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This paper deals with the one-dimensional formulation of Hughes model for pedestrian flows. We consider linear cost functions, whose slopes α 0 correspond to different crowd behaviours. In fact, a panic behaviour is associated to α = 0, while, as α grows so does the importance of avoiding regions with huge number of pedestrians. This is a typical behaviour in pandemic situations, during which gathering is forbidden to prevent the spread of a contagious disease.

We furnish here three existence results in the framework of entropy solutions. The first two rely on hypotheses which ensure that non-classical shocks do not arise. The last one is more general as it deals with BV initial data and accounts for the possible presence of non-classical shocks. To the best of authors' knowledge, this is the first existence result for Hughes model dealing with non-classical shocks. The proof is based on a many particle approximation. Beside the technical result, this approximation justifies the macroscopic model at the microscopic level.

Some numerical simulations are presented and show that the model is able to reproduce typical behaviours in case of evacuation. Special attention is devoted to the impact of the parameter α on the evacuation time, both at the microscopic and macroscopic level. As a result, we show that, at least in the case under consideration, there exists a unique value for α > 0 which minimizes the evacuation time. Furthermore, the evacuation time may not depend continuously on α and may have infinitely many discontinuities.

Introduction

In recent years, the modelling of large human crowds attracted considerate scientific interest. This is due to its potential applications in structural engineering and architecture, see for instance [12,[START_REF] Bellomo | Traffic, crowds, and dynamics of self-organized particles: new trends and challenges[END_REF]16,18,33,48,65] and the references therein.

Several models for pedestrian flow are already available in the literature, see again [16,33,48,65] and the references therein. Models for pedestrian motion split into two groups: macroscopic modeling and microscopic modeling. Macroscopic modeling is suited to the derivation of general results, such as for the evacuation time optimization, and is useful in understanding realistic crowds involving extremely large numbers of pedestrians. On the other hand, crowd dynamics are essentially microscopic and it is therefore easier to physically motivate microscopic rather than some macroscopic assumptions. Moreover, macroscopic modeling relies on the continuum assumption, in which the medium is assumed to be indefinitely divisible without changing its physical nature. Such an assumption is clearly not completely justified in the present framework, as the number of pedestrians is typically far lower than the typical number of molecules, for instance, in gas dynamics.

Our main goal is to rigorously prove a passage to the limit from a well-assessed microscopic follow-the-leader model to a macroscopic model for pedestrian flow, similar to taking the hydrodynamic limit of Boltzmann equations. As a matter of fact, a byproduct of our analysis is a further justification of the one-dimensional version of the Hughes model [52,[START_REF] Hughes | The flow of human crowds[END_REF], as well as an existence result for it. We underline that the previous existence results obtained in [START_REF] Amadori | Existence results for Hughes' model for pedestrian flows[END_REF]38] for the Hughes model are subject to the assumption of an initial datum with sufficiently small total variation. Here we do not require any assumption on the smallness of the total variation of the initial datum.

Hughes model treats the crowd as a fluid made of "thinking" particles. It was introduced by R.L. Hughes in 2002 [52]. It has been applied to diverse scenarios, as the Battle of Agincourt and the annual Muslim Hajji [START_REF] Hughes | The flow of human crowds[END_REF]. The model is given by a non-linear conservation law with discontinuous flux, coupled with an eikonal equation. Even if this type of conservation laws has been already analysed and simulated in [START_REF] Adimurthi | Optimal entropy solutions for conservation laws with discontinuous flux-functions[END_REF]9], see also [START_REF] Andreianov | New approaches to describing admissibility of solutions of scalar conservation laws with discontinuous flux[END_REF] and the references therein, Hughes model is technically more challenging. This is due to the non-linearity of the eikonal equation as well as the implicit time dependence of the potential. We stress that, for the unique viscosity solution of the eikonal equation, no more than Lipschitz continuity can be expected. This motivated the development of several attempts to study this model.

Let us briefly recall the existence results for the Hughes model available in the literature. In [START_REF] Di Francesco | On the Hughes' model for pedestrian flow: the one-dimensional case[END_REF] the authors present an existence and uniqueness theory for a regularized version of the Hughes model. Also in [23,27,31] the authors considered a modified version of the Hughes model. To the best of author's knowledge, the first existence result for the Hughes model is obtained in [START_REF] Amadori | Existence results for Hughes' model for pedestrian flows[END_REF]. Motivated by the availability of the local Riemann solver studied in [3,44], the authors in [START_REF] Amadori | Existence results for Hughes' model for pedestrian flows[END_REF] follow the wave-front tracking approach [35]: they construct a sequence of piecewise constant approximate solutions by solving locally the Riemann problems arising at each jump of discontinuity, and prove their convergence by providing a uniform total variation boundedness. The second existence result for the Hughes model is obtained in [38]. There, the authors exploit the features that crowd modeling shares with traffic models, see [START_REF] Albi | Vehicular traffic, crowds, and swarms: from kinetic theory and multiscale methods to applications and research perspectives[END_REF][START_REF] Bellomo | On the modelling of vehicular traffic and crowds by kinetic theory of active particles[END_REF][START_REF] Bellomo | On the modeling of traffic and crowds: a survey of models, speculations, and perspectives[END_REF]22,65] and the references therein. In particular, Hughes model is similar to the Lighthill-Whitham-Richards (LWR) model [START_REF] Lighthill | On kinematic waves. II. A theory of traffic flow on long crowded roads[END_REF]63] for vehicular traffic. This leads to apply to the Hughes model the many particle approximation developed in [START_REF] Francesco | Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit[END_REF] for the LWR model; see also [19,[START_REF] Chien | Stationary wave profiles for nonlocal particle models of traffic flow on rough roads[END_REF][START_REF] Cristiani | On the micro-to-macro limit for first-order traffic flow models on networks[END_REF]36,[START_REF] Andreianov | On interface transmission conditions for conservation laws with discontinuous flux of general shape[END_REF][START_REF] Francesco | Convergence of the follow-the-leader scheme for scalar conservation laws with space dependent flux[END_REF][START_REF] Fagioli | Solutions to aggregation-diffusion equations with nonlinear mobility constructed via a deterministic particle approximation[END_REF]46,[START_REF] Goatin | A traffic flow model with non-smooth metric interaction: well-posedness and micro-macro limit[END_REF]64] for further possible applications. The main drawback of this strategy is that it doesn't preserve L 1 1 1 -time continuity for the limit. This may motivate a further attempt with the wave-front tracking method [35] and to apply Helly's theorem, which preserves L 1 1 1 -time continuity for the limit. At last, we recall that various numerical approaches can be found in the literature, e.g., [20,21,[START_REF] Camilli | A discrete Hughes model for pedestrian flow on graphs[END_REF][START_REF] Carlini | A semi-Lagrangian scheme for a modified version of the Hughes' model for pedestrian flow[END_REF][START_REF] Goatin | The wave-front tracking algorithm for Hughes' model of pedestrian motion[END_REF][START_REF] Huang | Revisiting Hughes' dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm[END_REF]58,[START_REF] Twarogowska | Macroscopic modeling and simulations of room evacuation[END_REF].

One of the main analytical features of the Hughes model is the possible development for the solution of nonclassical shocks [START_REF] Lefloch | Hyperbolic systems of conservation laws[END_REF]. These have a physical counterpart: pedestrians may switch direction during the evacuation of a bounded corridor C through its two exits placed at ∂C. In fact, pedestrians choose their direction of motion according to a weighted distance encoding the overall distribution of the crowd in C. So pedestrians choose their path towards the fastest exit, taking into account the distance from the two exits as well as avoiding densely crowded regions.

Both in [START_REF] Amadori | Existence results for Hughes' model for pedestrian flows[END_REF] and [38] the arise of non-classical shocks is prevented by requiring some sufficient conditions, which in turn result in considering initial data with sufficiently small total variation. On the contrary, in the present paper we assume that the initial datum has bounded but arbitrary total variation and we consider the possible arise of non-classical shocks [START_REF] Lefloch | Hyperbolic systems of conservation laws[END_REF]. Furthermore, differently from [START_REF] Amadori | Existence results for Hughes' model for pedestrian flows[END_REF]38], here we allow the density to attain the value ρ max .

The techniques exploited in the present paper closely resemble those in [38]. For this reason, it is worth mentioning the main differences. First, in the present case with a linear cost, the functional defined in [38, (9)] becomes trivial and, hence, useless. Second, differently from [38], we consider an approximate turning curve, rather than the exact turning curve, see (4.6) and (5.4). This allows us to prove that the evacuation time is bounded, whereas in [38] such bound is implicitly assumed. At last, differently from [38], we allow the solutions to have non-classical shocks and, consequently, we are forced to consider entropy conditions in the whole of R.

In Section 3 we give three existence results. A first existence result exploits a uniform bound for the turning curve, so that if the support of the initial datum is well separated from the origin, then no interaction occurs between the solution and the turning curve. The second one deals with symmetric initial data. This existence result has been already stated both in [START_REF] Amadori | Existence results for Hughes' model for pedestrian flows[END_REF] and [38]; here we give an alternative proof. Both these existence results are characterized by the absence of non-classical shocks. The main existence result is the last one, as it takes into account the possible arise of non-classical shocks. Moreover it allows to consider more general initial data in BV.

In this paper we concentrate to the case of a linear cost c(ρ) := 1 + αρ. The motivation stems from the physical meaning of its slope α 0. Indeed, α measures the importance given to avoid regions of high number of pedestrians. This allows us to reproduce different behaviours with the same model, by just letting vary the parameter α. In fact, taking α = 0 corresponds to a panic behaviour, when people violate the personal space to save their lives. On the other hand, as α > 0 grows, so does the importance devoted to keep with the same number of pedestrians the two groups corresponding to the two exits. As a possible application, we numerically study the evacuation time as a function of the parameter α, both at the microscopic and macroscopic levels. We observe, at least in the case under consideration, a unique minimum and a discontinuous graph. These aspects may deserve further investigations, starting from the development of a higher order numerical scheme.

The paper is organized as follows. In the next section we introduce the Hughes model. In Section 3 we collect the main results of the paper. In Section 4 we describe the many particle approximation together with its main properties. In Section 5 we give the proof of our main existence result stated in Theorem 3.3. In Section 6 we furnish two sufficient conditions to have a uniform bound for the total variation with respect to the space variable for the sequence of approximate densities. In Section 7 we present some numerical simulations and study the evacuation time as a function of the parameter α 0. Some concluding remarks and future prospects are collected in Section 8. In Appendix A we give further expressions of a functional used to bound the total variation with respect to the space variable of the sequence of approximate densities. At last, in Appendix B we further analyse the properties of the approximate turning curve.

The model

In this paper we consider the one-dimensional Hughes model [52,[START_REF] Hughes | The flow of human crowds[END_REF] for the evacuation of a bounded and crowded corridor, parametrized by x ∈ C := (-1,1), through two exits located at the edges of the corridor, i.e., at x = ±1. The model is given by the scalar conservation law with discontinuous flux coupled with the eikonal equation

ρ t -ρv(ρ) φ x |φ x | x = 0, |φ x | = c(ρ), x ∈ C, t > 0.
(2.1a) Here t 0 denotes the time, x ∈ C is the space variable, ρ = ρ(t,x) ∈ [0,ρ max ] gives the averaged crowd density, with ρ max > 0 being the maximal density. The map ρ → v(ρ) is the absolute value of the velocity, and is assumed to be decreasing, as higher velocities correspond to lower densities. The map ρ → c(ρ) is the running cost and is assumed to be increasing since densely crowded regions lead to an augmentation of travel time. Beside (2.1), we consider the homogeneous Dirichlet boundary conditions at the exits

ρ(t,-1) = ρ(t,1) = 0, φ(t,-1) = φ(t,1) = 0, t > 0, (2.1b) 
and initial condition

ρ(0,x) = ρ(x), x ∈ C. (2.1c)
Concerning the initial datum ρ, we assume that

ρ ∈ BV(C;[0,ρ max ]), L := ρ L 1 1 1 (C) > 0, R max := ρ L ∞ ∞ ∞ (C) ∈ (0,ρ max ]. (I)
Since ρ attains its values in [0,R max ], by a preliminary formal maximum principle proved in [44], we have that also the solution ρ attains its values in [0,R max ].

In general, the running cost function c and the velocity map v satisfy the following conditions:

c ∈ C 2 2 2 ([0,R max ];[1,∞)) is such that c(0) = 1 and c (ρ),c (ρ) ∈ [0,∞) for any ρ ∈ [0,R max ]. (C) v ∈ C 2 2 2 ([0,ρ max ];(0,v max ]) is such that v(0) := v max > 0, v (ρ) 0 and 2v (ρ) + ρv (ρ) < 0 for any ρ ∈ [0,ρ max ]. (V)
As already observed in [3,[START_REF] Amadori | Existence results for Hughes' model for pedestrian flows[END_REF]38,44], the one-dimensional Hughes model (2.1) can be reformulated as follows

ρ t + (sign(x -ξ(t))ρv(ρ)) x = 0, x ∈ C, t > 0, where x = ξ(t) ∈ [-1,1]
, t 0, is the so called turning curve and is implicitly defined by

¢ ξ(t) -1 c(ρ(t,y)) dy = ¢ 1 ξ(t)
c(ρ(t,y)) dy.

(2.2)

A typical choice for the cost function is

c(ρ) := 1/v(ρ), (2.3) 
see for instance [3, 4, 23-25, 27, 38-41, 44, 49, 52, 53, 58, 67]. Existence results on the resulting model (2.1), (2.3) are available under the assumption that the initial datum ρ has small total variation, see [START_REF] Amadori | Existence results for Hughes' model for pedestrian flows[END_REF][38][START_REF] Di Francesco | Follow-the-leader approximations of macroscopic models for vehicular and pedestrian flows[END_REF][START_REF] Di Francesco | A deterministic particle approximation for non-linear conservation laws[END_REF]. There the proofs rely on the property that non-classical shocks do not appear during the evacuation if the initial datum has sufficiently small total variation. In [44] the authors introduce the piecewise linear cost function

c(ρ) := 1 if ρ < ρ c , ρ/ρ c if ρ ρ c .
The main motivation is that it minimizes the evacuation time, at least in the case of high values of the initial density and in the setting of Riemann problems, that are Cauchy problems with piecewise constant initial data having at most one discontinuity.

In this paper we consider the cost function

c(ρ) := 1 + αρ, (2.4) 
where α 0 is a constant parameter of the model. In poor words, cost function (2.4) models the two main aspects that have to be taken into account in choosing the escaping direction during the evacuation of corridor C: the distance and the number of pedestrians between my position and the exit doors. The case α = 0 corresponds to taking into account only the distance from the exit doors; this is a typical behaviour in case of panic. On the other hand, higher values of α correspond to more importance given to the number of pedestrians. We prove an existence result for model (2.1), (2.4) without any assumption on the smallness for the total variation of the initial datum.

In particular, differently from the previous existence results [START_REF] Amadori | Existence results for Hughes' model for pedestrian flows[END_REF]38], here we account for the possible presence of non-classical shocks [START_REF] Lefloch | Hyperbolic systems of conservation laws[END_REF]. Our proof relies on a many particle approximation analogous to that considered in [38][START_REF] Di Francesco | Follow-the-leader approximations of macroscopic models for vehicular and pedestrian flows[END_REF][START_REF] Di Francesco | A deterministic particle approximation for non-linear conservation laws[END_REF].

