaning on the edges of tetrahedron and on the edges of a cube, and we evidence that, for some

parameters, we recover some well–known soap films in the limit of the mean curvature flow.

For the tetrahedron, we obtain a cone on the edges which is one of the three possible minimal

cones in R3 (see [Tay76]). For the cube we obtain a surface in Fig. 10 (i) with close to planar

facets connecting the edges of the cube with a square in the center. This reflects not only

experimentally observed soap films but also a theoretical result by Brakke [Bra91] which gives

a lower area competitor of the cone over the edges sharing the geometry of our numerical result

with slightly bended facets. It is known that mean curvature vector points is the direction to

choose in order to decrease area. Indeed, the mean curvature vector is the L2–gradient of the area

functional and varifolds generalized mean curvature relies on this characterization. Based on

that observation, when the mean curvature flow is well–defined it should yield a minimal surface

in the limit. However, when the flow creates singularities it is more complicated to analyse, also

on the computational side. For instance, triangulated surfaces are not well–adapted to handle

topology changes. Our discrete flow based on point cloud representation allows to observe the

evolution from an initial surface spanning the edges of the tetrahedron or the cube to one of
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the soap films spanning the same boundary. We insist that the discrete flow is automatic, once

the parameters are set, there is no further manual intervention. Note that for 2D surfaces,

creation of holes is an unwanted but succesfull strategy to decrease area while spanning the

same 1D boundary (the edges of the tetrahedron here). And in the same line, connecting the

edges with many very thin structures rather than a surface gives a lower area since lines have

zero area. While in 1D we only had to care about wether connectedness was preserved, in 2D

the topology is richer and the choice of parameters is crucial to discard, when possible, those

unwanted behaviours.

We now give the details of both numerical experiments, starting with the tetrahedron. We

begin with a point cloud discretizing the faces of a tetrahedron with N = 6052 points. The

corners of the tetrahedron 0, (0, 0, 1), (0, 1, 0) and (0, 0, 1) are fixed as well as the edge–points

(not moved at iterations). The number of points used for computing curvature is kε = 26,

tangent is kσ = 23 and mass is kδ = 17. In order to help topology to be preserved, we do not

recompute the kd–tree structure at each step, but only every 2 iterations. The time step is fixed

to τ = 0.005. The point cloud is depicted every 12 steps of the evolution as indicated in the

legend of Figure 9.

(a) Step 1 (b) Step 13 (c) Step 25

(d) Step 37 (e) Step 49 (f) Step 61

(g) Step 73 (h) Step 85 (i) Step 97

Figure 9. Different steps of the semi-linear scheme (47) performed on (the surface of) a tetra-
hedron whose edges are fixed, discretized with N = 6052 points and for a time–step
τ = 0.005. The norm of the approximate mean curvature vector is color coded on the
left and on the right a shaded visualization of the point clouds using square shaped
splats with proper point normals is shown.

We proceed similarly for the cube. The faces of a cube with side–length 1 are discretized

with a total of N = 18600 points. The number of points used for the computation of curvature
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is kε = 21, tangent is kσ = 23 and mass is kδ = 9. We do not recompute the kd–tree structure

at each step, but only every 50 iterations. The time step is fixed to τ = 0.01. The point cloud

is depicted every 400 steps of the evolution as indicated in the legend of Figure 10.

(a) Step 1 (b) Step 401 (c) Step 801

(d) Step 1201 (e) Step 1601 (f) Step 2001

(g) Step 2401 (h) Step 2701 (i) Step 2701 rotated

Figure 10. Different steps of the semi-linear scheme (47) performed on (the surface of) a cube
whose edges are fixed, discretized with N = 18600 points and for a time–step τ =
0.01. Again, the norm of the approximate mean curvature vector is color coded on
the left and on the right a shaded visualization of the point clouds using square
shaped splats with proper point normals is shown.
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