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 to higher dimensions and other kernels of the type (1.2) because their argument is based on a functional relation, which is obtained 1 We will only consider this case in this note though there

THE TAIL EXPANSION OF GAUSSIAN MULTIPLICATIVE CHAOS AND THE LIOUVILLE REFLECTION COEFFICIENT
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In this short note, we derive a precise tail expansion for Gaussian multiplicative chaos (GMC) associated to the 2d GFF on the unit disk with zero average on the unit circle (and variants). More specifically, we show that to first order the tail is a constant times an inverse power with an explicit value for the tail exponent as well as an explicit value for the constant in front of the inverse power; we also provide a second order bound for the tail expansion. The main interest of our work consists of two points. First, our derivation is based on a simple method which we believe is universal in the sense that it can be generalized to all dimensions and to all log-correlated fields. Second, in the 2d case we consider, the value of the constant in front of the inverse power is (up to explicit terms) nothing but the Liouville reflection coefficient taken at a special value. The explicit computation of the constant was performed in the recent rigorous derivation with A. Kupiainen of the DOZZ formula [START_REF] Kupiainen | Local Conformal Structure of Liouville Quantum Gravity[END_REF][START_REF] Kupiainen | Integrability of Liouville theory: proof of the DOZZ Formula[END_REF]; to our knowledge, it is the first time one derives rigorously an explicit value for such a constant in the tail expansion of a GMC measure. We have deliberately kept this paper short to emphasize the method so that it becomes an easily accessible toolbox for computing tails in GMC theory. 

Introduction.

Gaussian multiplicative chaos (GMC) measures are widespread in probability and statistical physics; indeed they appear in a wide variety of contexts and in particular in the fields of finance, number theory, Liouville quantum gravity and turbulence (see [START_REF] Rhodes | Gaussian multiplicative chaos and applications: a review[END_REF] for references). In view of the broad applications of GMC theory, it is very natural to study these measures in great detail. The foundations of GMC theory were laid in Kahane's 1985 seminal work [START_REF] Kahane | Sur le chaos multiplicatif[END_REF]. If Ω is some open subset of R d then the theory of GMC enables one to define random measures of the form

(1.1) M γ (dx) = e γX(x)-γ 2 2 E[X(x) 2 ] dx
where dx denotes the Lebesgue measure and X is a log-correlated Gaussian field, i.e. a centered Gaussian field with covariance

(1.2) E[X(x)X(y)] = ln 1 |x -y| + f (x, y), x, y ∈ Ω
with f some smooth and bounded function. Of course, definition (1.1) is only formal since X is not defined pointwise hence the measure M γ can only be defined via a regularization procedure. More specifically, the measure M γ is defined via the limit in probability of the sequence

(1.3) M γ, (dx) = e γX (x)-γ 2 2 E[X (x) 2 ] dx
where (X ) >0 is a reasonable family of smooth Gaussian fields converging towards X when goes to 0: see Berestycki's very simple and elegant approach [START_REF] Berestycki | An elementary approach to Gaussian multiplicative chaos[END_REF] for an introduction to GMC and an account on the above issues of convergence. Kahane [START_REF] Kahane | Sur le chaos multiplicatif[END_REF] proved in 1985 that the measure M γ is different from 0 if and only if γ 2 < 2d 1 ; moreover, a standard result in GMC theory is the following condition on existence of moments (see [15, section 2]): if O is some nonempty and bounded open subset then

(1.4) E[M γ (O) p ] < ∞ ⇐⇒ p < 2d γ 2 .
In view of (1.4), it is natural to seek the exact tail behaviour of M γ (O). This was achieved in the beautiful work by Barral and Jin [START_REF] Barral | On exact scaling log-infinitely divisible cascades[END_REF] in the 1d case and for a covariance kernel of the form E[X(x)X(y)] = ln 1 |x-y| on the interval [0, 1]. More specifically, the work of Barral and Jin established that

(1.5) P(M γ [0, 1] > t) = C t 2 γ 2 + o( 1 
t 2 γ 2 )
where the constant C is given by

(1.6) C = 2γ 2 2 -γ 2 E[M γ [0, 1] 2 γ 2 -1 M γ [0, 1 2 ] -M γ [0, 1 2 ] 2 γ 2 ] ln 2 .
from a specific geometric representation (called cone construction) of the Gaussian field with kernel E[X(x)X(y)] = ln 1 |x-y| in dimension 1. Moreover, the approach of Barral and Jin does not provide an explicit value for the constant C . Let us also mention the appendix of Leblé-Serfaty-Zeitouni [START_REF] Leblé | Large deviations for the two-dimensional two-component plasma[END_REF] in a slightly different framework, which contains a description of the tail of the modulus of complex GMC (for β ∈ (0, √ 2))

M β (D) := lim →0 -β 2 2 D e iβX (x) dx
with X a full plane Gaussian Free Field in dimension 2 and D a bounded open subset of the plane. This type of GMC possesses moments of all orders, which are related to Coulomb gas computations. This makes possible to compute the tail with a value of the constant given by a variational formula (whose solution is not explicit).

Let O denote an open subset of R2 with a C 1 boundary 2 . The aim of this work is to introduce a simple method to compute the tail of M γ (O) together with an exact value for the constant in the leading order term. We will consider the case of the unit disk D equipped with a Gaussian Free Field (GFF) X with vanishing mean over the unit circle (eventually augmented by an independent Gaussian perturbation; this covers for instance the important case of the GFF with Neumann boundary condition). Indeed, though we believe our method can be generalized to all dimensions and all kernels, we stick to the 2d GFF setting to keep this note rather short. Let us stress furthermore that these generalizations may eventually raise serious additional technicalities.

We further mention that some material in this note is inspired by the work of Duplantier-Miller-Sheffield [START_REF] Duplantier | Sheffield: Liouville quantum gravity as mating of trees[END_REF] and also by the tail estimates which appear in our recent proof with Kupiainen of the DOZZ formula [START_REF] Kupiainen | Local Conformal Structure of Liouville Quantum Gravity[END_REF][START_REF] Kupiainen | Integrability of Liouville theory: proof of the DOZZ Formula[END_REF]. In fact, our main result (Theorem 2.2 below) can be seen as a strengthening of the convergence results which underly the construction of the so-called quantum sphere in [START_REF] Duplantier | Sheffield: Liouville quantum gravity as mating of trees[END_REF]. However, this note is mostly self-contained: it requires no a priori knowledge of the paper [START_REF] Duplantier | Sheffield: Liouville quantum gravity as mating of trees[END_REF] and we recall the definition of the reflection coefficient of Liouville conformal field theory (LCFT hereafter) before stating the main result.

