
HAL Id: hal-03019093
https://hal.science/hal-03019093

Submitted on 9 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Direct methods for non-adiabatic dynamics: connecting
the single-set variational multi-configuration Gaussian

(vMCG) and Ehrenfest perspectives
Morgane Vacher, Michael J Bearpark, Michael A Robb

To cite this version:
Morgane Vacher, Michael J Bearpark, Michael A Robb. Direct methods for non-adiabatic dynamics:
connecting the single-set variational multi-configuration Gaussian (vMCG) and Ehrenfest perspectives.
Theoretical Chemistry Accounts: Theory, Computation, and Modeling, 2016, �10.1007/s00214-016-
1937-2�. �hal-03019093�

https://hal.science/hal-03019093
https://hal.archives-ouvertes.fr


1 3

Theor Chem Acc (2016) 135:187
DOI 10.1007/s00214-016-1937-2

FEATURE ARTICLE

Direct methods for non‑adiabatic dynamics: connecting the 
single‑set variational multi‑configuration Gaussian (vMCG) 
and Ehrenfest perspectives

Morgane Vacher1 · Michael J. Bearpark1 · Michael A. Robb1  

Received: 24 May 2016 / Accepted: 20 June 2016 / Published online: 12 July 2016 
© The Author(s) 2016. This article is published with open access at Springerlink.com

coordinates, respectively. The Hamiltonian operator reads: 
Ĥ(r,R) = T̂n(R)+ T̂e(r)+ Vn−e(r,R) = T̂n(R)+ Ĥe(r,  
R) , with T̂n(R) the kinetic energy operator of the nuclei, 
T̂e(r) the kinetic energy operator of the electrons, 
Vn−e(r,R) which includes all inter-particles interactions 
(electron–electron, nucleus–nucleus and electron–nucleus) 
and Ĥe(r,R) = T̂e(r)+ Vn−e(r,R) the electronic Ham-
iltonian for fixed nuclei R. Unfortunately, this equation is 
impossible to solve analytically for more than two particles, 
i.e. the hydrogen atom. The field of theoretical chemistry is 
thus dominated by developments of numerical and approxi-
mate methods, which can be used to treat other atoms and 
molecules.

Conventional Born–Oppenheimer molecular dynam-
ics only allows one to simulate nuclear motion on a single 
potential energy surface and therefore does not describe 
non-adiabatic processes involving non-radiative elec-
tronic transitions. Standard grid-based quantum mechani-
cal simulations are expensive computationally because of 
their exponential scaling with the system size. A separate 
bottleneck is the computation and fitting of the potential 
energy surfaces prior to any dynamics calculation. Reduc-
ing the number of nuclear degrees of freedom of the sys-
tem is sometimes done to make the calculation feasible, 
but the validity of this approximation is limited [2–4]. 
“On-the-fly” dynamics methods have been developed to 
address these issues. They are referred to as direct dynam-
ics methods since the potential energy surfaces are calcu-
lated as needed along nuclear trajectories, thus avoiding 
the precomputation of globally fitted surfaces, and sam-
pling only the relevant regions of the potential energy sur-
faces. These nuclear trajectories are used to describe the 
nuclear wave packet motion, i.e. the nuclear wave packet 
is expanded in the basis of nuclear trajectories via expan-
sion coefficients.

Abstract In this article, we outline the current state-of-the-
art “on-the-fly” methods for non-adiabatic dynamics, high-
lighting the similarities and differences between them. We 
derive the equations of motion for both the Ehrenfest and 
variational multi-configuration Gaussian (vMCG) methods 
from the Dirac–Frenkel variational principle. We explore 
the connections between these two methods by presenting 
an alternative derivation of the vMCG method, which gives 
the Ehrenfest equations of motion when taking the appro-
priate limits.

Keywords Direct methods · Ehrenfest method · vMCG 
method · Non-adiabatic dynamics

1 Introduction

Chemistry is ultimately about the reorganisation of elec-
trons, which causes the breaking and formation of bonds, 
i.e. the motion of atoms resulting in new molecules. The 
time evolution of a (non-relativistic) molecular sys-
tem is determined by the time-dependent Schrödinger 
equation [1]:

where Φ(r,R, t) is the total molecular wave func-
tion, and r and R are the electronic and nuclear 

(1)i�
∂

∂t
Φ(r,R, t) = Ĥ(r,R)Φ(r,R, t)
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The several on-the-fly methods which are able to 
describe non-adiabatic dynamics treat the electrons quan-
tum mechanically. The major feature that differentiates 
between them is the treatment of the nuclear motion itself 
through the basis nuclear trajectories. Do the basis trajecto-
ries obey quantum or classical mechanics? Are the basis 
trajectories coupled or independent? Does each basis tra-
jectory evolve on a single potential energy surface (at a 
time) or does it follow the gradient of a superposition of 
electronic states and therefore evolve on an effective poten-
tial energy surface? This last point raises an important dis-
tinction. In the former case, a different set of basis trajecto-
ries is used for each electronic state. In technical terms, a 
multi-set formalism is used. In the latter case, one set of 
basis trajectories is used to treat the dynamics in all elec-
tronic states: a single-set formalism is used, where each 
basis trajectory has a time-dependent coefficient for every 
electronic states considered. Figure 1 attempts to summa-
rise the relationships among the several theoretical strate-
gies and methods that have been developed and applied by 
different groups1

•	 The direct dynamics variational multi-configuration 
Gaussian (DD-vMCG) method of Worth, Burghardt and 
Lasorne [5–9] describes the nuclear wave packet using 
a basis set of time-dependent Gaussian functions that 
evolve quantum mechanically and are variationally cou-
pled. This means that the evolution of not only the wave 
packet expansion coefficients, but also of the parameters 
(eg. mean position and momentum) of every Gaussian 
basis function (GBF) is determined by the time-depend-
ent Schrödinger equation. Two different formalisms 

1 The schematic representation of the relationships among on-the-fly 
methods in Fig. 1: is not based on a rigorous mathematical deriva-
tion and does not aim to rank the methods according to their “level of 
theory”. It rather represents the similarities and differences between 
them, through their physical approximations.

exist: (1) the multi-set formalism in which a different 
set of GBF is used for each electronic state (there can 
be a different number of GBF for each state) and (2) the 
single-set formalism in which the same set of GBF is 
used for all electronic states (the electronic states are 
included as an extra degree of freedom described by a 
finite basis labelling the states).

