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Abstract

The interest for patient trajectory prediction, a sort of computer-aided medicine, has steadily in-

creased with the pace of artificial intelligence innovation. Notwithstanding, the design of effective

systems able to predict clinical outcomes based on the history of a patient is far from trivial. Works

so far are based on neural architectures with low performance, especially when using low-cardinality

datasets; alternatively, complex inference approaches are hard to reproduce and/or extrapolate as

they are designed for very specific circumstances. We introduce LIG-Doctor, an artificial neu-

ral network architecture based on two Minimal Gated Recurrent Unit networks functioning in a

bidirectional parallel manner, benefiting from temporal events both forward and backward. In com-

parison to state-of-the-art works, consistent improvements were achieved in prognosis prediction,

as assessed with metrics Recall@k, Precision@k, F1-score, and AUC-ROC. Besides the detailed de-

lineation of our architecture, a sequence of experiments is reported with insights that progressively

guided design decisions to inspire future works on similar problems. Our results shall contribute

to the improvement of computer-aided medicine and, more generally, to processes related to the

design of neural network architectures.
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1. Introduction

In every day clinical practice, health care professionals deal with patient Electronic Health

Records that carry years, even decades of a patient’s clinical history. It is their job to take this

information into account before making decisions about the patient’s current and future conditions.

The sequential scan of these massive sets of information is not compliant with the human nature,5

characterized by slow processing of textual information, small memory, and fatigue; hence, physi-

cians might end up spending too much time before being able to recommend on the evolution of a

patient’s condition. This scenario motivates the research and development of automated prognosis

systems [9]; systems capable of making recommendations based on the past of a patient so to assist

physicians in decision making. The processing of an individual’s entire sequence of clinical events10

has the potential of improving the precision of prognoses, fostering preventive medicine, delineating

healthier habits, and aiding insurance companies to achieve fair contracts and conditions.

The massive adoption of Electronic Health Records (EHRs) [1][11] is at the core of the research

for automated prognosis systems. EHRs are responsible for a consistent increase in the amount

of computer-ready clinical data, they are the input to techniques broadly referred to as Patient15

Trajectory Prediction, whose output describes the most probable events that might take place to a

patient. More specifically, this field of research relates to using temporally-ordered sets of clinical

data to predict the probability of each event that might happen in the next time step. In the form

of Machine Learning, the idea is to have the computer learn patterns from thousands of EHRs

related to thousands of patients to predict future probabilities when faced with the record of a new20

patient.

In our specific setting, a clinical event corresponds to the admission of a patient to a hospital,

during which diagnosis outcomes are produced to describe the conditions of the patient for clinical

tracking and, many times, for billing purposes. Ideally, the diagnoses are described following a

systematic encoding like the International Statistical Classification of Diseases and Related Health25

Problems (ICD1) or, even, a proprietary encoding defined by the hospital crew – this topic is deeper

discussed in Section 3. Our goal is to provide the physician with a set of codes that might appear

in that patient’s next admission – of course, the ultimate answer to this question is not possible to

predict; hence the method is modeled to produce a set of probabilities about what may happen –

1 https://apps.who.int/iris/handle/10665/39473
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the physician is left with the task of interpreting the output. Several methods have been used for30

this task; in particular, Deep Learning techniques (or just Artificial Neural Networks) have steadily

gained attention for patient trajectory prediction due to their ability to scale with respect to the

data and due to their notable results concerning prediction and classification problems, as discussed

in Section 2.

The use of Deep Learning for patient trajectory prediction addresses many challenges. The35

corresponding sequence-to-sequence prediction depends on an intricate data modeling followed by

a preprocessing step to filter out inconsistencies; and, also, on an adequate encoding process to

reflect the statistical distribution of the diagnosis codes. The Machine Learning process, then,

requires to set hyper-parameters, including the most appropriate neuronal unit (among the dozens

found in the literature [3]); the architecture of the neuronal network (number and types of layers,40

number of units per layer); and the methods that guarantee a convergent non-overfitted learning

(activation functions, regularization, loss function, and optimization); and everything aside long

processing sessions that consume time and that take computational facilities to their limits. In our

experience, further challenges were identified specific to the task of patient trajectory prediction;

as a result, data preprocessing is reported in Sections 3 and 4, architectural design in Section 5,45

experimentation in Section 6, and interpretation of results and limitations of current techniques in

Sections 7 and 8.

The whole process of dealing with real-world clinical datasets is discussed, including data mod-

eling, prediction model design, and extensive training and testing. Two datasets are considered,

as detailed in Section 3: the open-access Medical Information Mart for Intensive Care III (Mimic-50

III) [19] provided by the Beth Israel Deaconess Medical Center in Boston, Massachusetts, USA;

and the private dataset InCor provided by the Heart Institute, Clinics Hospital, University of Sao

Paulo, Brazil. Medical datasets like those carry many factors that are particular to their hospital

organization and specific clinical practice. The core of our contributions comes from the design of

an artificial neuronal network architecture to deal with such data; we found that a network based55

on Minimal Gated Recurrent Units organized in bidirectional parallelism yielded high prediction

accuracy – see Section 5. To reach that conclusion, extensive experiments were performed, as dis-

cussed in Section 6. The methodology was named LIG-Doctor after the name of our research lab,

the Laboratoire d’Informatique de Grenoble.

The contributions summarize as follows:60
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1. Methodology for computational prognosis: a methodology that demonstrated effective for pa-

tient trajectory prediction in terms of scalability and predictive power – the source code of

this project is accessible at GitHub ( https://github.com/jfrjunio/LIG-Doctor);

2. Elucidation on neural processing cells: extensively tested recurrent neural networks (RNNs);

our findings point out that multiple hidden layers [22] and recurrent cells with numerous65

control gates [29] [5] did not demonstrate good performance compared to a simpler parallel

design using a minimal number gates;

3. Dataset insight: the characteristics of real-world datasets with respect to their potential for

medical prognosis are discussed with a focus on aspects of cardinality, encoding granularity,

and data distribution demonstrating methodological choices that result in more accurate70

outcomes.

