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Various types of brain activity, including motor, visual, and language, are accompanied by the propagation of periodic
waves of electric potential in the cortex, possibly providing the synchronization of the epicenters involved in these
activities. One example is cortical electrical activity propagating during sleep and described as traveling waves1. These
waves modulate cortical excitability as they progress. Clinically-related examples include cortical spreading depression
in which a wave of depolarization propagates in migraine but also in stroke, hemorrhage or traumatic brain injury2. Here
we consider the possible role of epicenters and explore a neural field model with two nonlinear integro-differential
equations for the distributions of activating and inhibiting signals. It is studied with symmetric connectivity functions
characterizing signal exchange between two populations of neurons, excitatory and inhibitory. Bifurcation analysis is
used to investigate the emergence of periodic traveling waves and of standing oscillations from the stationary, spatially
homogeneous solutions, and the stability of these solutions. Both types of solutions can be started by local oscillations
indicating a possible role of epicenters in the initiation of wave propagation.

The concept of periodic traveling waves appeared in the
early 1970’s and since that time investigators have actively
explored the mechanisms, computational principles and
functional role of these waveforms3,4. This paper focuses
on how modeling information can be used to guide electri-
cal stimulation in the targeted manipulation of brain net-
works in human patients affected by neurological disor-
ders. We explore a neural field model with two nonlinear
integro-differential equations and perform a bifurcation
analysis. Results suggest that it is possible to determine
the direction of propagation and that epicenters may play
a role in the initiation of wave propagating in the cortex.
These results will guide the determination of the optimal
localization to apply external brain stimulation (forcing
term) to restore wave propagation in damaged cortical tis-
sue.

I. INTRODUCTION

All types of brain activity are accompanied by formation
of spatiotemporal patterns of electric potential in the cerebral
cortex, in particular, wave fronts and periodic waves5–7. They
provide subthreshold depolarization to individual neurons and
increase their spiking probability. They possibly synchronize
different parts of the brain and organize spatial phase distri-
butions in a population of neurons8. Traveling waves can

a)Electronic mail: anne.beuter@wanadoo.fr

also be detected from the phase relations between oscillations
recorded in different cortical regions9.

EEG recordings from the cortical surface in awake neuro-
surgical patients performing a memory task can show focal re-
gions or clusters of 2-15 Hz oscillations10. These oscillations
formed traveling waves that propagated at about 0.25-0.75 m/s
and correlated with the subject’s performance. In other words,
they guide the spatial propagation of neural activity demon-
strating large scale spatially coordinated oscillations.

The relevance of traveling waves is actively explored in
patients with stroke, subarachnoid hemorrhage or traumatic
brain injury. The occurrence of spreading depression or de-
polarization in these pathologies is a well documented phe-
nomenon. Spreading depression or depolarization of neu-
rons and glial cells is also reported in patients with migraine2.
However, the relevance of traveling waves is also explored in
healthy subjects. Indeed traveling waves have been observed
in processes involving cognition (such as perception, learning,
recognition, memory, language) (see for example Ref. 10 for
working memory or Ref. 11 for language) but also in motor
behaviors9,12 or vision13.

For each human subject the examination of slow waves of
cortical activity during sleep-awake states using simultaneous
scalp EEG and intracranial recordings allowed the identifica-
tion of the set of intracranial contacts involved in a larger per-
centage of detected events14. These contacts are called «hubs»
because the wave had large probability of passing through the
region close to the contact. Using probabilities they were able
to reconstruct a preferential propagation network for each sub-
ject. Slow waves have been reported to propagate across cor-
tical areas at about 1 m/s with multiple propagation paths and
several points of origin14. These waves appear to shape and
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strengthen neuronal networks. There are numerous other evi-
dences of wave propagation during brain activity11,15.

There are two main classes of cortical activity which are de-
scribed by neural mass models and neural field models (see,
e.g., Ref. 16). The former is based on a discrete represen-
tation of brain networks with spatially homogeneous neural
elements connected to each other. In neural field models,
cerebral cortex is considered as a continuous medium with
a nonlocal interaction due to neuron connectivity. Such mod-
els were first introduced in Ref. 17 followed by many others
for one or two neuron populations18–20, discrete or distributed
time delay20,21, linear adaptation22, refractoriness23, and other
questions22,24–27.

In this work we consider the model

∂u
∂ t

= P1,1 ∗ψ1(u)−P1,2 ∗ψ2(v)−σu,

∂v
∂ t

= P2,1 ∗ψ1(u)−P2,2 ∗ψ2(v)−σv,
(1)

where

Pi, j(x) = ai, je−bi, j |x| , i, j = 1,2,

ai, j,bi, j, and σ are positive constants, ψ1(u) and ψ2(v) are
bounded smooth growing (sigmoid, i.e. having an S-shaped
curve) functions on the whole real axis, ∗ denotes convolution.
The variables u and v characterize the activity of the neural
population of excitatory and inhibitory neurons, respectively.
System (1) represents a particular case without time delay of
the model studied in Ref. 28. Considered on the whole real
axis, under some natural conditions, it has a stationary, spa-
tially homogeneous solution (u0,v0). This solution can be
stable or unstable depending on the values of parameters. In
particular, it can lose its stability due to a simple real eigen-
value or a pair of complex conjugate eigenvalues crossing the
imaginary axis. Linear stability analysis of the stationary ho-
mogeneous solution was carried out in Ref. 28. Here we are
interested in nonlinear bifurcation analysis allowing the de-
termination of stability of the bifurcating solutions. We will
obtain the conditions providing the existence and stability of
standing and periodic traveling waves.

Furthermore, we are interested in the initiation of the pe-
riodic waves by space localized oscillations. From the bio-
logical point of view, they correspond to the oscillations in
the hubs, which process received information and send it to
other hubs in the form of traveling waves. We show that wave
initiation occurs depending on the properties of the localized
oscillations.

