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ON TOTALLY PERIODIC ω-LIMIT SETS FOR MONOTONE

MAPS ON REGULAR CURVES

AMIRA MCHAALIA

Abstract. An ω-limit set of a continuous self-mapping of a compact
metric space X is said to be totally periodic if all of its points are
periodic. In [3] Askri and Naghmouchi proved that if f is one-to-one
continuous self mapping of a regular curve, then every totally periodic
ω-limit set of f is finite. This also holds whenever f is a monotone map
of a local dendrite by Abdelli in [1]. In this paper we generalize these
results to monotone maps on regular curves. On the other hand, we give
some remarks related to expansivity and totally periodic ω-limit sets for
any continuous map on compact metric space.

1. Introduction

The structure of ω-limit sets plays an important role in studying dynam-
ical system since it represents asymptotically the state of the orbit. A class
of ω-limit sets composed of periodic points called totally periodic ω-limit is
investigated. This notion was introduced by Marzougui and Naghmouchi
in [11]. A compact metric space X is said to have the ω-FTP property if
for each self continuous map f of X, every totally periodic ω-limit set of a
point x ∈ X is finite. We mention that totally periodic ω-limit set appeared
in the definition of ω-chaos, introduced by Li in [10]. It also appeared as
ω-limit set of “spiral points” as proved in [2, Proposition 3.2] by Artigue.
In zero-dimension, it was shown in [11] that, a zero dimensional compact
metric space has the ω-FTP property. In one-dimension, it was shown in
([1]) that any local dendrite has the ω-FTP property when we restricted
to monotone maps; that is any totally periodic ω-limit set of a monotone
map on a local dendrite is finite. The later result does not hold when we
remove the restriction of monotonicity; it was shown in [11] that, there is a
continuous map on a dendrite having an infinite totally periodic ω-limit set.
In [3]. it was shown that a regular curve has the ω-FTP property when we
restricted to one-to-one continuous maps. In this line, we generalize in the
present paper the above results to monotone maps on regular curves.

Our main result is the following theorem.

Theorem 1.1. Let X be a regular curve and f : X → X be a monotone
map. Then any totally periodic ω-limit set of f is finite.
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In other words, a regular curve has the ω-FTP property when we restricted
to monotone maps.

Notice that Theorem 1.1 cannot be extended to other classes of systems
such as rational curves; for instance, it was constructed in [13, Theorem D]
an example of a homeomorphism of a rational curve (in fact a dendroid) for
which some points have infinite ω-limit sets consisting only of fixed points.

On the other hand, further results are obtained with regard to expansivity,
we prove that any totally periodic ω-limit set for expansive continuous map
on a compact metric space X is finite (see Proposition 5.2).

2. Preliminaries

Let X be a compact metric space with metric d and let f : X → X be a
continuous map. Let Z, Z+ and N be the sets of integers, non-negative
integers and positive integers, respectively. For n ∈ Z+ denote by fn the
n-th iterate of f ; that is, f0 = idX : identity of X and fn = f ◦ fn−1 if
n ∈ N. A point x ∈ X is called periodic of period n ∈ N if fn(x) = x and
f i(x) 6= x for 1 ≤ i ≤ n− 1. If n = 1, x is a fixed point of f . For any
x ∈ X, the subset Orbf (x) = {fn(x) : n ∈ Z+} is called the orbit of x
(under f). If x is a periodic point, the orbit of x is called periodic orbit.
We denote by P (f) and Fix(f) the set of periodic points and fixed points
of f , respectively. A subset A ⊂ X is called f -invariant if f(A) ⊂ A. It is
called strongly f -invariant if f(A) = A. We define the ω-limit set of a
point x ∈ X to be the set

ωf (x) = {y ∈ X : ∃ ni ∈ N, ni → +∞, lim
i→+∞

d(fni(x), y) = 0}

= ∩
n∈N
{fk(x) : k ≥ n}.

It is non-empty, closed and strongly f -invariant set (cf. [4, Chapter IV,
Lemma 2]).
For any subset A of X, we denote by A, Bd(A) and int(A) the closure,
boundary and interior of A, respectively. The symbol card(A) stands for
the cardinality of A and diam(A) = sup

x,y∈A
d(x, y) means the diameter of A.

We denote by B(x, ε) the open ball centered at x of radius ε.