Main results

We recall the following definition of entropy solution to (2.1) given in [4, Definition 1], originated from [44, Definition 2.1] and based on entropy conditions for conservation laws with discontinuous flux functions, see [START_REF] Andreianov | New approaches to describing admissibility of solutions of scalar conservation laws with discontinuous flux[END_REF] and the references therein. We first need to introduce

f (ρ) := ρv(ρ), Φ(t,x,ρ,κ) := sign(x -ξ(t)) sign(ρ -κ) (f (ρ) -f (κ)). Definition 3.1 (Entropy condition). A function (ρ,ξ) ∈ L 1 1 1 ([0,∞) × C;[0,ρ max ]) × Lip([0,∞);C
) is an entropy solution of the initial-boundary value problem (2.1) if it satisfies (2.2) almost everywhere and the entropy inequality

0 ¢ ∞ 0 ¢ C (|ρ -κ|ϕ t + Φ(t,x,ρ,κ)ϕ x ) dxdt + ¢ C |ρ(x) -κ|ϕ(0,x)dx (3.1a) + ¢ ∞ 0 f ρ(t,-1 + ) -f (κ) ϕ(t,-1)dt + ¢ ∞ 0 f ρ(t,1 -) -f (κ) ϕ(t,1)dt (3.1b) + 2 ¢ ∞ 0 f (κ)ϕ(t,ξ(t)) dt (3.1c)
holds for all κ ∈ [0,ρ max ] and all test function ϕ ∈ C ∞ c R 2 ;[0,∞) . First line (3.1a) originates from Kruzhkov definition [55] of entropy solution of a Cauchy problem. Line (3.1b) comes from the boundary condition introduced by Bardos et al. [START_REF] Amadori | The one-dimensional Hughes model for pedestrian flow: Riemann-type solutions[END_REF], see also [START_REF] Andreianov | Well-posedness of general boundary-value problems for scalar conservation laws[END_REF][START_REF] Carrillo | Conservation laws with discontinuous flux functions and boundary condition[END_REF][START_REF] Colombo | Well posedness of balance laws with boundary[END_REF]60]. Last line (3.1c) accounts for the discontinuity of the flux along the turning curve, see [START_REF] Adimurthi | Optimal entropy solutions for conservation laws with discontinuous flux-functions[END_REF][START_REF] Andreianov | Vanishing capillarity solutions of Buckley-Leverett equation with gravity in two-rocks' medium[END_REF]7,9,11,47,[START_REF] Karlsen | Convergence of the Lax-Friedrichs scheme and stability for conservation laws with a discontinous space-time dependent flux[END_REF][START_REF] Mishra | Convergence of upwind finite difference schemes for a scalar conservation law with indefinite discontinuities in the flux function[END_REF]62].

We stress that the genuine non-linearity of the flux guarantees the existence at the boundary points of the strong traces of the entropy solution, see [61,[START_REF] Vasseur | Strong traces for solutions of multidimensional scalar conservation laws[END_REF]. Moreover they have to satisfy

f ρ(t,-1 + ) f (κ) for all κ ∈ [0,ρ(t,-1 + )], f ρ(t,1 -) f (κ) for all κ ∈ [0,ρ(t,1 -)],
which in particular imply that

ρ(t,-1 + ) ρ c and ρ(t,1 -) ρ c ,
where ρ c ∈ (0,ρ max ) is such that f (ρ)(ρ c -ρ) > 0 for a.e. ρ ∈ [0,ρ max ].

We are now in the position to state our three existence results. Our first result deals with densities that are "well separated" from the origin. Let O be the space of functions ρ in L ∞ ∞ ∞ (C;[0,ρ max ]) satisfying (I) with L < 2/α and having support in

[-1,1] \ [-αL 2 , αL 2 
]. Theorem 3.1 (Existence for the well separated case). Consider the cost function (2.4) and assume (V). For any initial datum ρ in O, the sequence of approximate solutions (ρ n ,ξ n ) constructed in Sections 4 and 5.3 converges, up to a subsequence, strongly in L 1 1 1 to the unique entropy solution (ρ,ξ) to the initial-boundary value problem (2.1) in the sense of Definition 3.1, such that ρ(t,•) ∈ O for all t > 0.

As a second result, we provide the following theorem for the "symmetric" case. Let S be the space of functions ρ in L ∞ ∞ ∞ (C;[0,ρ max ]) satisfying (I) that are even, i.e., ρ(x) = ρ(-x) for a.e. x ∈ C. Theorem 3.2 (Existence for the symmetric case). Consider the cost function (2.4) and assume (V). For any initial datum ρ in S, the sequence of approximate solutions (ρ n ,ξ n ) constructed in Sections 4 and 5.3 converges, up to a subsequence, strongly in L 1 1 1 to the unique entropy solution (ρ,ξ) to the initial-boundary value problem (2.1) in the sense of Definition 3.1, such that ρ(t,•) ∈ S for all t > 0.

Both the above existence results follow from the standard result proved in [START_REF] Francesco | Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit[END_REF] by simply proceeding as in [38]. Indeed, we will show that by their hypotheses no particle changes direction, that is, no particle interacts with the approximate turning curve ζ n , implicitly defined below by (4.6), and therefore we are in the framework of wellseparated entropy solutions studied in [START_REF] Amadori | Existence results for Hughes' model for pedestrian flows[END_REF]38]. More precisely, with reference to Theorem 3.1, in Lemma 4.1 we will show that the approximate turning point

ζ n takes values in C ∩ [-αL 2 , αL 2 
]; as a consequence, if no particle is initially in such interval, then the approximate turning curve cannot reach any of them. Moreover, in Proposition 4.1 we will prove that if a particle changes direction, then exactly one particle leaves C; however, in the symmetric case this cannot occur and therefore Theorem 3.2 easily follows.

Differently from the previous existence results, in the next theorem we allow the entropy solution to possibly develop non-classical shocks, which is the main feature of the Hughes model; the proof is more involving and is therefore deferred to Section 5. Theorem 3.3 (Existence for the BV case). Consider the cost function (2.4) and assume (V). Let ρ be an initial datum satisfying (I), and let (ρ n ,ξ n ) be the corresponding sequence of approximate solutions constructed in Sections 4 and 5.3. Suppose that there exists TV > 0 such that for any t 0 and n ∈ N we have TV(ρ n (t,•)) TV.

(3.2)

Then, the sequence of approximate solutions {(ρ n ,ξ n )} n∈N converges, up to a subsequence, strongly in L 1 1 1 to an entropy solution (ρ,ξ)

∈ L 1 1 1 ([0,∞) × C;[0,ρ max ]) × Lip([0,∞);[-1,1]
) to the initial-boundary value problem (2.1) in the sense of Definition 3.1.

In Section 6 we will furnish two sufficient conditions for (3.2), see (6.6) and (6.12).

Many particle approximation

For simplicity, below we denote a,b := [a,b] ∩ Z. Consider the convex hull of the support of ρ

[x min ,x max ] = Conv(supp(ρ)) ⊆ [-1,1].
We extend ρ by zero outside C and, with a slight abuse of notation, we denote it by ρ. Fix n ∈ N sufficiently large. We split the interval [x min ,x max ] into n sub-intervals having equal mass := L/n. To perform this task, we set x 0 := x min and define recursively

x i := sup x > x i-1 : ¢ x xi-1 ρ(x)dx , i ∈ 1,n . (4.1) 
Notice that by definition

x n = x max , x i-1 < x i , ¢ xi xi-1 ρ(x)dx = , i ∈ 1,n . (4.2)
The time evolution of particle system x 0 (t),...,x n (t) is described by the follow-the-leader system

       ẋi (t) = -v R i-1 2 (t) if x i (t) < ζ n (t), i ∈ 0,n , ẋi (t) = v R i+ 1 2 (t) if x i (t) ζ n (t), i ∈ 0,n , x i (0) = x i , i ∈ 0,n . (4.3) 
Here and after

R i+ 1 2 (t) := x i+1 (t) -x i (t) , i ∈ -1,n , (4.4) 
where

x -1 (t) := -∞, x n+1 (t) := ∞. (4.5) 
Notice that by (4.4) and (4.5) we have R -1 2 = 0 and

R n+ 1 2 = 0, therefore v(R -1 2 ) = v max and v(R n+ 1 2 ) = v max . Moreover, the approximate turning point ζ n (t) ∈ R is implicitly uniquely determined by Z -(t,ζ n (t)) = Z + (t,ζ n (t)), (4.6) 
where

Z ± : [0,+∞) × R → R are defined by Z -(t,x) :=      x + 1 + α ¢ x x I -(t) ρ n (t,y)dy if ∃I -∈ 0,n such that x I--1 (t) -1 < x I-(t) < x,
x + 1 otherwise, (4.7)

Z + (t,x) :=      1 -x + α ¢ x I + (t) x ρ n (t,y)dy if ∃I + ∈ 0,n such that x < x I+ (t) < 1 x I++1 (t), 1 -x otherwise, (4.8) 
with ρ n : (0,∞) × R → [0,ρ max ] being the approximate density defined by

ρ n (t,y) := n-1 i=0 R i+ 1 2 (t)1 [xi(t),xi+1(t)) (y). (4.9)
Notice that by (4.4) and (4.9) we have ¢ R ρ n (t,y)dy = L, t 0.

We underline that ζ n (t) is well defined by the monotonicity of Z -(t,•) and Z + (t,•). We stress that in general it may happen that condition x 0 (t) < ζ n (t) x n (t) is not satisfied, as the following example proves. Example 4.1. In the case α = 0, we have that

ζ n ≡ 0. If [x min ,x max ] ⊂ [-1,0) ∪ (0,1], then condition x 0 (t) < ζ n (t)
x n (t) is not satisfied for any time t 0.

Example 4.1 shows that the case α = 0 is trivial. For this reason, below we assume that α > 0.

In this case the functions Z -and Z + can be represented as in Fig. 4.1. Notice that Z -is a piecewise linear strictly increasing map, and Z + is a piecewise linear strictly decreasing map. Moreover, it results

Z -(t,-1) = 0, Z -(t,1) ∈ [2,2 + αM (t)], ∂ x Z -(t,x) 1, Z + (t,-1) ∈ [2,2 + αM (t)], Z + (t,1) = 0, ∂ x Z + (t,x) -1,
where

M (t) := ¢ 1 -1
ρ n (t,y)dy is the total mass in C at time t 0. The above considerations imply that

x + 1 Z -(t,x) x + 1 + αM (t), -x + 1 Z + (t,x) -x + 1 + αM (t).
Observe that by definition M (0) = L.

-αM

2 αM 2 Z - Z + Z x -1 1 2 + L 2 + L 2 2 L L ρ x x I--1 x I- x I+ x I++1 x I0 x I0+1 ζ n Fig. 4.1. Representations of Z ± and ζ n in the case L := α(I + -I -+ 1) < 2 and x I --1 < -1 < x I -< ... < x I + < 1 < x I + +1
. For convenience we omit the dependence on t. Notice that, at least in the case under consideration, the value at x i of Z -(resp., Z + ) corresponds to the intersection of the vertical line x = x i and the line Z = x + 1 + α(i -I -) (resp., Z = -x + 1 + α(I + -i) ). At last, the graphs of Z ± on the whole of C are then obtained by interpolating such points.

For ease of notation, in the following proofs we will drop the time and the n dependencies whenever it is clear from the context and write, for instance, ζ in place of ζ n (t).

As a consequence of the next lemma we have that the approximate turning curve takes values in C. Lemma 4.1. For any t 0 we have that

ζ n (t) ∈ C ∩ - α 2 M (t), α 2 M (t) ⊆ C ∩ - α 2 L, α 2 L .
Proof.

Step I Assume by contradiction that ζ -1. Then by condition (4.6) and definitions (4.7), (4.8) we have

0 Z -(t,ζ) = Z + (t,ζ) 2,
but this gives a contradiction. The case ζ 1 is analogous and is therefore omitted.

Step II We claim that:

• If ζ(t) < 0, then in the interval (-1,ζ(t)) there is at least one particle.

• If ζ(t) > 0, then in the interval (ζ(t),1) there is at least one particle. We prove the first claim; the second follows then from the symmetry of the model. If by contradiction no particle is in C at time t, then by (4.6) we have ζ(t) = 0 and this contradicts the hypothesis ζ(t) < 0. Furthermore, if by contradiction there exists I -∈ 0,n such that

x I--1 (t) -1 < ζ(t) x I-(t) x I+ (t) < 1 x I++1 (t),
then by (4.6) we have

0 > 2ζ(t) = α ¢ x I + (t) ζ(t)
ρ(t,y)dy 0 and this gives a contradiction.

Step III We prove now that

ζ(t) ∈ - α 2 M (t), α 2 M (t) .
If ζ(t) > 0, then by Step II, (4.7), (4.8) and (4.6) we have

ζ(t) α 2 
¢ x I + (t) ζ(t) ρ(t,y)dy α 2 M (t).
The case ζ(t) < 0 is analogous and the case ζ(t) = 0 is trivial.

Step IV At last, we conclude the proof by observing that M (t) L. This concludes the proof.

Next lemma highlights how the parameter α > 0 impacts on the approximate turning point ζ n . Lemma 4.2. Fix t 0. Assume that in each of the intervals (-1,ζ n (t)] and [ζ n (t),1) there is at least one particle, namely, that there exist I -,I + ∈ 0,n such that

x I--1 (t) -1 < x I-(t) ζ n (t) x I+ (t) < 1 x I++1 (t).
Then ζ n belongs to the closed interval between 0 and 1 2 (x I - m + x I + m ), where

I - m := I + + I - 2 , I + m := I + + I - 2 .
More precisely, ζ n is closer to 0 for lower values of α, whereas it is closer to 1 2 (x I - m + x I + m ) for higher values of α. Proof. By (4.6) we have

ζ(t) + α ¢ ζ(t) x I -(t) ρ n (t,y)dy = α 2 ¢ x I + (t) x I -(t) ρ n (t,y)dy = α 2 (I + -I -). ( 4 

.10)

By taking α = 0, from (4.10) we deduce that ζ ≡ 0. By letting α go to infinity in (4.10), we obtain

¢ ζ(t) x I -(t)
ρ n (t,y)dy =

¢ x I + (t) ζ(t)
ρ n (t,y)dy = 1 2

¢ x I + (t) x I -(t)
ρ n (t,y)dy,

or equivalently ζ ≡ 1 2 (x I - m + x I + m ).
It is now clear that if α ∈ (0,∞), then ζ belongs to the interval between 0 and

1 2 (x I - m + x I + m ). System (4.
3) admits a global solution; this comes from the following lemma.

Lemma 4.3 (Discrete maximum principle). Assume (V) and (C). For any i ∈ 0,n -1 , it holds that

R max x i+1 (t) -x i (t) 2(v max t + 1), t 0. (4.11)
Proof. The upper bound follows from the estimate

x i+1 (t) -x i (t) (v max t + 1) -(-v max t -1) = 2(v max t + 1).
We prove now the lower bound. If no particle changes direction, then it is sufficient to apply [42, Lemma 1]. Assume now that direction changes occur. Let t 1 ,t 2 ,... be the times at which a particle changes direction with 0 < t h < t h+1 and define t 0 := 0. By a continuity argument, it is sufficient to prove that (4.11) holds true in each time interval (t h ,t h+1 ) under the assumption that it is satisfied at time t = t h . Extend v by zero in (ρ max ,+∞) and, with a slight abuse of notation, denote it by v.