1.1. The Liouville reflection coefficient. From now on we restrict to the case of dimension 2. Consider γ ∈ (0, 2) and define Q = γ 2 + 2 γ . In this subsection, we introduce the (unit volume) reflection coefficient of LCFT. It was defined in [START_REF] Kupiainen | Integrability of Liouville theory: proof of the DOZZ Formula[END_REF] where it plays an important role in the proof of the DOZZ formula. This coefficient shows up when one analyzes the large values of GMC measures with a singularity, i.e. when one looks at variables of the type

B(v,r) 1 |x -v| γα M γ (d 2 x).
For this integral to exist, the exponent must satisfy α < Q [START_REF] David | Liouville Quantum Gravity on the Riemann sphere[END_REF]. It turns out that when α is large enough (in fact α > γ 2 ), large values of this random variable mostly come from the singularity at the point v and the reflection coefficient quantifies this statement (more details later). Therefore it can intuitively be understood as a coefficient of mass localization in GMC theory. Our proof for the tail is based on a localization trick (see subsection 3.1), which allows us to express the tail of GMC in terms of singular integrals as above. This is the reason why the reflection coefficient is instrumental in identifying the constant in the tail of GMC measures.

In order to introduce the reflection coefficient, we first recall basic material introduced in [START_REF] Sheffield | Conformal weldings of random surfaces: SLE and the quantum gravity zipper[END_REF]. For all α < Q, we define the process B α s

(1.7) B α s = B α -s if s < 0 Bα s if s > 0
where (B α s ) s 0 , ( Bα s ) s 0 are two independent standard Brownian motions with negative drift α -Q and conditioned to stay negative. We also consider an independent centered Gaussian field Y defined for s ∈ R and θ ∈ [0, 2π] with covariance

(1.8) E[Y (s, θ)Y (s , θ )]
= ln e -s ∨ e -s |e -s e iθ -e -s e iθ | and associated GMC measure

N γ (dsdθ) = e γY (s,θ)-γ 2 2 E[Y (s,θ) 2 ] dsdθ.
We introduce the integrated chaos measure with respect to Y (1.9)

Z s = 2π 0 e γY (s,θ)-γ 2 2 E[Y (s,θ) 2 ] dθ.
This is a slight abuse of notation since the process Z s is not a function (for γ √ 2) but rather a generalized function; in this setup, Z s ds is a stationary 1d random measure, meaning that this random measure has same law as its pushforward by any translation. Now, we define the (unit volume) reflection coefficient R(α) for all α ∈ ( γ 2 , Q) by the following formula

(1.10) R(α) = E ∞ -∞ e γB α s Z s ds 2 γ (Q-α)
.

Notice that the condition α ∈ ( γ 2 , Q) ensures that 2 γ (Q -α) < 4 γ 2 hence one can show that R(α) is well defined for all α ∈ ( γ 2 , Q). Indeed, for all α < Q and p ∈ (0, 4 γ 2 ) the following holds (see [START_REF] Kupiainen | Integrability of Liouville theory: proof of the DOZZ Formula[END_REF]Lemma 2.8])

(1.11) E ∞ -∞ e γB α s Z s ds p < ∞.
Finally, one of the main results of [START_REF] Kupiainen | Integrability of Liouville theory: proof of the DOZZ Formula[END_REF] is an integrability result for R. Indeed, one has the following remarkable explicit formula for R

(1.12) R(α) = - (πl( γ 2 4 )) 2 γ (Q-α) 2 γ (Q -α) Γ(-γ 2 (Q -α)) Γ( γ 2 (Q -α))Γ( 2 γ (Q -α))
where Γ is the standard Gamma function and l(x) = Γ(x)/Γ(1 -x).

Now that we have introduced R, we can announce the organization of the paper. First, we state our main result in section 2 and then proceed with the proof in section 3. The final section of the paper discusses how the method can be extended to more general situations.

imsart-aop ver. 2014/10/16 file: Tail-short_revisionAOP_finalversion.tex date: Thursday 20 th December, 2018 2. Setup and Main Results. We consider the open unit disk D ⊂ C equipped with a full plane Gaussian Free Field (GFF) X with vanishing mean over the unit circle. This is a centered Gaussian field with covariance

(2.1) ∀x, y ∈ D, E[X(x)X(y)] = ln 1 |x -y| .
Remark 2.1. Recall that the full plane GFF is a centered Gaussian distribution X defined up to additive constant with covariance ln 1 |x-y| . Thus it makes sense to consider X := X -

1 2πi |z|=1 X(z) dz z ,
for which the covariance is easily identified to be given by

E[X(x)X(y)] = ln 1 |x -y| + 1 {|x| 1} ln |x| + 1 {|y| 1} ln |y|.
When restricted to D, this gives (2.1).

For γ ∈ (0, 2), we consider the GMC measure

(2.2) M γ (d 2 z) := e γX(z)-γ 2 2 E[X(z) 2 ] d 2 z
where d 2 z is the standard Lebesgue measure in the plane (recall that (2.2) is defined as the limit of (1.3) when goes to 0). In the sequel, we adopt the following standard convention: for β ∈ R, we denote o(t β ) (respectively O(t β )) a quantity of the form t t β where t goes to 0 (resp. remains bounded) as t goes to infinity. Denote by |B| the Lebesgue measure of the Borel measurable set B and by Ā the closure of the set A.

Our main result is:

Theorem 2.2. Set (2.3) p 0 := (2 -γ 2 2 ) 2 γ 4 + 2 γ 2 + (2 -γ 2 2 ) γ 2 .
For any δ ∈ (0,

1+p 0 -4 γ 2 2+p 0 ) and for any open set O ⊂ D with a C 1 boundary, we have (2.4) P(M γ (O) > t) = 2 γ (Q -γ) 2 γ (Q -γ) + 1 R(γ) t 4 γ 2 |O| + o(t -4 γ 2 -δ )
where R(γ) is the (unit volume) reflection coefficient of LCFT evaluated at γ. It has explicit expression

(2.5) R(γ) = - (πl( γ 2 4 )) 2 γ (Q-γ) 2 γ (Q -γ) Γ(-γ 2 (Q -γ)) Γ( γ 2 (Q -γ))Γ( 2 γ (Q -γ)) with Q = 2 γ + γ 2
and the function l is given by a ratio of Gamma functions l(x) = Γ(x)/Γ(1 -x).

The origin of the value p 0 will be more transparent in Remark 3.7 below. Also, notice that 1 + p 0 -4 γ 2 > 0 so that our statement is not trivially empty.

Remark 2.3. In a previous version of this note, we stated (2.4) with a better bound on δ than the present condition; unfortunately this was due to a slight mistake in the proof. Also, let us mention that we do not know what is the optimal bound on δ such that (2.4) holds.

More than the result, our method of proof makes us believe in a higher level of generality for this result. For general GMC measures in 2d with respect to a Gaussian field with covariance (1.2): we expect that the ln 1 |x-y| part is responsible for the appearance of the reflection coefficient term whereas the perturbation term f (x, y) in (1.2) produces an integral which depends only on the on-diagonal values of f .