•	 Full multiple spawning (FMS) and ab initio multiple 
spawning (AIMS) methods, developed by Martínez 
et al. [10, 11], are similar to the multi-set formalism 
of the DD-vMCG method: the nuclear wave packet is 
described by a set of GBF, each belonging to a given 
electronic state. The main difference is that it uses clas-
sical mechanics to generate the GBF trajectories and 
thus, only the evolution of the wave packet expansion 
coefficients is determined by solving the time-depend-
ent Schrödinger equation. This implies that certain 
quantum mechanical phenomena (i.e. non-adiabatic 
effects and tunnelling) may not be well-described unless 
a large number of trajectories are computed. However, 
another important feature of the AIMS method is that 
the basis set is expanded adaptively in regions of strong 
non-adiabatic coupling where the wave function bifur-
cates, allowing an efficient description of state crossing 
processes. This feature has been extended to allow the 
description of tunnelling effects as well [12].

•	 The surface hopping method, developed by Tully [13, 
14], is also a classical-based direct dynamics method 
but where the nuclear wave packet is represented by a 
swarm of independent trajectories, each evolving on a 
single adiabatic potential energy surface at any given 
time and able to “hop” from one surface to another.

•	 The Ehrenfest method [15–19] is the equivalent of the 
surface hopping method in the single-set formalism: 
each independent classical trajectory follows the gradi-
ent of a superposition of electronic adiabatic states, i.e. 
evolves on an effective potential energy surface.

•	 The coupled-coherent states (CCS) and multi-con-
figurational Ehrenfest (MCE) methods of Shalashi-
lin et al. [20–23] build on Ehrenfest trajectories and 
couple them together. Note that there exists a vari-
ant of the MCE method where the basis set of Ehren-
fest trajectories is expanded adaptively as in the AIMS 
method; this method is called ab initio multiple cloning 
(AIMC) [24]. They differ from the DD-vMCG single-
set method since the basis trajectories obey classical and 
not quantum mechanics.

A new challenge for on-the-fly methods able to describe 
non-adiabatic dynamics has risen with the emergent field 
of “attosecond measurement”. It now becomes possible 
to experimentally study the dynamics of electrons and 

Fig. 1  Schematic representation of the relationships among on-
the-fly methods, able to describe non-adiabatic dynamics, discussed 
in this article. In green are the methods for which the equations of 
motion are derived in the present article
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nuclei in molecules, on the attosecond (1 as = 10−18 s) 
timescale. The synthesis of attosecond pulses relies on the 
time-energy uncertainty principle �E�t ≥ �: collecting 
together coherent light sources with an energy bandwidth 
�E of several eV gives a pulse with duration τ ≈ �/�E of 
a few attoseconds. The broad spectral bandwidth of such 
short pulses leads to the (initial) coherent population of 
several electronic states, thus breaking the Born–Oppenhe-
imer approximation. The system is not confined any more 
to be in a single stationary electronic state but is now a 
non-stationary superposition of electronic states, called an 
electronic wave packet. With the population of a superpo-
sition of electronic states, the convenient picture of a sin-
gle potential energy surface is lost: the nuclei “feel” the 
multiple coupled potential energy surfaces. Such coupled 
electron-nuclear dynamics is often called charge-directed 
reactivity in the literature [25, 26].

We will argue that the “single-set” class of methods 
is more natural for the simulation of such non-adiabatic 
dynamics since each nuclear trajectory “feels” all pop-
ulated electronic states. We choose to present in more 
detail the simplest approach—the Ehrenfest method—
and the most accurate one—the DD-vMCG method. In 
Sect. 2, we derive the Dirac–Frenkel variational principle 
which is then applied to derive the equations of motion 
of the Ehrenfest method in Sect. 3 and of the vMCG 
method in Sect. 4. In Sect. 5, we suggest an alternative 
derivation of the vMCG method which gives equivalent 
equations of motion that result into the Ehrenfest equa-
tions of motion when taking the one-configuration and 
classical limits.

2  Dirac–Frenkel variational principle

A way to obtain approximate solutions to the time-
dependent Schrödinger equation (1), in methods such 
as the Ehrenfest and DD-vMCG methods, is to apply the 
variational principle to a guess form of the molecular wave 
function Φ(t). The resulting equations of motion for the 
time-dependent parameters of the wave function assure that 
the evolution of these parameters optimally represents the 
true evolution of the wave function.