For any i ∈ 0,n -1 , the estimate (4.11) holds at time t = 0 because by (I) and ( 4.2) we have

= ¢ xi+1 xi ρ(x)dx (x i+1 -x i )R max . (4.12) Fix t ∈ (t h ,t h+1 ) and consider I 0 ∈ -1,n such that x I0 (s) < ζ(s) x I0+1 (s), s ∈ (t h ,t h+1 ). (4.13)
Notice that if I 0 = -1 (resp., I 0 = n), then all the particles are on the right (resp., left) of the approximate turning curve. We prove now (4.11) by a recursive argument on i ∈ 0,n -1 . We consider separately the particles in

(-∞,ζ) from those in [ζ,∞).
G.1) Assume that there exists at least a particle on the left of the approximate turning curve during the time interval (t h ,t h+1 ), that is I 0 0. The leftmost particle x 0 is moving backward with velocity -v max . In general, we do not know whether I 0 = 0 or I 0 1. However, in both the cases, estimate (4.11) holds true with i = 0 because

x 1 (t) -x 0 (t) = x 1 (t h ) -x 0 (t h ) + ¢ t t h (v max + ẋ1 (s)) ds x 1 (t h ) -x 0 (t h ) R max .
If I 0 = 0, then we apply the arguments given below in 2 to the remaining particles x 1 ,...,x n . On the other hand, if I 0 1, then also the particles x 1 ,...,x I0 are on the left of the approximate turning curve and we can apply the following recursive argument. Assume that (4.11) holds true for an i belonging to 0,I 0 -2 and assume by contradiction the existence of a time t * ∈ (t h ,t h+1 ) such that

x i+2 (t * ) -x i+1 (t * ) < /R max .
Since g(t) := x i+2 (t) -x i+1 (t) is a continuous function satisfying g(t h ) /R max and g(t * ) < /R max , we have that

t c := max{τ ∈ [t h ,t * ) : g(τ ) = /R max } is well defined, g(t c ) = /R max and g < /R max in (t c ,t * ]
. Now, since v is strictly decreasing and by hypothesis (4.11) holds true for i, for any t ∈ (t c ,t * ] we have

x i+2 (t) -x i+1 (t) = x i+2 (t c ) -x i+1 (t c ) - ¢ t tc v x i+2 (s) -x i+1 (s) -v x i+1 (s) -x i (s) ds R max
and this gives a contradiction. G.2) Assume that there exists at least a particle on the right of the approximate turning curve during the time interval (t h ,t h+1 ), that is I 0 n -1. For sure the rightmost particle x n is moving forward with velocity v max .

In general, we do not know whether I 0 n -2 or I 0 = n -1. However, in both the cases, estimate (4.11) holds true with i = n -1 because

x n (t) -x n-1 (t) = x n (t h ) -x n-1 (t h ) + ¢ t t h (v max -ẋn-1 (s)) ds x n (t h ) -x n-1 (t h ) R max .
If I 0 = n -1, then we apply the arguments given in 1 to the remaining particles x 0 ,...,x n-1 . On the other hand, if I 0 n -2, then also the particles x I0+1 ,...,x n-1 are on the right of the approximate turning curve and we can apply the following recursive argument. Assume that (4.11) holds true for an i belonging to I 0 + 2,n -1 and assume by contradiction the existence of a time t * ∈ (t h ,t h+1 ) such that

x i (t * ) -x i-1 (t * ) < /R max .
By a continuity argument analogous to that given in 1, we can show the existence of t c ∈ [t h ,t * ) such that

x i (t c ) -x i-1 (t c ) = /R max and x i (s) -x i-1 (s) < /R max , s ∈ (t c ,t * ].
Now, since v is strictly decreasing and by hypothesis (4.11) holds true for i, we have that

x i (t) -x i-1 (t) = x i (t c ) -x i-1 (t c ) + ¢ t tc v x i+1 (s) -x i (s) -v x i (s) -x i-1 (s) ds R max
and this gives a contradiction. The last step to complete the proof is to show that if there exists I 0 ∈ 0,n -1 such that (4.13) holds true, then (4.11) holds true for i = I 0 . To do so it is sufficient to observe that

x I0+1 (t) -x I0 (t) = x I0+1 (t h ) -x I0 (t h ) + ¢ t t h v x I0+2 (s) -x I0+1 (s) + v x I0 (s) -x I0-1 (s) ds R max
because by assumption (4.11) holds true at time t = t h .

Z -(t - h ,•) Z -(t + h ,•) Z + (t h ,•) Z x -1 1 ρ x x I--1 x I- x I+ x I++1 ζ n (t - h )ζ n (t + h ) Fig. 4.2. Representations of Z ± (t ± h ,•) and ζ n (t ± h
) in the case the particle x I -crosses x = -1 at time t h and no particle changes direction.

In the following proposition we collect some basic properties related to particles exiting or switching directions. Its proof comes directly from some geometrical considerations on the graphs of Z -and Z + . However, in Appendix B we give also an analytical proof, which highlights some analytical aspects of the model. Proposition 4.1. We have the following:

(1) The approximate turning curve has a discontinuity jump if and only if a single particle leaves C. More precisely, if a single particle leaves C crossing x = -1 (resp., x = 1), then the approximate turning curve has a positive (resp., negative) discontinuity jump.

(2) If a single particle leaves C, then at most one particle changes direction. More precisely, if a single particle leaves C crossing x = -1 (resp., x = 1) and a particle changes direction, then it changes from positive to negative (resp., from negative to positive).

Proof. It is clear that the approximate turning curve is continuous as long as no particle leaves C, see (4.6), (4.7), (4.8) and (4.9). On the other hand, if a single particle leaves C crossing, for instance, x = -1 at time t h , then

Z -(t + h ,x) = max{Z -(t - h ,x) -α ,x + 1} < Z -(t - h ,x), Z + (t + h ,x) = Z + (t - h ,x).
As a consequence the approximate turning curve has a positive discontinuity jump, see Fig. 

Z -(t - h ,•) Z -(t + h ,•) Z + (t h ,•) x I0-1 x I0-1 x I0 x I0+1 x I0+1 ζ n (t - h )ζ n (t + h ) L U x + 1 + α(I 0 -I -) x + 1 + α(I 0 -1 -I -) -x + 1 + α(I + -I 0 ) x Fig. 4.3. Representations of Z ± (t ± h ,•) and ζ n (t ± h )
in the case at time t h the particle x I -crosses x = -1, the particle x I + does not cross x = 1 and the particle x I 0 changes direction from positive to negative. Above we denoted L := α

I + +I - 2
-I 0 and

U := α I + +I - 2 -I 0 + 1 2 .
From Fig. 4.3 we deduce that the particle x I0 changes direction from positive to negative at time t h if and only if

Z + t - h ,x I0 (t h ) = Z + t + h ,x I0 (t h ) , Z -t + h ,x I0 (t h ) = Z -t - h ,x I0 (t h ) -α , Z -t - h ,x I0 (t h ) Z + t - h ,x I0 (t h ) > Z -t + h ,x I0 (t h ) . (4.14)
We stress that the first two conditions in (4.14) mean that at time t h no particle crosses x = 1 and a particle crosses x = -1, respectively. By Proposition 4.1 we have that all the particles leave the corridor in a finite time. Indeed, the only possibility to have an infinite evacuation time is that at least one particle changes direction infinitely many times. However, each time a particle changes direction, exactly one particle leaves the corridor and this happens at most n + 1 times. Recall that by Lemma 4.1 no particle changes direction once it leaves C. Therefore, the following upper bound for the evacuation time T evac = T evac (ρ;α,n) heuristically follows:

T evac 2ρ max /f max + 1,
where

f max := f (ρ c ) = maxf . Remark 4.1.
Let us underline that, in the previous literature on the Hughes model, the evacuation time has always been tacitly assumed to be finite. On the contrary, in the present paper, such property naturally follows from the chosen many particle approximation. In this respect, we stress that the introduction of the approximate turning curve ζ n , implicitly defined in (4.6), plays a key role. This motivates our choice to deal with the approximate turning curve ζ n , rather than the (exact) turning curve ξ n implicitly defined by (2.2).

Proof of Theorem 3.3

In this section we prove Theorem 3.3. As a first step, we obtain a uniform time continuity estimate for ρ n with respect to the 1-Wasserstein distance, see Proposition 5.1 in Section 5.1. This estimate guarantees the strong L 1 1 1 -compactness with respect to both space and time by exploiting a generalized version of Aubin-Lions lemma, see Theorem 5.1 in Section 5.2. The compactness of the approximate turning curve ζ n is proved in Section 5.3 by applying Arzelà-Ascoli theorem. At last, we complete the proof of Theorem 3.3 in Section 5.4 by showing that the limit ρ of a converging subsequence of ρ n is a weak solution and then that it is actually an entropy solution of the initial-boundary value problem (2.1).

We first introduce some notations, see Fig. 5.1. Let t 1 ,t 2 ,... be the strictly positive times at which a particle changes direction with 0 < t h < t h+1 and define t 0 := 0. By (4.4) we have

Ṙi+ 1 2 (t) = -R i+ 1 2 (t) ẋi+1 (t) -ẋi (t) x i+1 (t) -x i (t) = -R i+ 1 2 (t) 2 ẋi+1 (t) -ẋi (t) , t ∈ (t h ,t h+1 ), i ∈ 0,n -1 . (5.1)
Moreover, there exists an index I 0 = I h 0 such that

x I0 (t) < ζ n (t) x I0+1 (t), t ∈ (t h ,t h+1 ).
Notice that for any t ∈ (t h ,t h+1 ) we have

Ṙi+ 1 2 (t) = d dt v R i+ 1 2 (t) v R i+ 1 2 (t) =      -ẍ i+1 (t) v R i+ 1 2 (t) if i ∈ 0,I 0 -1 , ẍi (t) v R i+ 1 2 (t) if i ∈ I 0 + 1,n -1 . t h t h+1 t h-1 x I h 0 -2 x I h 0 -2 x I h 0 -1 x I h 0 -1 ζ n (t + h-1 ) ζ n (t - h ) ζ n (t + h ) ζ n (t - h+1 ) x I h 0 x I h 0 x I h 0 +1 x I h 0 +1 R I h 0 -5 2 R I h 0 -3 2 R I h 0 -1 2 R I h 0 + 1 2 R I h 0 + 1 2 R I h 0 + 3 2 R I h 0 -5 2 R I h 0 -3 2 R I h 0 -1 2 R I h 0 -1 2 R I h 0 + 1 2 R I h 0 + 3 2 Fig. 5.1.
Above, for convenience, the paths of both the particles and the turning curve are represented by just straight lines. Notice that, at least in the case under consideration,

I h-1 0 = I h 0 -1.

Time continuity.

We prove now a uniform Lipschitz estimate with respect to time in the 1-Wasserstein distance. We set

M L := {µ Radon measure on R with compact support : µ 0, µ(R) = L}.
The pseudo-inverse distribution function associated to µ ∈ M L is

X µ (z) := inf {x ∈ R : µ((-∞,x]) > z}, z ∈ [0,L].
The (rescaled) 1-Wasserstein distance between µ,ν ∈ M L is defined as the L 1 1 1 -distance of X µ and X ν , that is

W 1 (µ,ν) := X µ -X ν L 1 1 1 ([0,L];R) . (5.2) 
It is easily seen from (4.9) that ρ n (t,•) ∈ M L for all t 0 and

X ρ n (t,•) (z) = x i (t) + (z -i )R i+ 1 2 (t) -1 , z ∈ (i ,(i + 1) ), i ∈ 0,n -1 .
(5.3) Proposition 5.1. For any n ∈ N we have that

W 1 (ρ n (t,•),ρ n (s,•)) 2Lv max |t -s|, t,s > 0.
Proof. Fix s,t > 0 with s < t. From (5.2) and (5.3) it follows that

W 1 (ρ n (t,•),ρ n (s,•)) = n-1 i=0 ¢ (i+1) i x i (t) -x i (s) + (z -i ) R i+ 1 2 (t) -1 -R i+ 1 2 (s) -1 dz A(s,t) + B(s,t), with A(s,t) := n-1 i=0 ¢ (i+1) i |x i (t) -x i (s)|dz, B(s,t) := n-1 i=0 ¢ (i+1) i (z -i ) R i+ 1 2 (t) -1 -R i+ 1 2 (s) -1 dz.
We estimate now A(s,t) and B(s,t). Starting from A(s,t), we have

|x i (t) -x i (s)| v max (t -s)
and therefore

A(s,t) n-1 i=0 v max (t -s) Lv max (t -s).
Turning to B(s,t), we have

R i+ 1 2 (t) -1 -R i+ 1 2 (s) -1 = x i+1 (t) -x i+1 (s) - x i (t) -x i (s) 2v max (t -s)
and therefore

B(s,t) 2v max (t -s) n-1 i=0 ¢ (i+1) i (z -i )dz = v max (t -s) n-1 i=0 = Lv max (t -s).
Adding gives W 1 (ρ n (t,•),ρ n (s,•)) 2Lv max (t -s) and this concludes the proof.

Compactness for the approximate density.

We deduce from the following generalized version of Aubin-Lions lemma, see [START_REF] Andreianov | On interface transmission conditions for conservation laws with discontinuous flux of general shape[END_REF][START_REF] Francesco | Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit[END_REF][START_REF] Rossi | Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces[END_REF], the L 1 1 1 loc -compactness of the approximations {ρ n } n∈N . Theorem 5.1. Take T,L > 0 and a bounded open interval I ⊂ R, possibly depending on T . Let

{µ n } n∈N be a sequence in L ∞ ∞ ∞ (0,T );L 1 1 1 (R) such that µ n (t,•) L 1 1 1 (R) = L for all n ∈ N and t ∈ [0,T ]. Assume that: (A) supp{µ n (t,•)} ⊆ I for all n ∈ N and t ∈ [0,T ]. (B) sup n∈N ¢ T 0 µ n (t,•) L 1 1 1 (I) + TV(µ n (t,•);I) dt < ∞. (C) There exists a constant c independent on n such that W 1 (µ n (t,•),µ n (s,•)) c|t -s| for all s,t ∈ (0,T ). Then {µ n } n∈N is strongly relatively compact in L 1 1 1 ([0,T ] × R).
Indeed, for any fixed T > 0, condition (A) is satisfied because

supp{ρ n (t,•)} ⊆ I := [-1 -v max T,1 + v max T ]
for all n ∈ N and t ∈ [0,T ]. Condition (B) holds true by (3.2) and because by construction ρ n (t,•) L 1 1 1 (R) = L. At last, condition (C) holds true by Proposition 5.1. As a result, from Theorem 5.1 follows that {ρ n } n∈N converges (up to a subsequence) almost everywhere and in

L 1 1 1 on [0,T ] × R to a certain function ρ ∈ L 1 1 1 loc [0,∞);L 1 1 1 (C;[0,ρ max ]
) . Finally, we have convergence in L 1 1 1 on [0,∞) × C because the evacuation time is bounded.

Compactness for the turning curve.

Let x = ξ(t) be the turning curve corresponding to ρ and implicitly defined by (2.2). We want to prove that ζ n implicitly defined by (4.6) converges to ξ. In poor words, to do so we first introduce the turning curve x = ξ n (t) corresponding to ρ n and implicitly defined by (2.2) with ρ replaced by ρ n . Then we prove that ξ n -ζ n converges to zero and that ξ n converges (up to a subsequence) to ξ.

By (2.2) we have that ξ n (t) is implicitly defined by

Ξ -(t,ξ n (t)) = Ξ + (t,ξ n (t)), (5.4) 
where

Ξ ± : [0,+∞) × R → R are defined by Ξ -(t,x) :=    ¢ x -1 c(ρ n (t,y)) dy = x + 1 + α ¢ x -1 ρ n (t,y)dy if x -1, x + 1 otherwise, Ξ + (t,x) :=    ¢ 1 x c(ρ n (t,y)) dy = 1 -x + α ¢ 1 x ρ n (t,y)dy if x 1, 1 -x otherwise.
(5.5)

We underline that ξ n (t) is well defined by the monotonicity of Ξ -(t,•) and Ξ + (t,•). In the next three lemmas we prove further properties of ξ n , that will be exploited in the following Proposition 5.2 to get compactness for ξ n . Lemma 5.1. ξ n (t) ∈ C for all t 0.