Definition 2.1 ([8], p. 131). Let X,Y be two topological spaces. A
continuous map f : X −→ Y is said to be monotone if for any connected
subset C of Y , f−1(C) is connected.

When f is closed and onto, Definition 2.1 is equivalent to that the
preimage of any point by f is connected (cf. [8], p. 131). Notice that fn is
monotone for every n ∈ N when f itself is monotone.

In the definitions below, we use the terminology from Nadler [12].
− A continuum is a compact connected metric space.
− An arc I (resp. a circle) is any space homeomorphic to the compact
interval [0, 1] (resp. to the unit circle S1 = {z ∈ C : |z| = 1}). For an arc
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I = [a, b], denote by γ(I) = {a, b} the set of its endpoints, [a, b) = I \ {b}
and (a, b) = I \ γ(I) = I \ {a, b}.
− A space is called degenerate if it is a single point, otherwise it is called
non-degenerate.
− A dendrite is a locally connected continuum which contains no circle.
− A local dendrite is a continuum such that every point of which has a
dendrite neighborhood. A local dendrite is then a locally connected
continuum containing only a finite number of circles (cf. [8], Theorem 4, p.
303).
− A regular curve is a continuum every point of which x and each open
neighborhood V of x in X, there exists an open neighborhood U of x in X
such that U ⊂ V and the boundary set Bd(U) of U is finite. Each regular
curve is locally arcwise connected. Every sub-continuum of a regular curve
is a regular curve (cf. [8] and [12]). Notice that every local dendrite is a
regular curve (cf. [8], p. 303). There exists a regular curve which does not
a local dendrites for example the Sierpińsky triangle.
− A hereditarily locally connected is a continuum such that every
sub-continuum of it is locally connected.
− A Peano continuum is a locally connected continuum. In particular,
each regular curve is a Peano continuum.
− A continuum X is said to be a dendroid provided that X is an arcwise
connected hereditarily unicoherent space; that is if X = A ∪B and A,B
are subcontinua of X, then A ∩B is connected.
Given a compact metric space X with metric d, we denote by 2X (resp.
C(X)) the set of all non-empty compact subsets (resp. continua) of X.
We endow 2X with the Hausdorff metric dH defined as follows:
For A,B ∈ 2X , dH(A,B) = max(sup

a∈A
d(a,B), sup

b∈B
d(b, A)), where

d(x,M) = inf
y∈M

d(x, y) for any x ∈ X and M ∈ 2X . For A = {a}, we write

simply, dH(A,B) = dH(a,B). It is well known that (2X , dH) is a compact
metric space (see [12], for more details). For any B ∈ C(X), we denote by

mesh(B) = sup{diam(C) : C is a connected component of B}.

3. Some results

Lemma 3.1. Let X be a compact metric space and f be a continuous
self-mapping of X. Then for all n ∈ N, P (fn) = P (f).

Lemma 3.2. Let X be a metric compact space and f a continuous self
mapping of X. Then for all x ∈ X, ωf (f i(x)) = ωf (x), for all i ∈ N.

Lemma 3.3. ([4], p. 70) Let X be a metric compact space and f a
continuous self mapping of X. Then for all N ∈ N and x ∈ X,
ωf (x) = ∪N−1i=0 ωfN (x)(f

i(x)).

Lemma 3.4. ([11, Theorem 1.1]) Let X be a compact metric space, f be a
continuous self-mapping of X and x ∈ X. If ωf (x) is totally periodic, then
ωf (x) has finitely many connected components that form a periodic cycle.
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Recall that a p-tuple (A0, . . . , Ap−1) of subsets of X is called a periodic
cycle if f(A0) = A1, f(A1) = A2, . . . , f(Ap−1) = A0.

Proposition 3.5. ([9, Theorem 1.6]) Let (Cn)n∈N be a sequence of disjoint
sub-continua of a regular curve X. Then lim

n→+∞
diam(Cn) = 0.

Lemma 3.6. ([8, Theorem 4, p. 257]) Let X be a Peano continuum and
ε > 0 be a given number. Then there exists η > 0 such that for every pair
of points (x, y) such that d(x, y) < η, there exists an arc I joining x and y
with diam(I) < ε.

