
HAL Id: hal-03019097
https://hal.science/hal-03019097

Submitted on 23 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Scheduling of Robotic Mildew Treatment by
UV-c in Horticulture

Merouane Mazar, Belgacem Bettayeb, Nathalie Klement, M’hammed
Sahnoun, Anne Louis

To cite this version:
Merouane Mazar, Belgacem Bettayeb, Nathalie Klement, M’hammed Sahnoun, Anne Louis. Dynamic
Scheduling of Robotic Mildew Treatment by UV-c in Horticulture. 10th SOHOMA European Work-
shop on Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future,
Oct 2020, Paris, France. pp.496-507, �10.1007/978-3-030-69373-2_36�. �hal-03019097�

https://hal.science/hal-03019097
https://hal.archives-ouvertes.fr

Dynamic scheduling of robotic mildew treatment
by UV-c in horticulture

Merouane Mazar, Belgacem Bettayeb, Nathalie Klement, M’hammed Sahnoun,
Anne Louis

Abstract Thanks to new technologies, it is possible to make an automatic robotic
treatment of plants for the mildew in greenhouses. The optimization of the schedul-
ing of this robotic treatment presents a real challenge due to the continues evolution
of disease level. The conventional optimization methods can not provide an accurate
scheduling able to eliminate the disease from the greenhouse. This paper proposes
a solution to provide a dynamic scheduling problem of evolutionary tasks in horti-
culture. We first developed a genetic algorithm (GA) for a static model. Then we
improved it for the dynamic case where a dynamic genetic algorithm (DGA) based
on the prediction of the task amount is developed. To test the performance of our
algorithms, especially for the dynamic case, we integrated our algorithms in a sim-
ulator.

Keywords Dynamic scheduling, Simulation, Optimization, Multi-agent system,
Mildew.

Merouane Mazar
LINEACT - CESI. 80, rue Edmund Halley, Rouen Madrillet Innovation, 76800 Saint-Étienne-du-
Rouvray, France e-mail: mmazar@cesi.fr

Belgacem Bettayeb
LINEACT - CESI. 8, boulevard Louis XIV, 59046 Lille, France e-mail: bbettayeb@cesi.fr

Nathalie Klement
Arts et Métiers Institute of Technology, LISPEN, HESAM Université, F-59000 Lille, France e-
mail: Nathalie.Klement@ensam.eu

M’hammed Sahnoun
LINEACT - CESI. 80, rue Edmund Halley, Rouen Madrillet Innovation, 76800 Saint-Étienne-du-
Rouvray, France e-mail: Nathalie.Klement@ensam.eu

Anne Louis
LINEACT - CESI. 80, rue Edmund Halley, Rouen Madrillet Innovation, 76800 Saint-Étienne-du-
Rouvray, France e-mail: alouis@cesi.fr

1

tenailleau
Rectangle

2 Mazar et al.

1 Introduction

Robotics knows a huge evolution and starts to be used in several fields such as indus-
try, rehabilitation, and agriculture. In horticulture, researchers are developing sev-
eral types of robots to cultivate or treat plants [15]. In the literature, several works on
harvesting robots can be found, like the robot presented in [16], which has an artifi-
cial vision to move easily between the cauliflower plants. In [14], another harvesting
robot that collects watermelons is presented, which shows the ability of some robots
to harvest heavy crops. Moreover, there are also robot equipped with sprayers that
are used for plant treatments. For instance, [11] describes the design of a robot able
to detect the powdery mildew and spray the diseased plants in order to reduce the
quantity of spray and avoid the treatment of safe plants. The work presented in this
paper is part of an European project called UV-Robot. In our case, we have a robot
that treats the mildew fungus in horticulture using type C ultraviolet radiation (UV-
c). UV-Robot replaces the chemical spray treatment with UV-c treatment. In [17],
the authors have shown that UV-c treatment improves the production of strawber-
ries.