Proof. As in Step I of the proof of Lemma 4.1, assume by contradiction that ξ n (t) -1. Then by condition (5.4) and definitions in (5.5) we have 0 Ξ -(t,ξ n (t)) = Ξ + (t,ξ n (t)) 2 and this gives a contradiction. Analogously, we can show that ξ n < 1; hence ξ n (t) ∈ C. Lemma 5.2. ξ n is C 0 0 0 in [0,+∞).

Proof. Fix t > 0 and let s > 0 be sufficiently close to t. For simplicity in the exposition, assume that ξ n (t) < ξ n (s), otherwise we have to consider ξ n (t) ∨ ξ n (s) and ξ n (t) ∧ ξ n (s) in the extremes of the integrals in the equation below. By Lemma 5.1, (5.4) and (5.5) we have that

ξ n (s) -ξ n (t) = α 2 ¢ 1 ξ n (s) ρ n (s,y)dy - ¢ ξ n (s) -1 ρ n (s,y)dy - ¢ 1 ξ n (t)
ρ n (t,y)dy +

¢ ξ n (t) -1 ρ n (t,y)dy = α 2 ¢ 1 ξ n (s) (ρ n (s,y) -ρ n (t,y)) dy - ¢ ξ n (t) -1 (ρ n (s,y) -ρ n (t,y)) dy - ¢ ξ n (s) ξ n (t) (ρ n (s,y) + ρ n (t,y)) dy α 2 ¢ R |ρ n (s,y) -ρ n (t,y)| dy. (5.6)
The last step is to prove that the above last integral converges to zero as s goes to t. This follows from (4.9) and the continuity of x i and R i+ 1 2 . To make this point clear, let us assume that s > t, the other case is analogous. Then it is sufficient to observe that

¢ R |ρ n (s,y) -ρ n (t,y)| dy = I0 i=0 (x i (t) -x i (s)) R i+ 1 2 (s) -R i-1 2 (t) + n i=I0+1 (x i (s) -x i (t)) R i-1 2 (s) -R i+ 1 2 (t) + I0 i=1 (x i (s) -x i-1 (t)) R i-1 2 (t) -R i-1 2 (s) + n-1 i=I0+1 (x i+1 (t) -x i (s)) R i+ 1 2 (t) -R i+ 1 2 (s) + (x I0+1 (t) -x I0 (t)) R I0+ 1 2 (t) -R I0+ 1 2 (s) , (5.7) 
where I 0 is the index such that x I0 < ζ n < x I0+1 in (t h ,t h+1 ), see Fig. 5.1.

In the next lemma we improve the result obtained in the previous lemma and show that {ξ n } n∈N is actually uniformly equicontinuous in [0,+∞). Lemma 5.3. {ξ n } n∈N is uniformly Lipschitz continuous in [0,+∞).

Proof. As in the proof of the previous lemma, we fix t > 0, consider s > t sufficiently small and assume that ξ n (t) < ξ n (s). By (5.7) and the triangular inequality we get

¢ R |ρ n (s,y) -ρ n (t,y)| dy I0 i=0 (x i (t) -x i (s)) R i+ 1 2 (s) -R i+ 1 2 (t) + I0 i=0 (x i (t) -x i (s)) R i+ 1 2 (t) -R i-1 2 (t) + n i=I0+1 (x i (s) -x i (t)) R i-1 2 (s) -R i-1 2 (t) + n i=I0+1 (x i (s) -x i (t)) R i-1 2 (t) -R i+ 1 2 (t) + I0 i=1 (x i (s) -x i-1 (t)) R i-1 2 (t) -R i-1 2 (s) + n-1 i=I0+1 (x i+1 (t) -x i (s)) R i+ 1 2 (t) -R i+ 1 2 (s) + (x I0+1 (t) -x I0 (t)) R I0+ 1 2 (t) -R I0+ 1 2 (s) = I0-1 i=0 (x i (t) -x i (s)) R i+ 1 2 (s) -R i+ 1 2 (t) + (x I0 (t) -x I0 (s)) R I0+ 1 2 (s) -R I0+ 1 2 (t) + I0 i=0 (x i (t) -x i (s)) R i+ 1 2 (t) -R i-1 2 (t) + n-1 i=I0+1 (x i+1 (s) -x i+1 (t)) R i+ 1 2 (s) -R i+ 1 2 (t) + (x I0+1 (s) -x I0+1 (t)) R I0+ 1 2 (s) -R I0+ 1 2 (t) + n i=I0+1 (x i (s) -x i (t)) R i-1 2 (t) -R i+ 1 2 (t) + I0-1 i=0 (x i+1 (s) -x i (t)) R i+ 1 2 (t) -R i+ 1 2 (s) + n-1 i=I0+1 (x i+1 (t) -x i (s)) R i+ 1 2 (t) -R i+ 1 2 (s) + (x I0+1 (t) -x I0 (t)) R I0+ 1 2 (t) -R I0+ 1 2 (s) = n-1 i=0 (x i+1 (s) -x i (s)) R i+ 1 2 (s) -R i+ 1 2 (t) + I0 i=0 (x i (t) -x i (s)) R i+ 1 2 (t) -R i-1 2 (t) + n i=I0+1 (x i (s) -x i (t)) R i-1 2 (t) -R i+ 1 2 (t) = n-1 i=0 (x i+1 (s) -x i (s)) R i+ 1 2 (s) -R i+ 1 2 (t) + n i=0 |x i (t) -x i (s)| R i+ 1 2 (t) -R i-1 2 (t) .
We study separately the above last two sums.

• By (5.1) and the mean value theorem, there exist

τ i ∈ [t,s] such that (x i+1 (s) -x i (s)) R i+ 1 2 (s) -R i+ 1 2 (t) = (x i+1 (s) -x i (s)) Ṙi+ 1 2 (τ i )(s -t) = - R i+ 1 2 (τ i ) 2 R i+ 1 2 (s) ( ẋi+1 (τ i ) -ẋi (τ i )) (s -t).
By the continuity of R i+ 1 2 we have that

lim s→t R i+ 1 2 (τ i ) 2 R i+ 1 2 (s) = R i+ 1 2 (t)
and therefore there exists δ i > 0 sufficiently small such that for any s ∈ (t,t + δ i ) we have

R i+ 1 2 (τ i ) 2 R i+ 1 2 (s) 2R max .
As a consequence, if |t -s| < δ i , then by (4.3), the Lipschitzianity of v and (3.2) we have

n-1 i=0 (x i+1 (s) -x i (s)) R i+ 1 2 (s) -R i+ 1 2 (t) 2R max (s -t) n-1 i=0 | ẋi+1 (τ i ) -ẋi (τ i )| = 2R max (s -t) I0-1 i=0 v R i+ 1 2 (τ i ) -v R i-1 2 (τ i ) + v R I0+ 3 2 (τ I0 ) + v R I0-1 2 (τ I0 ) + n-1 i=I0+1 v R i+ 3 2 (τ i ) -v R i+ 1 2 (τ i ) 2R max (s -t) L v sup τ ∈(t,s) TV(ρ n (τ,•)) + 2v max 2R max (L v TV + 2v max ) (s -t),
where L v > 0 is the Lipschitz constant of v. • By (4.3) and (3.2) we have

n i=0 |x i (t) -x i (s)| R i+ 1 2 (t) -R i-1 2 (t) v max (s -t) n i=0 R i+ 1 2 (t) -R i-1 2 (t) v max TV(s -t).
In conclusion we proved that

¢ R |ρ n (s,y) -ρ n (t,y)| dy (2R max (L v TV + 2v max ) + v max TV) (s -t).
Thus by (5.6) we get

ξ n (s) -ξ n (t) α 2 (2R max (L v TV + 2v max ) + v max TV) (s -t)
and this concludes the proof. Proposition 5.2. We have that {ξ n } n∈N admits a subsequence which converges in

L 1 1 1 ([0,∞);[-1,1]) to a function ξ ∈ Lip([0,∞);[-1,1]).
Proof. For any fixed T > 0, by Lemmas 5.1 and 5.3 we can apply Arzelà-Ascoli theorem and get that {ξ n } n∈N admits a subsequence which converges uniformly in [0,T ] to a function ξ ∈ Lip([0,T ];[-1,1]) with Lipschitz constant

L ξ = α 2 (2R max (L v TV + 2v max ) + v max TV),
that does not depend on T . Hence, by a diagonal procedure, we obtain ξ ∈ Lip([0,∞);[-1,1]), which results to be the limit in

L 1 1 1 loc ([0,∞);[-1,1]
) of a subsequence of {ξ n } n∈N . At last, we have convergence in L 1 1 1 on [0,∞) because after the evacuation time we have ξ ≡ 0.

With a slight abuse of notation, we denote the subsequence of {ξ n } n∈N converging to ξ again by {ξ n } n∈N . In the next proposition we prove that also

{ζ n } n∈N converges to ξ in L 1 1 1 ([0,∞);[-1,1]). Proposition 5.3. {ζ n } n∈N converges (up to a subsequence) to ξ in L 1 1 1 ([0,∞);[-1,1]).
Proof. In view of Proposition 5.2, it is sufficient to observe that by (4.6) and (5.4) we have

|ξ n (t) -ζ n (t)| = α 2 ¢ 1 x I + (t)
ρ n (t,y)dy -

¢ x I -(t) -1 ρ n (t,y)dy α 2 ,
and therefore ξ n -ζ n converges to zero in L ∞ ∞ ∞ .

Consistency of the approximation.

Our next goal is to show that the limit (ρ,ξ) is indeed an entropy solution for the initial-boundary value problem (2.1) in the sense of Definition 3.1. We stress that by construction ρ is defined in the whole of [0,∞) × R and not only on [0,∞) × C.

Some comments on the boundary conditions (2.1b) are in order. Let β ∈ [0,1] be the ratio between the escape velocity allowed at the exits and the maximum velocity of the pedestrians. At x = ±1 we then obtain the Robin type condition

ρv(ρ) x=±1 = β ρv max x=±1 ,
where the term φ/|φ x | gets canceled when considering the outgoing normal direction of the flux. This is equivalent to imposing the exit velocity

v x=±1 = β v max .
Furthermore, since the velocity is just a function of the density and by assumption (V), we deduce the Dirichlet boundary conditions (2.1b) by simply considering the maximum efficiency β = 1. Moreover, by a duality argument, a similar zero Dirichlet condition is obtained for φ, see [23] for more details.

By the strict concavity of f , the characteristics are exiting the domain, hence no boundary conditions have to be assigned at x = ±1. In fact, the proper boundary conditions set in [START_REF] Amadori | The one-dimensional Hughes model for pedestrian flow: Riemann-type solutions[END_REF] For this reason, we actually will neglect the boundary conditions (2.1b), as well as the line (3.1b) in the entropy condition (3.1). As a matter of fact, we are reduced to consider the initial value (Cauchy) problem (2.1a), (2.1c) in the whole of (0,∞) × R, namely to

are ρ(•,±1) ∈ [0,ρ c ], where ρ c ∈ (0,ρ max ) is such that f (ρ)(ρ c -ρ) >
ρ t -ρv(ρ) φ x |φ x | x = 0, |φ x | = c(ρ), x ∈ R, t > 0, ρ(0,x) = ρ(x), x ∈ R, (5.8) 
where, with a slight abuse of notation, we denote by ρ the extension of ρ ∈ L 1 1 1 (C;[0,ρ max ]) to R by zero outside C.

Weak condition.

As a first step we show that the obtained limit ρ is indeed a weak solution of (5.8). With this step we want to prove that the initial condition is satisfied almost everywhere and to highlight how to account for the possible presence of non-classical shocks. We start by rigorously state the concept of weak solution to (5.8).

Definition 5.1 (Weak solution to the Cauchy problem). A function (ρ,ξ)

∈ L 1 1 1 ([0,∞) × R;[0,ρ max ]) × Lip([0,∞);C)
is a weak solution of the initial value problem (5.8) if it satisfies (2.2) almost everywhere and

0 = ¢ ∞ 0 ¢ R (ρ(t,x)ϕ t (t,x) + sign(x -ξ(t)) f (ρ(t,x)) ϕ x (t,x))dxdt + ¢ R ρ(x)ϕ(0,x)dx
(5.9) holds for all test function ϕ ∈ C ∞ c (R × R;R). Proposition 5.4. The limit (ρ,ξ) of the subsequence {(ρ n ,ξ n )} n∈N satisfies (2.2) almost everywhere.

Proof. By (5.4) and the triangular inequality we have that

¢ ξ(t) -1 c(ρ(t,y)) dy - ¢ 1 ξ(t) c(ρ(t,y)) dy = ¢ ξ(t) -1 c(ρ(t,y)) dy - ¢ ξ n (t) -1 c(ρ(t,y)) dy + ¢ ξ n (t) -1 c(ρ(t,y)) dy - ¢ ξ n (t) -1 c(ρ n (t,y)) dy + ¢ 1 ξ n (t) c(ρ n (t,y)) dy - ¢ 1 ξ n (t) c(ρ(t,y)) dy + ¢ 1 ξ n (t) c(ρ(t,y)) dy - ¢ 1 ξ(t) c(ρ(t,y)) dy = 2 ¢ ξ(t) ξ n (t) c(ρ(t,y)) dy + α ¢ ξ n (t) -1 (ρ(t,y) -ρ n (t,y)) dy + α ¢ 1 ξ n (t) (ρ n (t,y) -ρ(t,y)) dy 2|ξ n (t) -ξ(t)|(1 + αR max ) + α ¢ C |ρ n (t,y) -ρ(t,y)|dy.
Therefore, for any T > 0 and ϕ ∈ C ∞ c ([0,T ];R) we have

¢ T 0 ¢ ξ(t) -1 c(ρ(t,y)) dy - ¢ 1 ξ(t)
c(ρ(t,y)) dy ϕ(t)dt

2(1 + αR max ) ¢ T 0 |ξ n (t) -ξ(t)| • |ϕ(t)|dt + α ¢ T 0 ¢ C |ρ n (t,y) -ρ(t,y)| • |ϕ(t)|dy dt.
To conclude, it is then sufficient to recall that ξ n → ξ uniformly in [0,T ] and

ρ n → ρ in L 1 1 1 ([0,T ] × C).
We underline that satisfying (2.2) implies taking values in C, thus Propositions 5.2 and 5.4 imply that actually ξ belongs to Lip([0,∞);C). Proposition 5.5. The limit (ρ,ξ) of the subsequence {(ρ n ,ξ n )} n∈N satisfies initial condition (2.1c) almost everywhere.

Proof. Fix ϕ ∈ C ∞ c (R × R;R). By (4.4) and (4.2) 3 we have

R i+ 1 2 (0) = x i+1 -x i = 2 xi+1 xi ρ(y)dy
and therefore by (4.9) we have Clearly, the above last quantity goes to zero as n goes to infinity. As a consequence the initial condition is satisfied almost everywhere. Proposition 5.6. The limit (ρ,ξ) of the subsequence {(ρ n ,ξ n )} n∈N is a weak solution of the initial value problem (5.8) in the sense of Definition 5.1.