In the so-called Lagrangian form, the time-dependent 
variational principle of quantum mechanics [27] is formu-
lated from the action-type integral [28]

for the time evolution of a wave function in a given time 
interval [t0, t1]. The integrand in the action integral Eq. (2) 
can be interpreted as the expectation value of the deviation 

(2)S[Φ] =

∫ t1

t0

dt

〈

Φ(t)|i�
∂

∂t
− Ĥ|Φ(t)

〉

with respect to the exact time-dependent Schrödinger 
Eq. (1). The idea is that the desired wave function Φ(t) 
should minimise this deviation within the given time inter-
val. The aim is thus to determine an “optimal” wave func-
tion Φ(t) such that the action integral is stationary with 
respect to (small) variations in the form Φ(t)+ δΦ(t). Here 
the variations are required to vanish at the boundaries of 
the time interval: δΦ(t0) = δΦ(t1) = 0. The variational 
principle then reads

A more convenient form of the time-dependent varia-
tional principle may be obtained by rewriting δS[Φ] in such 
a way that the variational principle applies directly to the 
integrand in the time-integration rather than to the action 
integral. Starting from

one can replace the term involving δΦ̇(t) using integration 
by parts to arrive at

Taking into account that the integration boundaries t0 and 
t1 are arbitrary, one may conclude that the integral (5) van-
ishes if and only if [29]

This establishes an instantaneous form of a time-dependent 
variational principle. If together with the variations δΦ(t) 
the variations iδΦ(t) are also permitted, one arrives at the 
related form

Both forms are contained in the so-called Dirac–Frenkel 
variational principle (DFVP) [30, 31] and can be written as

where δΦ denotes all possible variations in Φ with respect 
to the parameters.

In the next sections, we apply the DFVP to derive the 
Ehrenfest and DD-vMCG methods.

(3)δS[Φ] = 0.

(4)

δS[Φ] =

∫ t1

t0

dt

〈

δΦ(t)|i�
∂

∂t
− Ĥ|Φ(t)

〉

+

∫ t1

t0

dt

〈

Φ(t)|i�
∂

∂t
− Ĥ|δΦ(t)

〉

,

(5)δS[Φ] = 2

∫ t1

t0

dt Re

〈

δΦ(t)|i�
∂

∂t
− Ĥ|Φ(t)

〉

(6)Re

〈

δΦ(t)|i�
∂

∂t
− Ĥ|Φ(t)

〉

= 0

(7)Im

〈

δΦ(t)|i�
∂

∂t
− Ĥ|Φ(t)

〉

= 0

(8)

〈

δΦ|i�
∂

∂t
− Ĥ|Φ

〉

= 0 or equivalently

�δΦ|Ĥ|Φ� = i�

〈

δΦ|
∂Φ

∂t

〉
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3  Ehrenfest method

3.1  Wave function ansatz

The simplest possible guess form of the total molecular 
wave function is a product ansatz, which separates the elec-
tronic and nuclear variables:

where Ψ (r, t) and χ(R, t) are the electronic and nuclear 
wave functions, respectively. This is the first approxima-
tion made in the Ehrenfest method. Note that this approxi-
mation is called a single-configuration ansatz for the 
total wave function. It is mentioned in passing that this 
product ansatz (9) is different from the Born–Oppenhe-
imer ansatz [32] for separating the electronic and nuclear 
variables

even in its one-determinant limit, where only a single elec-
tronic eigenstate ψs is included in the expansion.2

One deficiency of the ansatz (9) is the fact that the wave 
function does not have the possibility to decohere: the pop-
ulated electronic states in Ψ (r, t) must share the same 
nuclear wave packet χ(R, t) by definition of the total wave 
function.3 The neglect of electronic decoherence could lead 
to non-physical asymptotic behaviours in the case of bifur-
cating paths.

In order to simplify the appearance of the expressions at 
a later stage of the derivation [36], a phase factor is intro-
duced for the total wave function

and also some internal phase factors for the two individual 
wave functions

(9)Φ(r,R, t) = Ψ (r, t) · χ(R, t)

(10)Φ(r,R, t) =

∞
∑

s=0

ψs(r;R) · χs(R, t)

2 In the Born–Openheimer ansatz (10), {ψs} are eigenstates of the 
electronic Hamiltonian while in equation (9), the electronic wave 
function Ψ  does not have to be.
3 Following the work of Hunter [33], there have been theoreti-
cal derivations of an exact factorisation of the total molecular wave 
function into a product of an electronic wave function and a nuclear 
wave function. There, the electronic wave function is of course not 
an eigenfunction (nor a superposition of eigenfunctions) of the tra-
ditional Born–Oppenheimer electronic Hamiltonian Ĥe but that of a 
somewhat more involved electronic Hamiltonian which depends on 
the nuclear wave function itself [34, 35].

(11)Φ(r,R, t) = Ψ (r, t) · χ(R, t) · exp

(

i

�

∫

t

E(t′)dt′
)

(12)i��χ |χ̇�R = Etot and i��Ψ |Ψ̇ �r = E(t)

with E(t) = �χΨ |Ĥe|χΨ �R,r and Etot = �χΨ |Ĥ|χΨ �R,r. 
The indices R and r indicate the coordinates of integration.

3.2  Equations of motion

The equations of motion of the nuclear and electronic parts 
are obtained by applying the DFVP (8) to the ansatz (11). 
Here,

3.2.1  Equation of motion for the electronic part

Let us first apply the DFVP to the variation in the elec-
tronic part δΨ:

and

We obtain:

More explicitly, it reads:

The index i refers to the electrons; me is used to denote the 
mass of an electron.