2. Related works

The comparison of automated prognosis systems is difficult because most works in the literature

use datasets that differ with respect to domain, cardinality, structure, and diagnosis encoding;

besides, the datasets are usually proprietary, not available for reproduction neither for further75

investigation. Still, relevant proposals are discussed, dealing with medical prognosis and highlight

the challenges that lie in the field to provide a referential for comparison with our work.

System DeepCare, by Pham et al. [23], applies recurrent neuronal unit Long Short-Term Mem-

ory (LSTM) [15] according to a design that concatenates the codes found in the EHR to extra

features found in their dataset. They use an embedding layer after which the concatenation takes80

place to add intervention codes, elapsed time, and admission method to the input. Besides, they

apply pooling as a mechanism to focus on the most important features of a given sequence. Follow-

ing the DeepCare methodology, experiments are carried with embedding and extra features. The

use of embedding resulted in less prediction power in all of our experiments; while the use of extra

features, as type and duration of the hospital admission, did not significantly improve the results.85

DeepCare uses metrics Recall@ similar to us, however, they use proprietary closed datasets specific

to diabetes and mental health. They also provide some code relative to their work, but it is not

complete, which prevented a closer assessment of their system.

System DoctorAI, by Choi et al. [6], uses Gated Recurrent Units to define an RNN. Here, as well,

the authors use embedding; this time, it is meant to reduce the dimensionality of the input vectors90
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encoded according to a large spectrum of the ICD standard. They also use a data representation

based on Skip-gram, which corresponds to a pre-training technique. Neither technique demonstrated

useful in our problem setting; instead, the ICD-9 encoding worked more effectively, as described

in SubSection 3.1. The experiments of Choi et al. occurred over a proprietary dataset with over

14 million admissions related to the specific situation of heart failure; this fact prevented direct95

comparison to our work, which focuses on broader-scope intensive care admissions. Nonetheless,

the authors provide their code publicly, which allowed us to test it with our data. The results were

significantly superior to DoctorAI.

Rajkomar et al. [25] perform an extensive work on how to use the Fast Healthcare Interoper-

ability Resources (FHIR) standard as an inter-institutional format for Electronic Medical Records,100

which they experimented over two hospital private datasets. Their work provides several insights on

how to perform patient trajectory analysis, including which tasks to pursue beyond diagnosis pre-

diction, as mortality, unplanned readmission, and long length stay; how to present the algorithmic

discoveries by pinpointing which data elements mostly contributed to the algorithm’s functioning;

and which data to combine so to accomplish such tasks. Our results are directly compared to theirs,105

demonstrating superior results for diagnosis prediction.

It is noteworthy that other approaches, beyond neural networks, have been employed for

computer-aided prognostic medicine. The work of Jensen et al. [18] is based on a statistical frequen-

tist inference used to characterize trajectories in the population of Denmark. Although robust, their

work is not scalable in terms of usability; their method demands remodeling for other instances of110

the problem and the curating of variables, leading to new models for every new application. As

an alternative, some researchers apply Markovian models to calculate the conditional probability

p(H → a|H) – the probability of admission a given that the clinical record H has already taken

place. In this line, Wang et al. [27] describe a two-fold technique grounded over Bayesian and

Markovian principles for Chronic Obstructive Pulmonary Diseases. Their results demonstrated115

high precision, however, they rely on co-morbidity data gathered from specialists, which is rarely

available. In addition, their modeling is highly complex, especially because adjusting it to other

settings demands revision of the whole process. Broadly speaking, Arandjelovic [2] demonstrates

that Markovian models depend on constrained assumptions to reduce the number of possible his-

torical sequences. This need strongly limits their applicability which is susceptible to how severe120

each admission is; for example, an everyday admission followed by an urgent admission might erase
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the model’s memory. Either way, we successfully compare to the Markovian-based results achieved

in the work of Pham et al. [23].

Furthermore, some works deal with Hawkes Processes [21], a probabilistic approach aimed at

random scatterings; that is, for events popping up along time – as in the case of admissions of a125

patient to a hospital. The limitation of this line of work is its restriction to the disease domain,

which does not straightly take patients into account. Furthermore, the number of parameters of the

respective models grows quadratically to the cardinality of the set of diseases, eventually turning

the computational burden intractable [7].

Accordingly, recurrent Artificial Neural Networks are used because of their abilities in dealing130

with sequence-to-sequence temporal problems; because of their flexibility – one can train the same

network for different problems as long as they have similar data characteristics, or have the same

trained model used with different datasets; and because of the simplicity that current Deep Learning

frameworks have brought to the field, which fostered a large and highly active community of prac-

titioners. Our final design primed for simplicity, in contrast to the intuition that deeper networks135

should succeed – our results are in sync with a recent theoretical work, by Frankle and Carbin [10],

who state that neural networks can be as much as 90% smaller without losing performance.

3. Datasets

Two datasets are used: Mimic-III and InCor. The first is highly structured and open-access, but

with a relatively low cardinality; the second has a higher cardinality, but it is private, as detailed140

in the following sections.

3.1. The Mimic-III dataset

The open-access dataset Medical Information Mart for Intensive Care III (Mimic-III) [19] is

provided by the Massachusetts Institute of Technology. This dataset integrates deidentified, com-

prehensive clinical data of patients admitted to the critical care unit of the Beth Israel Deaconess145

Medical Center in Boston, Massachusetts. The access to the dataset is open, but it is conditioned

to a strictly controlled user agreement. One of the goals of the Mimic-III effort is to allow the repro-

duction of clinical studies worldwide, making medical-related research comparable via a standard

referential.
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Mimic-III is a well-structured validated dataset with 58,976 admissions from 48,520 patients150

whose conditions relate to heart, surgical, and trauma conditions, all in demand for critical care.

The data is semantically rich including bedside monitoring, laboratory tests, billing, demographics,

diagnoses, and procedures. These last two pieces of information are properly encoded using the

ICD-9 standard. The dataset has been used for different research purposes such as medication

dosing [12] and mortality prediction [24]. In this work, its admissions and diagnoses are employed155

to predict trajectories. A patient’s admission refers to a set of diagnostic codes that describe what

happened during a hospital stay – see Figure 1.