As an illustration of this discussion we claim:

Corollary 2.4. Assume the GMC measure (2.
2) is defined with respect to the Gaussian distribution X with covariance (1.2) for some function f that is locally Hölder and positive definite. For any open set O ⊂ Ō ⊂ D with a C 1 boundary, we have

(2.6) P(M γ (O) > t) = O e 4 γ (Q-γ)f (v,v) d 2 v 2 γ (Q -γ) 2 γ (Q -γ) + 1 R(γ) t 4 γ 2 + o(t -4 γ 2 )
where R(γ) is still the (unit volume) reflection coefficient of LCFT evaluated at γ. Actually we even believe that the above structure of the tail of GMC measures is universal in the sense that in all dimensions there should be an analogue of the unit volume reflection coefficient, with a probabilistic representation similar to (1.10), such that the tail is given by (2.6) (see section 4 for further discussion). A specific feature of the 2d case is that there exists an explicit analytic expression (2.5) established in [START_REF] Kupiainen | Local Conformal Structure of Liouville Quantum Gravity[END_REF][START_REF] Kupiainen | Integrability of Liouville theory: proof of the DOZZ Formula[END_REF] for the expectation formula (1.10).

Let us comment on the physics literature. To our knowledge, an explicit tail expansion for GMC was derived (at the level of physics rigor) in the papers [START_REF] Fyodorov | Freezing and extreme value statistics in a Random Energy Model with logarithmically correlated potential[END_REF][START_REF] Fyodorov | Statistical Mechanics of Logarithmic REM: Duality, Freezing and Extreme Value Statistics of 1/f Noises generated by Gaussian Free Fields[END_REF] in the 1d case for two specific logcorrelated models: the circular case in [START_REF] Fyodorov | Freezing and extreme value statistics in a Random Energy Model with logarithmically correlated potential[END_REF] and the unit interval case in [START_REF] Fyodorov | Statistical Mechanics of Logarithmic REM: Duality, Freezing and Extreme Value Statistics of 1/f Noises generated by Gaussian Free Fields[END_REF] (with exact logarithmic correlations, i.e. the case where f = 0 in (1.2)). Their derivation is based on exact integrability results for GMC hence their results are much stronger than just tail expansions for these specific GMC measures; however, these works do not adress the derivation of tail expansions for 1d GMC associated to general logarithmic kernels or more importantly for GMC in higher dimensions. We refer to the section 4 below for more on this.

Finally, let us mention that the our main result Theorem 2.2 (together with its Corollary 2.4) reinforces/strengthens the convergence results used to define the unit volume quantum sphere [6, definition 4.21] stated by Duplantier-Miller-Sheffield. Indeed the definition of quantum sphere in [START_REF] Duplantier | Sheffield: Liouville quantum gravity as mating of trees[END_REF] is the following: consider the random field h defined on the cylinder R × [0, 2π] by the sum of two independent processes h 1 (s) + Y (s, θ) such that • The radial part h 1 is 2 γ ln U where U is chosen according to the a Bessel excursion measure with index δ = 4 -8 γ 2 (and reparametrized to have quadratic variation ds).

• The non radial part Y has the law given by (3.4).

The (unit volume or area) quantum sphere is obtained by conditioning the measure e γh dsdθ to have volume 1. By definition, 2 γ ln U is distributed according to B γ + 2 γ ln e where (e ) 2 (which is the maximum of the excursion) is distributed according to the (infinite) measure u δ 2 -2 du (recall that δ = 4 -8 γ 2 ). Recalling the definition (1.9) of Z s , we define

ρ(γ) = ∞ -∞ e γB γ s Z s ds.
Therefore the law of the (unit volume or area) quantum sphere µ h is obtained as the following limit when goes to 0

(2.7) E[F (µ h )] := lim →0 1 C E F (e ) 2 e γB γ s N γ (dsdθ) 1 (e ) 2 ρ(γ)∈[1,1+ ]
where

C = E[1 (e ) 2 ρ(γ)∈[1,1+ ]
] and F is an arbitrary bounded measurable functional defined on the space of Radon measures equipped with the weak-topology. The asymptotics of this quantity is easily identified with a simple change of variables

E[F ((e ) 2 e γB γ s N γ (dsdθ))1 (e ) 2 ρ(γ)∈[1,1+ ] ] = ∞ 0 E[F (ue γB γ s N γ (dsdθ))1 uρ(γ)∈[1,1+ ] ]u δ 2 -2 du = ∞ 0 E F (y e γB γ s N γ (dsdθ) ρ(γ) )ρ(γ) 1-δ 2 1 y∈[1,1+ ] y δ 2 -2 dy.
It is then straightforward to get the equivalent as → 0

E[F ((e ) 2 e γB γ s N γ (dsdθ))1 (e ) 2 ρ(γ)∈[1,1+ ] ] ≈ ∞ 0 1 v∈[1,1+ ] v δ 2 -2 dv E F ( e γB γ s N γ (dsdθ) ρ(γ) )ρ(γ) 2 γ (Q-γ)
where a ≈ b means that the ratio a/b converges to 1 and we have used that 1 -δ 2 = 2 γ (Q -γ). Therefore, definition (2.7) is equivalent to the following Definition 2.6. The law of the unit area quantum sphere µ h (in the space of quantum surfaces with two marked points -∞ and ∞4 ) is given by

(2.8) E[F (µ h )] = 1 R(γ) E F ( e γB γ s N γ (dsdθ) ρ(γ) )ρ(γ) 2 γ (Q-γ)
where R(γ) is the unit volume reflection coefficient and F is an arbitrary bounded measurable functional defined on the space of Radon measures equipped with the weak-topology.

In view of expression (2.8), it is quite natural to interpret R(γ) as the partition function of the unit area quantum sphere. Hence our paper suggests (and proves to the extent of Corollary 2.4) that the unit area quantum sphere is a universal feature of tails of GMC measures. Also, the above simple computation shows the equivalence between the reflection coefficient (or 2 point correlation function) constructed in [START_REF] Kupiainen | Integrability of Liouville theory: proof of the DOZZ Formula[END_REF] and the unit area quantum sphere (with 2 marked points). Let us mention that this equivalence [START_REF] David | Liouville Quantum Gravity on the Riemann sphere[END_REF]↔ [START_REF] Duplantier | Sheffield: Liouville quantum gravity as mating of trees[END_REF] has been established in [START_REF] Aru | Two perspectives of the 2D unit area quantum sphere and their equivalence[END_REF] for quantum surfaces with 3 marked points.

Proof of Theorem 2.2.

Conventions and notations. We will denote |•| the norm in C of the standard Euclidean metric. For all r > 0 we will denote by B(x, r) (resp. C(x, r)) the Euclidean ball (resp. circle) of center x and radius r. We will write X Y when the random variables X and Y are independent.

3.1. Localization trick. The difficulty in computing right tails of random measures usually lies in the fact that the right tail should depend on the macroscopic shape of the random measure. An important observation in our argument is that tails of GMC measures depend only very softly on their global shape. It is based on the Girsanov transform which we apply in a way so as to localize the computations for the right tail of GMC measures around a fixed point. Girsanov's transform is a standard tool in the study of Gaussian processes (or even GMC measures) but, to the best of our knowledge, it has never been used to localize large mass effects of GMC measures. Anyway, this simple observation reduces drastically the difficulty of computing the tails. 