II. SPECTRUM OF THE LINEARIZED EQUATIONS

Let (u0(σ),v0(σ)) be a pair of constants satisfying

σu0 = 2
a1,1

b1,1
ψ1(u0)−2

a1,2

b1,2
ψ2(v0),

σv0 = 2
a2,1

b2,1
ψ1(u0)−2

a2,2

b2,2
ψ2(v0).

Then (u0(σ),v0(σ)) are solutions to (1). By shifting the func-
tions

u(x, t) = u0(σ)+ ũ(x, t), v(x, t) = v0(σ)+ ṽ(x, t),

linearizing the equations (1), and dropping the tildes, we get

∂u
∂ t

= ψ
′
1(u0(σ))P1,1 ∗u−ψ

′
2(v0(σ))P1,2 ∗ v−σu(x, t),

∂v
∂ t

= ψ
′
1(u0(σ))P2,1 ∗u−ψ

′
2(v0(σ))P2,2 ∗ v−σv(x, t).

Looking for solutions in the form of

u(x, t) = exp(λ t)u(x), v(x, t) = exp(λ t)v(x)

and after applying the Fourier transform, we obtain the char-
acteristic equations

ψ
′
1(u0(σ))P̂1,1(ξ )û(ξ )−ψ

′
2(v0(σ))P̂1,2(ξ )v̂(ξ ) = (σ +λ )û(ξ ),

ψ
′
1(u0(σ))P̂2,1(ξ )û(ξ )−ψ

′
2(v0(σ))P̂2,2(ξ )v̂(ξ ) = (σ +λ )v̂(ξ ),

where

P̂i, j(ξ ) =
2ai, jbi, j

b2
i, j +ξ 2 .

Let µ = µ(ξ ;σ) = σ +λ (ξ ;σ) ∈ C and

Q̂i,1(ξ ;σ) = ψ
′
1(u0(σ))P̂i,1(ξ ),

Q̂i,2(ξ ;σ) = ψ
′
2(v0(σ))P̂i,2(ξ ).

Then the characteristic polynomial becomes

µ
2−
(
Q̂1,1(ξ )− Q̂2,2(ξ )

)
µ−

−
(
Q̂1,1(ξ )Q̂2,2(ξ )− Q̂1,2(ξ )Q̂2,1(ξ )

)
= 0

with two roots

µ(ξ ) =
1
2
(
Q̂1,1(ξ )− Q̂2,2(ξ )

)
±

± 1
2

√(
Q̂1,1(ξ )+ Q̂2,2(ξ )

)2−4Q̂1,2(ξ )Q̂2,1(ξ ).

If the cross-connectivity functions P1,2(x) and P2,1(x) are
strong enough (their amplitudes a1,2 and a2,1 are large
enough), we can ensure that the expression under the square
root is always negative(
Q̂1,1(ξ )+ Q̂2,2(ξ )

)2−4Q̂1,2(ξ )Q̂2,1(ξ )< 0, −∞< ξ <∞,

which leads to complex values of µ(ξ ) such that

Reµ(ξ ) =
1
2
(
Q̂1,1(ξ )− Q̂2,2(ξ )

)
,

Imµ(ξ ) =±1
2

√
4Q̂1,2(ξ )Q̂2,1(ξ )−

(
Q̂1,1(ξ )+ Q̂2,2(ξ )

)2
.

Consider a function f (ξ ) : R→ R that is related to the real
part of the characteristic values µ(ξ ):

f (ξ ) =
α1

β1 +ξ 2 −
α2

β2 +ξ 2 , αi > 0, βi > 0.

We are interested in its extreme values and the corresponding
frequency ξ where they are attained.
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Lemma 1. If α1 = α2 or β1 = β2 then | f (ξ )| ≤ | f (0)| for all
ξ .

Proof. Let α1 = α2 = α . Then

f (ξ ) =
α(β2−β1)

(β1 +ξ 2)(β2 +ξ 2)
.

Unless β1 = β2 and f (ξ ) ≡ 0, | f (ξ )| is monotonically de-
creasing on ξ > 0 and increasing on ξ < 0.

Now let β1 = β2 = β . Then

f (ξ ) =
α1−α2

β +ξ 2 .

Unless α1 = α2 and f (ξ ) ≡ 0, | f (ξ )| is monotonically de-
creasing on ξ > 0 and increasing on ξ < 0.

Let α1 6= α2 and β1 6= β2; we introduce

β3 =
α1β2−α2β1

α1−α2

and note that it can take any real value, not necessarily positive
ones. Then the derivative of f (ξ ) is

f ′(ξ ) = 2ξ (α1−α2)×

× (β1 +ξ 2)(β2 +ξ 2)− (β3 +ξ 2)(β1 +β2 +2ξ 2)

(β1 +ξ 2)2(β2 +ξ 2)2 .

It vanishes at ξ = 0 and, possibly, at

ξ
2 =−β3±

√
(β3−β1)(β3−β2)≡ η±

if the right hand side is real and positive.

Lemma 2. Both η+ and η− are real whenever

β3 ≤min(β1,β2) or β3 ≥max(β1,β2).

The value η− is negative when it is real, i.e. whenever

β3 ≤min(β1,β2) or β3 ≥max(β1,β2).

The value η+ is nonpositive whenever

β1β2

β1 +β2
≤ β3 ≤min(β1,β2) or β3 ≥max(β1,β2).

Proof. The first statement is obvious. Let us assume that
η+,η− ∈ R. For the second statement,

1. if β3 ≥ 0 then η− < 0 if and only if

β3 >−
√
(β3−β1)(β3−β2),

so 0≤ β3 ≤min(β1,β2) or β3 ≥max(β1,β2);

2. if β3 < 0 then η− < 0 if and only if

β1β2−β3(β1 +β2)> 0,

so simply β3 < 0.

For the third statement, η+ ≤ 0 if and only if

β1β2−β3(β1 +β2)≤ 0

whence the result follows.

Lemma 3. Let α1 6= α2, β1 6= β2, and β3 < β1β2/(β1 +β2).
The derivative f ′(ξ ) vanishes at only 3 points:

ξ = 0 and ξ =±
√
−β3 +

√
(β3−β1)(β3−β2).