3.2.2  Equation of motion for the nuclear part

Let us now apply the DFVP to the variation in the nuclear 
part δχ:

(13)
∂Φ

∂t
=

[

Ψ̇ χ + Ψ χ̇ +
i

�
E(t)χΨ

]

exp

(

i

�

∫

t

E(t′)dt′
)

(14)

δΦ

δΨ
= χ exp

(

i

�

∫

t

E(t′)dt′
)

and
δΦ

δχ
= Ψ exp

(

i

�

∫

t

E(t′)dt′
)

(15)

�δΦ|Ĥ|Φ�R = �χ |Ĥ|Ψχ�R

= �χ |T̂n + T̂e + V̂n−e|χ�RΨ

=
[

�χ |T̂n|χ�R + T̂e + �χ |V̂n−e|χ�R

]

Ψ

(16)

i�

〈

δΦ|
∂Φ

∂t

〉

R

= i�

〈

χ |Ψ̇ χ + Ψ χ̇ +
i

�
E(t)χΨ

〉

R

= i��χ |χ�RΨ̇ + i��χ |χ̇�RΨ − E(t)�χ |χ�RΨ

= i�Ψ̇ + (Etot − E(t))Ψ

(17)

i�Ψ̇ =
[

�χ |T̂n|χ�R + T̂e + �χ |V̂n−e|χ�R

]

Ψ − (Etot − E(t))Ψ

=
[

T̂e + �χ |V̂n−e|χ�R

]

Ψ

(18)

i�
∂Ψ (r, t)

∂t
= −

∑

i

�
2

2me

∇2
i Ψ (r, t)

+ �χ(R, t)|Vn−e(r,R)|χ(R, t)�R · Ψ (r, t)
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and

We obtain:

More explicitly, it reads:

The index I refers to the nuclei; MI is used to denote the 
mass of the nucleus I.

The set of coupled Eqs. (18) and (22) is the basis of the 
time-dependent self-consistent field (TD-SCF) 
method [30, 37], also referred to as time-dependent Har-
tree (TDH) when the nuclear wave function χ(R, t) is 
written as a simple product of (time-dependent) one-
dimensional functions.4 The mean-field origin of the TD-
SCF approach imposes limitations, as discussed already 
above. To understand the consequence of using the 
ansatz (9), let us for instance look closer at the second 
term on the right-hand side of Eq. (18). The interaction 
between electrons at points r in space and nuclei at points 
R is weighted by the probability that the nuclei are at 
these particular points R. This is the effective potential 
experienced by the electrons due to the nuclei. The corre-
sponding remark can be made about the second term on 
the right-hand side of Eq. (22).

According to the set of coupled Eqs. (18) and (22), the 
feedback between electronic and nuclear degrees of free-
dom is described in a mean-field manner, in both directions. 
In other words, both electrons and nuclei move in time-
dependent effective potentials obtained from appropriate 
expectation values of the nuclear and electronic wave func-
tions, respectively. More exactly, the nuclear wave packet 
on a particular potential energy surface would evolve on 

(19)

�δΦ|Ĥ|Φ�r = �Ψ |Ĥ|Ψχ�r

= �Ψ |T̂n + Ĥe|Ψ �rχ

=
[

T̂n + �Ψ |Ĥe|Ψ �r

]

χ

(20)

i�

〈

δΦ|
∂Φ

∂t

〉

r

= i�

〈

Ψ |Ψ̇ χ + Ψ χ̇ +
i

�
E(t)χΨ

〉

r

= i��Ψ |Ψ̇ �rχ + i��Ψ |Ψ �rχ̇ − E(t)�Ψ |Ψ �rχ

= i�χ̇

(21)i�χ̇ =
[

T̂n + �Ψ |Ĥe|Ψ �r

]

χ

(22)

i�
∂χ(R, t)

∂t
= −

∑

I

�
2

2MI

∇2

I
χ(R, t)

+ �Ψ (r, t)|Ĥe(r;R)|Ψ (r, t)�r · χ(R, t)

4 The same equations could have been obtained by inserting 
ansatz (11) into Eq. (1), multiplying on the left by χ∗(R, t) and 
Ψ ∗(r, t) and integrating over R and r, respectively. Applying the 
DFVP (8) is mathematically more sound.

its electronic state under coupling with the other electronic 
states. When simulating the nuclear motion induced by a 
superposition of electronic states (i.e. several electronic 
states being initially populated), we expect the Ehrenfest 
method to be valid at short times before the nuclear wave 
packets belonging to different electronic states move too 
far apart from each other.

3.3  Classical limit for nuclear motion

The Ehrenfest method is the classical analogue to the TD-
SCF method [38] and therefore inherits the same limita-
tion. It is obtained by taking the classical limit of Eqs. (18) 
and (22). To do that in Eq. (22), the nuclear wave function 
is (exactly) rewritten as

allowing for a complex phase S [39]. After inserting 
ansatz (23) in (22), we obtain:

Equation (24) is entirely equivalent to the original Eq. (22). 
The right-hand side term (proportional to �) may be 
thought of as a time-dependent “quantum correction”. The 
classical Hamilton–Jacobi equation is obtained when tak-
ing the limit � → 05:

The resulting Eq. (25) is thus equivalent to Newton’s equa-
tion of motion, where PI =

−→
∇ IS is the classical momen-

tum of nucleus I:

(23)χ(R, t) = exp

(

i

�
S(R, t)

)

(24)

∂S

∂t
+

∑

I

1

2MI

(
−→
∇ IS)

2 + �Ψ (r, t)|Ĥe(r;R)|Ψ (r, t)�r

= i�

∑

I

1

2MI

∇2

I
S

5 In many textbooks, the nuclear wave function is rather 
rewritten in a polar coordinate system in terms of an ampli-
tude A and a phase S which are both considered to be real [40]: 
χ(R, t) = A(R, t) · exp

(

i

�
S(R, t)

)

. This ansatz leads to two equations 
for the amplitude and phase functions, often called the hydrodynamic 
formulation. The equation of motion for the phase function is called 
the quantum Hamilton–Jacobi equation. It has an extra term relative 
to the classical Hamilton–Jacobi equation which involves the second 
derivative of the amplitude (not that of the phase) and may be thought 
of as a time-dependent quantum potential. This is the Bohm interpre-
tation of quantum dynamics. It is tempting to think of the quantum 
Hamilton–Jacobi equation as a natural way to pass to the classical 
limit. However, in neglecting the quantum potential, ∇2

I
A must be 

small, which is a condition that the wave packet be broad [39]! The 
fact that narrow wave packets would signify a breakdown in classical-
quantum correspondence must be an artefact.