Lemma 3.7. ([5, Lemma 4.2]) If X is hereditarily locally connected, then
for any sequence (An)n≥0 in C(X) that converges to A ∈ C(X) (with
respect to Hausdorff metric), we have lim

n→+∞
mesh(An \A) = 0.

Lemma 3.8. Let X be a regular continuum.Then for each sub-continuum
A of X, there is a decreasing sequence (Un)n∈N of open connected
neighborhoods of A with finite boundary such that lim

n→+∞
mesh(Un \A) = 0.

Proof. It is clear that

A =
⋂
n∈N

B(A,
1

n
), where B(A,

1

n
) = {x ∈ X : d(x,A) <

1

n
}.

Since A is compact and X is locally connected, there exists, for each
n ∈ N, an open connected neighborhood Vn of A in B(A, 1n) with finite

boundary such that A =
⋂
n∈N

Vn. For each n ∈ N, set Wn =

n⋂
i=1

Vi. Then

(Wn)n∈N is a decreasing sequence of open connected neighborhoods of A
and A =

⋂
n∈N

Wn. Moreover Bd(Wn) is finite since each Bd(Vi) is finite,

1 ≤ i ≤ n. Now, let Un∈N be the connected component of Wn containing
A. Then the (Un)n∈N is a sequence of decreasing open connected
neighborhoods of A with Bd(Un) finite and we have A =

⋂
n∈N

Un. Since X

is locally connected, Un is open and connected. Moreover the sequence of
continua (Un)n∈N converges to A in C(X) (with respect to Hausdorff
metric). By Lemma 3.7, we have that lim

n→+∞
mesh(Un \A) = 0 and

therefore lim
n→+∞

mesh(Un \A) = 0. �

Lemma 3.9. Let F be a non degenerate closed subset of X. Then

(1) η(F ) := inf
a∈F

dH(a, F ) > 0.

(2) For any a ∈ F , there is c ∈ F such that d(a, c) ≥ η(F ).

Proof. (1) Since d(a,F) = 0, for a ∈ F , so dH(a, F ) = sup
b∈F

d(a,b). There

exists a0 ∈ F and b0 ∈ F such that inf
a∈F

dH(a, F ) = dH(a0, F ) = d(a0, b0). If

a0 = b0, so d(a0, b) = 0, ∀b ∈ F . This implies that F = {a0}, a
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contradiction since F is non degenerate. We conclude that
η(F ) = inf

a∈F
dH(a, F ) > 0.

(2) For any a ∈ F , dH(a, F ) ≥ η(F ) and so there is c ∈ F such that
d(a, c) = dH(a, F ) ≥ η(F ). �

4. Proof of Theorem 1.1

Suppose the theorem does not hold. Then we could find x ∈ X such that
ωf (x) totally periodic (that is ωf (x) ⊂ P (f) ) and infinite.

Lemma 4.1. Let x ∈ X such that ωf (x) is totally periodic. Then, there
are N ∈ N and 0 ≤ i ≤ N − 1 such that:

(1) intω
fN

(f i(x))

(
Fix(fN ) ∩ ωfN (f i(x))

)
6= ∅.

(2) ωfN (f i(x)) is connected.

Proof. (1) As ωf (x) is totally periodic, so ωf (x) = ∪
n∈N

Fix(fn) ∩ ωf (x). By

the Baire property, there is N ∈ N such that

V := intωf(x)

(
Fix(fN ) ∩ ωf (x)

)
6= ∅.

As

ωf (x) =
N−1⋃
i=0

ωfN (f i(x))( Lemma 3.3),

so there exists 0 ≤ i ≤ N − 1 such that V ∩ ωfN (f i(x)) 6= ∅.
As V ∩ ωfN (f i(x)) ⊂ Fix(fN ) ∩ ωfN (f i(x)), thus

intω
fN

(f i(x))

(
Fix(fN ) ∩ ωfN (f i(x))

)
6= ∅.