The UV-Robot must treat the rows of plants that are affected by mildew during
their growth. The energy supply of the robot is based on a battery that can ensure
a continuous functioning during 3 hours in average and needs 2.5 hours to be fully
charged. Mildew disease has an evolutionary and spreading behavior that follows a
stochastic process. To achieve an optimal treatment schedule, decision support tools
are needed. Simulation-optimization approach allows to solve the dynamic schedul-
ing of UV-Robot systems. This approach has showed good performance in several
works, and it has the advantage of allowing the simulator to learn and adapt over
time with the best behavior [20]. For instance, [12] works on the problem of air
transport of military aircraft of the United States using approximate dynamic pro-
gramming. This approach is also used within the simulators of [8] and [21] which
are developed to optimize the vehicles routing for the collection of conditioned bio-
waste.

Since few decades, Multi-Agent Systems (MAS) paradigm has emerged as an
effective approach for complex systems modelling and simulation. [18] describes
the MAS environment as the context in which the agents will evolve. For [4], a
MAS is a set of entities called agents, sharing a common environment, which they
are able to perceive and on which they can act. The simulator developed within
this work represents the environment for testing our UV-Robot processing system.
We will run optimization algorithms inside the simulator in order to plan the robot
tasks.

Dynamic scheduling is a problem studied in several systems, such as on robots,
manufacturing machines or distribution chains. Several works have studied this
problem from which we can cite the article by [5], where a machine processes jobs
that arrive continuously. A case on several resources (multiprocessor in a computer)
is presented in [13], which executes a set of tasks that arrive dynamically. In dy-
namic scheduling, it is generally the time of arrival or departure (duration) of tasks

tenailleau
Rectangle

Dynamic scheduling of robotic mildew treatment by UV-c in horticulture 3

which is dynamic. In our case, both the occurrence and spread of mildew disease on
plants are dynamic.

In the case of dynamic duration , we explored the lead of scheduling problems
with deteriorating jobs. In this problem, the tasks duration follow a degradation
process, as in [7], where the temperature of the ingots drops after they come out of
the oven. In [6] and [1], the tasks are degraded in the same way starting from T0
according to a linear degradation equation. The processing of tasks is done by job
batch in [7], [6] and [1]. These batches can be processed in parallel, which is not
possible in our case with a single robot.

This paper proposes to resolve a dynamic scheduling problem with evolving task
duration due to the evolution of the mildew level. A sim-optimization approach
based on a genetic algorithm and a multi-agent simulation is used to implement
the dynamic solution. NetLogo [19] simulation software is used to implement the
optimization and simulation algorithms. In this study, the agent based architecture is
used for its capacity to present and simulate complex systems with centralized GA
based decision making (only one active agent). To the best of our knowledge, there
is no work proposing the resolution of dynamic scheduling of robot in horticulture.

The article is organized as follows. Section 2 presents the simulation model with
MAS. Section 3 details the disease behavior model and its estimation. Then, two
optimization algorithms are proposed in Section 4. Section 5 describes and discusses
the results obtained. Finally, the conclusion and the perspectives of this work are
given in Section 6.

2 Simulation model

This section presents the simulation model of the robotized mildew treatment pro-
cess, which is based on MAS, and explains the role of agents and the interactions be-
tween them. Before building the simulation model, we carefully studied our system
to define all the agents. In the UV-Robot treatment system, a robot equipped with
UV-lamps performs treatment missions of infected plant rows in the greenhouse.
The robot moves to the battery charging station after each mission. The robot is also
equipped with a smart e-nose to inspect the level of plant disease. The smart e-nose
absorbs chemicals substances around the plants, then calculates the level of mildew
for each plant section. The robot performs a measurement of the entire greenhouse
using e-nose and then begins treatment knowing that the disease progresses during
treatment. However, the robot cannot launch a mission before being given the autho-
risation from the monitoring agent. The monitoring system is composed of a central
computer able to control the robot missions, collect data about the greenhouse and
represent the state of the system on a dashboard for the grower. It allows the grower
to manually control the robot, plan its missions and update the mildew level.

The model of our multi-agent system and a screenshot of the developed simulator
are shown in Fig. 1. This system contains seven agents interconnected by some

tenailleau
Rectangle

4 Mazar et al.

Plants

Robots Greenhouse

Charge

station

Growing in

Charging Placed in

Moving in

Lamp UV-c

Monitoring Grower

Defines missions

Installed onControl

Sending data

RelationshipAgent Process or actionsDecision

Update the
consumption

matrix

Tasks list

scheduling missions

Treating

Optimization process

Manual

control

Prediction ?