(25)

∂S

∂t
+

∑

I

1

2MI

(
−→
∇ IS)

2 + �Ψ (r, t)|Ĥe(r;R)|Ψ (r, t)�r = 0
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In Eq. (18), we can replace χ(R, t) by a delta function at 
the classical trajectory R(t):

Note that now the electronic wave function Ψ  depends 
parametrically on R(t) through Vn−e(r,R(t)) and thus 
Ĥe(r;R(t)). By treating the nuclear motion classically, we 
lose the spatial delocalisation of the nuclei and their motion 
is now described by a classical trajectory. To obtain a real-
istic description of the dynamics of the system, one mimics 
the initial nuclear wave packet distribution by propagating 
a swarm of independent trajectories starting with sampled 
classical positions R and momentum P of the nuclei.

Equations (26) and (27) define the Ehrenfest method.6 
They allow transfer of energy between quantum and classi-
cal degrees of freedom such that the total energy is con-
served [41]. The a priori construction of the potential 
energy surfaces is avoided from the outset by solving 
numerically the coupled set of equations simultaneously 
“on-the-fly” for each nuclear geometry R(t) generated 
along the trajectory.

4  DD‑vMCG method

The DD-vMCG method comes from the multi-configura-
tional time-dependent Hartree (MCTDH) method. The lat-
ter was originally devised as an efficient grid-based quan-
tum dynamics solution by using the variational principle to 
derive the equations of motion for a flexible wave function 
ansatz. The resulting evolution of the time-dependent basis 
functions means that the basis set remains optimally small, 
i.e. the molecular wave function is very compact.

To remove the restrictions of the grid, the G-MCTDH 
method was introduced [5], where some of the multi-
dimensional basis functions are replaced by parameterised 
Gaussian functions. If only Gaussian basis functions are 
included in the G-MCTDH method, one naturally arrives at 
the vMCG method. Its direct dynamics implementation is 
known as DD-vMCG [9].

(26)
dPI

dt
= −

−→
∇ I �Ψ (r, t)|Ĥe(r;R)|Ψ (r, t)�r

(27)

i�
∂Ψ (r, t;R)

∂t
=

(

−
∑

i

�
2

2me

∇2

i
+ Vn−e(r,R(t))

)

Ψ (r, t;R)

= Ĥe(r;R(t)) · Ψ (r, t;R)

6 An advantage of the Ehrenfest method is that its applications and 
results do not depend on the choice of basis functions (if complete) 
and can, in principle, be applied without choosing basis functions by 
numerical integration of Eq. (27).

4.1  Wave function ansatz

The vMCG method uses a set of multidimensional Gauss-
ian basis functions (GBF) to represent the guess form of 
the total molecular wave function. The ansatz spreads over 
a set of coupled electronic states {φs} and reads

Here, we used the single-set formalism as described before, 
i.e. the GBF χj is the same for all electronic states. A con-
sequence is that a particular GBF χj is constrained to move 
identically on every electronic state considered.

One can use the Heller expression for a multidimen-
sional separable GBF [42]: a real-valued Gaussian function 
(spatial amplitude envelope) multiplied by a Fourier func-
tion (plane wave giving a group velocity),

where along each degree of freedom α (nuclear coor-
dinate Rα): σα is the width (spatial standard deviation) 
kept fixed during the simulation for numerical stability 
and taken as equal for all GBF, Rjα and pjα are the mean 
position and momentum, defining the trajectory fol-
lowed by the centre of the function in the phase space. 
Note that here, we set the real part of the complex factor 
to zero and we use the imaginary part to keep the GBF 
normalised.

4.2  Equations of motion

The equations of motion of the expansion coefficients and 
the GBF parameters are obtained by applying the DFVP 
(8). Here,

with {�jα} the parameters of the GBF χj, i.e. the mean posi-
tion and momentum {Rjα , pjα}.

4.2.1  Equations of motion for the expansion coefficients

Let us first apply the DFVP to the variation in the coeffi-
cients δA(s)

j :

(28)
Φ(r,R, t) =

∑

j

∑

s

A
(s)
j (t)φs(r)χj(R, t)

(29)

χj(R, t) =
∏

α

(

2πσ 2

α

)−1/4
exp

(

−
1

4σ 2
α

[

Rα − Rjα(t)
]

2
+ i

pjα(t)

�
Rα

)

(30)
∂Φ

∂t
=

∑

s

∑

j

(

Ȧ
(s)
j χj + A

(s)
j χ̇j

)

φs

(31)
δΦ

δA
(s)
j

= χjφs and
δΦ

δ�jα
=

∑

s

A
(s)
j

∂χj

∂�jα
φs
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and

with Ĥ(ss′) = �φs|Ĥ|φs′ �, H
(ss′)
jl = �χj|Ĥ

(ss′)|χl�, Sjl = �χj|

χl〉 and τjl = �χj|χ̇l� the elements of the Hamiltonian matrix, 
overlap matrix and time-derivative matrix. We obtain:

In matrix notation, it reads:

Equation (37) differs from the standard MCTDH equation 
only by the term including the time-derivative matrix, which 
accounts for the non-orthogonality of the Gaussian basis set.