P(M γ (O) > t) = O E[ 1 M γ (v, O) 1 {Mγ (v,O)>t} ]d 2 v (3.1)
where we have set

M γ (v, O) := O 1 |z -v| γ 2 M γ (d 2 z).
Proof. First write

P(M γ (O) > t) = E[ M γ (O) M γ (O) 1 {Mγ (O)>t} ] = O E[e γX(v)-γ 2 2 E[X(v) 2 ] 1 M γ (O) 1 {Mγ (O)>t} ] d 2 v. (3.2)
Girsanov's transform then asserts that weighting the probability law by e γX(v)-γ 2 2 E[X(v) 2 ] amounts to shifting the law of X by γ ln 1 |•-v| and our claim follows. Of course, as the field X is distributionvalued, it cannot be evaluated pointwise: the last equality in (3.2) thus requires a cut-off regularization of X(v) and then a harmless passage to the limit in the regularization parameter to be rigorously established (use the fact that sup >0 E[ 1 Mγ, (O) ] < +∞ where stands for the regularization parameter).

The important point is that the asymptotic behavior of the quantity

E[ 1 Mγ (v,O) 1 {Mγ (v,O)>t}
] is completely dominated by the behavior close to v because of the singularity 1 |z-v| γ 2 . So we will establish the following estimate, which will be enough to complete our argument. 

× O → R such that ∀v ∈ O, E[ 1 M γ (v, O) 1 {Mγ (v,O)>t} ] = 2 γ (Q -γ) 2 γ (Q -γ) + 1
P(M γ (O) > t) = 2 γ (Q -γ) 2 γ (Q -γ) + 1 R(γ) t 4 γ 2 + 1 t 4 γ 2 +δ O (t, v) d 2 v.
Notice that since O has a C 1 boundary and sup v∈O,t

1 dist(v, O c ) α | (t, v)| < +∞, the term O (t, v) d 2 v
is indeed well defined. In fact, the term O (t, v) d 2 v converges to 0 as t goes to infinity by using the dominated convergence theorem and the fact that for all v one has lim t→∞ | (t, v)| = 0. This yields Theorem 2.2. The remaining part of this section is thus devoted to the proof of this lemma.

Remark 3.3. Let us stress here that the assumption that O has a C 1 boundary ensures that

O 1 dist(v,O c ) α d 2 v < ∞ for all α < 1. Therefore the term O (t, v) d 2 v
is well defined and converges to 0. This is the only place where the C 1 assumption is used and perhaps one could relax a bit the C 1 assumption by a finer analysis of the (t, v) term.

3.2.

GFF with vanishing mean over a circle. Given v ∈ C, we consider the GFF X v,r with vanishing mean over the circle C(v, r), namely a centered Gaussian random distribution with covariance for x, y ∈ D Let us denote by (X v,r u ) u 0 the circle average of this field

(3.3) E[X v,r (x)X v,r (y) 
X v,r u = 1 2πi |w-v|=re -u X v,r (w) dw w -v .
A simple computation shows that (X v,r u ) u 0 is a standard Brownian motion starting from 0 independent of the sigma algebra σ{X v,r (z); z ∈ B(v, r) c }.

3.3.

Polar decomposition and the reflection coefficient. The asymptotic expansion in Lemma 3.2 will be determined by the behavior of the integral M γ (v, O) around the singularity at v. As already noticed in [START_REF] Kupiainen | Integrability of Liouville theory: proof of the DOZZ Formula[END_REF], an important ingredient in the analysis is the reflection coefficient. We consider the polar decomposition of the chaos measure. We have the following equality in the sense of distributions

X v,r (v + re -s e iθ ) = B s + Y (s, θ)
where B s is Brownian Motion starting form the origin at s = 0 and Y (s, θ) the independent centered Gaussian field with covariance

(3.4) E[Y (s, θ)Y (s , θ )] = ln e -s ∨ e -s |e -s e iθ -e -s e iθ | .
Then we get by the change of variables z = v + re -s e iθ5

(3.5)

B(v,r) e γX v,r (z)-γ 2 2 E[X v,r (z) 2 ] |z -v| γ 2 d 2 z law = r 2-γ 2 ∞ 0 e γ(Bs-(Q-γ)s) Z s ds
The following decomposition lemma due to Williams (see [START_REF] Williams | Path Decomposition and Continuity of Local Time for One-Dimensional Diffusions, I[END_REF]) will be useful in the study of M γ (v, B(v, r)): Lemma 3.4. Let (B s -νs) s 0 be a Brownian motion with negative drift, i.e. ν > 0 and let M = sup s (B s -νs). Then conditionally on M the law of the path (B s -νs) s 0 is given by the joining of two independent paths:

• A Brownian motion ((B 1 s + νs)) s τ M with positive drift ν > 0 run until its hitting time τ M of M . • (M + B 2
s -νs) s 0 where B 2 s -νs is a Brownian motion with negative drift conditioned to stay negative.

By the joining of two paths (X s ) s T (with T > 0) and ( Xs ) s 0 , we mean the path (X s 1 s T + Xs-T 1 s>T ) s 0 . Moreover, one has the following time reversal property for all C > 0 (where τ C denotes the hitting time of C)

(B 1 τ C -s + ν(τ C -s) -C) s τ C law = ( B s -νs) s L -C
where ( B s -νs) s 0 is a Brownian motion with drift -ν conditioned to stay negative and L -C is the last time ( B s -νs) hits -C.

Remark 3.5. As a consequence of the above lemma, one can also deduce that the process

( B L -C +s -ν(L -C + s) + C) s 0 is equal in distribution to ( B s -νs) s 0 .
We may apply Lemma 3.4 to (3.5). Let M = sup s 0 (B s -(Q -γ)s) and L -M be the last time (B γ s ) s 0 hits -M (recall that B γ s was defined in (1.7)). Then where we used stationarity of the process Z s (and independence of Z s and B s ). The distribution of M is well known (see section 3.5.C in the textbook [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF] for instance):

(3.7) P(e γM > t) = 1 t 2(Q-γ) γ , t 1.
Now, notice that R(γ) appears as the coefficient of the tail of the random variable e γM ∞ -∞ e γB γ s Z s ds

∀η > 0, P e γM ∞ -∞ e γB γ s Z s ds > t = R(γ)t -2 γ (Q-γ) + o(t -2 γ (Q-γ)-(1-η) )
Indeed, setting Z := ∞ -∞ e γB γ s Z s ds, we have because of (3.7)

P e γM Z > t =P e γM Z > t, Z t + P e γM Z > t, Z > t =E[Z 2 γ (Q-γ) 1 Z t ]t -2 γ (Q-γ) + P e γM Z > t, Z > t = R(γ)t -2 γ (Q-γ) + E[Z 2 γ (Q-γ) 1 Z>t ]t -2 γ (Q-γ) + P e γM Z > t, Z > t
Now, using (1.11) and Markov's inequality, the two correction terms are easily seen to be o(t