(2) Set g = fN and y = f i(x). From (1), intωg(y)

(
Fix(g) ∩ ωg(y)

)
6= ∅. We

have ωg(y) ⊂ ωf (y) = ωf (x) (Lemma 3.2). As P (f) = P (g) (Lemma 3.1),

so ωg(y) ⊂ P (g). Following Lemma 3.4, ωg(y) =
m−1⋃
i=0

Ci, for some m ∈ N,

where the (Ci)0≤i≤m−1 are the connected components of ωg(y) with
g(Ci) = Ci+1 for every i ∈ {0, . . . ,m− 1}. As ωg(y) ∩ Fix(g) 6= ∅, so there
is a ∈ ωg(y) ∩ Fix(g). Therefore a ∈ Ci for every i ∈ {0, . . . ,m− 1}, which
implies that ωg(y) = C0. In result ωg(y) is connected. �

Set g = fN and y = f i(x). From Lemma 4.1, we have the following
properties.
− ωg(y) ⊂ P (g).

− intωg(y)

(
Fix(g) ∩ ωg(y)

)
6= ∅.

− ωg(y) is a regular curve (since ωg(y) is a sub-continuum of X).
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It follows that we can find an open connected set O ⊂ Fix(g) ∩ ωg(y). For
the sequel, we let

Sa = ∪
i≥0
g−i(a), for any a ∈ O.

Lemma 4.2. Let U be an open neighborhood of ωg(y) in X with finite
boundary. Then there exists an open connected subset V of ωg(y) such that

V ⊂ O and Sa ⊂ U , for all a ∈ V .

Proof. First, the sets (Sa)a∈O are pairwise disjoint connected sets; for

a 6= b ∈ O, we have Sa ∩ Sb = ∅; indeed otherwise, there is c ∈ Sa ∩ Sb, so
gj(c) = a and gi(c) = b for some j > i ∈ N. As a, b ∈ Fix(g),
a = gj−i(gi(c)) = gj−i(b) = b, a contradiction. By monotonicity of g, Sa is
connected. Set card(Bd(U)) = k. So there are at most k points
a1, a2, . . . , ak ∈ O such that Sai 6⊂ U for every i ∈ {1, . . . , k}: Otherwise,
there are at least k+ 1 points a1, a2, . . . , ak+1 ∈ O such that Sai 6⊂ U for all
1 ≤ i ≤ k + 1. As ai ∈ Sai ∩ U and Sai is connected, so Sai meets Bd(U)
for every 1 ≤ i ≤ k + 1. Hence card(Bd(U)) ≥ k + 1, a contradiction. As
O \ {a1, a2, . . . , ak} is open in ωg(y) and non-empty (since ωg(y) is
infinite), so we can find a non-empty open connected subset V of ωg(y)

such that V ⊂ O \ {a1, a2, . . . , ak}. This implies that for all a ∈ V , Sa ⊂ U .
The proof is complete. �

Step 1. For F = O, we denote by η := η(F ) > 0 be given as in Lemma
3.9. By Lemma 3.8, there exists a sequence of open connected
neighborhoods (Un)n∈N of ωg(y) in X with finite boundary such that
mesh(Un \ ωg(y)) < η

2 . We let U := UN and set card(Bd(U)) = k. From
Lemma 4.2, there exists an open connected subset V ⊂ O of ωg(y) such

that for all a ∈ V , Sa ⊂ U . Let a ∈ V . As {a}  ωg(y), there is an open

connected neighborhood W of a in X such that W ∩ ωg(y) ⊂ V and

ωg(y) \W 6= ∅. We can find two increasing sequences of integers
(ni)i∈N, (ti)i∈N with the following properties:

(1) gni(y) ∈W with lim
i→+∞

gni(y) = a,

(2) gni+j(y) ∈W for each j = 0, . . . , ti, with ti ≥ k and ti ≥ i, ∀ i ∈ N,
(3) gni+ti+1(y) ∈ X \W and since b is a fixed point of g,

lim
i→+∞

gni+ti−k(y) = b = lim
i→+∞

gni+ti+1(y) ∈W \W.

Observe that a ∈W ∩ ωg(y) and b ∈ (W \W ) ∩ ωg(y). So a 6= b.

We let Nk = ∪
i∈N
{ni, . . . , ni + ti − k}. Since lim

i→+∞
ti = +∞, Nk is infinite.