Data issues

In the task of trajectory prediction, Mimic-III represents a real challenge because its cardinality

is relatively small, and because it uses the ICD-9 encoding, which is highly granular.160

pa
tie
nt
[1
]

042, 1363, 51881, 78039 042, 1363, 48241, 51881

pa
tie
nt
[0
]

7211, 5304, 5185, 99859 04111, V090, 04109, 72291

admission[0][1]

admission[0][0]

code[1][0][0] code[1][1][0] code[1][1][5]

7211 04111

ICD-9 7211: Cervical Spondylosis

ICD-9 04111: Methicillin-resistant Staphylococcus aureus

042 042 51881 ...

...

Figure 1: Three-level record organization extracted from Mimic-III. Many patients with multiple admissions, each

one described by a set of ICD-9 codes.

The total number of admissions in the dataset is 58,976. However, the distribution of patients

considering the number of admissions is skewed – 38,983 patients have one single admission.

This fact severely reduces the dataset as only patients with at least two admissions are useful

for trajectory prediction. Besides that, a few admissions do not have any related ICD-9 codes,

and others are not meaningful (negative time duration). With these restrictions, the number of165

admissions falls to 19,911; the number of patients falls to 7,483.

Concerning the encoding of diagnoses, the drawback comes from the high cardinality of the

ICD-9 standard, whose number of diagnosis codes sums up to 15,072 (the newer ICD-10 is over 4

times bigger). This cardinality refers to the granularity of details, which describes a disease along170
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with its possible clinical manifestations. In Mimic-III, a total of 6,984 codes appear in the database

instance – Figure 2 presents the distribution of the number of codes with respect to the number of

admissions; although the distribution is not Gaussian due to the outlier of 9 codes per admission,

its nearly Gaussian shape allows us to consider the simple average of 13 codes per admission as a

reasonable descriptive parameter of the underlying distribution. As a result, the task of predicting175

the codes of the next admission lies in the range of 6, 984!/6, 971!, or nearly 9.3 ∗ 1049 possibilities.

Figure 2: Distribution of the number of admissions with respect to the number of diagnosis codes in Mimic-III.

Alternative CCS encoding

The high granularity of the ICD-9 standard is a problem not restricted to this work; rather, it

is a recurring problem in several research activities. The Healthcare Cost and Utilization Project

(HCUP), a North-American association dedicated to healthcare research has tackled the problem by180

issuing the Clinical Classifications Software (CCS) encoding [8]. Their classification scheme (not a

software) defines a specialist-established tabular mapping from ICD-9 to a less granular descriptive

standard, the CCS. The goal is to ease statistical analysis and reporting. Table 1 illustrates the

mapping of the disease tuberculosis from ICD-9 to CSS – in this example, 426 ICD-9 codes become

1 CCS code. The complete mapping scheme converts 15,072 ICD-9 codes into 285 CCS codes; in185

the case of Mimic-III, the mapping corresponds to the use of 271 CCS codes instead of 855 ICD-9

codes (after clean-up of the dataset).

With the CCS encoding, the problem of predicting the codes of the next admission falls from

9.3∗1049 possibilities to 271!/258!, or nearly 3.2∗1031 possibilities – that is, 18 orders of magnitude

fewer possibilities. This simplification significantly improves the prediction performance. Of course,190
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ICD-9

code

ICD-9

description

CCS

code

CCS

description

01000 Prim Tuberculosis Complex-unspec 1 Tuberculosis

01001 Prim Tuberculosis Complex-no Exam 1 Tuberculosis

01002 Prim Tuberculosis Complex-exm Unkn 1 Tuberculosis

. . . . . . 1 Tuberculosis

01894 Miliary Tuberculosis Nos-cult Dx 1 Tuberculosis

01895 Miliary Tuberculosis Nos-histo Dx 1 Tuberculosis

01896 Miliary Tuberculosis Nos-oth Test 1 Tuberculosis

Table 1: Example of an ICD-9 to CCS mapping; the actual mapping converts 426 possible tuberculosis situations

into 1 CCS description.

the choice for a less granular code has a price; the descriptive results of the predictions are much less

detailed; so instead of “Tuberculosis of ear, tubercle bacilli found (in sputum) by microscopy”, the

diagnosis will state only “Tuberculosis”. In SubSection 6.4.3, the prediction improvement gained

with CCS are evaluated.

3.2. The InCor dataset195

The InCor dataset is provided by the Heart Institute (InCor) of Sao Paulo, Brazil, one of the six

institutes of the Clinics Hospital (HC), University of Sao Paulo Medical School, which is recognized

as one of the world’s academic and clinical excellence centers in cardiology, cardiovascular medicine,

and cardiovascular surgery. InCor has been committed to integrating the information of its patients;

in the last few years, it has successfully created a hospital information system (HIS) with the clinical200

and administrative data of more the 1.3 million patients. This dataset is related to a wide set of

conditions instantiated in its clinical encounters, including diagnoses, procedures, and treatments.

The InCor dataset, before preprocessing, contains 820,819 admissions regarding a sample of 89,048

complete de-identified patients; the data is related to 6,646 diagnoses codes according to the ICD-

10 standard. The data model of InCor follows the OMOP Common Data Model (CDM) [17] to205

simplify the exchange and integration with different systems.

Data characteristics

The InCor dataset also suffers from a skewed distribution concerning the number of admissions.

After filtering out inconsistencies and patients with one single admission, we ended up with 69,072

9



admissions and 17,765 patients; much smaller, but still 350% bigger than Mimic-III in the number210

of admissions. In this instance, the number of codes sums up to 3,133, which results in a high-

granularity problem similar to the ICD-9 encoding. However, one cannot count on a less granular

mapping like the CCS because it is not available for ICD version 10. This was important to define

a more heterogeneous experimental bed.

4. Problem statement and related techniques215

4.1. Problem statement

The problem treated here is stated as: given a patient’s sequence of admissions, possibly stored

as an EHR ending at time t, predict the most probable diagnoses that shall appear in the next

admission of this patient at time t + 1. A patient’s admission refers to a pair xi = (timei,di), in

which i is the temporal order of the admission, timei is the timestamp stating when the admission220

occurred, and di = {di,0, di,1, ..., di,n−1} is an unordered set of n diagnoses codes, so that di,j ∈ D;

D is a standard set of codes such as ICD-9 or CCS. Furthermore, each patient’s EHR refers to a

set of t admissions X = {x1, x2, ..., xt}. In our problem setting, for any set of admissions X, the

goal is to predict the codes of admission xt+1 = ŷ. In the context of artificial neural networks, the

following probabilities are to be predicted:225

ŷ = {P (dt+1,j |x1:t)} (1)

for 0 ≤ j ≤ (|D| − 1).