¢ R (ρ(x) -ρ n (0,x)) ϕ(0,x)dx n-1 i=0 ¢ xi+1 xi ρ(x) -R i+ 1 2 (0) ϕ(0,x)dx = n-1 i=0 ¢ xi+1 xi ρ(x) -
Proof. From Proposition 5.5 we already know that ρ satisfies the initial condition almost everywhere. For this reason it is sufficient to consider a test function ϕ in C ∞ c ((0,∞) × R;[0,∞)). For the L 1 1 1 -convergence of {ρ n } n∈N to ρ, Proposition 5.3 together with the equality

¡ R |sign(x -ξ(t)) -sign(x -ζ n (t))| dx = 2|ξ(t) -ζ n (t)|,
and the Lipschitzianity of f , condition (5.9) follows from proving that

(♣) := ¢ ∞ 0 ¢ R (ρ n ϕ t + sign(x -ζ n )f (ρ n )ϕ x ) dxdt
converges to zero as n goes to infinity. By Proposition 4.1, we can assume that the direction changes occur at times t 1 ,t 2 ,...,t N with t h+1 > t h > 0, and possibly also at time t 0 := 0. Moreover, there exists t N +1 such that ϕ(t,•) ≡ 0 for any t > t N +1 . It is not restrictive to take t N +1 > t N . Hence we have

(♣) = N h=0 ¢ t h+1 t h ¢ R ρ n ϕ t dx - ¢ ζ n -∞ f (ρ n )ϕ x dx + ¢ ∞ ζ n f (ρ n )ϕ x dx dt.
For simplicity in the exposition, we consider a time interval (t h ,t h+1 ) for which there exists I h 0 ∈ 0,n -1 such that

x I h 0 (t) < ζ n (t) < x I h 0 +1 (t) ∀t ∈ (t h ,t h+1 );
the remaining cases are analogous and are therefore omitted. By (4.9), for any t ∈ (t h ,t h+1 ) we have that

¢ R ρ n ϕ t dx = n-1 i=0 R i+ 1 2 ¢ xi+1 xi ϕ t dx = n-1 i=0 d dt R i+ 1 2 ¢ xi+1 xi ϕdx -Ṙi+ 1 2 ¢ xi+1 xi ϕdx -R i+ 1 2 (ϕ(t,x i+1 ) ẋi+1 -ϕ(t,x i ) ẋi ) , - ¢ ζ n -∞ f (ρ n )ϕ x dx = - I h 0 -1 i=0 f (R i+ 1 2 ) ¢ xi+1 xi ϕ x dx -f (R I h 0 + 1 2 ) ¢ ζ n x I h 0 ϕ x dx = - I h 0 -1 i=0 f (R i+ 1 2 )(ϕ(t,x i+1 ) -ϕ(t,x i )) -f (R I h 0 + 1 2 ) ϕ(t,ζ n ) -ϕ(t,x I h 0 ) , ¢ ∞ ζ n f (ρ n )ϕ x dx = f (R I h 0 + 1 2 ) ¢ x I h 0 +1 ζ n ϕ x dx + n-1 i=I h 0 +1 f (R i+ 1 2 ) ¢ xi+1 xi ϕ x dx = f (R I h 0 + 1 2 ) ϕ(t,x I h 0 +1 ) -ϕ(t,ζ n ) + n-1 i=I h 0 +1 f (R i+ 1 2 )(ϕ(t,x i+1 ) -ϕ(t,x i )).
Observe furthermore that, since ϕ(0,•) ≡ 0 and ϕ(t,•) ≡ 0 for any t t N +1 , and moreover R 1 2 ,...,R n-1 2 are C 0 0 0 in (0,∞) and C 1 1 1 in each (t h ,t h+1 ), we have

N h=0 ¢ t h+1 t h n-1 i=0 d dt R i+ 1 2 ¢ xi+1 xi ϕdx dt = N h=0 ¢ t h+1 t h d dt n-1 i=0 R i+ 1 2 ¢ xi+1 xi ϕdx dt = n-1 i=0 R i+ 1 2 (t N +1 ) ¢ xi+1(t N +1 ) xi(t N +1 ) ϕ(t N +1 ,x)dx -R i+ 1 2 (0) ¢ xi+1 xi ϕ(0,x)dx = 0.
We therefore have

(♣) = N h=0 ¢ t h+1 t h - n-1 i=0 Ṙi+ 1 2 ¢ xi+1 xi ϕdx - I h 0 -1 i=0 R i+ 1 2 ẋi+1 + f (R i+ 1 2 ) ϕ(t,x i+1 ) + I h 0 -1 i=0 R i+ 1 2 ẋi + f (R i+ 1 2 ) ϕ(t,x i ) - n-1 i=I h 0 +1 R i+ 1 2 ẋi+1 -f (R i+ 1 2 ) ϕ(t,x i+1 ) + n-1 i=I h 0 +1 R i+ 1 2 ẋi -f (R i+ 1 2 ) ϕ(t,x i ) -R I h 0 + 1 2 ẋI h 0 +1 -f (R I h 0 + 1 2 ) ϕ(t,x I h 0 +1 ) + R I h 0 + 1 2 ẋI h 0 + f (R I h 0 + 1 2 ) ϕ(t,x I h 0 ) -2f (R I h 0 + 1 2 )ϕ(t,ζ n ) dt = N h=0 ¢ t h+1 t h - n-1 i=0 Ṙi+ 1 2 ¢ xi+1 xi ϕdx + I h 0 -1 i=0 R i+ 1 2 v(R i+ 1 2 ) -v(R i-1 2 ) ϕ(t,x i ) - n-1 i=I h 0 +1 R i+ 1 2 v(R i+ 3 2 ) -v(R i+ 1 2 ) ϕ(t,x i+1 ) -R I h 0 + 1 2 v(R I h 0 + 3 2 ) -v(R I h 0 + 1 2 ) ϕ(t,x I h 0 +1 ) + R I h 0 + 1 2 -v(R I h 0 -1 2 ) + v(R I h 0 + 1 2 ) ϕ(t,x I h 0 ) -2f (R I h 0 + 1 2 )ϕ(t,ζ n ) dt,
where in the last equality we used the fact that from (4.3) follows that

R i+ 1 2 ẋi+1 + f (R i+ 1 2 ) = -R i+ 1 2 v(R i+ 1 2 ) + f (R i+ 1 2 ) = 0, i I h 0 -1, R i+ 1 2 ẋi + f (R i+ 1 2 ) = R i+ 1 2 v(R i+ 1 2 ) -v(R i-1 2 ) , i I h 0 -1, R I h 0 + 1 2 ẋI h 0 +1 -f (R I h 0 + 1 2 ) = R I h 0 + 1 2 v(R I h 0 + 3 2 ) -v(R I h 0 + 1 2 ) , R I h 0 + 1 2 ẋI h 0 + f (R I h 0 + 1 2 ) = R I h 0 + 1 2 -v(R I h 0 -1 2 ) + v(R I h 0 + 1 2 ) , R i+ 1 2 ẋi+1 -f (R i+ 1 2 ) = R i+ 1 2 v(R i+ 3 2 ) -v(R i+ 1 2 ) , i I h 0 + 1, R i+ 1 2 ẋi -f (R i+ 1 2 ) = R i+ 1 2 v(R i+ 1 2 ) -f (R i+ 1 2 ) = 0, i I h 0 + 1.
(5.10)

Denote by L v and L ϕ the Lipschitz constants for v and ϕ, respectively. By applying (5.1) we get -

I h 0 -1 i=0 Ṙi+ 1 2 ¢ xi+1 xi ϕdx + I h 0 -1 i=0 R i+ 1 2 v(R i+ 1 2 ) -v(R i-1 2 ) ϕ(t,x i ) = I h 0 -1 i=0 R i+ 1 2 v(R i-1 2 ) -v(R i+ 1 2 ) 2 xi+1 xi (ϕ(t,x) -ϕ(t,x i )) dx L v L ϕ   I h 0 -1 i=0 |R i-1 2 -R i+ 1 2 |R i+ 1 2 2 xi+1 xi (x -x i )dx   = L v L ϕ   I h 0 -1 i=0 |R i-1 2 -R i+ 1 2 |R i+ 1 2 x i+1 -x i 2   = L v L ϕ 2   I h 0 -1 i=0 |R i-1 2 -R i+ 1 2 |   , (5.11) - n-1 i=I h 0 +1 Ṙi+ 1 2 ¢ xi+1 xi ϕdx - n-1 i=I h 0 +1 R i+ 1 2 v(R i+ 3 2 ) -v(R i+ 1 2 ) ϕ(t,x i+1 ) = - n-1 i=I h 0 +1 R i+ 1 2 v(R i+ 3 2 ) -v(R i+ 1 2 ) 2 xi+1 xi (ϕ(t,x i+1 ) -ϕ(t,x)) dx L v L ϕ   n-1 i=I h 0 +1 |R i+ 3 2 -R i+ 1 2 |R i+ 1 2 2 xi+1 xi (x i+1 -x)dx   = L v L ϕ   n-1 i=I h 0 +1 |R i+ 3 2 -R i+ 1 2 |R i+ 1 2 x i+1 -x i 2   = L v L ϕ 2   n-1 i=I h 0 +1 |R i+ 3 2 -R i+ 1 2 |   ,
(5.12)

-ṘI h 0 + 1 2 ¢ x I h 0 +1 x I h 0 ϕdx -R I h 0 + 1 2 v(R I h 0 + 3 2 ) -v(R I h 0 + 1 2 ) ϕ(t,x I h 0 +1 ) + R I h 0 + 1 2 -v(R I h 0 -1 2 ) + v(R I h 0 + 1 2 ) ϕ(t,x I h 0 ) -2f (R I h 0 + 1 2 )ϕ(t,ζ n ) = R I h 0 + 1 2 v(R I h 0 + 3 2 ) + v(R I h 0 - 1 
2 )

2 x I h 0 +1 x I h 0 ϕdx -R I h 0 + 1 2 v(R I h 0 + 3 2 ) -v(R I h 0 + 1 2 ) ϕ(t,x I h 0 +1 ) + R I h 0 + 1 2 -v(R I h 0 -1 2 ) + v(R I h 0 + 1 2 ) ϕ(t,x I h 0 ) -2f (R I h 0 + 1 2 )ϕ(t,ζ n ) = R I h 0 + 1 2 v(R I h 0 + 1 2 ) -v(R I h 0 + 3 2 ) 2 x I h 0 +1 x I h 0 ϕ(t,x I h 0 +1 ) -ϕ(t,x) dx + R I h 0 + 1 2 v(R I h 0 -1 2 ) -v(R I h 0 + 1 2 ) 2 x I h 0 +1 x I h 0 ϕ(t,x) -ϕ(t,x I h 0 ) dx + 2f (R I h 0 + 1 2 ) 2 x I h 0 +1 x I h 0 (ϕ(t,x) -ϕ(t,ζ n )) dx L v L ϕ 2 |R I h 0 + 1 2 -R I h 0 + 3 2 | + |R I h 0 -1 2 -R I h 0 + 1 2 | + 2L ϕ v max R I h 0 + 1 2 2 x I h 0 +1 x I h 0 |x -ζ n |dx L v L ϕ 2 |R I h 0 + 1 2 -R I h 0 + 3 2 | + |R I h 0 -1 2 -R I h 0 + 1 2 | + 2L ϕ v max .
(5.13)

In conclusion we proved that

|(♣)| L ϕ L v 2 ¢ t N +1 0 TV(ρ n (t,•)) dt + 2v max t N +1 ,
where the right hand side converges to zero because do so and by (3.2). This concludes the proof.

Entropy condition.

We prove now that the limit (ρ,ξ) is an entropy solution to the initial value prolem (5.8). For completeness, we first write the definition of entropy solution to (5.8), which is obtained from Definition 3.1 by simply omitting the line (3.1b) in the entropy condition (3.1).

Definition 5.2 (Entropy solution to the Cauchy problem).

A function

(ρ,ξ) ∈ L 1 1 1 ([0,∞) × R;[0,ρ max ]) × Lip([0,∞);C
) is an entropy solution of initial value problem (5.8) if it satisfies (2.2) almost everywhere and the entropy inequality

0 ¢ ∞ 0 ¢ R (|ρ -κ|ϕ t + Φ(t,x,ρ,κ)ϕ x ) dxdt + ¢ R |ρ(x) -κ|ϕ(0,x)dx + 2 ¢ ∞ 0 f (κ)ϕ(t,ξ(t)) dt
holds for all κ ∈ [0,ρ max ] and all test function ϕ ∈ C ∞ c R 2 ;[0,∞) . Proposition 5.7. The limit (ρ,ξ) of the subsequence {(ρ n ,ξ n )} n∈N is an entropy solution of initial value problem (5.8) in the sense of Definition 5.2.

Proof. From Proposition 5.5 we already know that ρ satisfies the initial condition. Hence, it is sufficient to consider a test function ϕ in C ∞ c ((0,∞) × R;[0,∞)). By the L 1 1 1 -convergence of {ρ n } n∈N to ρ, Proposition 5.3 together with the equality

¡ R |sign(x -ξ(t)) -sign(x -ζ n (t))| dx = 2|ξ(t) -ζ n (t)|,
the Lipschitzianity of ϕ, and the Lipschitzianity of f , it is sufficient to prove that the limit as n goes to infinity of (♠) :=

¢ ∞ 0 ¢ R (|ρ n -κ|ϕ t + Φ(t,x,ρ n ,κ)ϕ x ) dxdt + 2 ¢ ∞ 0 f (κ)ϕ(t,ζ n )dt
is non-negative. By Proposition 4.1, we can assume that the direction changes occur at times t 1 ,t 2 ,...,t N with t h+1 > t h > 0, and possibly also at time t 0 := 0. Moreover, there exists t N +1 such that ϕ(t,•) ≡ 0 for any t > t N +1 . It is not restrictive to take t N +1 > t N . Therefore we have

(♠) = N h=0 ¢ t h+1 t h ¢ R |ρ n -κ|ϕ t dx - ¢ ζ n -∞ sign(ρ n -κ) (f (ρ n ) -f (κ)) ϕ x dx + ¢ ∞ ζ n sign(ρ n -κ) (f (ρ n ) -f (κ)) ϕ x dx + 2f (κ)ϕ(t,ζ n ) dt.
For simplicity in the exposition, we consider a time interval (t h ,t h+1 ) for which there exists I h 0 ∈ 0,n -1 such that

x I h 0 (t) < ζ n (t) < x I h 0 +1 (t) ∀t ∈ (t h ,t h+1 );
the remaining cases are analogous and are therefore omitted. For any t ∈ (t h ,t h+1 ) we have by (4.9) that

¢ R |ρ n -κ|ϕ t dx = n i=-1 |R i+ 1 2 -κ| ¢ xi+1 xi ϕ t dx = n i=-1 d dt |R i+ 1 2 -κ| ¢ xi+1 xi ϕdx - n-1 i=0 sign(R i+ 1 2 -κ) Ṙi+ 1 2 ¢ xi+1 xi ϕdx - n-1 i=-1 |R i+ 1 2 -κ| ẋi+1 ϕ(t,x i+1 ) + n i=0 |R i+ 1 2 -κ| ẋi ϕ(t,x i ).
Analogously we have

- ¢ ζ n -∞ sign(ρ n -κ) (f (ρ n ) -f (κ)) ϕ x dx = - I h 0 -1 i=-1 sign(R i+ 1 2 -κ) f (R i+ 1 2 ) -f (κ) (ϕ(t,x i+1 ) -ϕ(t,x i )) -sign(R I h 0 + 1 2 -κ) f (R I h 0 + 1 2 ) -f (κ) ϕ(t,ζ n ) -ϕ(t,x I h 0 ) , ¢ ∞ ζ n sign(ρ n -κ) (f (ρ n ) -f (κ)) ϕ x dx = sign(R I h 0 + 1 2 -κ) f (R I h 0 + 1 2 ) -f (κ) ϕ(t,x I h 0 +1 ) -ϕ(t,ζ n ) + n i=I h 0 +1 sign(R i+ 1 2 -κ) f (R i+ 1 2 ) -f (κ) (ϕ(t,x i+1 ) -ϕ(t,x i )).
Observe furthermore that, since ϕ(0,•) ≡ 0 and ϕ(t,•) ≡ 0 for any t t N +1 , and moreover R 1 2 ,...,R n-1 2 are C 0 0 0 in (0,∞) and C 1 1 1 in each (t h ,t h+1 ), we have