By definition, gm(y) ∈W , for each m ∈ Nk and
lim

m→+∞,m∈Nk

d(gm(y),W ∩ ωg(y)) = 0. For each m ∈ Nk, there is

bm ∈W ∩ ωg(y) such that d(gm(y),W ∩ ωg(y)) = d(gm(y), bm). Since W is
a sub-continuum of X, so it is a Peano continuum. By Lemma 3.6, one can
find an arc Tm = [bm, g

m(y)] ⊂W such that lim
m→+∞,m∈Nk

diam(Tm) = 0.
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Since ωg(y) is infinite and ωg(y) ⊂ P (g), so gm(y) /∈ ωg(y), for every
m ∈ Nk.
Let Im, m ∈ Nk, be the connected component of Tm \ ωg(y) containing

gm(y). Then one can write Im = [gm(y), am) with Im ∩ ωg(y) = {am}. We

see that am ∈W ∩ ωg(y) ⊂ V ⊂ O ⊂ Fix(g) ∩ ωg(y), for any m ∈ Nk.

Claim 1. Under the notations above, there exists N ∈ N such that for all
m ∈ Nk, m ≥ N , the family Fm = {Im+j : 0 ≤ j ≤ k, m+ j ∈ Nk} is not
pairwise disjoint.

Proof. Suppose that, there exists an increasing sequence of positive
integers (mi)i≥1 such that the family Fmi is pairwise disjoint. By passing
to a subsequence of (mi)i≥1, one can assume that (Imi)i≥1 converges to
I ∈ C(X) (in Hausdorff metric). As lim

i→+∞
diam(Tmi) = 0, then

lim
i→+∞

diam(Imi) = 0 = diam(I), so I is degenerate i.e. I = {c}. As

gmi(y) ∈ Imi ⊂W and lim
i→+∞

dH(c, Imi) = 0, so

lim
i→+∞

gmi(y) = c ∈W ∩ ωg(y). Since W ∩ ωg(y) ⊂ V ⊂ O ⊂ Fix(g), so for

all 0 ≤ j ≤ k, lim
i→+∞

gmi+j(y) = gj(c) = c. In result, we have that

lim
i→+∞,mi+j∈Nk

Imi+j = {c} (in Hausdorff metric). Now apply Lemma 3.9 for

c ∈ O: there is c′ ∈ O such that d(c, c′) ≥ η. Then we can find two open
neighborhoods Oc and Oc′ of c and c′ in U , respectively such that
d(Oc, Oc′) >

η
2 . As c′ ∈ O ⊂ ωg(y) ∩ Fix(g), so there is m ≥ 1 such that

{gm(y), gm+1(y), . . . , gm+k(y)} ⊂ Oc′ . Let mp > m such that

∪
mp+j∈Nk

Imp+j ⊂ Oc and set

Cj = g−(mp−m)(Imp+j), mp + j ∈ Nk.
By monotonicity of g, Cj is a sub-continuum of X. Then there is an arc
Jj = [gm+j(y), amp+j ] ⊂ Cj . Each Jj meets O′c in at least gm+j(y) and
meets Oc in at least amp+j ∈ Fix(g) ∩ ωg(y). Let us show that
Jj \ ωg(y) = Jj \ {amp+j}:
It is clear that Jj \ ωg(y) ⊂ Jj \ {amp+j}. Conversely, if z ∈ Jj ∩ ωg(y), then

gmp−m(z) ∈ Imp+j ∩ ωg(y) = {amp+j}. As amp+j ∈ Fix(g), then

gmp−m(amp+j ) = gmp−m(z). As ωg(y) ⊂ P (g), then the restriction g
mp−m
|ωg(y)

is a homeomorphism and therefore z = amp+j . In result,
Jj \ {amp+j} ⊂ Jj \ ωg(y) and hence the equality holds.
We conclude that Jj \ {amp+j} is connected and hence diam(Jj) >

η
2 .

Moreover we have that Jj 6⊂ U (since otherwise, Jj \ {amp+j} ⊂ U \ ωg(y)
and so diam(Jj \ {amp+j}) ≤ mesh(U \ ωg(y)) < η

2 . A contradiction).
Therefore Cj ∩ Bd(U) 6= ∅, for each mp + j ∈ Nk.
Let us show that Cj ∩ Cj′ ∩ Bd(U) = ∅ for all j 6= j′. We have

Imp+j ∩ Imp+j′ ⊂ {amp+j} for j 6= j′ (since amp+j = amp+j′ ). Then

Cj ∩ Cj′ = g−(mp−m)(Imp+j ∩ Imp+j′) ⊂ g−(mp−m)(amp+j ) ⊂ Samp+j
. As
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amp+j ∈ V , so by Lemma 4.2, Samp+j
⊂ U . Hence Cj ∩ Cj′ ⊂ U and so