That is, for each possible code dj ∈ D, and given admissions x1 through xt, we want to compute

its probability of appearing in the next admission y = xt+1. Or, in the conventional notation of

the output of an artificial neural network, we seek to compute ŷ. Notice that, as the outcome is a230

set of probabilities, it can be interpreted as a set of recommendations.

Considering this problem setting, the input of an admission xi to an artificial neural network

comes in the form of a |D|-dimensional multi-hot vector defined, in programming (array-like) no-
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tation, as:

hot vector[j] =

1, if dj ∈ xi

0, otherwise

(2)

for 0 ≤ j ≤ (|D| − 1).235

Since batch processing is used instead of a hot vector per iteration, in practice, Equation 2

expands to a set of l patients P = {p0,p1, ...,pl−1}, each one with a set of t n-dimensional

admissions ph = {xh,1,xh,2, ...,xh,t}, which corresponds to the following input tensor:

x[i][h][j] =

1, if dj ∈ xh,i

0, otherwise

(3)

for 0 ≤ i ≤ (t− 1), 0 ≤ h ≤ (l − 1), and 0 ≤ j ≤ (|D| − 1).240

In Equation 3, the admissions become the first dimension of the tensor corresponding to slices

(orthogonal to its depth axis). This is meant for a simplified flow through the network; it is

more convenient to have one patient per line, and one code per column, which makes algebraic

operations simpler since the computation is oriented to admissions. Also notice that the patients245

have different numbers of admissions, and admissions have different numbers of codes; to cope with

that, elements with smaller cardinalities are padded with 0’s, which demanded the use of masking

to prevent residual computations in the padded positions of the tensor.

4.2. Recurrent neural networks and fine tuning

Recurrent neural networks are used in the design of our architecture, whose principle is to use250

self-loop connections and a set of information gates whose dynamic produces a memory of past

events across time steps – they contrast with feed-forward-only networks, which do not use self-

loops nor memory. In order to design an architecture with performance superior to existing works,

the following types of RNNs are considered: Jordan’s network [20], Long-Short Term Memory

(classic [16] and Google’s [29]), Gated Recurrent Units (classic [5] and minimal [30]), and DoctorAI255

(GRU+embedding) [6]; a feed-forward-only network is also considered as well as a bidirectional re-

current neural network [26]. Many auxiliary techniques are also used, including Xavier initialization

11



[13], dropout, L2 regularization, and addition of Gaussian noise to the input to prevent overfitting;

gradient clipping and ADADELTA [28] for convergence. We considered activation functions Leaky

Rectified Linear Unit, sigmoid, hyperbolic tangent, and classical Rectified Linear Unit [14]. Gra-260

dient clipping was particularly effective in reducing the loss during each training epoch, although

slowing down the convergence.

5. Proposed methodology: LIG-Doctor

In this section, our neural network architecture is introduced as a design to make diagnoses

predictions; in the next section, Section 6, our architecture demonstrates prediction performance265

superior to existing works in the literature. In order to determine the best neural network architec-

ture, three decisions were necessary: (i) which neural network cell to use – see Section 5.1; (ii) how

many layers and neurons to employ – Section 5.2; and (iii) which architecture to use – Section 5.3.

As it will be presented, the final architecture takes the input data for both forward and backward

bi-directional processing, whose outputs are joined by means of a feed-forward join layer; next, the270

output passes through an additional feed-forward layer for dimensionality adjustment and, lastly,

it passes through a softmax normalization operation, so that the resulting logits form a probabil-

ity distribution regarding the clinical codes. The corresponding linear algebra runs in distributed

parallelism as provided by framework Theano [4].

5.1. Choosing an artificial neural network cell275

In choosing the neural network cell, we considered the following recurrent cells: Jordan’s, classic

LSTM, Google-LSTM, GRU, and Minimal GRU – refer to Section 4.2. We took into account the

number of gates (the more gates, the more computational cost) and the prediction performance

(reported in Section 6.4.1).

The cell with the smallest number of gates is Jordan’s; the one with the highest number is280

Google-LSTM. Cell GRU demonstrated a higher performance than Jordan’s by using more gates,

and a performance comparable to Google-LSTM with fewer gates. The Minimal GRU (MinGRU)

cell uses even fewer gates than the classical GRU; despite that, it did not lose performance, which

was similar to Google-LSTM and classical GRU, but demanding less processing time. Accordingly,
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cell Minimal Gated Recurrent Unit was chosen as the core of our architecture; its equations are:285

ft = σ(xtW
f + ht−1U

fxt + bf ) (4a)

h̃t = tanh(xtW
h + Uh(ft � ht−1) + bh) (4b)

ht = (1− ft)� ht−1 + ft � h̃t (4c)

where � is the Hadamard (element-wise) product; σ = ex

ex+1 is the sigmoid activation function;

tanh = ex−e−x

ex+e−x is the hyperbolic activation function; the W ’s and U ’s are the weights to op-

timize, together with the biases indicated with b’s. The squared matrices (U) were initialized

using identity, and the other matrices (W ) using a Gaussian distribution with zero mean and

variance =
√

2
|input|+|output| .290

5.2. Determination of the number of layers and neurons

Here, the first issue was to find an optimal number of neurons to use in the hidden layers. We

tested layers ranging from 100 to 3,000 neurons – the results are reported in Section 6.4.2. Peak

performance was reached at around a number of neurons equal to the number of neurons in the

input layer. Following Equations 2 and 3, this number equals the number of distinct codes. For295

dataset Mimic-III, this number is 271; for InCor, it is 3,133.

The second issue was to determine the number of layers. Despite the intuition that more layers

should lead to better performance, our experiments (Section 6.4.2) demonstrated that the higher

the number of hidden layers the worst the performance. The chosen design counted on one input

layer, one MinGRU hidden layer, and one standard output layer before the softmax normalization.300

5.3. Defining the architecture

The last design decision referred to employing more advanced techniques to improve the perfor-

mance. At this point, the principle of bidirectional recurrent neural networks was experimented.