N h=0 ¢ t h+1 t h n i=-1 d dt |R i+ 1 2 -κ| ¢ xi+1 xi ϕdx dt = 0.
Therefore, by using again (5.10), we get

(♠) = N h=0 ¢ t h+1 t h - I h 0 -1 i=0 κ sign(R i+ 1 2 -κ) v(κ) -v(R i-1 2 ) ϕ(t,x i ) + I h 0 -1 i=-1 κ sign(R i+ 1 2 -κ) v(κ) -v(R i+ 1 2 ) ϕ(t,x i+1 ) -κ sign(R I h 0 + 1 2 -κ) v(κ) -v(R I h 0 -1 2 ) ϕ(t,x I h 0 ) - I h 0 -1 i=0 sign(R i+ 1 2 -κ) Ṙi+ 1 2 ¢ xi+1 xi ϕdx -R i+ 1 2 v(R i+ 1 2 ) -v(R i-1 2 ) ϕ(t,x i ) + n i=I h 0 +1 κ sign(R i+ 1 2 -κ) v(κ) -v(R i+ 1 2 ) ϕ(t,x i ) - n-1 i=I h 0 +1 κ sign(R i+ 1 2 -κ) v(κ) -v(R i+ 3 2 ) ϕ(t,x i+1 ) -κ sign(R I h 0 + 1 2 -κ) v(κ) -v(R I h 0 + 3 2 ) ϕ(t,x I h 0 +1 ) - n-1 i=I h 0 +1 sign(R i+ 1 2 -κ) Ṙi+ 1 2 ¢ xi+1 xi ϕdx + R i+ 1 2 v(R i+ 3 2 ) -v(R i+ 1 2 ) ϕ(t,x i+1 ) + 2 1 + sign(R I h 0 + 1 2 -κ) f (κ)ϕ(t,ζ n ) -sign(R I h 0 + 1 2 -κ) ṘI h 0 + 1 2 ¢ x I h 0 +1 x I h 0 ϕdx + 2f (R I h 0 + 1 2 )ϕ(t,ζ n ) + R I h 0 + 1 2 v(R I h 0 + 3 2 ) -v(R I h 0 + 1 2 ) ϕ(t,x I h 0 +1 ) -R I h 0 + 1 2 -v(R I h 0 -1 2 ) + v(R I h 0 + 1 2 ) ϕ(t,x I h 0 ) dt.
By (5.11), (5.12) and (5.13) we know that the quantities between square brackets go to zero as n goes to infinity. Moreover we have -

I h 0 -1 i=0 κ sign(R i+ 1 2 -κ) v(κ) -v(R i-1 2 ) ϕ(t,x i ) + I h 0 -1 i=-1 κ sign(R i+ 1 2 -κ) v(κ) -v(R i+ 1 2 ) ϕ(t,x i+1 ) -κ sign(R I h 0 + 1 2 -κ) v(κ) -v(R I h 0 -1 2 ) ϕ(t,x I h 0 ) = I h 0 i=0 κ sign(R i-1 2 -κ) -sign(R i+ 1 2 -κ) v(κ) -v(R i-1 2 ) ϕ(t,x i ) 0, n i=I h 0 +1 κ sign(R i+ 1 2 -κ) v(κ) -v(R i+ 1 2 ) ϕ(t,x i ) - n-1 i=I h 0 +1 κ sign(R i+ 1 2 -κ) v(κ) -v(R i+ 3 2 ) ϕ(t,x i+1 ) -κ sign(R I h 0 + 1 2 -κ) v(κ) -v(R I h 0 + 3 2 ) ϕ(t,x I h 0 +1 ) = n i=I h 0 +1 κ sign(R i+ 1 2 -κ) -sign(R i-1 2 -κ) v(κ) -v(R i+ 1 2 ) ϕ(t,x i ) 0, 2 1 + sign(R I h 0 + 1 2 -κ) f (κ)ϕ(t,ζ n ) 0,
and this completes the proof.

6. On the total variation of the approximate densities.

In this section we show that conditions (6.6) and (6.12) given below are sufficient for (3.2). In poor words, we show that such conditions ensure that the total variation of the approximate density ρ n satisfies the uniform bound (3.2) with TV := TV(ρ) + 2R max , namely TV(ρ n (t,•)) TV(ρ) + 2R max . (

Notice that estimate (6.1) is optimal, as the following example shows. Example 6.1. If ρ n is the approximate density corresponding to the initial datum ρ ≡ R max ∈ (0,ρ max ), then (6.1) holds true and TV(ρ n (0 + ,•)) = TV(ρ) + 2R max .

Below we use the notations already introduced in the previous sections, see Fig. 5.1. Moreover, we set for brevity

µ i (t) := sign R i-1 2 (t) -R i+ 1 2 (t) + sign R i+ 3 2 (t) -R i+ 1 2 (t) . (6.2) 
In the following we use (5.1) several times without any explicit mention.

First condition

Inspired by the theory of conservation laws with discontinuous flux, see [START_REF] Andreianov | New approaches to describing admissibility of solutions of scalar conservation laws with discontinuous flux[END_REF] and the references therein, it is natural to consider the functional

Υ 1 (t) := TV ψ(ρ(t,•),t,x) , (6.3) 
where ψ(ρ,t,x) := sign(x -ζ(t))ρ. By definition, we have

Υ 1 (t) = TV(ρ n (t,•)) + 2R I h 0 + 1 2 (t) (6.4) = TV(ρ L (t,•)) + TV(ρ R (t,•)), (6.5) 
where

ρ L (t,x) := ρ n (t,x)1 (-∞,ζ n (t)) (x) and ρ R (t,x) := ρ n (t,x)1 [ζ n (t),∞) (x)
. We defer the reader to Appendix A for further expressions of Υ 1 . Proposition 6.1. Assume that at each time t h > 0 a particle changes direction, we have

R I h 0 + 1 2 (t + h ) R I h-1 0 + 1 2 (t - h ). (6.6) 
Then the functional Υ 1 is strictly decreasing. Proof. We prove that Υ 1 is strictly decreasing by considering, separately, first the intervals (t h ,t h+1 ) and then the times t h . STEP 1. By (6.2) and (6.5) we have

Υ1 = -µ 1 2 Ṙ 1 2 - I h 0 -1 i=1 µ i Ṙi+ 1 2 + (2 -µ I h 0 ) ṘI h 0 + 1 2 - n-2 i=I h 0 +1 µ i Ṙi+ 1 2 -µ n-1 Ṙn-1 2 . (6.7) 
We prove now that each term in the above sum is non-positive and that at least one term is strictly negative. Notice that

(2 -µ I h 0 ) ṘI h 0 + 1 2 = -(2 -µ I h 0 )R 2 I h 0 + 1 2 v(R I h 0 + 3 2 ) + v(R I h 0 -1 2 ) 0,
with the equality holding if and only if

R I h 0 + 1 2 < R I h 0 -1 2 and R I h 0 + 1 2 < R I h 0 + 3 2 . (6.8) Notice that -µ 1 2 Ṙ 1 2 = µ 1 2 R 2 1 2 v max -v(R 1 2 ) 0,
with the equality holding if and only if

R 3 2 > R 1 2 . (6.9) 
For any i ∈ 1,I h 0 -1 we have that

-µ i Ṙi+ 1 2 = -µ i R 2 i+ 1 2 v(R i+ 1 2 ) -v(R i-1 2 ) 0,
with the equality holding if and only if one of the following cases occurs

R i+ 1 2 > R i-1 2 and R i+ 3 2 > R i+ 1 2 , (6.10a) R i+ 1 2 < R i-1 2 and R i+ 3 2 < R i+ 1 2 , (6.10b) 
R i+ 1 2 = R i-1 2 . (6.10c)
Analogously, it can be proved that also the remaining terms of the sum in (6.7) are non-positive. Hence, to complete the proof, it is sufficient to show that (6.8) together with (6.9) imply that there exists at least one i ∈ 1,I h 0 -1 such that none of the conditions in (6.10) holds true. Assume by contradiction that (6.8), (6.9) and one of the conditions in (6.10) i , i ∈ 1,I h 0 -1 , hold true. By (6.9) and (6.10) i=1 we have that (6.10a) i=1 holds true, and therefore R 5 2 > R 3 2 . By R 5 2 > R 3 2 and (6.10) i=2 we have that (6.10a) i=2 holds true, and therefore R 7 2 > R 5 2 . By iterating this argument, we get that

R I h 0 + 1 2 > R I h 0 -1
2 , which contradicts (6.8). This completes the proof. STEP 2. By definition (6.4) and the continuity of t → TV(ρ n (t,•)), for any h ∈ 1,N we have

Υ 1 (t + h ) -Υ 1 (t - h ) = 2R I h 0 + 1 2 (t + h ) -2R I h-1 0 + 1 2 (t - h ).
As a consequence, by (6.6) we have that Υ 1 is strictly decreasing also across the time t h . This concludes the proof.

In view of Proposition 6.1, we have that Υ 1 is strictly decreasing and, therefore, TV(ρ n (t,•)) Υ 1 (t) Υ 1 (0) TV(ρ) + 2R max whenever the initial datum ρ is in BV.

Second condition

Consider the functional Υ 2 (t) := TV(ρ n (t,•)) + 2min R I h-1 0 + 1 2 (t),R I h 0 + 1 2 (t) . (6.11) 
Proposition 6.2. Assume that at each time t h > 0 a particle changes direction, we have

R I h-1 0 + 1 2 (t h ) R I h-2 0 + 1 2 (t h ). (6.12) 
Then the functional Υ 2 is weakly decreasing. Proof. We prove that Υ 2 is weakly decreasing by considering, separately, first the intervals (t h ,t h+1 ) and then the times t h . STEP 1. Let t ∈ (t h ,t h+1 ). By definition (6.11) and recalling (4.5), we have that

Υ 2 (t) = n i=0 R i-1 2 (t) -R i+ 1 2 (t) + 2min R I h-1 0 + 1 2 (t),R I h 0 + 1 2 (t) .
Clearly, by (4.4) and (5.1), we have that both TV(ρ n (t,•)) and Υ 2 are C 1 1 1 in (t h ,t h+1 ). By direct computations and (5.1) we have

d dt TV(ρ n (t,•))= n-1 i=0 µ i (t)R i+ 1 2 (t) 2 ẋi+1 (t) -ẋi (t) = I h 0 -1 i=0 µ i (t)R i+ 1 2 (t) 2 -v R i+ 1 2 (t) + v R i-1 2 (t) + n-1 i=I h 0 +1 µ i (t)R i+ 1 2 (t) 2 v R i+ 3 2 (t) -v R i+ 1 2 (t) (6.13) = + µ I h 0 (t)R I h 0 + 1 2 (t) 2 v R I h 0 + 3 2 (t) + v R I h 0 -1 2 (t) = I h 0 i=0 µ i (t)R i+ 1 2 (t) 2 -v R i+ 1 2 (t) + v R i-1 2 (t) + n-1 i=I h 0 µ i (t)R i+ 1 2 (t) 2 v R i+ 3 2 (t) -v R i+ 1 2 (t) (6.14) = + 2µ I h 0 (t)R I h 0 + 1 2 (t) 2 v R I h 0 + 1 2 (t) .
The two sums in both (6.13) and (6.14) are non-positive because each term is non-positive. Nevertheless, d dt TV(ρ n (t,•)) may be strictly positive, simply because µ I h 0 (t) can be so. In fact, we have

µ I h 0 = sign R I h 0 -1 2 -R I h 0 + 1 2 + sign R I h 0 + 3 2 -R I h 0 + 1 2 =            2 if R I h 0 + 1 2 < min{R I h 0 -1 2 ,R I h 0 + 3 2 }, 1 if R I h 0 -1 2 = R I h 0 + 1 2 < R I h 0 + 3 2 , 1 if R I h 0 + 3 2 = R I h 0 + 1 2 < R I h 0 -1 2 , 0 otherwise.
Therefore, to conclude the proof we have to consider the following cases.

•

If R I h 0 + 1 2 (t) R I h-1 0 + 1 2 (t)
, then it is sufficient to observe that by (5.1) we have

Υ2 (t) µ I h 0 R 2 I h 0 + 1 2 v(R I h 0 + 3 2 ) + v(R I h 0 -1 2 ) + 2 h 0 + 1 2 = (µ I h 0 -2)R 2 I h 0 + 1 2 v(R I h 0 + 3 2 ) + v(R I h 0 -1 2 ) 0. • If R I h 0 + 1 2 (t) > R I h-1 0 + 1 2 (t) = R I h 0 -1 2 (t)
, then µ I h 0 (t) 0 and moreover by (5.1) we have

µ I h-1 0 R 2 I h-1 0 + 1 2 ẋI h-1 0 +1 -ẋI h-1 0 + 2 ṘI h-1 0 + 1 2 = sign R I h 0 -3 2 -R I h 0 -1 2 + 1 R 2 I h 0 -1 2 -v(R I h 0 -1 2 ) + v(R I h 0 -3 2 ) 0. • If R I h 0 + 1 2 (t) > R I h-1 0 + 1 2 (t) = R I h 0 + 3 2 (t)
, then µ I h 0 (t) 0 and moreover by (5.1) we have

µ I h-1 0 R 2 I h-1 0 + 1 2 ẋI h-1 0 +1 -ẋI h-1 0 + 2 ṘI h-1 0 + 1 2 = sign R I h 0 + 5 2 -R I h 0 + 3 2 + 1 R 2 I h 0 + 3 2 v(R I h 0 + 5 2 ) -v(R I h 0 + 3 2 ) 0.
STEP 2. By definition (6.11), for any h ∈ 1,N we have

1 2 Υ 2 (t + h ) -Υ 2 (t - h ) = min R I h-1 0 + 1 2 (t h ),R I h 0 + 1 2 (t h ) -min R I h-2 0 + 1 2 (t h ),R I h-1 0 + 1 2 (t h )                  = R I h-1 0 + 1 2 (t h ) -R I h-2 0 + 1 2 (t h ) > 0 if R I h-2 0 + 1 2 (t h ) < R I h-1 0 + 1 2 (t h ) R I h 0 + 1 2 (t h ), = R I h 0 + 1 2 (t h ) -R I h-2 0 + 1 2 (t h ) > 0 if R I h-2 0 + 1 2 (t h ) < R I h 0 + 1 2 (t h ) < R I h-1 0 + 1 2 (t h ), 0 otherwise.
As a consequence, by (6.12) we have that Υ 2 is weakly decreasing also across the time t h . This concludes the proof.

In view of Proposition 6.2, we have that Υ 2 is weakly decreasing and, therefore, TV(ρ n (t,•)) Υ 2 (t) Υ 2 (0) TV(ρ) + 2R max whenever the initial datum ρ is in BV.