GA

DGA

No
Yes

Optimize the

mission scheduling

Predict new stats

(a) Agent-based conceptual model (b) Screenshot of the Netlogo Simulator

Fig. 1: Agent-based conceptual model and Simulator

directed links that represent the interactions between them. In our model, we only
use the capacity of MAS to reduce the complexity of systems in terms of modeling
and simulation. The model have an active “Monitoring” agent, which receives all
the information from the other agents and then makes decisions regarding plants
treatment and missions planning. The “Plants” and “Robots” agents cannot make
any decision and they are modeled as completely reactive agents. Fig. 1-(a) presents
a more detailed view to show the operating diagrams of some agents. Each agent
has its own behavior, and can interact or communicates with one or more agents.
The “Grower” agent defines missions for the monitoring, and can manually control
the robot. The “Monitoring” agent receives information from the greenhouse and
data from the robot, and runs the optimization algorithms to create the missions of
the robot. The “Robots” agent has four main roles: (i) calculates the plant disease
levels to send it to the monitoring; (ii) controls the UV-c lamps (turns them on or
off); moves to the charging station when battery level is low; and (iv) moves between
crop rows to treat infected plants. The “Plants” agent has a disease level that can
increase and/or spread and that is reset to zero each time the plant is treated. The
plants grow in the greenhouse and are treated by the robot. The agent “UV-c Lamp”
is installed on the robot which control them. The “Charge station” agent is placed in
the greenhouse and allows the robot to recharge its battery. The “Greenhouse” agent,
which carries all the agents, is the environment that can influence the appearance of
fungus (mildew).

3 Mildew’s behavior model

The evolution of mildew infection level influences directly the UV-c dose to apply,
i.e. the duration of treatment. To adjust the UV-c treatment doses, the robot changes

tenailleau
Rectangle

Dynamic scheduling of robotic mildew treatment by UV-c in horticulture 5

its speed according to the infection level of the plant. When the infection level is
high, the robot treats the plant with a low speed, so the plant receives a sufficient
dose of UV-c radiation. Moreover, the energy consumption of the robot is propor-
tional to the applied treatment dose. As UV-c lamps represent the biggest part of the
robot energy consumption, when the robot is moving slowly with lamps turned-on,
it consumes more energy even if the consumption of motor is low.

In order to properly calibrate our resolution algorithms in our system, the be-
havior of mildew needs to be simulated to bring it closer to reality. We used data
from [2], which represents the evolution over time of the level of mildew in vine-
yards in 2007. Fig. 2 shows the IGT2007 mildew behavior curve, and our estimation
curve f̂ (t). This data can be approached by the time series in discreet or continues
representation.

f̂ (t) = c
1+be−at (1)

The estimation function (1) is a three-parameter logistic function that represents the
time series. Its parameters are the following.

• The numerator c is the limit of the function at infinity (the curve peaks under a
horizontal asymptote).

• The function is symmetrical with respect to its inflection point of abscissa ln(b)
a

and ordinate c
2 .

• c = 30 is the maximum level of disease.

Fig. 2: Real mildew behavior IGT2007 [2] and estimated logistic function f̂ (t)

To compute a and b, we take a point in the graph from the IGT2007 curve
(40,0.468) and construct two following equations (2) and (3):

c
1+be−40a = 0.468 (2)

ln(b)
a
= 83.054 (3)

tenailleau
Rectangle

6 Mazar et al.

After solving both equations (2) and (3), we obtain a ≈ 0.096 and b ≈ 2936. Thus
f̂ (t) is given by equation (4).

f̂ (t) = 30
1+2936e−0.096t (4)

To get a simulated disease behavior similar to the one represented by function
(4), we proceed by trying empirically several evolution probabilities that steer the
transition of plants infection rate from the current level to the superior one. We
carried out several tests using the simulator. The retained probability function of
disease level transition is given by equation (5).