Bidirectional networks connect two processing flows computed in opposite directions in relation to

the temporal dimension of the data – 3. In accordance, we set our data model so that the neural305

network gets information regarding the past towards the present, and regarding the present towards
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the past, simultaneously. This decision, along with the previous ones, demonstrated a performance

consistently superior to previous works as reported in Section 6.3.

The final part of our network counts with a feed-forward flow that starts with a joining layer

to combine the outcomes of the two networks by means of a weighted sum of the forward and310

backward computations. Given a forward hidden layer computation hfwd
t and a backward hidden

layer computation hbwd
t , their joint weighted sum hjoint

t is obtained according to:

hjoint
t = LReLU(

hfwd
t V fwd + ht

bwdV bwd + bjoint,

αj) (5)

After that, the final output probabilities come from an output layer that feeds into a softmax

operator:

ŷ = softmax(

LReLU(hjoint
t W out + bout),

αo) (6)

where LReLU corresponds to activation function Leaky Rectified Linear Unit (LReLU) with slopes315

αj and αo as extra optimization parameters introduced in hjoint
t and ŷ, respectively; bjoint and

bout as ordinary biases to shift the activation function. The use of the parameterized LReLU at the

feed-forward stage demonstrated superior results with respect to recall and speed of convergence if

compared to functions sigmoid, hyperbolic tangent, and classical Rectified Linear Unit (ReLU).

5.4. Final architecture320

Figure 3 illustrates the final LIG-Doctor architecture, whose goal is to compute the following

optimization:

arg min
ΘLIGDoc

(Loss(y, ŷ)) (7)
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where ΘLIGDoc = {W ffwd, Uffwd, bffwd, Whfwd, Uhfwd, bhfwd, W ffwd, Ufbwd, bfbwd, Whbwd,

Uhbwd, bhbwd, V fwd, V bwd, bjoint, αj , W out, bout, αo } is the set of parameters of the architecture,

and the loss function corresponds to the cross entropy function computed over a multi-hot vector325

of known codes y and a vector of codes probabilities ŷ:

Loss(y, ŷ) =

|D|−1∑
j=0

(yj log(ŷj)+

(1− yj)log(1− ŷj))

(8)

where yj is a short representation to the j-th code at time t + 1, or dt+1,j . The closer to 1 a

probability is, the smaller the loss.

Figure 3: Diagram of layers of our neural network architecture – a Bidirectional Minimal Gated-Recurrent Unit

network. The cardinalities of the processing matrices are presented below the layers (considering Mimic-III with 271

CCS codes).
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6. Experiments

We present the experimental setup in Section 6.1 and the evaluation metrics in Section 6.2. In330

Section 6.3, our results are compared to the related works presented in Section 2. In Section 6.4,

we present the results that justify the design decisions that led to our architecture, as well as to

guide future researchers in solving similar problems.

6.1. Experimental setup

For training and testing, 90% and 10% of the patients were used, respectively, chosen randomly.335

The average results are collected after three runs over different splits. For Mimic-III, the training

occurred until the model recorded 10 consecutive epochs without improvement as measured by

reductions in the cross-entropy loss – refer to Equation 8. For InCor, the training went as long as

5 consecutive epochs without improvement. The code was written over the framework Theano and

ran on GPU Nvidia GeForce GTX 1080 Ti; Debian operating system with 8 GB of memory.340

6.2. Evaluation metrics

Due to the characteristics of the problem, two metrics commonly used for recommendation

systems are employed: Precision and Recall at top-k recommendations. In our case, the top k

recommendations refer to the k diagnosis codes in ŷ that received the highest probabilities of345

appearing in the next admission. Considering the top-k recommendations, Precision@k refers to

the percentage (ratio) of all the actual codes that appear in the top-k recommendations, expressed by

precision@k = #correctly recommended codes
k ; and Recall@k refers to the percentage of recommended

codes that are correct with respect to the entire set of correct codes, expressed by recall@k =

#correctly recommended codes
|y| – a code is correct if it pertains to the answer set y.350

The Area Under the Receiver Operating Characteristic Curve (AUC-ROC) is also computed;

it refers to a metric based on the concepts of Sensitivity and Specificity designed to measure the

ability of a binary classifier along the spectrum of its discriminative threshold. We consider a given

prediction as truly positive if it belongs to the actual answer set y; and truly negative otherwise. This

procedure allows the construction of a confusion matrix for different thresholds over the probability355

scores. Finally, the F1-Score is computed as the harmonic average of metrics Precision and Recall

– for this computation, all the recommendations are considered, rather than only the top k. Once
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each predicted code is set with respect to the answer set, F1-Score becomes straight to compute.

All the three metrics range in the interval [0, 1] – 1 corresponds to the best performance.

6.3. Comparison to related works360

Our proposal is compared to the related works of Rajkomar et al., Pham et al. (DeepCare and

Markov-based), and Choi et al. (DoctorAI) using three settings: Mimic-III with CCS encoding,

Mimic-III with ICD-9 encoding, and InCor with ICD-10 – the datasets and encodings are detailed

in Section 3.

In Table 2, we see that the best results of Rajkomar et al. are worse than what we obtained for365

Mimic-III-CCS, Mimic-III-ICD-9, and InCor. For Mimic-III, our ICD-9 encoding obtained F1-Score

0.48 against 0.4 of Rajkomar et al.; considering AUC-ROC, their best result using their private data

was of 0.9, which is smaller than what we got in our three settings.

Pham et al. report on their DeepCare system and on a Markov-based methodology using metric

Precision@[1,2,3]. As shown in Table 2, their best results over their private datasets are worse370

than what we got for Mimic-III both for DeepCare and the Markov-based method. For InCor, at

first glance, our results were not comparatively so good. However, after preprocessing, their mental

health dataset had 52,049 admissions and 247 diagnosis codes, and their diabetes dataset had 53,208

admissions and 243 codes – a problem much easier than InCor’s, which had 69,072 admissions and

3,133 diagnoses. The task of patient trajectory prediction depends on the context of the healthcare,375

being easier in settings of specific diseases; InCor was generated from outpatient (non-specialist)

admissions, while DeepCare was generated from mental health or diabetes, exclusively.