4.2.2  Equations of motion for the GBF parameters

Let us now apply the DFVP to the variation in the GBF 
parameters δ�jα:

(32)

�δΦ|Ĥ|Φ� =
∑

s′

∑

l

�χj|�φs|Ĥ|φs′ �|χl�A
(s′)
l

=
∑

s′

∑

l

�χj|Ĥ
(ss′)|χl�A

(s′)
l

=
∑

s′

∑

l

H
(ss′)
jl A

(s′)
l

(33)

i�

〈

δΦ|
∂Φ

∂t

〉

= i��χj |�φs|
∑

s′

∑

l

(

Ȧ
(s′)
l

|χl� + A
(s′)
l

|χ̇l�
)

|φs′ �

= i�
∑

l

(

�χj |χl�Ȧ
(s)
l

+ �χj |χ̇l�A
(s)
l

)

using �φs|φs′ � = δss′

= i�
∑

l

(

SjlȦ
(s)
l

+ τjlA
(s)
l

)

(34)

i�
∑

l

SjlȦ
(s)
l =

∑

l

(

H
(ss)
jl − i�τjl

)

A
(s)
l +

∑

s′ �=s

∑

l

H
(ss′)
jl A

(s′)
l

(35)i�S · Ȧ(s) =
(

H
(ss) − i�τ

)

· A(s) +
∑

s′ �=s

H
(ss′) · A(s′)

(36)i�Ȧ
(s) = S

−1 ·





�

H
(ss) − i�τ

�

· A(s) +
�

s′ �=s

H
(ss′) · A(s′)





(37)

or i�Ȧ
(s)
j =

�

l,m

�

S
−1

�

jl





�

H
(ss)
lm − i�τlm

�

A(s)m +
�

s′ �=s

H
(ss′)
lm A(s

′)
m





(38)

�δΦ|Ĥ|Φ� =
∑

s,s′

∑

l

A
(s)∗
j A

(s′)
l

〈

∂χj

∂�jα
|�φs|Ĥ|φs′ �|χl

〉

=
∑

s,s′

∑

l

ρ
(ss′)
jl

〈

∂χj

∂�jα
|Ĥ(ss′)|χl

〉

=
∑

s,s′

∑

l

ρ
(ss′)
jl H

(ss′,α0)
jl

and

with ρ(ss′)
jl = A

(s)∗
j A

(s′)
l  the density matrix, H(ss′,α0)

jl = �
∂χj
∂�jα

|Ĥ(ss′)|χl�, S
(α0)
jl = �

∂χj
∂�jα

|χl� and S(αβ)jl = �
∂χj
∂�jα

| ∂χl
∂�lβ

�. We 

obtain:

Using Eq. (37) to expand Ȧ(s)
l  in the second term in the 

right-hand side gives (with matrix notation):

Let us define the vector Λ collecting all the time-dependent 
parameters defining each GBF �jα and the matrices C and Y 
as follows:

We then obtain:

Using matrix notation,

Equations (37) and (46) are the equations of motion of 
the vMCG method. Again, the a priori construction of 
the potential energy surfaces is avoided from the out-
set by solving numerically the coupled set of equations 

(39)

i�

�

δΦ|
∂Φ

∂t

�

= i�
�

s,s′

�

l

A
(s)∗
j

�

∂χj

∂�jα
|�φs|

�

Ȧ
(s′)
l |χl� + A

(s′)
l |χ̇l�

�

|φs′

�

= i�
�

s

�

l

A
(s)∗
j

�

∂χj

∂�jα
|
�

Ȧ
(s)
l |χl

�

+ A
(s)
l |χ̇l

�

�

using �φs|φs′ � = δss′

= i�
�

s

�

l

A
(s)∗
j Ȧ

(s)
l S

(α0)
jl + i�

�

s

�

l

ρ
(ss)
jl





�

β

�̇lβS
(αβ)
jl





(40)

i�
�

s

�

l

ρ
(ss)
jl





�

β

�̇lβS
(αβ)
jl



 =
�

s,s′

�

l

ρ
(ss′)
jl H

(ss′,α0)
jl

− i�
�

s

�

l

A
(s)
j Ȧ

(s)
l S

(α0)
jl

(41)

i�
�

s

�

l

ρ
(ss)
jl





�

β

�

S
(αβ)
jl − [S(α0) · S−1 · S(0β)]jl

�

�̇lβ





=
�

s,s′

�

l

ρ
(ss′)
jl

�

H
(ss′,α0)
jl − [S(α0) · S−1 ·H(ss′)]jl

�

(42)Cjα,lβ =
∑

s

ρ
(ss)
jl

(

S
(αβ)
jl − [S(α0) · S−1 · S(0β)]jl

)

(43)Yjα =
∑

s,s′

∑

l

ρ
(ss′)
jl

(

H
(ss′,α0)
jl − [S(α0) · S−1 ·H(ss′)]jl

)

(44)
i�
∑

lβ

Cjα,lβ �̇lβ = Yjα

(45)i�C Λ̇ = Y

(46)i� Λ̇ = C
−1

Y
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simultaneously “on-the-fly” in the DD-vMCG method. 
Note that the GBF are coupled both directly and through 
the expansion coefficients. The vMCG method in principle 
allows the nuclear wave packets on the different electronic 
states to move apart from each other. This gives a better 
description of the wave function in the case of bifurcating 
paths and of electronic decoherence.

5  Link between Ehrenfest and DD‑vMCG 
methods

In this section, we attempt to explicitly show the link 
between the Ehrenfest and DD-vMCG methods.