P = 0.000005∗ [level mildew]∗ [last treatment] (5)

[level mildew] is the plant’s current level of mildew and [last treatment] is the
number of days elapsed since the last treatment. For the propagation of disease
between neighbor plants, we check if there is an infected plant within a radius of 3
meters and, if it is the case, the probability P is increased by 0.01.
There are 6 disease levels (0, 3, 6, 12, 20 and 30) defined with our partners in the UV-
Robot project. The speed of the disease evolution is not linear and can be assimilated
to the function f̂ (t). The speed of the disease increase is given by the derivative
function d f̂ (t)/dt. For example, the speed is low at the beginning (between day 0
and day 40) and at the end (after day 120) whereas it is much higher around the
infection point (day 83).

4 Dynamic Scheduling

Bin-packing is a known operational research problem that can be used for the mod-
eling of robotic task planning. It consists in filling bins with items while respecting
the size of the bins. The goal of this problem is to minimize the number of used bins.
In our problem, bins correspond to missions, and items correspond to treatment tasks
performed during missions. The size of each mission is limited by the capacity of
the battery that provides the electric energy necessary for robot movement and for
UV-lamps operation when performing treatment tasks. As the objective is to erad-
icate the disease from the greenhouse as soon as possible, the goal is to minimize
the number of missions. Table 1 summarizes the analogy between our problem and
the bin-packing problem. The mathematical model of this problem is detailed in [9].
Authors have already resolved it in the static case using a genetic algorithm and an
exact method. The model will not be detailed in this paper.

In this section, two genetic algorithms are proposed to solve the problem of treat-
ment missions planning for semi-static and dynamic cases. The dynamic case takes
into account the evolution behavior of mildiou in the greenhouse.

tenailleau
Rectangle

Dynamic scheduling of robotic mildew treatment by UV-c in horticulture 7

Bin-packing problem Our problem
Bins Missions
Items Infected plant rows treatment tasks

Size of an item Needed energy for the treatment task
Capacity of the bin Capacity of the battery

Minimize the number of bins Minimize the number of missions

Table 1: Analogy between our problem and the bin-packing problem

4.1 Genetic algorithm in semi-static case

First, the genetic algorithm (GA) has been developed to resolve a semi-static case,
where the disease behavior changes every 24 hours. This period allows a long time
for the robot to execute its missions with a stable level of disease. We used the oper-
ations of a classic GA (selection, crossing and mutation) [3]. The charging station is
in the middle of the greenhouse. In order to optimize displacements, the robot does
all the treatments by visiting the rows selected within a mission in an ascendant
order of their identification number (from the left to the right of the greenhouse).

The coding scheme of an individual in the GA is represented by a matrix as
shown in Fig. 3, where lines represent the treatment missions and columns are the
rows of the greenhouse. If a row j is to be treated during a mission i, the value
of the element i j is equal to 1. The sum of power consumption of each mission
(vector multiplication of “mission” line vector and “consumption” column vector)
should not exceed the robot battery capacity, otherwise the individual is discarded.
The evaluation of each chromosome takes into account the energy consumed for the
displacements of the robot to reach the charging station. The initial population is
created with a greedy heuristic, which takes the treatments of large size at the be-
ginning and fulfill the missions while respecting the capacity of the robot. Since the
goal is to minimize the number of missions, the chromosome with fewer missions
is the best individual. Fig. 3 presents the crossing between two parents at a random
point which gives two children as the output.

matrix-parent1
[1 0 0 0 1 0 0 1 1 0 1 0 1 1 0 0 0]
[0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 1]
[0 1 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

matrix-parent2
[1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0]
[0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 1]
[0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0]

matrix-child1
[1 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0]
[0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 1]
[0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0]

matrix-child2
[1 0 0 0 1 0 0 1 0 0 1 0 1 1 0 0 0]
[0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 1]
[0 1 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]

Crossover

Fig. 3: Crossover operator

Fig. 4 shows how the mutation operation works in the proposed GA. Each child
has a 60% of chance to be mutated. During the mutation, the algorithm randomly

tenailleau
Rectangle

8 Mazar et al.

selects 2 lines of the chromosome matrix. Then, each element equal to 1, in each
line, has a 50% chance to switch with the corresponding element of the other line
(element with the same j). After each iteration of GA, 10% of the best individuals
are selected to be included in the new generation.

matrix-child1

[1 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0]
[0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 1]
[0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0]

matrix-child1

[1 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0]
[0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0]
[0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1]