A numerical case study Consider

v(ρ) := v max 1 - ρ ρ max , f (ρ) := ρv(ρ), v + (ρ) := [v(ρ)] + .
Let T be the target time horizon. Fix ∆t > 0 sufficiently small and n ∈ N sufficiently big. Introduce the following notation

t h := h∆t, x h i :≈ x i (t h ), h ∈ 0,H , i ∈ 0,n ,
where H := T/∆t . The approximation x h i of the position for the i-th particle at time t h is obtained by applying the following numerical scheme

x 0 i := x i , i ∈ 0,n , x h+1 0 := x h 0 -v max ∆t = x 0 -v max t h+1 , x h+1 i :=                  x h i -v + x h i -x h i-1 ∆t if 2x h i + α ¢ x h i -1 n j=1 1 x h j -x h j-1 1 [x h j-1 ,x h j ) (y)dy -α ¢ 1 x h i n j=1 1 x h j -x h j-1 1 [x h j-1 ,x h j ) (y)dy < 0, x h i + v + x h i+1 -x h i ∆t otherwise, i ∈ 1,n -1 , x h+1 n := x h n + v max ∆t = x n + v max t h+1 ,
where x i are defined in (4.1). We stress that the above scheme for the particle positions x h i is decoupled from the scheme for the turning point ξ h . This choice allows for faster simulations, at least if we are interested only in the particle paths, which is the case if, for instance, we are interested in computing the evacuation time.

In the following proposition we deduce a sort of CFL condition by requiring the order preservation of the particles. Proposition 7.1. If ∆t and n are such that ∆t L ρ max v max n , then for any h ∈ 0,H -1 and i ∈ 0,n -1 we have

x h i+1 -x h i /ρ max =⇒ x h+1 i+1 -x h+1 i /ρ max . (7.1) 
Proof. If x h i+1 is moving backward and x h i+1x h i /ρ max , then we have

x h+1 i+1 -x h+1 i = x h i+1 -x h i -v + x h i+1 -x h i ∆t + v + x h i -x h i-1 ∆t x h i+1 -x h i -v x h i+1 -x h i ∆t,
and therefore

x h+1 i+1 -x h+1 i ρ max ⇐= x h i+1 -x h i -v x h i+1 -x h i ∆t ρ max ⇐⇒ ∆t x h i+1 -x h i -ρmax v /(x h i+1 -x h i ) = x h i+1 -x h i v max ⇐= ∆t ρ max v max = L ρ max v max n .
The remaining cases are analogous and are therefore omitted. Notice that for h = 0 the assumption in (7.1) holds true for any i ∈ 0,n -1 by (4.12).

Let us recall the physical meaning of the parameter α 0. The case α = 0 corresponds to pedestrians moving towards the closest exit, regardless of the overall density distribution. This is a typical behaviour in panic situations, see [65] and the references therein. On the other hand, as α grows, so does the importance of dividing the crowd into two groups with the same number of pedestrians. Such mechanism penalizes regions with high number of pedestrians in the choice of the nearest exit.

These considerations lead us to study the microscopic evacuation time T mic as a function of α, T mic = T mic (α). To this aim, we fix v max = 1, ρ max = 1, consider the initial datum ρ(x) :=    0.9 if -1 x < -0.5, 0.9 if -0.4 x < 0, 0 otherwise, 13], [START_REF] Colombo | On the modelling and management of traffic[END_REF]Fig. 6], to the best of authors' knowledge, the behaviour in Fig. 7.1 (with more than one jump discontinuity) is new. At last, the minimum in Fig. 7.1 is achieved for α ≈ 1.3 and the corresponding evacuation time is T mic ≈ 2.39355. We further investigate this example and show in Fig. 7.2 the particle paths together with the turning curve, and the corresponding approximate macroscopic density for α ∈ {0,1.3,5,18.9}. Here, the turning curve is approximated by numerically solving the equation

ξ h + α   #{i ∈ 0,n : -1 x h i < ξ h } -1 + ξ h -x h i x h i+1 -x h i i=#{i∈ 0,n :x h i <ξ h } + x h i+1 + 1 x h i+1 -x h i i=#{i∈ 0,n :x h i <-1}   = α 2   #{i ∈ 0,n : -1 x h i < 1} -1 + 1 -x h i x h i+1 -x h i i=#{i∈ 0,n :x h i <1} + x h i+1 + 1 x h i+1 -x h i i=#{i∈ 0,n :x h i <-1}   .
The above equation is a discrete approximation of the equation By qualitatively comparing the microscopic and macroscopic simulations corresponding to α = 18.9, see Fig. 7.2, we notice that the macroscopic evacuation time seems to be lower than T mic (18.9) = 3.3655. For this reason we introduce the macroscopic evacuation time

ξ(t) + α ¢ ξ(t) -1 ρ(t,y)dy = α 2 ¢ 1 -1 ρ(t,
T mac = sup t 0 : ¢ 1 -1 ρ(t,y)dy 2 .
In Fig. 7.3 we represent T mac as a function of α, T mac = T mac (α). Notice that T mac has the same behaviour as T mic .

Concluding remarks and future prospects

Along the lines of [START_REF] Amadori | Existence results for Hughes' model for pedestrian flows[END_REF]38], in this paper we obtain existence results for the one-dimensional Hughes model for crowd dynamics. The noteworthy aspects of the paper are two: first, an existence result for entropy solution involving non-classical shocks; second, construction of a new Lyapunov like functional able to deal (also) with linear costs. The main issue was to rigorously prove a uniform bound for the total variation with respect to the space variable of the sequence of the approximate densities.

The mechanisms that lead to the formation of non-classical shocks, and then possibly trigger instabilities, are not yet fully clear, despite the efforts in this paper and in [START_REF] Amadori | Existence results for Hughes' model for pedestrian flows[END_REF]38], and this demands for further investigations. Indeed, it seems that such a phenomenon depends so strongly on the cost function under consideration that it could be difficult, if not impossible, to establish general criteria.

The next steps in the modeling are now about a uniform bound for the total variation that guarantees the existence of global (in time) solutions for BV initial data, and the analysis in these solutions about when and how non-classical shocks arises. This program will be accomplished in forthcoming papers. Further and deeper investigations on the evacuation optimization problem having α 0 as a control are planned. A side problem is the study of the model formally obtained by letting α go to infinity.

A) If 0 I -I 0 < I 0 + 1 I + n are such that x I--1 (t) -1 < x I-(t) x I0 (t) < ζ n (t) x I0+1 (t) x I+ (t) < 1 x I++1 (t) ∀t ∈ (τ h ,τ h+1 ), then in (τ h ,τ h+1 ) we have ζ n ≡ α 2c(R I0+ 1 
2 )

I -+ I + -2I 0 + 2x I0 x I0+1 -x I0 , ζn ≡ c(R I0+ 1 2 ) -1 c(R I0+ 1 2 ) ẋI0 (x I0+1 -ζ n ) + ẋI0+1 (ζ n -x I0 ) x I0+1 -x I0 . B) If -1 I 0 < I + n are such that x I0 (t) -1 < ζ n (t) x I0+1 (t) x I+ (t) < 1 x I++1 (t) ∀t ∈ (τ h ,τ h+1 ),
then in (τ h ,τ h+1 ) we have

ζ n ≡ α c(R I0+ 1 
2 ) + 1

I + -1 -I 0 + x I0+1 x I0+1 -x I0 , ζn ≡ c(R I0+ 1 2 ) -1 c(R I0+ 1 2 ) + 1 ẋI0 (x I0+1 -ζ n ) + ẋI0+1 (ζ n -x I0 ) x I0+1 -x I0 . 
C) If 0 I -I 0 n are such that

x I--1 (t) -1 < x I-(t) x I n 0 (t) < ζ n (t) < 1 x I0+1 (t) ∀t ∈ (τ h ,τ h+1 ),
then in (τ h ,τ h+1 ) we have

ζ n ≡ α c(R I0+ 1 2 ) + 1 I --I 0 + x I0 x I0+1 -x I0 , ζn ≡ c(R I0+ 1 2 ) -1 c(R I0+ 1 2 ) + 1 ẋI0 (x I0+1 -ζ n ) + ẋI0+1 (ζ n -x I0 ) x I0+1 -x I0 . D) If -1 I 0 n are such that x I0 (t) -1 < ζ n (t) < 1 x I0+1 (t) ∀t ∈ (τ h ,τ h+1 ),
then in (τ h ,τ h+1 ) we have ζ n ≡ 0 and ζn ≡ 0.

Proof. The proof consists in a case by case study. In order not to overload the paper, we study in detail only the case A). We distinguish the following subcases: A.1) Consider the case I -= I 0 and I + = I 0 + 1, that is

x I--1 -1 < x I-< x I0 < ζ n x I0+1 < x I+ < 1 x I++1 .
In this case, by (4.4), equation (4.6) implies that

ζ n + 1 + α I 0 -I -+ ζ n -x I0 x I0+1 -x I0 = 1 -ζ n + α x I0+1 -ζ n x I0+1 -x I0 + I + -1 -I 0 ,
and therefore

ζ n = α 2 1 + α x I0+1 -x I0 -1 I -+ I + -2I 0 -1 + x I0+1 + x I0 x I0+1 -x I0 . 
A.2) Consider the case I -= I 0 and I + = I 0 + 1, that is

x I0-1 -1 < x I0 < ζ n x I0+1 < x I+ < 1 x I++1 .
In this case, by (4.4), equation (4.6) implies that

ζ n + 1 + α ζ n -x I0 x I0+1 -x I0 = 1 -ζ n + α x I0+1 -ζ n x I0+1 -x I0 + I + -1 -I 0 ,
and therefore

ζ n = α 2 1 + α x I0+1 -x I0 -1 I + -I 0 -1 + x I0+1 + x I0 x I0+1 -x I0 . 
A.3) Consider the case I -= I 0 and I + = I 0 + 1, that is

x I--1 -1 < x I-< x I0 < ζ n x I0+1 < 1 x I0+2 .
In this case, by (4.4), equation (4.6) implies that

ζ n + 1 + α I 0 -I -+ ζ n -x I0 x I0+1 -x I0 = 1 -ζ n + α x I0+1 -ζ n x I0+1 -x I0 ,
and therefore

ζ n = α 2 1 + α x I0+1 -x I0 -1 I --I 0 + x I0+1 + x I0 x I0+1 -x I0 . 
A.4) Consider the case I -= I 0 and

I + = I 0 + 1, that is x I0-1 -1 < x I0 < ζ n x I0+1 < 1 x I0+2 .
In this case, by (4.4), equation (4.6) implies that

ζ n + 1 + α ζ n -x I0 x I0+1 -x I0 = 1 -ζ n + α x I0+1 -ζ n x I0+1 -x I0 ,
and therefore

ζ n = α 2 1 + α x I0+1 -x I0 -1 x I0+1 + x I0 x I0+1 -x I0 .
Summing up, in the case A) we get that

2c(R I0+ 1 2 )ζ n = α I -+ I + -2I 0 -1 + x I0+1 + x I0 x I0+1 -x I0 = α I -+ I + -2I 0 + 2x I0 x I0+1 -x I0
.

By taking the time derivative of the above identity we obtain

2α ṘI0+ 1 2 ζ n + 2c(R I0+ 1 2 ) ζn = 2α ẋI0 (x I0+1 -x I0 ) -x I0 ( ẋI0+1 -ẋI0 ) (x I0+1 -x I0 ) 2
and therefore, by (4.4) and (5.1), we have

-αR I0+ 1 2 ẋI0+1 -ẋI0 x I0+1 -x I0 ζ n + c(R I0+ 1 2 ) ζn = αR I0+ 1 2 ẋI0 x I0+1 -ẋI0+1 x I0 x I0+1 -x I0 ⇐⇒ c(R I0+ 1 2 ) ζn = αR I0+ 1 2 ẋI0 (x I0+1 -ζ n ) + ẋI0+1 (ζ n -x I0 ) x I0+1 -x I0 .
The remaining cases B), C) and D) can be treated analogously and are therefore omitted.

In the following corollary we prove that no particle changes direction during the time interval (s h ,s h+1 ) or, equivalently, that {t 0 ,t 1 ,t 2 ,...} ⊆ {s 0 ,s 1 ,s 2 ,...}. Corollary B.1. Assume that the initial datum satisfies L-A*) A particle crosses x = -1 at time t h , a particle in C changes direction from positive to negative and particles are both in (-1,ζ n (t)) and (ζ n (t),1) for any t < t h sufficiently big. R-A*) A particle crosses x = 1 at time t h , a particle in C changes direction from negative to positive and particles are both in (-1,ζ n (t)) and (ζ n (t),1) for any t < t h sufficiently big. Proof. The proof consists in the following case by case study. Each case corresponds to two groups of letters divided by a dash. The first group of letters contains "L" if a particle leaves C crossing x = -1, and "R" if a particle leaves C crossing x = 1. The second group is given by two letters: the first corresponds to the time interval (t h-1 ,t h ) and the second one to the time interval (t h ,t h+1 ). These letters have the same meaning as in the proof of Proposition B.1. Recall that, by Corollary B.1, at times t h (at least) a particle leaves C. L-AA) Assume that there exist I -and I + such that

R max := ρ L ∞ ∞ ∞ (C) ∈ (0,ρ max ). (B.
t ∈ (t h-1 ,t h ) =⇒ x I--1 (t) -1 < x I-(t) < ζ n (t), ζ n (t) x I+ (t) < 1 x I++1 (t), t = t h =⇒ x I--1 (t) < -1 = x I-(t) < ζ n (t), ζ n (t) x I+ (t) < 1 x I++1 (t), t ∈ (t h ,t h+1 ) =⇒ x I--1 (t) < x I-(t) -1 < x I-+1 (t) < ζ n (t), ζ n (t) x I+ (t) < 1 x I++1 (t).
By (4.6), the continuity of the particles and (4.4) we have that

ζ n (t + h ) -ζ n (t - h ) + α ¢ ζ n (t + h ) ζ n (t - h ) ρ n (t h ,y)d = α 2 ¢ x I -+1 (t h ) x I -(t h ) ρ n (t h ,y)dy = α 2 > 0.
The above condition implies that ζ n (t + h ) > ζ n (t - h ) and therefore also that

¢ ζ n (t + h ) ζ n (t - h ) ρ n (t h ,y)dy < 2 .
This implies that at time t = t h at most only one particle changes direction. In this case, by the continuity of the particles paths, the only possibility is that at time t h a particle changes direction from positive to negative. L-AB) Assume that there exist I -and I + such that

t ∈ (t h-1 ,t h ) =⇒ x I--1 (t) -1 < x I-(t) < ζ n (t), ζ n (t) x I+ (t) < 1 x I++1 (t), t = t h =⇒ x I--1 (t) < -1 = x I-(t) < ζ n (t), ζ n (t) x I+ (t) < 1 x I++1 (t), t ∈ (t h ,t h+1 ) =⇒ x I--1 (t) < x I-(t) -1 < ζ n (t) x I-+1 (t), ζ n (t) x I+ (t) < 1 x I++1 (t).
By (4.6), the continuity of the particles and (4.4) we have that

ζ n (t + h ) -ζ n (t - h ) + α ¢ ζ n (t + h ) ζ n (t - h ) ρ n (t h ,y)dy = α 2 ¢ ζ n (t + h ) -1 ρ n (t h ,y)dy ∈ 0, α 2 .
The above condition implies that ζ n (t + h ) > ζ n (t - h ) and therefore in this case no particle changes direction. In particular this implies that x I-+1 (t) ζ n (t) for all t ∈ (t h-1 ,t h+1 ). L-AC) Assume that there exist I -and I + such that ρ n (t h ,y)dy < .

t ∈ (t h-1 ,t h ) =⇒ x I--1 (t) -1 < x I-(t) < ζ n (t), ζ n (t) x I+ (t) < 1 x I++1 (t), t = t h =⇒ x I--1 (t) < -1 = x I-(t) < ζ n (t), ζ n (t) x I+ (t) < 1 x I++1 (t), t ∈ (t h ,t h+1 ) =⇒ x I--1 (t) < x I-(t) -1 < x I-+1 (t) < ζ n (t), x I+ (t) ζ n (t) < 1 x I++1 (t
This implies that at time t = t h at most only one particle changes direction. Therefore, x I+-1 (t) < ζ n (t) for all t ∈ (t h-1 ,t h+1 ) and only the I + -th particle changes direction from positive to negative. L-CA) Assume that there exist I -and I + such that t ∈ (t h-1 ,t h ) =⇒

x I--1 (t) -1 < x ρ n (t h ,y)dy ∈ 0, α 2 .