5.1  Alternative wave function ansatz for DD‑vMCG

The relation between the guess forms for the total molec-
ular wave function used in the derivation of the Ehren-
fest and DD-vMCG methods is better highlighted if one 
rewrites the DD-vMCG ansatz (28) as

where the summation over the electronic states is now 
implicit:

with A(s)
j (t) = Bj(t)b

(s)
j (t). It is important to note that 

here the electronic wave functions are normalised but not 
orthogonal: �Ψj|Ψl�r �= 0.

The DD-vMCG ansatz now appears as the sum of sev-
eral products of electronic and nuclear parts, i.e. configu-
rations, Bj(t) being the time-dependent expansion coeffi-
cients of these configurations. It is clear that the Ehrenfest 
ansatz (9) is obtained by taking the one-configuration limit, 
i.e. keeping only one term of the sum.

As in the Ehrenfest derivation, we introduce a phase fac-
tor to the total wave function

and some internal phase factors for the two individual wave 
functions

with Ej(t) = �χjΨj|Ĥe|χjΨj�R,r = Hjj(t) and Etot

j = �χjΨj|

Ĥ|χjΨj�R,r = H tot

jj .

(47)
Φ(r,R, t) =

∑

j

Bj(t)Ψj(r, t)χj(R, t)

(48)Ψj(r, t) =
∑

s

b
(s)
j (t)φs(r)

(49)

Φ(r,R, t) =
∑

j

Bj(t)Ψj(r, t)χj(R, t) exp

(

i

�

∫ t

Ej(t
′)dt′

)

(50)i��χj|χ̇j�R = Etot
j and i��Ψj|Ψ̇j�r = Ej(t)

5.2  Alternative equations of motion for DD‑vMCG

Now let us apply the DFVP (8) to the new (equivalent) DD-
vMCG ansatz (49).

5.2.1  Equation of motion for the expansion coefficients Bj

Let us first apply the DFVP to the variation in the expan-
sion coefficients δBj:

and

with H tot
jl = �χjΨj|Ĥ|χlΨl�R,r, Seljl = �Ψj|Ψl�r and τ eljl =

�Ψj|Ψ̇l�r. Thus, we obtain

5.2.2  Equation of motion for the electronic part Ψj

Let us now apply the DFVP to the variation in the elec-
tronic part δΨj:

(51)

∂Φ

∂t
=

∑

j

[

ḂjΨjχj + BjΨ̇jχj + BjΨjχ̇j +
i

�
Ej(t)BjχjΨj

]

× exp

(

i

�

∫ t

Ej(t
′)dt′

)

(52)

δΦ

δBj

= Ψjχj exp

(

i

�

∫ t

Ej(t
′)dt′

)

,
δΦ

δΨj

= Bjχj exp

(

i

�

∫ t

Ej(t
′)dt′

)

and
δΦ

δχj
= BjΨj exp

(

i

�

∫ t

Ej(t
′)dt′

)

(53)

�δΦ|Ĥ|Φ�R,r =
∑

l

exp

(

i

�

∫ t

(El(t
′)− Ej(t

′))dt′
)

�χjΨj |Ĥ|χlΨl�R,rBl

=
∑

l

exp

(

i

�

∫ t

(El(t
′)− Ej(t

′))dt′
)

H tot
jl Bl

(54)

i��δΦ|
∂Φ

∂t
�R,r =

∑

l

exp

(

i

�

∫ t

(El(t
′)− Ej(t

′))dt′
)

[

i��χjΨj |χlΨl�R,rḂl

+ i��χjΨj |χ̇lΨl�R,rBl + i��χjΨj |χlΨ̇l�R,rBl

− El(t)�χjΨj |χlΨl�R,rBl

]

=
∑

l

exp

(

i

�

∫ t

(El(t
′)− Ej(t

′))dt′
)

[

i�SjlS
el
jl Ḃl

+ i�τjlS
el
jl Bl + i�Sjlτ

el
jl Bl − El(t)SjlS

el
jl Bl

]

(55)

i�
∑

l

SjlS
el
jl Ḃl =

∑

l

[

H tot

jl − i�(τjlS
el
jl + Sjlτ

el
jl )+ El(t)SjlS

el
jl

]

Bl

(56)

�δΦ|Ĥ|Φ�R =
∑

l

exp

(

i

�

∫ t

(El(t
′)− Ej(t

′))dt′
)

�χj |Ĥ|χl�RB
∗
j BlΨl

=
∑

l

exp

(

i

�

∫ t

(El(t
′)− Ej(t

′))dt′
)

H
g
jl
ρjlΨl
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and

with Hg
jl = �χj|Ĥ|χl�R and ρjl = B∗

j Bl. Thus, we obtain

5.2.3  Equation of motion for the nuclear part χj

Let us finally apply the DFVP to the variation in the nuclear 
part δχj:

and

with Hel
jl = �Ψj|Ĥ|Ψl�r. Thus, we obtain

Equation (55) is the equation of motion for the time-
dependent amplitudes of the configurations. Equations (58) 
and (61) constitute the equations of motion for the elec-
tronic and nuclear parts of the configurations, respectively.7 
Note that so far, no approximation has been made (except 
for the molecular wave function guess form). These “new” 

(57)

i��δΦ|
∂Φ

∂t
�R =

∑

l

exp

(

i

�

∫ t

(El(t
′)− Ej(t

′))dt′
)

[

i��χj |χl�RB
∗
j ḂlΨl

+ i��χj |χ̇l�RB
∗
j BlΨl + i��χj |χl�RB

∗
j BlΨ̇l

−El(t)�χj |χl�RB
∗
j BlΨl

]