P=

_1
2

Mutation

Fig. 4: Mutation operator

4.2 Dynamic genetic algorithm

The proposed dynamic genetic algorithm (DGA) is considered as an improvement
of the GA in the dynamic case. Since the previous GA is limited when disease
behavior changes over and over in the greenhouse, we improved it while keeping
certain operations. The added value of the DGA is the use of the function f̂ (t) to
predict the evolution of mildew. When the algorithm fulfills the missions by the
processing tasks, it takes into account an additional energy consumption. Fig. 5
shows a diagram of the operation of the DGA. The predicted disease level increases
over time because there is a waiting period before the execution of each mission.
The waiting time of a mission is the execution time of the previous mission plus the
battery charging time. Fig. 6 shows the difference between DGA and GA regarding

17 10159 87
18 15 1510 108 8

Mission 1 Mission 2 Mission 3 Mission 4

18 15

8

15

Mission 5

10

18

18

10

8

Prediction P1 Prediction P3 Prediction P4 Prediction P5

P1 ≤ P2 ≤ P3 ≤ P4 ≤ P5

10

8

9

Prediction P2

7

15

17

Fig. 5: Representation of the dynamic fulfilment of treatment tasks in missions

energy consumption. DGA always allocates a part of the battery capacity to the
expected additional consumption, due to the evolution of infection level, for each
mission. On the opposite, GA does not take into account the evolution of the disease.
Fig. 6 also shows the execution times for missions with a treatment time of 3 hours

tenailleau
Rectangle

Dynamic scheduling of robotic mildew treatment by UV-c in horticulture 9

and a charging time of 2 hours and 30 minutes. We used the estimation function
f̂ (t) for the prediction calculation Pi as shown in equation (6). In fact, we need to
estimate the amount of the additional increase of infection level Pi at the execution
moment of the ith mission. For that, we first estimate the global level of disease
using the function f̂ (t) and then we remove the measured value recorded at the last
measurement action (using e-nose or human estimation).

Pi = f̂ (3+5.5(i−1)+ tm)αi
Nbrplants/4

−M (6)

α is an empirical parameter defined thanks to the simulation,M is the last measured
mildew level for the concerned plant, and tm is the estimated time corresponding to
the value of the last measured mildew level (M).

Treatments P3

P2

3h

2h30min

Treatments

Treatments

Treatments

3h

2h30min

Or

P1

DGA

GA

Treatments P3

P2

3h

2h30min

Treatments

Treatments

Treatments

3h

2h30min

Or

P1

DGA

GA

Treatments P3

P2

3h

2h30min

Treatments

Treatments

Treatments

3h

2h30min

Or

P1

DGA

GA

(a) GA

Treatments P3

P2

3h

2h30min

Treatments

Treatments

Treatments

3h

2h30min

Or

P1

DGA

GA

Treatments P3

P2

3h

2h30min

Treatments

Treatments

Treatments

3h

2h30min

Or

P1

DGA

GA

Treatments P3

P2

3h

2h30min

Treatments

Treatments

Treatments

3h

2h30min

Or

P1

DGA

GA

(b) DGA

Fig. 6: Comparison of the dynamic and static attribution of treatment

5 Experimentation

We consider a greenhouse containing 100 rows of strawberry plants, each row has
100 meters of length and contains 100 plants. A UV-C robot with an autonomy of 3
hours and a charging time of 2.5 hours is used to treat the mildew. We assume that
in the initial conditions, 50% of plants are infected with different levels of disease.

In the first step of experiment, we launched several simulations with DGA to
calibrate its parameter α to comply the model developed for vineyards to the evolu-
tion of mildew for strawberry. Then, we launched 5 simulations of each algorithm
(DGA and GA) in a dynamic environment where the disease evolves at each simu-
lation step. The time horizon of each simulation is 20 hours, which is enough for the
treatment of all infected plants in the greenhouse. In both the GA and the DGA, the
population size is 20 and the limit number of generations is 50. These parameters
were determined empirically through several trials. Fig. 7 draws the evolution of
the level of the robot battery as a function of time. It compares three curves with
different values of the parameter α (36,50 and 60). The decreasing segment in the
curves is linked to the time of treatment, and the increasing segment is relative to
the time of battery charging. In order to increase the lifespan of the battery, we limit
the consumption to 80% of battery’s capacity, as it is recommended by experts [10].
To compare the curves in Fig. 7 we have added the line EL which represents 20%
of the battery charge. So we will choose DGA with α = 60 (DAG60) for the next
simulations because its curve respects the minimum level of energy.