Proof. Since α1 6= α2 and β1 6= β2, f ′(ξ ) turns to zero if and
only if ξ = 0 or ξ 2 = η±. Lemma 2 states that η− < 0 and
η+ > 0 when β3 < β1β2/(β1+β2). So f ′(ξ ) = 0 at ξ = 0 and
ξ =±√η+.

Since

f ′(ξ ) = 2(α1−α2)
β1β2−β3(β1 +β2)

β 2
1 β 2

2
ξ +O(ξ 2)

in the vicinity of the origin, the function f (ξ ) has global max-
ima at

ξ
2 =−β3 +

√
(β3−β1)(β3−β2)

when α1 > α2, and global minima when α1 < α2.
Let

α1 = ψ
′
1(u0(σ))a1,1b1,1, β1 = b2

1,1

and

α2 = ψ
′
2(v0(σ))a2,2b2,2, β2 = b2

2,2,

then Reµ(ξ ) = f (ξ ) and the largest real part supξ Reµ(ξ ) is
attained at ±ξ∗(σ):

ξ∗(σ) =

√
−β3(σ)+

√
(β3(σ)−b2

1,1)(β3(σ)−b2
2,2),

β3(σ) =
ψ ′1(u0(σ))a1,1b1,1b2

2,2−ψ ′2(v0(σ))a2,2b2,2b2
1,1

ψ ′1(u0(σ))a1,1b1,1−ψ ′2(v0(σ))a2,2b2,2
.

Thus supξ Reλ (ξ ;σ) = Reλ (ξ∗(σ)) = f (ξ∗(σ))−σ .

Theorem 1. Let a12,a21� 1 and

b22

b11
<

ψ ′1(u0(σ))a11

ψ ′2(v0(σ))a22
<

(
b11

b22

)3

.

Then the spectrum is complex Imλ (ξ ;σ) 6= 0 and
Reλ (ξ ;σ)< Reλ (ξ∗(σ);σ) for all ξ 6=±ξ∗(σ).

Proof. Follows from Lemmas 1-3 once we rewrite the con-
straint β3 < β1β2/(β1 +β2).
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Nonlinear analysis of periodic waves in a neural field model 4

III. HOPF BIFURCATION AND NORMAL FORM
ANALYSIS

Fix a value σ∗ > 0 and let σ ∈ R be its small perturbation.
With a slight abuse of notation we will write f (σ) for func-
tions of σ that we would previously call f (σ∗+σ). Assume
that

Reλ (ξ ;0)< Reλ (ξ∗(0);0), ξ 6= ξ∗(0), (H1)

and

λ (ξ∗(0);0) =±iω∗ 6= 0. (H2)

Condition (H1) follows from Theorem 1 while the Hopf bifur-
cation condition (H2) can be satisfied with a careful choice of
parameters. We also assume the transversality condition(

d
dσ

Reλ (ξ∗(0);σ)

)∣∣∣∣
σ=0

=

=−1+
1
2

ψ
′′
1 (u0(0))u′0(0)P̂11(ξ∗(0))−

− 1
2

ψ
′′
2 (v0(0))v′0(0)P̂22(ξ∗(0)) 6= 0. (H3)

That is the pair of imaginary eigenvalues passes the imaginary
axis with nonzero speed.

Let ξ∗ = ξ∗(0) and l∗ = 2π/ξ∗. Consider the Lebesgue
space L2(0, l∗) with standard inner product and norm:

〈 f ,g〉L2(0,l∗) =
∫ l∗

0
f gdx, ‖ f‖L2(0,l∗) =

√
〈 f , f 〉L2(0,l∗).

The complex exponentials en =
1√
l∗

einξ∗x form an orthonormal

basis in L2(0,L∗). Also, consider the Sobolev space of l∗-
periodic twice-differentiable functions H2

per(0, l∗) with inner
product

〈 f ,g〉H2
per(0,l∗)

= ∑
n∈Z

(1+n4
ξ

4
∗ )〈 f ,en〉L2(0,l∗)〈en,g〉L2(0,l∗)

and Euclidean norm. We consider smooth functions to make
the analysis extendable to diffusive models.

Let

w =

[
u
v

]
∈ X =

(
H2

per(0, l∗)
)2

with inner product

〈w, w̃〉X = 〈w1, w̃1〉H2
per(0,l∗)

+ 〈w2, w̃2〉H2
per(0,l∗)

where w j and w̃ j are the components of two-dimensional vec-
tor functions.

Let Mk(σ) ∈ R2×2 be diagonal matrices

Mk(σ) =
1
k!

[
ψ

(k)
1 (u0(σ)) 0

0 −ψ
(k)
2 (v0(σ))

]

and Pn ∈ R2×2 be Fourier filtering matrices

Pn =

[
P̂11(nξ∗) P̂12(nξ∗)
P̂21(nξ∗) P̂22(nξ∗)

]
.

Any function w ∈ X ⊂ (L2(0, l∗))2 can be represented by its
Fourier series

w = ∑
n∈Z

wnen, wn =

[
〈w1,en〉L2(0,l∗)
〈w2,en〉L2(0,l∗)

]
∈ C2.

We can rewrite the initial equations as

wt = L(σ)w+F(w,σ), w ∈ X ,

where

L(σ)w = ∑
n∈Z

(PnM1(σ)−σ∗−σ)wnen

and

F(w,σ) = ∑
k≥2

∑
n∈Z

PnMk(σ)(w�k)nen.

We use � to denote the Hadamard (element-wise) product of
vectors and write w�2 = w�w, w�3 = w�w�w, etc., for
Hadamard products of w with itself.

The characteristic equation at σ = 0 decouples into

(PnM1(0)−σ∗−λ )wn = 0, n ∈ Z,

and λ ∈ C is a characteristic value if there exist n ∈ Z and
wn 6= 0 ∈ C2 that satisfy the equation above. Owing to (H2),
there is a unique pair of imaginary characteristic values ±iω∗
corresponding to n = ±1. They are degenerate because the
connectivity functions are symmetric and the system as a
whole is O(2)-equivariant. Let ζ1 6= 0∈C2 be an eigenvector:

(P1M1(0)−σ∗− iω∗)ζ1 = 0,

ζ1 =
[
ψ ′2(v0(0))P̂12(ξ∗) ψ ′1(u0(0))P̂11(ξ∗)−σ∗− iω∗

]T
.

Consider vector functions

q1 = ζ1e1, q2 = ζ1e−1, q3 = ζ1e1, q4 = ζ1e−1.

In pairs, they span the eigenspaces

N (L(0)− iω∗) = span{q1,q2} ⊂ X ,

N (L(0)+ iω∗) = span{q3,q4} ⊂ X ;

together they span the center subspace

Q = span{q1,q2,q3,q4} ⊂ X .

The basis {q j} is not orthogonal so we will use a biorthogonal
system to get a projection operator onto Q. Let ζ ∗1 6= 0 ∈ C2

be an eigenvector of the adjoint matrix

(P1M1(0)−σ∗− iω∗)H
ζ
∗
1 = 0
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Nonlinear analysis of periodic waves in a neural field model 5

normalized so that 〈ζ1,ζ
∗
1 〉= 1. Further, let

q∗1 =
1

1+ξ 4
∗

ζ
∗
1 e1, q∗2 =

1
1+ξ 4

∗
ζ
∗
1 e−1,

q∗3 =
1

1+ξ 4
∗

ζ ∗1 e1, q∗4 =
1

1+ξ 4
∗

ζ ∗1 e−1

be the basis vectors of the eigenspaces

N (L(0)∗+ iω∗) = span{q∗1,q∗2} ⊂ X ,

N (L(0)∗− iω∗) = span{q∗3,q∗4} ⊂ X .

It is easy to show that {q∗j} and {q j} are biorthogonal systems

〈qi,q∗j〉X =

{
1, i = j,
0, i 6= j.

We can thus define a projection operator

π : X →Q, πw =
4

∑
j=1
〈w,q∗j〉X q j

and a complementary subspace

Q̃ = {w ∈ X : πw = 0}.

Then X = Q⊕ Q̃.
For a given w ∈ X , let z ∈ C4 (note that z4 = z1 and z2 = z3

as the functions are real-valued) be the vector of coefficients
of πw with respect to the basis {q j}. Let γ be the velocity of
the critical characteristic value:

γ =

(
d

dσ
λ (ξ∗;σ)

)∣∣∣∣
σ=0

.

According to the center manifold theorem, the equations for
z1 and z3 on the manifold have the following normal form29:

ż1 = (iω∗+ γσ)z1 + c1z1|z1|2 + c2z1|z3|2 +h.o.t.,

ż3 = (iω∗+ γσ)z3 + c1z3|z3|2 + c2z3|z1|2 +h.o.t.,

where h.o.t. = O(σ(|z1|3 + |z3|3) + σ2(|z1|+ |z3|) + (|z1|+
|z2|)5). See Appendix A for the computation of the cubic co-
efficients c1 and c2 of the normal form.

The relations between c1 and c2 determine the stability of
periodic traveling wave and standing wave solutions29. To see
this, we make a polar change of coordinates,

z1 = ρ1eiθ1 , z3 = ρ3eiθ3 ,

and keep two equations out of four:

ρ̇1 = ρ1(σReγ +Rec1ρ
2
1 +Rec2ρ

2
3 )+h.o.t.,

ρ̇3 = ρ3(σReγ +Rec1ρ
2
3 +Rec2ρ

2
1 )+h.o.t..

(2)

These are the amplitude equations as ρ1 and ρ3 represent the
amplitudes of counterpropagating periodic traveling waves.
The system (2) can have up to four equilibria (see Table I),

TABLE I: Equilibria of the amplitude equations (2).

Type of solution ρ1 ρ3

Constant 0 0

Periodic traveling wave
√
−σReγ

Rec1
0

Periodic traveling wave 0
√
−σReγ

Rec1

Standing wave
√
− σReγ

Rec1+Rec2

√
− σReγ

Rec1+Rec2

and the stability of these equilibria defines the stability of pe-
riodic traveling waves and standing waves.

Let σReγ > 0 then

Rec1 < 0, Re(c1 + c2)< 0, Re(c1− c2)< 0

leads to asymptotically stable standing waves while

Rec1 < 0, Re(c1 + c2)< 0, Re(c1− c2)> 0

produces asymptotically stable periodic traveling waves.

IV. ONE CLASS OF PARAMETERS

The net result of Sections II-III are the explicit expressions
of the normal form coefficients, which can be easily evaluated
for a given set of parameters. However, these expressions are
too cumbersome to aid in the search of suitable parameters.
Theorem 1 is also of merely theoretical interest: the condition
a1,2,a2,1 � 1 which ensures that the whole spectrum lies in
C \R is too vague to be verifiable. In this section, we will
present and semi-rigorously analyze a particular class of pa-
rameters that can be studied in more details.

Let ψ1 = ψ2 = ψ be a sigmoid function. In our analysis,
we will use a number of its properties such as

ψ
′(0)> 0, ψ

′′(0) = 0, ψ
′′′(0)< 0, ψ

′′′′(0) = 0.

Let R > 0 be the ratio of parameters
a1,2

b1,2
=

a2,1

b2,1
=

a2,2

b2,2
= R

and suppose that the ratio a1,1/b1,1 is perturbed slightly
a1,1

b1,1
= R+ ε, ε ∈ R.

Next, assume that the parameters bi, j are equal

b1,1 = b1,2 = b2,1 = b, b > 0,

except for b2,2 that is smaller:

b2,2 = νb, 0 < ν < 1.

Lemma 4. For all small values of ε , system (1) has constant
solutions

u0 = 2
ψ(0)

σ∗

(
1+2R

ψ ′(0)
σ∗

)
ε +O(ε2),

v0 = 4R
ψ(0)

σ∗

ψ ′(0)
σ∗

ε +O(ε2).
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Nonlinear analysis of periodic waves in a neural field model 6

Proof. At ε = 0, we have

σ∗u0 = σ∗v0 = 2R(ψ(u0)−ψ(v0))

and u0 = v0 = 0. By the inverse function theorem there is a
smooth branch of solutions (u0(ε),v0(ε)) whose first deriva-
tives satisfy the equation[

σ∗−2Rψ ′(0) 2Rψ ′(0)
−2Rψ ′(0) σ∗+2Rψ ′(0)

][
du0
dε

(0)
dv0
dε

(0)

]
=

[
2ψ(0)

0

]
.

Note that the Jacobian matrix is full-rank for all admissible
values of R, σ∗, and ψ ′(0), being a sum of a scalar matrix and
a rank-1 matrix. Its inverse can be computed, for example,
with the Sherman–Morrison formula.

A. Spectrum

By the properties of sigmoid functions,

ψ
′(u0) = ψ

′(0)+O(ε2). ψ
′(v0) = ψ

′(0)+O(ε2).

Then

Q̂1,1(ξ ) = 2ψ
′(0)(R+ ε)

b2

b2 +ξ 2 +O(ε2),

Q̂1,2(ξ ) = Q̂2,1(ξ ) = 2ψ
′(0)R

b2

b2 +ξ 2 +O(ε2),

Q̂2,2(ξ ) = 2ψ
′(0)R

ν2b2

ν2b2 +ξ 2 +O(ε2).

Recall that the characteristic values are

µ(ξ ) =
1
2
(
Q̂1,1(ξ )− Q̂2,2(ξ )

)
±

± 1
2

√(
Q̂1,1(ξ )+ Q̂2,2(ξ )

)2−4Q̂1,2(ξ )Q̂2,1(ξ ).

Consider the expression under the square root(
Q̂1,1(ξ )+ Q̂2,2(ξ )

)2−4Q̂1,2(ξ )Q̂2,1(ξ ) =

=

(
2ψ ′(0)Rb2

(b2 +ξ 2)

)2
[(

1+ν
2 b2 +ξ 2

ν2b2 +ξ 2

)2

+

+ 2
(

1+ν
2 b2 +ξ 2

ν2b2 +ξ 2

)
ε−4R2

]
+O(ε2).

It has the same sign as(
1+ν

2 b2 +ξ 2

ν2b2 +ξ 2

)
−
(

2− ε

R
+O(ε2)

)
=

=
ε

R
− (1−ν

2)
ξ 2

ν2b2 +ξ 2 +O(ε2).

Since ξ 2

ν2b2+ξ 2 is monotonically increasing as a function of ξ 2,
there is a value

ξ
2
0 =

ν2b2

1−ν2
ε

R
+O(ε2),

if 0 < ε/R < 1−ν2, such that the expression under the square
root is positive for 0 ≤ ξ 2 < ξ 2

0 and negative for ξ 2 > ξ 2
0 . It

follows that

µ(ξ ) ∈

{
R, 0≤ ξ 2 < ξ 2

0 ,

C\R, ξ 2 > ξ 2
0 .

If ε < 0, the whole spectrum lies in C\R and we can apply
Theorem 1 to show that

Reµ(ξ )< Reµ(ξ∗), ξ 6=±ξ∗

when ε +O(ε2)> R(ν2−1).
Suppose ε ≥ 0. Note that even though the spectrum is not

completely complex, we can still apply Theorem 1. Indeed,
the frequency ξ∗ equals

ξ
2
∗ = νb2

(
1− 1+ν

2(1−ν)

ε

R

)
+O(ε2)

and clearly ξ 2
∗ > ξ 2

0 . Then Reµ(ξ )<Reµ(ξ∗) for all ξ 2 > ξ 2
0 ,

ξ 6=±ξ∗, provided that

ν
2 < 1+

ε

R
+O(ε2)< 2−ν

2 <
1

ν2 .

Under the same conditions, Q̂1,1(ξ )− Q̂2,2(ξ ) is growing on
(0,ξ0) and

Q̂1,1(ξ )− Q̂2,2(ξ )≤ 4ψ
′(0)ε +O(ε2), 0≤ ξ < ξ0.

Using monotonicity properties we can also derive that(
Q̂1,1(ξ )+ Q̂2,2(ξ )

)2−4Q̂1,2(ξ )Q̂2,1(ξ )<

<
(
Q̂1,1(0)+ Q̂2,2(0)

)2−4Q̂1,2(ξ0)Q̂2,1(ξ0) =

= (4ψ
′(0)R)2 1+ν2

1−ν2
ε

R
+O(ε2)

on (0,ξ0). We thus get an upper bound

µ(ξ )< 2ψ
′(0)R

√
1+ν2

1−ν2
ε

R
+O(ε), 0≤ ξ < ξ0,

which shows that µ(ξ ) =Reµ(ξ )<Reµ(ξ∗) for ξ 2 < ξ 2
0 . As

a result,

Reµ(ξ )< Reµ(ξ∗), ξ 6=±ξ∗.

B. Hopf bifurcation

For the Hopf bifurcation to occur, we must have

µ(ξ∗) = σ∗+ iω∗, ω∗ 6= 0.

Straightforward calculations show that

Reµ(ξ∗) =
ψ ′(0)R
1+ν

(
1−ν +

ε

R

)
+O(ε2),

Imµ(ξ∗) =
ψ ′(0)R
1+ν

(√
(1−ν)(3+ν)− ε

R

)
+O(ε2),
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Nonlinear analysis of periodic waves in a neural field model 7

whence we get the bifurcation condition

σ∗ =
ψ ′(0)R
1+ν

(
1−ν +

ε

R

)
+O(ε2).

In Figure 1, we show Hopf bifurcation curves in the (R,ν)
parameter space for different values of σ∗/ψ ′(0).

0 2 4 6 8 10 12 14
R

0.0

0.2

0.4

0.6

0.8

1.0

* / ′(0) = 0.5
* / ′(0) = 1
* / ′(0) = 2
* / ′(0) = 5

FIG. 1: Curves in the (R,ν) parameter space where Hopf
bifurcation occurs for different values of σ∗/ψ ′(0) and ε = 0.

C. Normal form

Let σ be a small perturbation of the critical parameter value
σ∗. Then the real part of the velocity of the critical character-
istic value is negative

Reγ =

(
d

dσ
Reλ (ξ∗(0);σ)

)∣∣∣∣
σ=0

=−1+O(ε2)< 0

and the condition σReγ > 0 transforms into σ < 0.
Consider matrices Mk(0). It follows from our derivations

that

M1(0) =

[
ψ ′(0)+O(ε2) 0

0 −ψ ′(0)+O(ε2)

]
,

M2(0) =
1
2

[
ψ ′′′(0)u0 +O(ε2) 0

0 −ψ ′′′(0)v0 +O(ε2)

]
,

M3(0) =
1
6

[
ψ ′′′(0)+O(ε2) 0

0 −ψ ′′′(0)+O(ε2)

]
.

In particular, ‖M2(0)‖= O(ε). Note also that

P1 =

[
2R

1+ν

(
1+ 2−ν

2−2ν

ε

R

) 2R
1+ν

(
1+ ν

2−2ν

ε

R

)
2R

1+ν

(
1+ ν

2−2ν

ε

R

) 2Rν

1+ν

(
1+ 1

2−2ν

ε

R

)]+O(ε2).

Then the eigenvector ζ1 equals

ζ1 =
ψ ′(0)R
1+ν

[
2+ ν

1−ν

ε

R

1+ν− i
√
(1−ν)(3+ν)+( 1

1−ν
− i) ε

R

]
+O(ε2).

For simplicity, we will only write the O(1) terms in what
follows. In that case, we have

ζ
∗
1 =

1+ν

ψ ′(0)R

 1
4 +

i
4

1+ν√
(1−ν)(3+ν)

− i
2

1√
(1−ν)(3+ν)

+O(ε).

As ‖ζ1‖ = O(1) and ‖M2(0)‖ = O(ε), the vectors h j, j =
1, . . . ,5 from Appendix A are all small, ‖h j‖ = O(ε). Based
on the property of the Hadamard product,

‖x� y‖ ≤ ‖x‖‖y‖,

we can conclude that

‖M2(0)(ζ1�h1)‖= O(ε2), ‖M2(0)(ζ1�h2)‖= O(ε2),

‖M2(0)(ζ1�h3)‖= O(ε2), ‖M2(0)(ζ1�h4)‖= O(ε2),

‖M2(0)(ζ1�h5)‖= O(ε2).

As a consequence, the normal form coefficients take a much
simpler form:

c1 =
1

2l∗

〈
M3(0)(ζ1�ζ1�ζ1),P

T
1 ζ
∗
1

〉
+O(ε2),

c2 =
1
l∗

〈
M3(0)(ζ1�ζ1�ζ1),P

T
1 ζ
∗
1

〉
+O(ε2).

Recall that for periodic traveling waves to be asymptoti-
cally stable, three conditions need to be met:

Rec1 < 0, Re(c1 + c2)< 0, Re(c1− c2)> 0.

In our case we have

Re(c1 + c2) = 3Rec1 +O(ε2),

Re(c1− c2) =−Rec1 +O(ε2).

This means that the stability of periodic traveling waves de-
pends on a single condition

Rec1 < 0.

Direct calculations give

c1 =
1

3l∗

(
ψ ′(0)R
1+ν

)3
ψ ′′′(0)
ψ ′(0)

(
1−ν + i

√
(1−ν)(3+ν)

)
+O(ε).

Therefore, since ν < 1, ψ ′(0) > 0, and ψ ′′′(0) < 0, the real
part is negative,

Rec1 =
1

3l∗

(
ψ ′(0)R
1+ν

)3
ψ ′′′(0)
ψ ′(0)

(1−ν)+O(ε)< 0,

and periodic traveling waves are asymptotically stable for all
parameters of this class as long as |ε| is not too large.

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
12

01
0



Nonlinear analysis of periodic waves in a neural field model 8

TABLE II: Example of parameters.

a11 a12 a21 a22 b11 b12 b21 b22 σ∗

3.05 3.00 3.00 0.30 1.00 1.00 1.00 0.10 1.00

V. NUMERICAL EXAMPLES

For the numerical examples, we choose ψ1 = ψ2 = ψ with

ψ(u) =
2
π

arctan(0.6782u)+1.

Consider the parameters from Table II. The constant solution
is u0 = 0.404, v0 = 0.287. Upon linearization about (u0,v0)
we can find that the critical spatial frequency is ξ∗ = 0.318
and that λ (ξ∗) = ±1.86i (see Figure 2). The computation of

1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0
Re ( )

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Im
(

)

(± * )

FIG. 2: Distribution of characteristic values λ (ξ ) on the
complex plain for the parameters from Table II.

the normal form gives

c1 ≈−0.0182−0.0386i, c2 ≈−0.0365−0.0773i,

which means that the periodic traveling waves are asymptoti-
cally stable.

For numerical verification, we ran numerical simulations on
the interval (0,2π/ξ∗) with periodic boundary conditions. We
computed the convolutions using the fast Fourier transform
and the convolution theorem.

In Figure 3, we present numerical simulations for box-like
initial states:

u0(x) = 2χ{x < π/ξ∗}−1, v0(x) = 2χ{x < π/ξ∗}−1.

Here, χ{Ω} is the indicator function of the set Ω such that
χ{Ω}(x) = 1 if x ∈ Ω and χ{Ω}(x) = 0 if x 6∈ Ω. In the for-
mulas above, both u0 and v0 are equal to 1 on (0,π/ξ∗) and
to -1 on (π/ξ∗,2π/ξ∗). As the simulations show, the solution
retains the symmetry of the initial state and becomes a stand-
ing wave. However, if we shrink or enlarge the positive half
to (0,π/ξ∗± ε) for one of the components (let it be v0), the

solution turns into a periodic traveling wave since the initial
state breaks the reflection symmetry of the system.

It is also important to understand how the system evolves
from zero initial state in the presence of a forcing term.
Namely, we are interested in time-oscillating point sources
like

f (x, t) = δ (x− x0)sin(t),

where δ (x) is the δ -function. So we want to solve the follow-
ing initial value problem:

∂u
∂ t

= P1,1 ∗ψ1(u)−P1,2 ∗ψ2(v)−σu+ f1(x, t),

∂v
∂ t

= P2,1 ∗ψ1(u)−P2,2 ∗ψ2(v)−σv+ f2(x, t),

u(x,0) = 0, v(x,0) = 0.

In Figure 4, we use

f j(x, t) = 0.1δ (x− x j)sin(ωt), j = 1,2,

as the forcing terms. If x1 = x2, that is the point sources
are placed at the exactly same positions, the zero initial state
evolves into a standing wave. Once again, this is because the
reflection symmetry is not broken. Meanwhile, should the
point sources be placed at different (possibly very close) posi-
tions, x1 6= x2, the solution is a periodic traveling wave, which
propagates in the direction determined by the relative position
of the two sources.

In Figure 5, we explore the case where the forcing terms
have different oscillation frequencies:

f1(x, t) = 0.1δ (x−π/2ξ∗)sin(At),
f2(x, t) = 0.1δ (x)sin(t).

We observed that for a fixed distance between the forcing
terms, the propagation direction of the traveling waves de-
pends on the ratio of the forcing term frequencies A > 0.
Namely, there is a threshold value A∗ such that waves propa-
gate in different directions for A < A∗ and A > A∗. Moreover,
as A→ A∗, the solution spends more time in the form of a
standing wave, which suggests that at A = A∗ the solution is a
standing wave.

VI. DISCUSSION

With the development of modern technologies it has been
possible to demonstrate the existence of periodic traveling
waves in cortex during many human activities7. These propa-
gating waves help explain brain dynamics observed at the pop-
ulation level30. For example, Huang et al.31,32 studied brain
wave dynamics for years using voltage-sensitive dye imaging
and demonstrated the presence of spiral dynamics in the intact
mammalian brain during pharmacologically induced oscilla-
tions as well as during sleep-like states. These authors showed
that traveling waves are emergent properties which can influ-
ence not only brain oscillation frequencies and spatial coher-
ence but they can also modulate their amplitude. As a result
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Nonlinear analysis of periodic waves in a neural field model 9
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(a) v0(x) = 2χ{x < π/ξ∗}−1
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(b) v0(x) = 2χ{x < π/ξ∗− ε}−1
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(c) v0(x) = 2χ{x < π/ξ∗+ ε}−1

FIG. 3: Numerical simulation with the initial state u0(x) = 2χ{x < π/ξ∗}−1 and σ = 0.95. Level lines of the solution u(x, t)
(upper row) and v(x, t) (lower row) are shown for three different initial states v0(x). Standing waves are observed for the

symmetric initial state (a), periodic traveling waves for the asymmetric initial states (b,c).
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(a) x1 = 0, x2 = 0
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(b) x1 = ε , x2 = 0
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(c) x1 = 0, x2 = ε

FIG. 4: Numerical simulation with the forcing terms f j(x, t) = 0.1δ (x− x j)sin(ωt), j = 1,2, and σ = 0.92. Level lines of the
solution u(x, t) (upper row) and v(x, t) (lower row) are shown for three different forcing terms. Standing waves are observed for

the symmetric forcing term (a), periodic traveling waves for the asymmetric forcing terms (b,c).

these waves «may contribute to both normal cortical process-
ing and to pathological patterns of activity such as those found
in epilepsy» (Ref. 30, P. 1591). Interestingly Stead et al.33

observed «microseizures» (spiral waves) on isolated research
microelectrodes in both epileptic patients (in regions prone to
generate epileptic seizures) but also in control subjects. They
conclude that only «the density of these phenomena distin-
guishes normal from epileptic brain» (Ref. 33, P. 2789).

Although the functional role of traveling waves is not com-
pletely elucidated yet, new techniques based on targeted neu-
romodulation of traveling waves using electric fields are al-
ready being explored as potential therapeutic strategies. For
example, Whalen et al.2 were able to control the modula-
tion, suppression and prevention or to increase propagation
velocity of spreading depression with DC electrical fields in
brain slices thus demonstrating «the potential feasibility of
electrical control and prevention of spreading depression»
(Ref. 2, P. 8769). Using coupled oscillators Ermentrout and
Kleinfeld34 also studied electrical waves in the cortex and
speculated as to their computational role.

Neural field models provide an appropriate tool to study
these waves but the results differ for different models. A sin-
gle equation with symmetric connectivity functions for acti-
vating and inhibitory signals does not have solutions in the

form of periodic traveling waves. In the case of asymmetric
functions, such solutions exist, they are stable, and solutions
with different frequencies (speeds) are observed for the same
values of parameters35. The last property is important for the
understanding of the existence of the waves with different fre-
quencies during brain activity.

A single equation with symmetric connectivity functions
can also manifest periodic waves in the presence of time
delay36. The periodic waves bifurcate from the stationary,
spatially homogeneous solution being unstable, and they be-
come stable if time delay exceeds some critical value. As be-
fore, the coexistence of waves with different frequencies is ob-
served. Another important characterization of periodic waves
related to the choice of initial conditions should also be taken
into account. We will return to this question below.

The models with two different neuron populations, excita-
tory and inhibitory, can also describe the propagation of pe-
riodic waves17,18,21,22,28. In this work we considered a par-
ticular case of the model Ref. 28 without time delay and with
symmetric connectivity functions. Nonlinear bifurcation anal-
ysis shows two types of solutions: standing oscillating solu-
tions with the behavior qualitatively similar to the product of
two periodic functions, cos(ωt)cos(kx), and periodic travel-
ing waves similar to cos(ωt + kx). Their stability depends on
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(b) A = 1.973469
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(c) A = 1.973470

FIG. 5: Numerical simulation with the forcing terms f1(x, t) = 0.1δ (x−π/2ξ∗)sin(At), f2(x, t) = 0.1δ (x)sin(t), and σ = 0.92.
Level lines of the solution u(x, t) (upper row) and v(x, t) (lower row) are shown for three different forcing terms. The traveling

waves move to the right for A below the threshold value (a,b) and to the left for A above the threshold value (c).

the values of parameters, and they are mutually exclusive.