=
∑

l

exp

(

i

�

∫ t

(El(t
′)− Ej(t

′))dt′
)

[

i�SjlB
∗
j ḂlΨl

+ i�τjlρjlΨl + i�Sjl ρjlΨ̇l − El(t)SjlρjlΨl

]

(58)

i�
∑

l

SjlρjlΨ̇l =
∑

l

[

ρjlH
g
jl − i�(SjlB

∗
j Ḃl + τjlρjl)+ El(t)Sjlρjl

]

Ψl

(59)

�δΦ|Ĥ|Φ�r =
∑

l

exp

(

i

�

∫ t

(El(t
′)− Ej(t

′))dt′
)

�Ψj|Ĥ|Ψl�rB
∗
j Blχl

=
∑

l

exp

(

i

�

∫ t

(El(t
′)− Ej(t

′))dt′
)

Hel
jl ρjlχl

(60)

i��δΦ|
∂Φ

∂t
�r =

∑

l

exp

(

i

�

∫ t

(El(t
′)− Ej(t

′))dt′
)

[

i��Ψj |Ψl�rB
∗
j Ḃlχl

+ i��Ψj |Ψ̇l�rB
∗
j Blχl + i��Ψj |Ψl�rB

∗
j Blχ̇l − El(t)�Ψj |Ψl�rB

∗
j Blχl

]

=
∑

l

exp

(

i

�

∫ t

(El(t
′)− Ej(t

′))dt′
)

[

i�Seljl B
∗
j Ḃlχl

+ i�τ eljl ρjlχl + i�Seljl ρjlχ̇l − El(t)S
el
jl ρjlχl

]

(61)

i�
∑

l

Seljl ρjlχ̇l =
∑

l

[

ρjlH
el
jl − i�(Seljl B

∗
j Ḃl + τ eljl ρjl)+ El(t)S

el
jl ρjl

]

χl

7 By substituting Eq. (55) into Eqs. (58) and (61), the latter would 
become independent of Ḃl.

equations of motion are thus equivalent to Eqs. (37) 
and (46).

5.3  One‑configuration and classical limits

When taking the one-configuration limit, the wave function 
ansatz becomes:

It corresponds to the DD-vMCG ansatz when only one 
GBF is used in the single-set formalism. The nuclear wave 
packet is thus constrained to be and remain Gaussian.

Let us now take the one-configuration limit in the equa-
tions of motion. The equation of motion for the expansion 
coefficients (55) becomes:

Obviously, B(t) is constant; it is equal to unity to ensure 
normalisation.

The equation of motion for the electronic part (58) 
becomes:

The equation of motion for the nuclear part (61) 
becomes:

As expected, Eqs. (64) and (65) are identical to Eqs. (18) 
and (22) defining the TD-SCF method, with the additional 
constraint that the nuclear wave packet has a Gaussian 
shape. The Ehrenfest Eqs. (26) and (27) are obtained by 
taking the classical limit as shown above in Sect. 3.3.

The Ehrenfest method is thus obtained by taking: (1) the 
one-configuration limit of the vMCG method constrain-
ing the nuclear wave packet to remain Gaussian and be the 
same for all electronic states; and (2) the classical limit for 
the nuclei making the Gaussian infinitely narrow.

(62)

Φ(r,R, t) = B(t)Ψ (r, t)χ(R, t)

= B(t)

(

∑

s

b(s)(t)φs(r)

)

χ(R, t)

=
∑

s

A(s)(t)φs(r)χ(R, t)

(63)

i�Ḃ =
[

H − i�(τ + τ eljl )+ E(t)
]

B

=
[

Etot − (Etot + E(t))+ E(t)
]

B

= 0

(64)

i�Ψ̇ =
[

Hg − i�τ + E(t)
]

Ψ

=
[

�χ |Ĥ|χ�R + �χΨ |Ĥe − Ĥ|χΨ �R,r

]

Ψ

=
[

T̂e + �χ |V̂n−e|χ�R

]

Ψ

(65)

i�χ̇ =
[

Hel − i�τ el + E(t)
]

χ

=
[

�Ψ |Ĥ|Ψ �r − E(t)+ E(t)
]

χ

=
[

T̂n + �Ψ |Ĥe|Ψ �r

]

χ
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We note in passing that, in the same spirit as CCS and 
MCE methods of Shalashilin et al. [21], one could post-
process independent Ehrenfest trajectories and form a 
nuclear wave packet by putting floating GBF on top of the 
trajectories. Equation (55) would govern the time evolution 
of the amplitudes of the different trajectories.

6  Conclusion

In this article, we have presented an overview of the cur-
rent state-of-the-art “on-the-fly” methods for non-adia-
batic dynamics, introducing the similarities and differ-
ences between them (Fig. 1). We have also derived two 
of the methods: the Ehrenfest method and the DD-vMCG 
method. In summary, both methods treat the electronic 
degrees of freedom quantum mechanically. To describe the 
nuclear degrees of freedom, the DD-vMCG method uses a 
basis of coupled quantum trajectories, while the Ehrenfest 
method uses a swarm of independent classical trajectories.

We have presented derivations of the two methods from 
the DFVP with unified notations, and we have proposed 
an alternative derivation for the DD-vMCG method, which 
gives the Ehrenfest equations of motion when taking the 
appropriate limits. By doing so, we mention the possibil-
ity of a hybrid method in which one could postprocess 
independent Ehrenfest trajectories to form a nuclear wave 
packet with coupled amplitudes of the different trajectories 
(in the same spirit as CCS and MCE methods).
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