Choi et al. report on Mimic-III using ICD-9, which achieved a ratio of ∼0.64 for Recall@30

after transferring the learning of their private dataset training – see Table 2. Meanwhile, our best

results for Mimic-III using ICD-9 was of 0.67 for Recall@30; that is, we significantly (over 4.5%)380

overcome the performance of DoctorAI. For comprehensiveness, the best results of DoctorAI are

also reported over their private dataset; their results in this configuration are better than ours,

especially for Recall@10. This performance can be explained by the characteristics of their dataset,

with over 14 million admissions and 1,183 codes, which provides training support more than 250

times bigger than what we have with our datasets.385

In a broad sense, these former works are narrow with respect to their domains, dealing with

very specific diseases. With respect to previous works that do not rely on artificial neural networks
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– mentioned in Section 2 and in the work of Pham et al., it is possible to affirm that they do not

straightly adapt to different settings, requiring very specialized data and problem modeling; or,

they demonstrate performances that demand million-scale volumes of records.390

Rajkomar et al. [25]

Mimic-III ICD-9

LIG-Doctor

Mimic-III CCS

LIG-Doctor

Mimic-III ICD-9

LIG-Doctor

InCor

F1-Score

at discharge
0.40 0.54 0.48 0.51

Rajkomar et al.

(private dataset)

LIG-Doctor

Mimic-III CCS

LIG-Doctor

Mimic-III ICD-9

LIG-Doctor

InCor

Frequency-

weighted

AUROC

0.90 0.93 0.95 0.94

Pham et al. [23]

DeepCare / Markov

(best results - all datasets)

LIG-Doctor

Mimic-III CCS

LIG-Doctor

Mimic-III ICD-9

LIG-Doctor

InCor

Precision@1 0.66 / 0.55 0.81 0.78 0.53

Precision@2 0.60 / 0.34 0.78 0.74 0.33

Precision@3 0.54 / 0.24 0.74 0.70 0.24

Choi et al. [6] - DoctorAI

(Mimic-III CCS/private dataset)

LIG-Doctor

Mimic-III CCS

LIG-Doctor

Mimic-III ICD-9

LIG-Doctor

InCor

Recall@10 0.44/0.64 0.49 0.42 0.64

Recall@20 0.62/0.74 0.66 0.58 0.69

Recall@30 0.72/0.80 0.76 0.67 0.73

Table 2: Metric comparison to related works. LIG-Doctor presents results better or comparatively similar in all the

cases.

Furthermore, it is worth to mention that a strict consolidated benchmark for patient trajectory

prediction is not yet of broad use. The field still has much to evolve in order to ultimately evaluate

the performance of one given predictor. The Mimic-III dataset is an open initiative to fill this

benchmark gap; the research community shall benefit from future works that experiment on Mimic-

III beyond their private datasets.395

6.4. Supporting experiments

We report on the experiments that guided the design decisions presented in Section 5. These

results not only justify our decisions, but they also raise interesting insights that might guide other

researchers in defining their architecture.
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6.4.1. Direct comparison of neuron cells400

This section relates to Section 5.1. Here, eighth neural network cells are compared with respect

to their Recall@k: random, feed-forward-only, Jordan’s, DoctorAI, LSTM, Google-LSTM, GRU,

and Minimal GRU.

For Mimic-III, the average results, presented in Table 3, demonstrate superior performance, with

up to 73% accuracy for Recall@30, for techniques Google-LSTM and Minimal GRU. Unexpectedly,405

the feed-forward-only network had a performance comparable to classic LSTM and GRU, with

up to 72% accuracy for Recall@30. The probable reason is that more than 68% of the patients

with more than one admission have only two admissions – actually, only roughly 32% of these

patients have between three and four admissions. That is, Mimic-III sets circumstances in which

the time-awareness or recurrent cells is not necessary for a great part of its data.410

To confirm our results, the same experiments ran over dataset InCor. Only the techniques with

best performances were considered as seen in Table 3 – that is, all but Random and Jordan’s.

According to the results presented in Table 4, since InCor uses as much as 3,133 diagnosis codes,

the performance was overall worse than that obtained over Mimic-III. Still, according to Table

4, Google-LSTM and MinGRU performed well again, but the FF-Only network failed remarkably.415

Concerning FF-Only, we verified that, while Mimic-III has nearly 32% of the patients with less than

four admissions, in InCor, nearly 55% of the patients have between three and eleven admissions;

that is, for InCor, the time-awareness of recurrent cells is much more essential.

We verified that DoctorAI (GRU+embedding) and cell GRU itself had the best performances

for InCor, although the difference was not pronounced. For all the aforementioned results, neuron420

cells GRU, MinGru, and Google-LSTM were kept for the next round of experiments.

6.4.2. Experimenting with the number of layers and neuron cells

This section relates to Section 5.2. After choosing the most adequate neuron cells, we proceeded425

with tests regarding the number of layers and neurons. Over Mimic-III, we experimented with up to

3 layers and with 271, 542, and 1,084 cells per layer, in a total of 9 settings for cells GRU, MinGru,

and Google-LSTM – the number of cells is a multiple of the size of the input layer. In Table 5,

one can see that more layers caused the system to lose performance - meanwhile, the number of
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Recall@10 Recall@20 Recall@30

Random 0.04 0.07 0.11

FF-Only 0.46 0.63 0.72

Jordan’s 0.43 0.60 0.70

DoctorAI (GRU) 0.44 0.62 0.72

LSTM 0.46 0.62 0.72

Google LSTM 0.46 0.64 0.73

GRU 0.45 0.63 0.73

Min GRU 0.46 0.64 0.73

Table 3: Direct comparison of eight types of artificial neuron cells using metric Recall@k for k ∈ {10, 20, 30} over

dataset Mimic-III with CCS encoding. Average values computed after three runs on three different randomized

splits.