-2 γ (Q-γ)-(1-η) ).
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3.4. Decomposition of the GMC around v. We fix v ∈ O and set r = dist(v, ∂O). Our purpose now is to replace the field X in the definition of M γ (v, B(v, r)) by the field X v,r in order to use the polar decomposition of the GMC measure in B(v, r) detailed in the previous subsection. It suffices to subtract the mean value of X along the circle C(v, r). Therefore we introduce

N v,r = 1 2πi |w-v|=r X(w) dw w -v .
This is a centered Gaussian variable with variance

E[N 2 v,r ] = -ln r.
We introduce the field X = X -N v,r , which has the same law as X v,r . One can notice that

E[ X(x)N v,r ] = 0
for all |x -v| r hence X is independent from N v,r in this region. Therefore, using the decomposition in distribution obtained in subsection 3.3

(3.8) M γ (v, B(v, r)) = r 2-γ 2 e γM E r,v I γ (M )
where we have set

E r,v := e γNv,r-γ 2 2 E[N 2 v,r ] , I γ (M ) := ∞ -L -M e γB γ s Z s ds with the convention that I γ (∞) = ∞
-∞ e γB γ s Z s ds. We will constantly use in the sequel the fact that x → I γ (x) is an increasing function.

Getting rid of the non-singularity. Now we argue that the behaviour of

E[ 1 Mγ (v,O) 1 {Mγ (v,O)>t} ] is completely determined by that of E[ 1 Mγ (v,B(v,r)) 1 {Mγ (v,B(v,r))>t}
]. We will show this claim by giving an upper/lower bound of

E[ 1 Mγ (v,O) 1 {Mγ (v,O)>t} ] up to o(t -4 γ 2 -δ ) for any δ ∈ (0, 1+p 0 -4 γ 2 2+p 0 ). We introduce the notation A := M γ (v, B(v, r) c ∩ O).
A key lemma in the argument is the following. Lemma 3.6. For all p ∈ (0, 4 γ 2 ) there is some constant

C p > 0, ∀v ∈ O, E[A p ] C p ×      1 if p ∈ (0, 4 γ 2 -1) (ln 1 r ) p∨1 if p = 4 γ 2 -1 r ψ(p) if 4 γ 2 -1 < p < 4 γ 2 with ψ(p) = (2 -γ 2 2 )p -γ 2 2 p 2 and r = dist(v, O c ).
Remark 3.7. Notice that ψ(p) > 0 for p ∈ (0, 4/γ 2 -1). The value of p 0 in (2.3) is determined in such a way that ψ(p 0 ) = -1. This ensures that ψ(p) ∈ (-1, 0) for p ∈ (4/γ 2 -1, p 0 ). Our proof will show that the exponent α appearing in Lemma 3.2 will actually be given by ψ(p) for some p ∈ (4/γ 2 -1, p 0 ).

Proof. If p > 0 observe that ψ(p) > 0 if and only if p < 2 γ (Q -γ) = 4 γ 2 -1.
In this case, the result is a simple consequence of Lemma A.1 in [START_REF] David | Liouville Quantum Gravity on the Riemann sphere[END_REF]. Now we study the case p

4 γ 2 -1. Set B n := {x ∈ D; 2 -n-1 |x-v| 2 -n } and A n = M γ (0, B n ) p .
Assume p > 1 (if p 1 use sub-additivity of the mapping x → x p in the next argument). Using in turn Minkowski's inequality and invariance under translations we have

E[A p ] 1/p -ln r ln 2 n=0 E[A p n ] 1/p + E[M γ (O) p ] 1/p .
It is standard fact in GMC theory that A n scales as

E[A p n ] = 2 -nψ(p) E[A p 1 ]
(see the review [START_REF] Rhodes | Gaussian multiplicative chaos and applications: a review[END_REF] for instance). We deduce that

E[A p ] 1/p C p -ln r ln 2 n=0 2 -nψ(p)/p .
Since ψ(p) 0, we get our claim. Now we first give the upper bound. Fix δ ∈ (0,

p 0 +1- 4 γ 2 2+p 0 ). We can find η > δ such that (3.9) (1 -η)(1 + p 0 ) > 4 γ 2 + δ, 1 + p 0 > 4 γ 2 + η.
Hence we can choose 4 γ 2 < p < p 0 + 1 such that (1 -η)p > 4 γ 2 + δ.

E[ 1 M γ (v, O) 1 {Mγ (v,O)>t} ] E[ 1 M γ (v, B(v, r)) + A 1 {Mγ (v,B(v,r))>t-t 1-η } ] + E[ 1 A 1 {A>t 1-η } ] E[ 1 M γ (v, B(v, r)) 1 {Mγ (v,B(v,r))>t-t 1-η } ] + E[A p-1 ]t -(1-η)p . (3.10)
Notice that the expectation E[A p-1 ] can be analyzed with Lemma 3.6 and gives E[A p-1 ] C p r ψ(p-1) with ψ(p -1) ∈ (-1, 0).

For the lower bound we first restrict to the set {A < t 1-η } to get where we have used the inequality (1 + u) -1 1 -u. The last of the three terms

E[ 1 M γ (v, B(v, r)) + A 1 {Mγ (v,B(v,r))+A>t} ] E[ 1 M γ (v, B(v, r)) + t 1-η 1 {Mγ (v,B(v,r))>t,A<t 1-η } ] =E[ 1 M γ (v, B(v, r)) + t 1-η 1 {Mγ (v,B(v,r))>t} ] -E[ 1 M γ (v, B(v, r)) + t 1-η 1 {Mγ (v,B(v,r))>t,A>t 1-η } ] E[ 1 M γ (v, B(v, r)) 1 {Mγ (v,B(v,r))>t} ] -t 1-η E[ 1 M γ (v, B(v, r)) 2 1 {Mγ (v,B(v,r))>t} ] -E[ 1 M γ (v, B(v, r)) + t 1-η 1 {Mγ (v,B(v,r))>t,A>t 1-η } ] (1 - 1 t η )E[ 1 M γ (v, B(v, r)) 1 {Mγ (v,B(v,r))>t} ] -E[ 1 M γ (v, B(v, r)) + t 1-η 1 {Mγ (v,B(v,r))>t,A>t 1-η } ] (3.
E[ 1 M γ (v, B(v, r)) + t 1-η 1 {Mγ (v,B(v,r))>t,A>t 1-η } ]
is less than t -(1-η) P(A > t 1-η ) and by the Markov inequality,

t -(1-η) P(A > t 1-η ) t -(1-η)p E[A p-1 ] C t -(1-η)p r ψ(p-1)
with ψ(p -1) ∈ (-1, 0). The second will be treated in the same time as the first (next subsection) and will be proved to be O(t

-4 γ 2 -η ), hence o(t -4 γ 2 -δ ).
3.6. Behaviour near the singularity. In view of the bounds (3.10) and (3.11), it remains to study the term

E[ 1 M γ (v, B(v, r)) 1 {Mγ (v,B(v,r))>t} ].
We will proceed by using decomposition (3.8) and establishing lower/upper bounds.

Lower bound. In the study of the lower bound, let us fix η such that η > δ and η satisfies (3.9) in such a way that we can find 1 < p < 1 + p 0 with p(1 -η) > 4 γ 2 + δ. We will introduce the event {γM > η ln t}. On this event, one has I γ (M ) I γ ( η γ ln t) and therefore

E[ 1 M γ (v, B(v, r)) 1 {Mγ (v,B(v,r))>t} ] = E[ 1 r 2-γ 2 E r,v e γM I γ (M ) 1 {r 2-γ 2 Er,ve γM Iγ (M )>t} ] E[ 1 r 2-γ 2 E r,v e γM I γ (∞) 1 {r 2-γ 2 Er,ve γM Iγ ( η γ ln t)>t} 1 {γM >η ln t} ] = E[ 1 r 2-γ 2 E r,v e γM I γ (∞) 1 {r 2-γ 2 Er,ve γM Iγ ( η γ ln t)>t} ] -E[ 1 r 2-γ 2 E r,v e γM I γ (∞) 1 {r 2-γ 2 Er,ve γM Iγ ( η γ ln t)>t} 1 {γM <η ln t} ]
The correction term (second expectation in final line above) is r -α o(t

-4 γ 2 -δ ) with α < 1.
Indeed on the event {γM < η ln t}, the event

{r 2-γ 2 E r,v e γM I γ ( η γ ln t) > t} is contained in the event {r 2-γ 2 E r,v I γ (∞) > t 1-η }. Hence the correction term is less than E[(r 2-γ 2 E r,v ) p-1 ]t -(1-η)p E[I γ (∞) p-1 ] = r ψ(p-1) t -(1-η)p E[I γ (∞) p-1 ]
, where the function ψ has been defined in Lemma 3.6.
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Then we average with respect to M to get (recall that the distribution of M is given by (3.7))

E[ 1 r 2-γ 2 E r,v e γM I γ (∞) 1 {r 2-γ 2 Er,ve γM Iγ ( η γ ln t)>t} ] E[ 1 r 2-γ 2 E r,v e γM I γ (∞) 1 {r 2-γ 2 Er,ve γM Iγ ( η γ ln t)>t} 1 {r 2-γ 2 Er,vIγ (∞) t} ] = 2(Q -γ) 2(Q -γ) + γ E[ r 2-γ 2 E r,v 2 γ (Q-γ) I γ ( η γ ln t) 4 γ 2 I γ (∞) 1 {r 2-γ 2 Er,vIγ (∞) t} ]t -4 γ 2 = 2(Q -γ) 2(Q -γ) + γ E I γ ( η γ ln t) 4 γ 2 I γ (∞) t -4 γ 2 - 2(Q -γ) 2(Q -γ) + γ E[ r 2-γ 2 E r,v 2 γ (Q-γ) I γ ( η γ ln t) 4 γ 2 I γ (∞) 1 {r 2-γ 2 Er,vIγ (∞)>t} ]t -4 γ 2 .
Above we have used the fact

E[ r 2-γ 2 E r,v 2 γ (Q-γ) ] = 1. One has E[ r 2-γ 2 E r,v 2 γ (Q-γ) I γ ( η γ ln t) 4 γ 2 I γ (∞) 1 {r 2-γ 2 Er,vIγ (∞)>t} ]t -4 γ 2 E[ r 2-γ 2 E r,v 4 γ 2 -1+η I γ (∞) 4 γ 2 -1+η ]t -4 γ 2 -η = r ψ( 4 γ 2 -1+η) E[I γ (∞) 4 γ 2 -1+η ]t -4 γ 2 -η
where 4 γ 2 -1 + η < p 0 by condition (3.9). Hence it remains to show that E Iγ ( η γ ln t) + η γ ln t is independent from everything and distributed like (B γ s ) s 0 . We can then write

∞ -∞ e γB γ s Z s ds = I γ ( η γ ln t) + t -η B with B = 0 -∞ e γ Bγ s Z s-L -η γ ln t ds. We set m = 4 γ 2 .
Then we have (use the triangle inequality to get the third line below) 

R(γ) -E[I γ ( η γ ln t) m /I γ (∞)] =E[ I γ ( η γ ln t) + t -η B (I γ ( η γ ln t) + t -η B) 1/m m ] -E[ I γ ( η γ ln t) (I γ ( η γ ln t) + t -η B) 1/m m ] E[ I γ ( η γ ln t) (I γ ( η γ ln t) + t -η B) 1/m m ] 1/m + E[ t -η B (I γ ( η γ ln t) + t -η B) 1/m m ] 1/m m -E[ I γ ( η γ ln t) (I γ ( η γ ln t) + t -η B)
R(γ) -E[I γ ( η γ ln t) m /I γ (∞)] Ct -η E[ I γ ( η γ ln t) (I γ ( η γ ln t) + t -η B) 1/m m ] 1-1/m E[ B (I γ ( η γ ln t) + t -η B) 1/m m ] 1/m .
In the above expression the first expectation is less than R(γ) 1-γ 2 /4 . We aim to bound the second one. Let us fix η ∈ (0, 1). Then

E[ B (I γ ( η γ ln t) + t -η B) 1/m m ] 1/m E[ B m I γ (0) 1-η (t -η B) η ] 1/m t η η m E[B m-η I γ (0) -1+η ] 1/m .
Notice that the last expectation is finite (use Hölder inequality and the fact that B has finite moments of order q < m and I γ (0) has finite negative moments of all order). This proves our claim for the lower bound provided that we choose η small enough so as to make η(1 -η m ) > δ.

Upper bound. For the upper bound, we use again the decomposition (3.8)

E[ 1 M γ (v, B(v, r)) 1 {Mγ (v,B(v,r))>t} ] = E[ 1 r 2-γ 2 E r,v e γM I γ (M ) 1 {r 2-γ 2 Er,ve γM Iγ (M )>t} ]
We want to replace the term I γ (M ) in the fraction by I γ (∞). Hence we write

E[ 1 M γ (v, B(v, r)) 1 {Mγ (v,B(v,r))>t} ] = E[ 1 r 2-γ 2 E r,v e γM I γ (∞) 1 {r 2-γ 2 Er,ve γM Iγ (M )>t} ] + C(t)
where C(t) stands for the cost for this replacement Now we observe that, under the condition δ ∈ (0,

C(t) := E[ 1 r 2-γ 2 E r,v e γM 1 I γ (M ) - 1 I γ (∞) 1 {r 2-γ
p 0 +1- 4 γ 2
2+p 0 ) one can find η ∈ (0, 1) and p ∈ (0, 1+p 0 ) such that (3.13) p 2+p 0 . Notice that the η introduced in the proof of the upper bound is not the same as the η introduced in the proof of the lower bound. We are going to evaluate the cost term on different possible event,

i.e we introduce (3.14)

C i (t) := E[ " 1 A i ]
where " stands for the integrand inside the expectation in (3.12) and the event A i (i = 1, 2) ranges respectively among the two events {M > η γ ln t} and {M η γ ln t}.

Let us start with C 1 (t), which can be estimated by

C 1 (t) =E[ 1 r 2-γ 2 E r,v e γM I γ (∞) -I γ (M ) I γ (M )I γ (∞) 1 {r 2-γ 2 Er,ve γM Iγ (M )>t,M > η γ ln t} ] E[ 1 e 2γM B I γ (M ) 2 F t e γM I γ (M ) 1 {M > η γ ln t} ]
where we have introduced the function

(3.15) F (u) = E[ 1 r 2-γ 2 E r,v 1 {r 2-γ 2 Er,v>u} ].
The above expression for the cost will be analyzed according to different possible regimes of the function F , depending on the possible values of its argument t e γM Iγ (M ) . For this, observe that 1

< 2γQ(1 - √ 2 
Q ), hence we can choose 0 < q < 2 and 0 < a < 1 such that

(3.16) 1 < aqγQ and 0 < a < 1 - √ 2 Q .
Now we restrict the cost C 1 (t) further to the events {tr -aγQ e γM I γ (M )} and then {tr -aγQ > e γM I γ (M )}, producing two quantities that we respectively call C 1 1 (t) and C 2 1 (t). Concerning C 1 1 (t), on the event {tr -aγQ e γM I γ (M )}, we can use the rough estimate F (u) r -2 (obtained by using the fact that indicator functions are bounded by 1 in (3.15)) to deduce that for any 0 < q < 2 We have the obvious bound for p ∈ (0, 4 γ 2 )

C 1 1 (t) r -2 E[ B (e γM I γ (M )) 2 1 {M > η γ ln t} 1 {tr -aγQ <e γM Iγ (M )} ] =r qaγQ-2 t -q E[ B (e γM I γ (M )) 2-q 1 {M > η γ ln t} 1 {tr -aγQ <e γM Iγ (M )} ] Cr qaγQ-2 t -q E[ 1 (e γM ) 2-q 1 {M > η γ ln t} ]. ( 3 
E[A p ] E[S p ]E[A p 0 ].
The assumption of f being Hölder on Ō ensures that E[S p ] is finite by standard arguments for the supremum of Gaussian processes (see lecture 6 in [START_REF] Biskup | Extrema of the two-dimensional Discrete Gaussian Free Field[END_REF] for example). Hence A satisfies the same bounds as Lemma 3.6 and the second term in (3.21) is again of the form (r ) ψ(p-1) o(t

-4 γ 2 -δ
). The first term in (3.21) concerning the behaviour near the singularity at v is bounded as in subsection 3.6 which states that

E[ 1 M 0 γ (v, B(v, r )) 1 {M 0 γ (v,B(v,r ))>t-t 1-η } ] 2(Q -γ) 2(Q -γ) + γ R(γ)t -4 γ 2 + (r ) -α o(t -4 γ 2 -δ )
for some α ∈ (0, 1). By independence of S r (v) and conditioning on S r (v), we deduce

E[ 1 M 0 γ (v, B(v, r )) 1 {S r (v)M 0 γ (v,B(v,r ))>t-t 1-η } ] 2(Q -γ) 2(Q -γ) + γ R(γ)t -4 γ 2 E[(S r (v)) 4 γ 2 ]+(r ) -α o(t -4 γ 2 -δ ).
Integrating this relation over O we deduce from (3.18) that lim sup

t→∞ t 4 γ 2 P(M γ (O) > t) O E[(S r (v)) 4 γ 2 ] dv 2(Q -γ) 2(Q -γ) + γ R(γ).
This bound is valid for arbitrary (recall that r = min(r, )). So we want to let → 0. An easy application of the dominated convergence theorem ensures that lim

→0 O E[(S r (v)) 4 γ 2 ] dv = O E[(e γG(v)-γ 2 2 E[G(v) 2 ] ) 4 γ 2 ] dv = O e 4 γ (Q-γ)f (v,v) dv. Hence lim sup t→∞ t 4 γ 2 P(M γ (O) > t) O e 4 γ (Q-γ)f (v,v) dv 2(Q -γ) 2(Q -γ) + γ R(γ).
This shows the upper bound. The lower bound is established in the same way (using (3.20)).

4. Extensions to other cases. In this section, we explain how to generalize our results to the other cases. Though the claims of this section cannot be taken for granted (due to the fact that it sweeps under the rug potential technical difficulties), it provides nonetheless arguments which we believe are convincing to tackle the other cases. with respect to the measure d 2 v. The advantage of this localization trick is that the tail of (4.1) is completely concentrated around v, hence is determined by a local analysis which is more transparent than a direct study of M γ (O). For r small, the variable X has roughly covariance of the form ln 1 |x-y| + f (v, v) and therefore X ≈ X + N (in law) where X has ln 1 |x-y| covariance and N is a centered Gaussian independent from everything and with variance f (v, v). Combining this decomposition with our estimates for X, one expects that Gathering the above considerations, we expect the following generalization of Theorem 2.2 for kernels of type (1.2)

(4.3) P(M γ (O) > t) = O e 4 γ (Q-γ)f (v,v) d 2 v 2 γ (Q -γ) 2 γ (Q -γ) + 1 R(γ) 1 t 4 γ 2 + o(t -4 γ 2 ).
We leave open the determination of bounds on the o(t

-4 γ 2 ) term.
4.2. The other dimensions. In higher dimensions, we expect the method to work as well by decomposing the log-correlated field into a radial part (Brownian motion) and an independent radial part around each localization point v. The constant in the expansion will then be given by explicit terms times the d-dimensional analog Rd (γ) of the reflection coefficient R(γ) defined by (1.10). The question is then to know if we can compute explicitly this expectation depending on d; presently, getting explicit formulas in dimension d 3 seems out of reach since one can not rely on the powerful framework of 2d conformal field theory for the GFF.

Like in dimension 2, we also have an explicit expression for R1 (γ) in dimension 1. Indeed, one has the following expression for R1 (γ) (the so-called boundary unit volume reflection coefficient in the terminology of Liouville field theory):

R1 (γ) = E[ ∞ -∞ e γB 1,γ s e γY (s)-γ 2 E[Y (s) 2 ] 2 Z s ds 2 γ (Q 1 -γ) ]
where B 1,γ s is defined like B γ s in (1.7) with Q replaced by Q 1 = γ 2 + 1 γ and Y s is the restriction to the real line of the centered Gaussian field with covariance (3.4). This yields the asymptotic

P(M γ (O) > t) = O e 2 γ (Q 1 -γ)f (v,v) d 2 v (1 -γ 2 2 )
R1 (γ)

t 2 γ 2 + o(t -2 γ 2 ).
The recent integrability results of Rémy for GMC on the circle [START_REF] Rémy | The Fyodorov-Bouchaud formula and Liouville Conformal Field theory[END_REF] allows us to compute explicitly the tail of M γ (O) in the case when X is the circular logarithmic noise and O = (0, 2π); as a matter of fact, the result of Rémy is much more precise since it gives the precise density of the total mass of GMC on the circle (this density was conjectured in the physics literature in 2008 by Fyodorov-Bouchaud [START_REF] Fyodorov | Freezing and extreme value statistics in a Random Energy Model with logarithmically correlated potential[END_REF]; see also a similar conjecture in [START_REF] Fyodorov | Statistical Mechanics of Logarithmic REM: Duality, Freezing and Extreme Value Statistics of 1/f Noises generated by Gaussian Free Fields[END_REF] for the case of the unit interval). This leads to the following explicit expression for R1 (γ)

R1 (γ) = (2π) 2 γ (Q 1 -γ) (1 -γ 2 2 )Γ(1 -γ 2 2 ) 2 γ 2
.
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Remark 2 . 5 .