tenailleau
Rectangle

10 Mazar et al.

Fig. 7: Evolution of energy consumption for different values of α

Fig. 8a shows the evolution of level of disease over time. There are two curves in
the figure: the blue solid curve which represents the level of mildew using DGA60
and the green pointed curve which is related to the use of GA. We can clearly ob-
serve that using GA allows the robot to finish the treatment of mildew in 1000
minutes, whereas it takes 1100 minutes using DGA. Moreover, we notice that using
the GA is risky and does not allow using the robot in an autonomous way. In fact,
during the execution of the scenario using GA, the grower restart manually the robot
several times because it has not enough energy in the battery to return back to the
charging station. In fact, an extra energy consumption may happen when the actual
level of mildew is more than expected. We also notice that the level of disease in-
creases from time to time in both graphs during the robot’s charging period.

(a) Average Mildew Infection Level (b) Energy consumption

Fig. 8: Comparison between DGA60 and GA

In Fig. 8b, there are also two curves relative to DGA60 and GA drawing the
level of battery energy as function of time. Both curves correspond to the average of
several simulations for each algorithm. The GA scenario does not respect the battery
capacity constraint, where the robot uses more than 80% of its battery capacity. As

tenailleau
Rectangle

Dynamic scheduling of robotic mildew treatment by UV-c in horticulture 11

show on Fig. 8b, this level reaches a 100% of battery capacity several times, which
necessitates the intervention of the grower to bring the robot to its charge station.

The average time for a simulation with GA is 16 minutes and 41 seconds, and
that of DGA60 is 21 minutes and 36 seconds. This increase in computation time is
due to the additional computation of the prediction of mildew level.

As a conclusion, we can say that even if the use of GA allows less treatments
and computation times, it is still a risky scenario because it can not ensure the total
autonomy of the robot and needs the intervention of the grower in several times.
Moreover, the use of DGA60 can be considered more efficient because it respects
the capacity constraint concerning the use of only 80% of the total battery capac-
ity, which allows a total autonomy of the robotic treatment. In addition, the use of
DGA60 gives realistic scenarios and allows possible real implementation.

6 Conclusion

This paper studies the dynamic task scheduling problem, applied to UV-c treatment
of plants in horticulture. The difficulty was in scheduling tasks to treat the disease
which has a dynamic evolutionary behavior. The use of simulator allows to test our
algorithms in the dynamic case. We improved a Genetic Algorithm (GA), previ-
ously proposed, to Dynamic Genetic Algorithm (DGA) allowing the autonomous
execution of treatment with respect to the battery capacity constraint in the dynamic
environment. The results provided by DGA show better accuracy of the treatment
with more respect of the technical battery constraints and give the possibility to
launch real life horticultural tests.
In perspective, we plan to add a preventive treatment that allows to control the evo-
lution and the propagation of disease. We will introduce the case of a multi-robots
for several greenhouses, which will increase the number of active agents and allows
the use of distributed intelligence such as Contact net protocol, or Potential Fields.

7 Acknowledgment

This research was made possible thanks toe 1.35 million financial support from the
European Regional Development Fund provided by the Interreg North-West Europe
Program in context of UV-Robot project.

References

1. TCE Cheng, Liying Kang, and CT Ng. Due-date assignment and single machine scheduling
with deteriorating jobs. Journal of the Operational Research Society, 55(2):198–203, 2004.

tenailleau
Rectangle

12 Mazar et al.

2. Magnien Claude. Mildiou de la vigne - bilan de la campagne 2007. In Actualités Phytosani-
taires, pages 99–105. IFV, 2007.