Recall@10 Recall@20 Recall@30

FF-Only 0.30 0.39 0.46

DoctorAI (GRU) 0.36 0.47 0.55

LSTM 0.34 0.44 0.50

Google LSTM 0.35 0.46 0.52

GRU 0.36 0.47 0.54

Min GRU 0.35 0.46 0.53

Table 4: Direct comparison of six types of artificial neuron cells, now over dataset InCor using ICD-10, using metric

Recall@k for k ∈ {10, 20, 30}. Average values computed after three runs on three different randomized splits.

neurons did not affect the results so much, but, of course, it demanded more processing time.430

Similarly to the experiment carried out in Section 6.4.1, GRU, MinGru, and Google-LSTM had

similar performances – for Mimic-III, their Recall@30 ranged from 73% to nearly 66%. In fact,

their performances are virtually identical, so that any of the three neuron cells would work the

same in terms of prediction performance. Concerning processing cost, the time for training three

layers each with 1,084 nodes was computed. Table 6 demonstrates that Minimal GRU has the435

smallest processing cost, finishing 55% earlier than Google-LSTM for Mimic-III and 54% for InCor;

and 23% earlier than GRU for Mimic-III and 17% for InCor. These results are proportional to the

number of gates of each technique and, consequently, to the number of parameters to be adjusted

during training.

To double-check our conclusions, similar experiments were performed over dataset InCor; addi-440
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tionally, Minimal Gated Recurrent Units are used in bidirectional parallelism. The use of dataset

InCor was to guarantee that our conclusions on cardinality did not arise from specific traits found

in Mimic-III. Accordingly, we experimented with up to 3 layers and with 391, 783, 1,566, and 3,133

cells per layer in a total of 12 settings. Table 7 presents the results for Recall@30. The results over

dataset InCor confirmed the conclusions previously drawn with Mimic-III; that is, the more hidden445

layers the worse was the performance for every layer size. Regarding the number of neurons per

layer, one can see that bigger layers also tend to slightly reduce the performance, as well as a layer

size smaller than 783, or 25% of the input size.

In conclusion, we decided for Minimal GRU as the neuron cell of our architecture, and for

one single hidden layer – this architecture demonstrated better performance in terms of predic-450

tion and processing cost. For Mimic-III, this layer should have 271 nodes, and for InCor, 783 nodes.

Nodes GRU Minimal GRU Google-LSTM

271 0.73 0.73 0.73

542 0.74 0.74 0.73

1,084 0.73 0.73 0.72

1 Layer

271 0.71 0.71 0.69

542 0.71 0.72 0.71

1,084 0.72 0.72 0.72

2 Layers

271 0.69 0.68 0.65

542 0.68 0.68 0.67

1,084 0.67 0.66 0.68

3 Layers

Table 5: Performance comparison of neuron networks GRU, Minimal GRU, and Google-LSTM with the number of

layers ranging from 1 to 3, each with 271, 542, or 1,084 nodes – tests ran over Mimic-III with CCS encoding. Best

performances for one single layer with 271 nodes.

Dataset/Cell GRU Minimal GRU Google-LSTM

Mimic-III 243 s 196 s 436 s

InCor 1586 s 1,318 s 2,027 s

Table 6: Training time comparison, in seconds, of neuron networks GRU, Minimal GRU, and Google-LSTM with 3

layers and 1,084 nodes per layer.
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LIG-Doctor

#layers/#cells 391 783 1,566 3,133

1-layer 0.70 0.72 0.70 0.69

2-layers 0.68 0.69 0.69 0.62

3-layers 0.60 0.61 0.62 0.58

Table 7: Performance comparison of different architecture sizes for LIG-Doctor’s Minimal Gated Recurrent Units

organized in bidirectional parallelism over dataset InCor using ICD-10. Total of 12 different settings with 1, 2, or

3 layers, and 391, 783, 1,566, or 3,133 cells per layer. The best performance comes with one single layer with 783

nodes.

6.4.3. Further design improvements

This section relates to Section 5.3. After deciding for the Minimal GRU cell, and for the

cardinality of layers and neurons, the next step was to use more elaborated techniques to further455

improve the performance.

We experimented with the principle of bidirectional recurrent neural networks, which led us to

the parallel architecture discussed in Section 5. Over this architecture, we further experimented

with other techniques, including the use of an embedding layer before the hidden layers; and the

use of extra features like duration of admission, the interval between admissions, and type of the460

admission.

Table 8 presents results for Mimic-III. The first thing to observe is that the complete architecture

yielded results significantly superior to the configurations that do not use bidirectional parallelism,

as presented in Table 3. For InCor, the same fact appears when comparing Tables 10 and 4; for

InCor, the results were even more pronounced since the dataset has longer temporal sequences, as465

already pointed out in Section 6.4.1.

Still in Table Table 8, one can see that the embedding layer just reduced the performance; a

side effect that we verified for all the settings previously reported. The use of embedding just added

an extra layer and the behavior of the network was just the same as that observed in SubSection

6.4.2; the more layers, the worse the performance. The use of extra features found in the database,470

namely the type of the admission (newborn, elective, emergency, or urgent), the interval between

admissions, and the duration of the admissions, provided slight improvements – refer to lines 3 to

7 in Table 8. These extra features are employed via concatenation to the input tensor, without an

embedding layer – the type in the form of a 4-codes hot-vector; the time in the form of a single
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normalized extra slice. The first of these features, type, is very particular to Mimic-III; the interval,475

however, applies to any other medical dataset. The final highest Recall, achieved with duration,

ranged from 54% at k = 10 to 79% at k = 30, not significantly better if compared to the simplest

form of the architecture presented in the first line of the table.

Recall@10 Recall@20 Recall@30

LIG-Doctor (CCS) 0.53 0.71 0.79

+embedding 0.52 0.69 0.78

+interval 0.53 0.71 0.79

+duration 0.54 0.71 0.79

+type 0.53 0.71 0.79

+interval +duration 0.54 0.71 0.79

+interval +duration +type 0.53 0.71 0.79

Table 8: Performance of our methodology over dataset Mimic-III using 271 CCS codes when combined with fur-

ther techniques and data features. The best results came with the use of the duration of the hospital admission

concatenated to the input data (no embedding layer); however, the improvement was not significant.

In Table 9, experiments similar to those reported in Table 8 were perform, but now using Mimic-

III encoded with the entire range of 855 ICD-9 codes. The results stress the previous results; the480

basic architecture presents the best performance, while architectural variations did not significantly

improve the prediction of future diagnoses. The table also demonstrates that the use of the less

granular CCS encoding, instead of ICD-9, remarkably improved the results.