Cj ∩ Cj′ ∩ Bd(U) = ∅. We conclude that Bd(U) has at least k + 1 points,
which contradicts Bd(U) = k. This completes the proof of Claim 1. �

Step 2. From Claim 1, there is some m ∈ Nk with
m+ j1(m), m+ j2(m) ∈ Nk such that Im+j1(m) ∩ Im+j2(m) 6= ∅. Hence
Im+j1(m) ∪ Im+j2(m) is arcwise connected and so we can find an arc

Pm = [gm+j1(m)(y), gm+j2(m)(y)] ⊂ Im+j1(m) ∪ Im+j2(m).

We have that Pm ∩ ωg(y) = ∅. Since Pm ⊂ Im+j1(m) ∪ Im+j2(m), we have
lim

m→+∞,m∈Nk

diam(Pm) = 0.

Claim 2. Let Bm = g−j1(m)(Pm),m ∈ Nk. Then we have

lim
m→+∞, m∈Nk

diam(Bm) = 0.

Proof. Suppose that lim
m→+∞, m∈Nk

diam(Bm) > 0. Then there is δ > 0 and a

sequence of positive integers (ml)l ⊂ Nk such that diam(Bml
) > δ, for all

l ∈ N. Recall lim
m→+∞, m∈Nk

diam(Im) = 0, where Im = [gm(y), am) and

lim
l→+∞,ml∈Nk

diam(Pml
) = 0. By passing to a subsequence if necessary, one

can assume that (Pml
)ml∈Nk

converges necessarily to a degenerate set, say

{c}. Hence, lim
l→+∞, ml∈N

gml+j1(ml)(y) = c ∈ ωg(y). As Pml
∩ ωg(y) = ∅ for

all l ∈ N, so c /∈ Pml
. Then we can construct a subsequence

(Pmlq
)q≥0,mlq∈Nk

which is pairwise disjoint: indeed, as (Pml
)ml∈Nk

converges to {c}, then for each neighborhood U0 of c, there is n0 ∈ N such
that for all l ≥ n0, Pml

⊂ U0. Since c /∈ Pml
, for each ml ∈ Nk, so we can

find an open neighborhood U1 ⊂ U0 of c such that Pmn0
* U1. Moreover,

since (Pml
)ml∈Nk

converges to {c}, so there is n1 ∈ N such that for all
l ≥ n1, Pml

∈ U1, we obtain Pmn0
∩ Pmn1

= ∅. We continue in this fashion
obtaining a subsequence (Pmlq

)q≥0,mlq∈Nk
which is pairwise disjoint. Since

0 ≤ j1(mlq) ≤ k, we can assume that j1(mlq) = j0, for all q ∈ N. Then the

Bmlq
= g−j0(Pmlq

), q ∈ N, are connected and pairwise disjoint sets. Hence,

by Proposition 3.5, lim
q→+∞,mlq∈Nk

diam(Bmlq
) = 0. This contradicts the fact

that diam(Bml
)> δ, for all l ∈ N,ml ∈ Nk. This completes the proof.

�

End of the proof of Theorem 1.1. Recall that ωg(y) ⊂ P (g) and
ωg(y) ∩ Fix(g) 6= ∅ is infinite. From the notation given in Step 1, we have

that lim
i→+∞

gni(y) = a and lim
i→+∞

gni+ti−k(y) = b with a 6= b ∈ ωg(y)∩ Fix(g).

From Claim 2, Bm = g−j1(m)(Pm) is connected for each m ∈ Nk and

contains the points gm(y) and gm+j2(m)−j1(m)(y). Moreover, for each
m ∈ Nk, we have Bm ∩ ωg(y) = ∅; otherwise, there is m ∈ Nk such that

z ∈ Bm ∩ ωg(y) and so gj1(m)(z) ∈ Pm ∩ ωg(y), this leads to a contradiction
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with Pm ∩ ωg(y) = ∅. By Claim 2, lim
m→+∞,m∈Nk

diam(Bm) = 0. So let Wa,

Wb be two open neighborhoods of a and b, respectively such that

d(Wa,Wb) >
d(a,b)

2 . By Lemma 3.8, there exists a connected neighborhood

U ′ := UN ′ of ωg(y) such that mesh(U ′ \ ωg(y)) < d(a,b)
2 . Since

lim
m→+∞

d (gm(y), ωg(y)) = 0, so there is m0 ∈ N such that for all m ≥ m0,

m ∈ Nk, Bm ⊂ U ′. Thus there exists q ∈ N such that for nq ≥ m0,

gnq(y) ∈Wa and {gnq+tq−k(y), . . . , gnq+tq(y)} ⊂Wb.
For each m ∈ Nk, denote by
− s(m) = m+ j2(m)− j1(m), where m+ j1(m),m+ j2(m) ∈ Nk,
− pnq = inf{i ∈ N : si(nq) ∈ {nq + tq − k + 1, . . . , nq + tq}},
− Kq = Bnq ∪ Bs(nq) ∪ · · · ∪ B

s
pnq−1

(nq)
.

It is easy to see that Kq is connected. Since for all 0 ≤ i < pnq ,

si(nq) ∈ Nk, so Bsi(nq) ∩ ωg(y) = ∅ and then Kq ∩ ωg(y) = ∅. Moreover as

Kq meets Wa in at least gnq(y) and meets Wb in at least gspnq (y), thus

diam(Kq) >
d(a,b)

2 . Since for all nq ≥ m0, Bnq ⊂ U ′, Kq ⊂ U ′ and
Kq ∩ ωg(y) = ∅, thus Kq ⊂ U ′ \ ωg(y). Therefore

diam(Kq) ≤ mesh(U ′ \ ωg(y)) < d(a,b)
2 . A contradiction.

5. Expansivity and totally periodic ω-limit sets

In this section, we consider the notion of expansivity of continuous maps
on compact metric space.

Definition 5.1. [14] A continuous map f : X −→ X on a compact metric
space X is said to be expansive if there is real constant c > 0 such that for
any x, y ∈ X and x 6= y, there is an integer n ∈ Z+ such that
d(fn(x), fn(y)) > c.

It is well known that the Cantor set and the torus T2 admit expansive
homeomorphisms [15]. Kawamura showed [7] that a Peano continuum
which contains a free arc admits no expansive homeomorphisms. In
particular, there is no expansive homeomorphism on an arc and a circle. In
[6], Kato showed that no dendroid admits an expansive homeomorphism.
With respect to expansivity, we show the following.

Proposition 5.2. If f : X −→ X is an expansive continuous map on a
compact metric pace X, then any totally periodic ω-limit set is finite.

Lemma 5.3. ([4, Lemma 4]) Let (X, f) be a dynamical system and let
x ∈ X such that ωf (x) is infinite. If z is an isolated point in ωf (x), then it
is not periodic.

Proof of Proposition 5.2. Let x ∈ X such that ωf (x) ⊂ P (f) and assume
that ωf (x) is infinite. We have that ωf (x) = ∪

n∈N
Fix(fn) ∩ ωf (x). Then we

claim that there exists N ∈ N such that Fix(fN ) ∩ ωf (x) is infinite.
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Otherwise, ωf (x) would be compact countable, so it contains an isolated
point a and therefore by Lemma 5.3, a /∈ P (f). A contradiction.
Now let (xn)n∈N ⊂ Fix(fN ) ∩ ωf (x) be an infinite sequence which
converges to some point y. From expansivity of f , there is a constant c > 0
such that for any n ∈ N, there is an integer kn such that
d(fkn(xn), fkn(xn+1)) > c. One can write kn = snN + rn with 0 ≤ rn < N .
We may assume, by passing to a subsequence if necessary, that rn = r, for
every n. It follows that d(f r(xn), f r(xn+1)) > c, for every n and so letting
n→ +∞, we obtain that d(f r(y), f r(y)) = 0 ≥ c. A contradiction. �

In [2], Artigue introduced the notion of turning point for a continuous map
f : X → X on a metric space (X, d) as follows: we say that x ∈ X is a
spiral point of f if there is m ∈ N such that lim

n→+∞
d(fn(x), fn+m(x)) = 0.

From [2, Proposition 3.2] and Proposition 5.2, we obtain:

Corollary 5.4. If f : X → X is an expansive continuous map on a metric
space (X, d) and x ∈ X is a spiral point of f , then ωf (x) is finite.
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