From the biological point of view we are interested not only
in the existence and stability of periodic traveling waves but
also in their initiation, that is, under what conditions (initial,
boundary, etc), the solution will approach the wave. This
question can be potentially important to determine the role of
epicenters (hubs) in the functioning of brain connectome. The
epicenters receive the information from other epicenters or
from the external body organs, they process this information
and send it further downstream. Assuming that the synchro-
nization of epicenters is effectuated by cortical waves, we can
suppose that the waves are initiated locally by the activated
epicenter. In the case of a single equation, such initiation
appears to be possible for asymmetric connectivity function
but not for symmetric connectivity functions and time delay36.
The latter requires the initial conditions close to the wave on
the whole space interval. The model considered in this work
admits wave initiation by local forcing terms (additional terms
in the equations). If the forcing term is symmetric, then stand-
ing oscillating solutions are observed. In the case of asymmet-
ric forcing term, under the parameters for which the periodic
wave is stable, solution converges to the wave.

Let us note that the direction of propagation is one of the
important parameters characterizing cortical waves. We show
that this direction is determined by the forcing term. In the
2D setting we expect that we can obtain any direction be-
tween 0 and 2π . Hence, the epicenters can exchange directed
signals12. Wave initiation by local forcing terms is observed in
the case of brain stimulation with electrodes37. External brain
stimulation can be used in order to restore wave propagation in
a partially damaged tissue35,36. Recent perspectives propose
to control brain traveling waves in human subjects by stim-
ulating preidentified nodes using electrical stimulation. One
of these initiatives propose to modulate the activity of cortical
epicenters of the language network to treat chronic conditions
such as post stroke aphasia38,39.
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Appendix A: Computation of the normal form coefficients

To compute the cubic coefficients c1 ∈ C and c2 ∈ C, we
introduce a function

F̃(w,σ) = F(w,σ)+L(σ)w−L(0)w−σL′(0)w

and use the formulas given in Ref. 29. The computation in-
volves second and third-order Fréchet derivatives of F̃(w,σ)
(F̃ww(0,0) and F̃www(0,0)) at w = 0 and σ = 0:

F̃2(w1,w2) = ∑
n∈Z

PnM2(0)(w1�w2)nen,

F̃3(w1,w2,w3) = ∑
n∈Z

PnM3(0)(w1�w2�w3)nen.
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Nonlinear analysis of periodic waves in a neural field model 11

It remains to evaluate the following expressions:

g1 =
1
2
(2iω∗−L(0))−1F̃2(q1,q1),

g2 =−L(0)−1F̃2(q1,q1),

g3 = (2iω∗−L(0))−1F̃2(q1,q3),

g4 =−L(0)−1F̃2(q1,q3),

g5 =−L(0)−1F̃2(q3,q3).

We treat them one by one:

1.

F̃2(q1,q1) =
1√
l∗

P2M2(0)(ζ1�ζ1)e2,

g1 = h1e2, h1 ∈ C2,

(2iω∗−P2M1(0))h1 =
1

2
√

l∗
P2M2(0)(ζ1�ζ1);

2.

F̃2(q1,q1) =
1√
l∗

P0M2(0)(ζ1�ζ1)e0,

g2 = h2e0, h2 ∈ C2,

(P0M1(0))h2 =−
1√
l∗

P0M2(0)(ζ1�ζ1);

3.

F̃2(q1,q3) =
1√
l∗

P2M2(0)(ζ1�ζ1)e2,

g3 = h3e2, h3 ∈ C2,

(2iω∗−P2M1(0))h3 =
1√
l∗

P2M2(0)(ζ1�ζ1);

4.

F̃2(q1,q3) =
1√
l∗

P0M2(0)(ζ1�ζ1)e0,

g4 = h4e0, h4 ∈ C2,

(P0M1(0))h4 =−
1√
l∗

P0M2(0)(ζ1�ζ1);

5.

F̃2(q3,q3) =
1√
l∗

P0M2(0)(ζ1�ζ1)e0,

g5 = h5e0, h5 ∈ C2,

(P0M1(0))h5 =−
1√
l∗

P0M2(0)(ζ1�ζ1).

We also need two terms with third-order derivatives:

F̃3(q1,q1,q1) =
1
l∗

P1M3(0)(ζ1�ζ1�ζ1)e1,

F̃3(q1,q3,q3) =
1
l∗

P1M3(0)(ζ1�ζ1�ζ1)e1.

The normal form coefficients are then given by the follow-
ing formulas29:

c1 =
1
2
〈F̃3(q1,q1,q1)+2F̃2(q1,g1)+2F̃2(q1,g2),q∗1〉X ,

c2 = 〈F̃3(q1,q3,q3)+ F̃2(q3,g3)+ F̃2(q3,g4)+ F̃2(q1,g5),q∗1〉X .

It follows that

c1 =

〈
1

2l∗
P1M3(0)(ζ1�ζ1�ζ1)+

1√
l∗

P1M2(0)(ζ1�h1)+
1√
l∗

P1M2(0)(ζ1�h2),ζ
∗
1

〉
=

1√
l∗

〈
1

2
√

l∗
M3(0)(ζ1�ζ1�ζ1)+M2(0)(ζ1�h1)+M2(0)(ζ1�h2),P

T
1 ζ
∗
1

〉
,

c2 =

〈
1
l∗

P1M3(0)(ζ1�ζ1�ζ1)+
1√
l∗

P1M2(0)(ζ1�h3)+
1√
l∗

P1M2(0)(ζ1�h4)+
1√
l∗

P1M2(0)(ζ1�h5),ζ
∗
1

〉
=

1√
l∗

〈
1√
l∗

M3(0)(ζ1�ζ1�ζ1)+M2(0)(ζ1�h3)+M2(0)(ζ1�h4)+M2(0)(ζ1�h5),P
T
1 ζ
∗
1

〉
.
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