Recall@10 Recall@20 Recall@30

LIG-Doctor (ICD-9) 0.48 0.64 0.72

+embedding 0.47 0.63 0.71

+interval 0.47 0.64 0.72

+duration 0.47 0.63 0.71

+type 0.48 0.64 0.72

Table 9: Performance of our methodology over dataset Mimic-III considering the entire range of 855 ICD-9 codes,

instead of the 271 CCS codes. With respect to the variation of the architecture, the results were similar to the

ones presented in Table 8; but with respect to the dataset encoding, the wider range of ICD-9 resulted in inferior

performance.

We repeated the experiments over the InCor dataset considering the basic architecture, the

use of embedding, and the use of interval. The other features that tested with Mimic-III are not485
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available in InCor – see Table 10. Again, the use of embedding (from cardinality 3,311 to 783)

did not help, resulting in nearly 5% less Recall performance. The use of interval, different from

Mimic-III, was not useful either; its use resulted in a strong decrease in performance, around 20%

inferior.

Recall@10 Recall@20 Recall@30

LIG-Doctor 0.64 0.69 0.72

+embedding 0.61 0.66 0.70

+interval 0.47 0.52 0.56

Table 10: Performance of our methodology over dataset InCor using ICD-10 when combined with embedding, and

interval between admissions. The simplest form of the architecture presented the best results.

7. Discussion490

Section 6.3 demonstrated that the proposed architecture presented performance superior to

works from the state of the art. The results presented in Section 6.4 justified the decisions that

led to the architecture described in Section 5. Furthermore, here, we discuss the interpretability

and applicability of our work in Section 7.1, and insights regarding the design of artificial neural

networks in Section 7.2.495

7.1. Interpretation of results

As defined in the problem statement in Section 4, LIG-Doctor works by predicting the possible

future diagnoses of a patient based on the diagnoses of this patient during former admissions. The

prediction is provided in the form of probabilities p(d|x), that is, the probability of diagnosis d given

the set of previous admissions x. Table 11 illustrates actual examples extracted from dataset Mimic-500

III. We report diagnoses that the system accurately anticipated, but notice that other diagnoses are

suggested each one with a probability score – these other diagnoses are also useful to the physician

because they have the potential to alert for situations that occurred to other patients in similar

conditions, but that did not settle yet. As reported in our previous experiments, from the top 10

recommendations with highest probabilities, on average, more than 5 of then are correct.505

The predictions provided by techniques like LIG-Doctor and related works are meant to assist

physicians in the interpretation of a patient’s EHR. Given a patient with dozens of previous ad-

missions, the system will suggest to the physician a set of possible outcomes that might arise in
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Previous diagnoses Predicted diagnoses

Patient 1

Coronary atherosclerosis

Diabetes mellitus

Chronic kidney disease

Cardiac dysrhythmias

Anemia

Disorders of lipid metabolism

Patient 2

Genitourinary congenital anomalies

Essential hypertension

Heart valve disorders

Fluid and electrolyte disorders

Acute and unspecified renal failure

Upper respiratory disease

Patient 3

Pleurisy; pneumothorax; pulmonary collapse

Cardiomyopathy

Coagulation and hemorrhagic disorders

Diseases of veins and lymphatics

Disorders of stomach and duodenum

Liver diseases

Table 11: Example of real-world predictions carried out from dataset Mimic-III using the simplified CCS encoding.

the future of this patient. The benefits include faster interpretation of long medical records; em-

phasis on the set of more probable outcomes reminding the physician of a broad set of situations;510

presentation of knowledge acquired from cases related to other patients from the entire dataset,

complementing the experience of the physician; opportunity for preventive medicine, since the pre-

diction is, essentially, an anticipation of what might happen to a given patient; proposition of new

relationships between diseases and symptoms; among other uses still to come.

7.2. On the design of neural networks515

Our experiments also provided interesting insights. We verified that recurrent neural networks

do not sustain performance as more layers are stacked – contrary to the intuition that deeper

networks should work better. We also found that recurrent neural cells LSTM and GRU had

performances similar to that of Minimal GRU; which, in contrast, uses a minimal number of gates.

That is, a smaller number of gates per neural cell achieved performance comparable to classical,520

more complex and costly, neural cells. Lastly, it was verified that the simplest design of one single

hidden layer, structured with the simplest neural cell, provided the best results; in addition, the

use of a parallel network in bidirectional fashion, instead of stacked, provided the most significant

performance improvement.

Specifically concerning the open-access Mimic-III dataset, it was verified that, although it sup-525

ports the training of recurrent neural networks for trajectory prediction, it demands the use of a

less granular encoding of diagnoses due to its low cardinality; the HCUP-CCS is used in this task.

Moreover, we noticed that the entire scope of ICD-9 is too broad for effective statistical and ana-
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lytical tasks in general (newer ICD-10 is over four times more granular). For Mimic-III, it was also

noticed that the majority of its Electronic Health Records carries sequences with only two hospital530

temporal admissions; in this circumstance, the benefit of using recurrent neurons is minimal – as a

consequence, for Mimic-III, the use of a simple feed-forward network provided reasonable results.

This effect did not hold for dataset InCor, which comprises longer temporal sequences.

8. Conclusions

We worked on the design of an artificial neural network able to perform effectively in the task535

of patient trajectory prediction. Extensive tests were performed to determine the most appropriate

configuration in terms of which cell to use, which architecture, and hyper-parameters. Experiments

were conducted over the open-access dataset Mimic-III, and over the private dataset InCor, both

of them in the order of dozens of thousands of patient admissions; these data are used to explore

several dimensions of the design space of artificial neural networks using the low-level Deep Learning540

framework Theano. Besides leading us to the best performance, all the design process revealed

relevant facts that might contribute to future works on similar problems.

As of last remarks, we mention future research. The parallel architecture demonstrated effec-

tively; this design might extrapolate to more than two parallel networks, each one benefiting from

different characteristics of the data – actually, most medical datasets count on semantic features545

adequate for further investigation. It is worthy to explore specific-disease datasets as to predict finer

onsets, like heart failures or strokes; even further, the use of temporal data can extrapolate to the

prediction of when a certain outcome is to occur. Finally, data augmentation in the medical domain

is quite desirable due to the restricted access common to most datasets; this can be accomplished

with adversarial networks, which is currently an active research field.550
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