 25 One can apply Corollary 2.4 with f (x, y) = ln 1 |1-xȳ| to get the right tail of GMC based on the GFF X with Neumann boundary condition in D, which has covariance E[X(x)X(y)] = ln 1 |x-y||1-xȳ| . Indeed f (x, y) = ln 1 |1-xȳ| is positive definite 3 and locally Hölder in D.

Lemma 3 . 1 .

 31 (Localization trick) Let O be an open set. We have

Lemma 3 . 2 .- 4 γ 2 2+p 0 )

 32420 For any δ ∈ (0, 1+p 0 and for all open sets O ⊂ D with C 1 boundary, there exists some function : R +

  r where we use the notation |z| + = |z| if |z| 1 and |z| + = 1 if |z| 1.
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  -η)) to get the desired lower bound. By Remark 3.5, the process Bγ s defined for s 0 by the relation Bγs = B γ s-L -η γ ln t

2 4 γ 2

 242 Er,ve γM Iγ (M )>t} ].(3.12) Now we establish that this cost satisfies C(t) = r -α o(t --δ ) with α < 1. By Remark 3.5, conditionally on M , the process Bγ s defined for s 0 by the relation Bγ s = B γ s-L -M + M is independent from everything and distributed like (B γ s ) s 0 . We can then write ∞ -∞ e γB γ s Z s ds = I γ (M ) + e -γM B Bγ s Z s-L -M ds.

4. 1 .

 1 The 2d case. Consider now the general case in 2d of a log-correlated kernel of the type (1.2). Along the same lines as for the proof of Theorem (2.2) the localization trick allows us to trade the study of the tail of the random variable M γ (O) for the study of the tail of the singular integral (for some r > 0)(4.1) M γ (v, B(v, r)) := B(v,r) e γ 2 f (v,z) e γX(z)-γ 2 2 E[X(z) 2 ] |z -v| γ 2 d 2 z for each point v ∈ O (f appears in (1.2)). The full tail of M γ (O) is obtained by integration of the term E[ 1 M γ (v, B(v, r)) 1 {Mγ (v,B(v,r))>t} ]imsart-aop ver. 2014/10/16 file: Tail-short_revisionAOP_finalversion.tex date: Thursday 20 th December, 2018

(4. 2 ) t 4 γ 2 2 γ (Q -γ) 2 γ (Q -γ) + 1 R(γ)e 4 γ

 2422214 E[ 1 M γ (v, B(v, r)) 1 {Mγ (v,B(v,r))>t} ] → t→∞ (Q-γ)f (v,v) .

  . Plugging this estimate in the above expression yields imsart-aop ver. 2014/10/16 file: Tail-short_revisionAOP_finalversion.tex date: Thursday 20 th December, 2018

			m
			1/m	].
	This expression is of the form (α t + β t ) m -α m t with βt αt us consider another constant C such that (1 + x) m -1	c for some c > 0 and all t Cx for 0 x c. We deduce that 0. Let
	(α t + β t ) m -α m t	Cα m-1

t β t

  Indeed this condition is equivalent to the set of conditions (1+ p 0 )(1 -η) + 4 γ 2 η > δ + 4 γ 2 and η(1 + 4 γ 2 ) > δ + 4 γ 2 ,which are in turn equivalent to η < 1 -

					δ 1+p 0 -4 γ 2	and η(1 + 4 γ 2 ) > δ + 4 γ 2 . This is
	possible if and only if (1 -	δ 1+p 0 -4 γ 2	)(1 + 4 γ 2 ) > δ + 4 γ 2 , which produces our condition δ <	1+p 0 -4 γ 2
	(1 -η) +	4 γ 2 η > δ +	4 γ 2 and η(1 +	4 γ 2 ) > δ +	4 γ 2 .

Our techniques could perhaps handle more general cases but for the sake of simplicity we consider only the case of a smooth boundary: see Remark
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Above we have used the fact that E[ B Iγ (M ) q-2 |M ] can be bounded by constant. Indeed, we use Hölder's inequality with conjugate exponents m, m and B M as well as I γ (0) M to get the fact that

provided that m is chosen smaller than 4 γ 2 (recall that I γ (0) has negative moments of all order: see [START_REF] Kupiainen | Integrability of Liouville theory: proof of the DOZZ Formula[END_REF]). Now we can use the explicit exponential law for M to get that (3.17) is less than

, which is as expected thanks to condition (3.13).

Concerning C 2 1 (t), by using the Girsanov transform with the term e -γNv,r-

, we get for some standard Gaussian random variable Z and for ur -aγQ > 1

Then, using this estimate, C 2 1 (t) is seen to be less than

which is less than Cr

γ 2 )η using the explicit exponential distribution (3.7) of M as in (3.17). Again, conditions (3.16) and (3.13) ensure respectively that the r-exponent and texponent behave as expected. This concludes the case of C 1 (t).

Now we analyze

where we have used that almost surely

1. Hence condition (3.13) ensures that the cost term is r ψ(p-1) o(t

To conclude it suffices to bound the term where o(t

The last line is obtained by independence of E r,v , M , I γ (∞) and the explicit tail of the exponential distribution. Our claim follows.

Proof of Corollary 2. [START_REF] Biskup | Extrema of the two-dimensional Discrete Gaussian Free Field[END_REF]. In what follows, the Gaussian process X 0 stands for the GFF inside D with vanishing mean on the unit circle, i.e. with covariance structure given by (2.1) whereas G is an independent centered Gaussian field in D such that

with f the function appearing in (1.2). Then we may assume that X = X 0 + G. Now we follow and adapt the proof of Theorem 2.2. For this, we set

. The localization trick then yields

and Girsanov's transform asserts that weighting the probability law by

where we have set

Let us set r = dist(v, ∂O) and r = min(r, ), where > 0 is a regularization parameter which will be sent to 0 in the end. Sticking to the notations of subsection 3.5, we set

)) + A and similarly for the corresponding items with index 0. Our next step will be to use the computations already done for items with index 0 in the proof of Theorem 2.2 and compare with items M γ (v, B(v, r )) and A. The difference between these quantities involves the process G, which will be estimated in terms of the quantities

Then we can reproduce the argument (3.10) for the upper bound