3. Lawrence Davis. Handbook of genetic algorithms. CumInCAD, NY, 1991.
4. Salima Hassas. Systèmes complexes à base de multi-agents situés. Mémoire d’Habilitation à

Diriger les Recherches. University Claude Bernard Lyon, 2003.
5. Jingzhu Li, Peng Wang, and Changxing Geng. The disease assessment of cucumber downy

mildew based on image processing. In Computer Network, Electronic and Automation (ICC-
NEA), 2017 International Conference on, pages 480–485. IEEE, 2017.

6. Jun-Qing Li, Mei-Xian Song, Ling Wang, Pei-Yong Duan, Yu-Yan Han, Hong-Yan Sang, and
Quan-Ke Pan. Hybrid artificial bee colony algorithm for a parallel batching distributed flow-
shop problem with deteriorating jobs. IEEE transactions on cybernetics, 2019.

7. Shisheng Li, CT Ng, TC Edwin Cheng, and Jinjiang Yuan. Parallel-batch scheduling of dete-
riorating jobs with release dates to minimize the makespan. European Journal of Operational
Research, 210(3):482–488, 2011.

8. Merouane Mazar, Vincent Constant-Meney, M’hammed Sahnoun, David Baudry, and Anne
Louis. Simulation et optimisation de la tournée des véhicules pour la collecte de biodéchets
conditionnés. 2017.

9. Merouane Mazar, M’hammed Sahnoun, Belgacem Bettayeb, Nathalie Klement, and Anne
Louis. Simulation and optimization of robotic tasks for uv treatment of diseases in horti-
culture. Operational Research, pages 1–27, 2020.

10. Yongguo Mei, Yung-Hsiang Lu, Y Charlie Hu, and CS George Lee. A case study of mobile
robot’s energy consumption and conservation techniques. In ICAR’05. Proceedings., 12th
International Conference on Advanced Robotics, 2005., pages 492–497. IEEE, 2005.

11. Roberto Oberti, Massimo Marchi, Paolo Tirelli, Aldo Calcante, Marcello Iriti, Emanuele Tona,
Marko Hočevar, Joerg Baur, Julian Pfaff, Christoph Schütz, et al. Selective spraying of
grapevines for disease control using a modular agricultural robot. Biosystems Engineering,
146:203–215, 2016.

12. Warren B Powell. Approximate dynamic programming: lessons from the field. In Simulation
Conference, 2008. WSC 2008. Winter, pages 205–214. IEEE, 2008.

13. Jyoti Sahni and Deo Prakash Vidyarthi. A cost-effective deadline-constrained dynamic
scheduling algorithm for scientific workflows in a cloud environment. IEEE Transactions
on Cloud Computing, 6(1):2–18, 2015.

14. Satoru Sakai, Michihisa Iida, Koichi Osuka, and Mikio Umeda. Design and control of a heavy
material handling manipulator for agricultural robots. Autonomous Robots, 25(3):189–204,
2008.

15. F Sistler. Robotics and intelligent machines in agriculture. IEEE Journal on Robotics and
Automation, 3(1):3–6, 1987.

16. Ben Southall, Tony Hague, John A. Marchant, and Bernard F. Buxton. An autonomous crop
treatment robot: Part i. a kalman filter model for localization and crop/weed classification. The
international journal of robotics research, 21(1):61–74, 2002.

17. Fumiomi Takeda, WJ Janisiewicz, BJ Smith, and B Nichols. A new approach for strawberry
disease control. Eur J Hortic Sci, 84(1):3–13, 2019.

18. John Tranier. Vers une vision intégrale des systèmes multi-agents. PhD thesis, Université
Montpellier II, Montpellier, Thèse de doctorat, 2007.

19. Uri Wilensky and I Evanston. Netlogo: Center for connected learning and computer-based
modeling. Northwestern University, Evanston, IL, pages 49–52, 1999.

20. Tongquiang Wu, Warren B Powell, and Alan Whisman. The optimizing simulator: An in-
telligent analysis tool for the military airlift problem. Unpublished Report. Department of
Operations Research and Financial Engineering, Princeton University, Princeton NJ, 2003.

21. Yiyi Xu, M’hammed Sahnoun, Merouane Mazar, Fouad Ben Abdelaziz, and Anne Louis.
Packaged bio-waste management simulation model application: Normandy region, france. In
2019 8th ICMSAO, pages 1–5. IEEE, 2019.

tenailleau
Rectangle