As a consequence ζ n (t + h ) > ζ n (t - h ) and therefore at time t h no particle changes direction. However, this leads to a contradiction and therefore this case does not occur. L-CB) Assume that there exist I -and I + such that t ∈ (t h-1 ,t h ) =⇒

x I--1 (t) -1 < x I-(t) < x I-+1 (t) x I+ (t) < ζ n (t) < 1 x I++1 (t), t ∈ (t h ,t h+1 ) =⇒

x I--1 (t) < x I-(t) -1 < ζ n (t) x I-+1 (t) x I+ (t) < 1 x I++1 (t). By (4.6), the continuity of the particles and (4.4) we have that

ζ n (t + h ) -ζ n (t - h ) + α 2 ¢ ζ n (t + h ) ζ n (t - h )
ρ n (t h ,y)dy = α 2

¢ x I + (t h ) x I -(t h )
ρ n (t h ,y)dy α 2 > 0.

As a consequence ζ n (t + h ) > ζ n (t - h ) and therefore at time t h no particle changes direction. However, this leads to a contradiction and therefore this case does not occur. LR-AA) Assume that there exist I -and I + such that t ∈ (t h-1 ,t h ) =⇒

x I--1 (t) -1 < x ρ n (t h ,y)dy = 0.

The above equality implies that ζ n (t + h ) = ζ n (t - h ). As a consequence at time t = t h at most only one particle changes direction. We claim that no particle changes direction. Assume by contradiction that a particle changes direction. We distinguish two possible subcases.

• Let I 0 be such that ρ n (t h ,y)dy < 2 .

As a consequence at time t = t h at most only one particle changes direction. In this case, the only possibility is that at time t h the (I -+ 1)-th particle changes direction from negative to positive. We claim that the (I -+ 1)-th particle does not change direction. Assume by contradiction that it does. ρ n (t h ,y)dy = α 2

¢ x I -+1 (t h ) x I -(t h )
ρ n (t h ,y)dy -

¢ x I + (t h ) ζ n (t + h )
ρ n (t h ,y)dy

= α 2 
¢ x I + (t h ) x I + -1 (t h )
ρ n (t h ,y)dy -

¢ x I + (t h ) ζ n (t + h )
ρ n (t h ,y)dy = α 2

¢ ζ n (t + h ) x I + -1 (t h )
ρ n (t h ,y)dy ∈ 0, α 2 .

This implies that ζ n (t + h ) > ζ n (t - h ) and therefore also that

¢ ζ n (t + h ) ζ n (t - h )
ρ n (t h ,y)dy < 2 .

As a consequence at time t = t h at most only one particle changes direction. In this case, the only possibility is that at time t h the (I + -1)-th particle changes direction from positive to negative. We claim that the (I + -1)-th particle does not change direction. Assume by contradiction that it does. ρ n (t h ,y)dy + 2

¢ x I + -1 (t h ) ζ n (t - h )
ρ n (t h ,y)dy < 0, but this gives a contradiction. At last, the remaining cases Rare analogous to the cases L-.

  0 for a.e. ρ ∈ [0,ρ max ]. Now, an entropy solution [55] to the initial value problem (2.1a), (2.1c) in the whole of (0,∞) × R (without boundary conditions), with initial datum ρ ∈ L ∞ ∞ ∞ (R;[0,ρ max ]) having support in [-1,1], achieves only values in [0,ρ c ) outside [-1,1]. Thus, the entropy solution without boundary condition coincides with the one with boundary conditions (2.1b).

  )dy ϕ(0,x)dx = y)dy dx .

Fig. 7. 1 .

 1 Fig. 7.1. Microscopic evacuation time as a function of α.

Fig. 7. 2 .

 2 Fig. 7.2. The particle paths and the turning curve, above, and the corresponding approximate macroscopic density, below, for α = 0, α = 1.3, α = 5 and α = 18.9, respectively. The green lines are the turning curves.

  4.2. In general, this does not imply that at time t h a particle changes direction, see again Fig. 4.2. This occurs if and only if at time t h a particle belongs to the interval ζ(t - h ),ζ(t + h ) . It is also clear that there is at most one particle in the interval ζ(t -

h ),ζ(t + h ) , see Fig.

4

.3. This concludes the proof.

  y)dy, which is equivalent to (2.2), but is numerically simpler because the unknown ξ appears in just one integral. The approximate macroscopic density is defined by

		n			
	ρ(t,x) :=	i=0 x h i+1 -x h i	1 [x h i ,x h i+1 ) (x)	h= t/∆t	.
	T mac	3.2		
			3.0		
			2.8		
			2.6		
			2.4		
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	Fig. 7.3. Macroscopic evacuation time as a function of α.

1 )

 1 If a particle changes direction, then a particle leaves C.Proof. By definition, during the time interval (s h ,s h+1 ) no particle leaves C. Assume by contradiction that T := (s h ,s h+1 ) ∩ {t 0 ,t 1 ,t 2 ,...} is not empty. Define t k := minT . By Proposition B.1 we have that

	ẋI0 (t) < ζn (t) < ẋI0+1 (t)	∀t ∈ (s

h ,t k ).

By the continuity of ζ n in the time interval (s h ,s h+1 ), the above estimate implies that no particle can change direction at time t k , and this gives a contradiction. Proposition B.2. Assume that the initial datum satisfies (B.1). If one particle changes direction, then exactly one particle leaves C. More precisely, a particle changes direction at time t h > 0 if and only one of the following cases occur:

  ).By(4.6), the continuity of the particles and (4.4) we have thatζ n (t + h ) -ζ n (t - h ) + α ¢ ζ n (t +The above condition implies that ζ n (t + h ) > ζ n (t - h ) and therefore also that¢ ζ n (t +

					h ) h ) ζ n (t -	ρ n (t h ,y)dy
	=	α 2	+	¢ ζ n (t + h ) x I + (t h )	ρ n (t h ,y)dy ∈	α 2	,α .
				h )		
				ζ n (t -h )			

  I-(t) < ζ n (t), x I+ (t) < ζ n (t) < 1 x I++1 (t), t = t h =⇒ x I--1 (t) < -1 = x I-(t) < ζ n (t), x I+ (t) ζ n (t) < 1 x I++1 (t), t ∈ (t h ,t h+1 ) =⇒ x I--1 (t) < x I-(t) -1 < x I-+1 (t) < ζ n (t), ζ n (t) x I+ (t) < 1 x I++1 (t).

By

(4.6)

, the continuity of the particles and (4.4) we have that

ζ n (t + h ) -ζ n (t - h ) + α ¢ ζ n (t + h ) ζ n (t - h ) ρ n (t h ,y)dy = α 2 -¢ ζ n (t - h )

x I + (t h )

  I-(t) < ζ n (t), ζ n (t) x I+ (t) < 1 x I++1 (t), t = t h =⇒ x I--1 (t) < -1 = x I-(t) < ζ n (t), ζ n (t) < x I+ (t) = 1 < x I++1 (t),

t ∈ (t h ,t h+1 ) =⇒ x I--1 (t) < x I-(t) -1 < x I-+1 (t) < ζ n (t), ζ n (t) x I+-1 (t) < 1 x I+ (t) < x I++1 (t).

By (4.6), the continuity of the particles and (4.4) we have that

ζ n (t + h ) -ζ n (t - h ) + α ¢ ζ n (t + h ) ζ n (t - h )

  t ∈ (t h-1 ,t h ) =⇒ x I0 (t) < ζ n (t) x I0+1 (t), t = t h =⇒ x I0 (t) < ζ n (t) = x I0+1 (t), t ∈ (t h ,t h+1 ) =⇒ x I0 (t) < x I0+1 (t) < ζ n (t).For any t < t h sufficiently big we haveZ -t - h ,ζ n (t h ) = Z + t - h ,ζ n (t h ) , Z -(t,ζ n (t)) = Z + (t,ζ n (t)), Z -(t,ζ n (t)) = Z -t - h ,ζ n (t h ) + (ζ n (t) -ζ n (t h )) -α Z + (t,ζ n (t)) = Z + t - h ,ζ n (t h ) + (ζ n (t h ) -ζ n (t)) + α I0+ 1 2 dy 0 =⇒ ζ n (t) ζ n (t h ). This implies that x I0+1 (t) ζ n (t) ζ n (t h ) = x I0+1 (t h ). However (4.3) and (B.1) imply that x I0+1 (t) < x I0+1 (t h ) and this gives a contradiction.• Let I 0 be such that t ∈ (t h-1 ,t h ) =⇒ x I0 (t) < ζ n (t) x I0+1 (t), t = t h =⇒ x I0 (t) = ζ n (t) < x I0+1 (t), t ∈ (t h ,t h+1 ) =⇒ ζ n (t) < x I0 (t) < x I0+1 (t).For any t < t h sufficiently big we haveZ -t - h ,ζ n (t h ) = Z + t - h ,ζ n (t h ) , Z -(t,ζ n (t)) = Z + (t,ζ n (t)), Z -(t,ζ n (t)) = Z -t - h ,ζ n (t h ) + (ζ n (t) -ζ n (t h )) + α Z + (t,ζ n (t)) = Z + t - h ,ζ n (t h ) + (ζ n (t h ) -ζ n (t)) -α =⇒ ζ n (t) ζ n (t h ).This implies that x I0+1 (t) ζ n (t) ζ n (t h ) = x I0+1 (t h ). However (4.3) and (B.1) imply that x I0 (t) > x I0 (t h ) and this gives a contradiction. Therefore, since in both the cases we achieve a contradiction, we have that no particle changes direction. LR-AB) Assume that there exist I -and I + such thatt ∈ (t h-1 ,t h ) =⇒ x (t h ,t h+1 ) =⇒ x I--1 (t) < x I-(t) -1 < ζ n (t) x I-+1 (t), ζ n (t) x I+-1 (t) < 1 x I+ (t) < x I++1 (t). By (4.6), the continuity of the particles and (4.4) we have that ζ n (t + h ) -ζ n (t - h ) + α ¢ ζ n (t + n (t h ,y)dy -¢ x I + (t h ) x I + -1 (t h ) ρ n (t h ,y)dy

	¢ x I 0 +1 (t) ζ n (t) ¢ x I 0 +1 (t) ζ n (t) ζ ¢ ζ n (t) As a consequence we have that x I 0 (t) R I0+ 1 R I0+ 1 2 dy, R I0+ 1 2 dy. 2 dy, ¢ ζ n (t) x I 0 (t) R I0+ 1 2 dy. As a consequence we have that ζ n (t) -ζ n (t h ) = -α ¢ ζ n (t) x I 0 (t) R I0+ 1 ζ n (t -h ) ρ n (t h ,y)dy = α 2 ¢ ζ n (t + h ) x I -(t h ) = α 2 ¢ ζ n (t + h ) x I -(t h ) ρ n (t h ,y)dy -¢ x I -+1 (t h ) x I -(t h ) ρ n (t h ,y)dy = -α 2 ¢ x I -+1 (t h ) ζ n (t + h ) ρ n (t h ,y)dy ∈ -This implies that ζ n (t + h ) < ζ n (t -h ) and therefore also that ¢ ζ n (t -h ) 2 dy 0 h ) ζ n (t + h )	α 2	,0 .

n (t) -ζ n (t h ) = α ¢ x I 0 +1 (t) ζ n (t) R I--1 (t) -1 < x I-(t) < ζ n (t), ζ n (t) x I+ (t) < 1 x I++1 (t), t = t h =⇒ x I--1 (t) < -1 = x I-(t) < ζ n (t), ζ n (t) < x I+ (t) = 1 < x I++1 (t), t ∈ ρ

  LR-AC) Assume that there exist I -and I + such that t ∈ (t h-1 ,t h ) =⇒x

	By (4.6), the continuity of the particles and (4.4) we have that
	ζ n (t + h ) -ζ n (t -h ) + α	¢ ζ n (t + h ) ζ n (t -h )

Then we have

x I-+1 (t) < ζ n (t) x I-+2 (t), t ∈ (t h-1 ,t h ), ζ n (t) x I-+1 (t), t ∈ (t h ,t h+1 ),

and therefore by the above computations

ζ n (t + h ) -ζ n (t - h ) = α 2 ¢ x I -+1 (t h ) ζ n (t + h ) ρ n (t h ,y)dy + 2 ¢ ζ n (t - h ) x I -+1 (t h )

ρ n (t h ,y)dy > 0, but this gives a contradiction.

I--1 (t) -1 < x I-(t) < ζ n (t), ζ n (t) x I+ (t) < 1 x I++1 (t), t = t h =⇒ x I--1 (t) < -1 = x I-(t) < ζ n (t), ζ n (t) x I+ (t) = 1 < x I++1 (t), t ∈ (t h ,t h+1 ) =⇒ x I--1 (t) < x I-(t) -1 < x I-+1 (t) ζ n (t),

x I+-1 (t) ζ n (t) < 1 x I+ (t) < x I++1 (t).

  I-+1 (t) ζ n (t), t ∈ (t h ,t h+1 ),and therefore by the above computationsζ n (t + h ) -ζ n (t - h ) = -

	α	¢ ζ n (t +
	2	

Then we have

x I+-2 (t) ζ n (t) < x I+-1 (t), t ∈ (t h-1 ,t h ), x h ) x I + -1 (t h )
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Appendix A. Further insights on Υ 1 . The function Υ 1 defined in (6.3) can be expressed in terms of the positive and negative part functions, respectively [ρ] + := max{ρ,0} and [ρ] -:= max{-ρ,0}, as follows

for any t ∈ (t h ,t h+1 ). To prove it, introduce

To prove (A.1), it is sufficient to observe that by (6.5) and (A.3) we have

where in the second identity we use |ρ| = [ρ] + + [ρ] -, whereas in the third identity that [ρ] --[ρ] + = -ρ. At last, by (A.1), (6.5) and (A.3) we have

and this concludes the proof of (A.2).

Appendix B. Further insights on ζ n .

In this section we give an alternative analytical proof of the results listed in Proposition 4.1 on the switching of the particles, see Proposition B.2.

As in the previous sections, let t 0 := 0 < t 1 < t 2 ,... be the times at which a particle changes direction. Let s 0 := 0 < s 1 < s 2 < ... be the times at which (at least) a particle leaves C. We want to prove that no particle changes direction during the time interval (s h ,s h+1 ) or, equivalently, that {t 0 ,t 1 ,t 2 ,...} ⊆ {s 0 ,s 1 ,s 2 ,...}. Let τ 0 ,τ 1 ,τ 2 ,... be such that τ h < τ h+1 and {τ 0 ,τ 1 ,τ 2 ,...} = {t 0 ,t 1 ,t 2 ,...} ∪ {s 0 ,s 1 ,s 2 ,...}. By definition, during the time interval (τ h ,τ h+1 ) no particle leaves C and no particle changes direction.

We start by rewriting condition (4.6) in the next proposition. Notice that the obtained expressions for ζ n or ζn are not explicit. Indeed, Proposition B.1 deals with four possible cases but does not give any criterium to select which case applies to a given configuration of the particles. Moreover, also the index I 0 depends on ζ n . Proposition B.1. We distinguish the following cases: