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In this paper we study the global exponential stability in the L 2 norm of semilinear 1-d hyperbolic systems on a bounded domain, when the source term and the nonlinear boundary conditions are Lipschitz. We exhibit two sufficient stability conditions: an internal condition and a boundary condition. This result holds also when the source term is nonlocal. Finally, we show its robustness by extending it to global Input-to State Stability in the L 2 norm with respect to both interior and boundary disturbances.

Introduction

Hyperbolic systems can be found everywhere in sciences and nature: from biology [START_REF] Filbet | Derivation of hyperbolic models for chemosensitive movement[END_REF], to fluid mechanics, population dynamics [START_REF] Tadmor | Critical thresholds in flocking hydrodynamics with non-local alignment[END_REF], electromagnetism, networks [START_REF] Leugering | On the modelling and stabilization of flows in networks of open canals[END_REF][START_REF] Dick | Classical solutions and feedback stabilization for the gas flow in a sequence of pipes[END_REF][START_REF] Espitia | Fluid-flow modeling and stability analysis of communication networks[END_REF] etc. For this reason, they are of large importance for practical applications and the question of their stability and stabilization is paramount.

For linear 1-d systems, studying the exponential stability or the stabilization can Email address: amaury.hayat@enpc.fr (Amaury Hayat)

Preprint submitted to Journal of L A T E X Templates November 22, 2020 be achieved by looking at the eigenvalues and using spectral mapping theorems [START_REF] Lichtner | Spectral mapping theorem for linear hyperbolic systems[END_REF][START_REF] Renardy | On the type of certain C 0 -semigroups[END_REF]. For nonlinear systems, the situation is much more tricky. For nonlinear systems, the situation is much more tricky. In general the stabilities in different norms are not equivalent [START_REF] Coron | Dissipative boundary conditions for nonlinear 1-d hyperbolic systems: sharp conditions through an approach via timedelay systems[END_REF]. Indeed, for the same system, stabilities in different norms can require different criteria. For semilinear systems the spectral tools may still work (in contrast with quasilinear systems), but the resulting exponential stability may only hold locally, meaning for small enough perturbations.

Worse, most of the time spectral tools are hard to use when the system is inhomogeneous. Several tools were developed to deal with this situation and obtain local exponential stability results. A first method is the characteristic analysis, which was originally used by Li and Greenberg in 1984 in [START_REF] Greenberg | The effect of boundary damping for the quasilinear wave equation[END_REF] then generalized in [START_REF] Li | Global classical solutions for quasilinear hyperbolic systems[END_REF][START_REF] Qin | Global smooth solutions of dissipative boundary value problems for first order quasilinear hyperbolic systems[END_REF][START_REF] Zhao | The boundary value problem for systems of first-order quasilinear hyperbolic equations[END_REF][START_REF] Wang | Exact controllability for nonautonomous first order quasilinear hyperbolic systems[END_REF] for quasilinear homogeneous hyperbolic systems in the C1 norm.

A second method is the use of basic Lyapunov functions 1 . This method was, for instance, applied in [START_REF] Bastin | Stability and Boundary Stabilisation of 1-D Hyperbolic Systems[END_REF]Chapter 6] for general semilinear systems in the H 1 norm and quasilinear systems in the H2 norm, but also in many particular cases [START_REF] Bastin | A quadratic Lyapunov function for hyperbolic density-velocity systems with nonuniform steady states[END_REF][START_REF] Gugat | Neumann boundary feedback stabilization for a nonlinear wave equation: A strict H 2 -Lyapunov function[END_REF][START_REF] Hayat | A quadratic Lyapunov function for Saint-Venant equations with arbitrary friction and space-varying slope[END_REF][START_REF] Hayat | Exponential stability of density-velocity systems with boundary conditions and source term for the H 2 norm[END_REF][START_REF] Dick | A strict H 1 -Lyapunov function and feedback stabilization for the isothermal Euler equations with friction[END_REF]. This will be our approach in this article. A third method is the backstepping method, a very powerful tool originally designed for finite-dimensional systems, modified for PDEs using a Volterra transform in [START_REF] Krstic | Boundary control of PDEs[END_REF], 2 and then used in [START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF][START_REF] Hu | Boundary exponential stabilization of 1-d inhomogeneous quasilinear hyperbolic systems[END_REF] for quasilinear hyperbolic systems in the H 2 norm. Such backstepping approach was also used to derive controllability [START_REF] Coron | Optimal time for the controllability of linear hyperbolic systems in one-dimensional space[END_REF][START_REF] Coron | Null-controllability of linear hyperbolic systems in one dimensional space[END_REF] or finite-time stabilization [START_REF] Coron | Null controllability and finite time stabilization for the heat equations with variable coefficients in space in one dimension via backstepping approach[END_REF][START_REF] Coron | Finite-time stabilization in optimal time of homogeneous quasilinear hyperbolic systems in one dimensional space[END_REF][START_REF] Coron | Lyapunov functions and finite time stabilization in optimal time for homogeneous linear and quasilinear hyperbolic systems[END_REF] in both parabolic and hyperbolic settings. Other results using a more general transform were then introduced [START_REF] Zhang | Internal rapid stabilization of a 1-D linear transport equation with a scalar feedbackWorking paper or preprint[END_REF][START_REF] Coron | Rapid stabilization of a linearized bilinear 1-D Schrödinger equation[END_REF]. The main drawback of this method is that it involves controls that are usually using full-state measurements and cannot take the simple form of output feedback controllers (see ( 3)). Therefore these controls might be less convenient for practical implementation. Although sometimes observers can be designed to tackle this issue [START_REF] Di Meglio | A backstepping boundary observer for a class of linear first-order hyperbolic systems[END_REF]. Other methods exist, as for instance the study of stability based on time delay systems introduced in [START_REF] Coron | Dissipative boundary conditions for nonlinear 1-d hyperbolic systems: sharp conditions through an approach via timedelay systems[END_REF] where the authors give criteria for exponential stability in the W 2,p norms for any p ≥ 1 (see also [START_REF] Chitour | Approximate and exact controllability of linear difference equations[END_REF]).

So far, the nonlinear stability results for hyperbolic systems have been obtained in the H 1 norm for semilinear systems and for the H 2 norm for quasilinear systems. The H 1 and H 2 norm enabling to bound the nonlinear terms of the source term and of the transport term respectively, using the Sobolev embed-

dings H p ([0, L]; R) ⊂ C p-1 ([0, L]; R), for p ≥ 1.
Other results have been shown

for the C 0 and C 1 norm [START_REF] Hayat | Boundary Stability of 1-D Nonlinear Inhomogeneous Hyperbolic Systems for the C 1 Norm[END_REF][START_REF] Hayat | On boundary stability of inhomogeneous 2× 2 1-D hyperbolic systems for the C 1 norm[END_REF]. For weaker norms, such as the L 2 norm, one is usually unable to derive any exponential stability result when the system is nonlinear. However, in this paper we show that having a Lipschitz source term, with some condition on the size of the source, is enough to obtain the exponential stability in the L 2 norm for semilinear systems. Besides, in contrast with most of the previous analyses cited above, this result holds for a nonlocal source term. Nonlocal source terms are found in many important phenomena as population dynamics, material sciences, flocking, traffic flow [START_REF] Tadmor | Critical thresholds in flocking hydrodynamics with non-local alignment[END_REF][START_REF] Berestycki | The non-local Fisher-KPP equation: travelling waves and steady states[END_REF][START_REF] Bayen | Modeling multi-lane traffic with moving obstacles by nonlocal balance laws[END_REF], and open the door to many potential applications. Moreover, while all the above previous approaches were dealing with local exponential stability, we obtain here global exponential stability. Concerning semilinear systems with Lipschitz source terms, one should highlight the work of [START_REF] Dus | On L ∞ Stabilization of Diagonal Semilinear Hyperbolic Systems by Saturated Boundary Control[END_REF] where the authors study the exponential stability in C 0 norm of a semilinear system with a diagonal and Lipschitz source term, and saturating boundary conditions. They give a potentially large explicit bound on the basin of attraction, and they prove in addition the well-posedness in L 2 .

Finally, we show that these results can be extended to a wider notion: the Input-to-State Stability (ISS). The ISS measures the resilience of the stability of a system when adding disturbances in the boundary conditions or in the source term [START_REF] Sontag | Smooth stabilization implies coprime factorization[END_REF][START_REF] Karafyllis | Input-to-state stability for PDEs[END_REF]. These disturbances could have many origins such as actuator errors, quantized measurments, uncertainties of model parameters, etc. The ISS is therefore a more relevant notion from an application perspective, and is also paramount for designing observers. While exponential stability of nonlinear hyperbolic systems has been studied for several decades now, fewer results are known concerning this wider notion of ISS. Until recently, the most up-to-date results were given in [40, Part II], for L p norms, p ∈ N * ∪ {+∞} (see also [START_REF] Prieur | ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws[END_REF] for instance for nonautonomous systems), and recently several works have been providing quite good conditions by extending exponential stabilization results obtained through Lyapunov approach to ISS results under the same conditions [START_REF] Ferrante | Boundary Control Design for Conservation Laws in the Presence of Measurement Noise[END_REF][START_REF] Weldegiyorgis | An analysis of the input-to-state stabilization of linear hyperbolic systems of balance laws with boundary disturbances[END_REF][START_REF] Bastin | Input-to-State Stability in sup norms for hyperbolic systems with boundary disturbances[END_REF]. These results suffer however the same limitations as the exponential stabilization results they are generalizing: local validity and strong norms. One can also refers to [START_REF] Dashkovskiy | Robust stability of a perturbed nonlinear wave equation[END_REF][START_REF] Dashkovskiy | Input-to-state stability of infinitedimensional control systems[END_REF][START_REF] Lhachemi | PI Regulation of a Reaction-Diffusion Equation with Delayed Boundary Control[END_REF][START_REF] Hayat | PI controllers for the general Saint-Venant equationsWorking paper or preprint[END_REF] for other ISS results on hyperbolic systems in particular cases, and to [START_REF] Karafyllis | Input-to-state stability for PDEs[END_REF] for a more detailed review on ISS results for PDEs in general. This paper is organized as follows: in Section 2 we state some definitions and our main result, which is proven in Section 3 using a Lyapunov approach. The well-posedness and the extension to ISS are dealt with in the Appendix.

Statement of the problem and main results

A semilinear hyperbolic system can always be written in the following way [START_REF] Li | Boundary value problems for quasilinear hyperbolic systems[END_REF]:

∂ t u + Λ(x)∂ x u + B(u, x) = 0, (1) 
where u(t, x) ∈ R n , Λ(x) is a diagonal matrix with non vanishing eigenvalues,

Λ : x → Λ(x) belongs to C 1 ([0, L]) and B ∈ C 0 (L 2 (0, L) × [0, L], L 2 (0, L))
is the nonlinear source term, with B(0, x) = 0. Note that B could be potentially nonlocal at it takes a function as argument, thus B(u, x) refers here to B(u(t, •), x).

Throrough the article we will assume that B(•, x) is Lipschitz with respect to u with a Lipschitz constant C B in the following sense: for u and v two functions

of L 2 (0, L), B(u, •) -B(v, •) L 2 ≤ C B u -v L 2 . ( 2 
)
Of course, this assumption is satisfied if

B is local, takes argument in R n × [0, L]
and is Lipschitz with respect to the first argument, with a Lipschitz constant that might depend on x but as a L 2 function. We will come back to this special case later on in Remark 2.4. When the system is equipped with a control static and exerted at the boundaries, the boundary conditions can be written in the following way:

  u + (t, 0) u -(t, L)   = G   u + (t, L) u -(t, 0)   , (3) 
where G is a continuous and Lipschitz function such that G(0) = 0. The notation u + is used to refer to the components of u corresponding to positive propagation speeds Λ i > 0, whereas the notation u -is used to refer to the components corresponding to negative propagation speeds. In the following, we assume without loss of generality that Λ i > 0 for i ∈ {1, ..., m} and Λ i < 0 for i ∈ {m + 1, ..., n}. Note that the boundary conditions (3) are nonlinear. As G is Lipschitz, all of its components are Lipschitz, which implies that there exists a matrix K such that for any i ∈ {1, ..., n}, System (1), ( 3) with ( 2), ( 4) is well posed in L 2 in the following sense:

G i   u + (t, L) u -(t, 0)   ≤ m j=1 K ij |u j (t, L)| + n j=m+1 K ij |u j (t, 0)|. (4) 
Theorem 2.1 (Well posedness). For any T > 0 and any

u 0 ∈ L 2 (0, L) the Cauchy problem (1)-(3), with initial condition u(0, •) = u 0 has a unique solution u ∈ C 0 ([0, T ], L 2 (0, L)). Moreover, u(t, •) L 2 ≤ C(T ) u 0 L 2 , ∀ t ∈ [0, T ], (5) 
where C(T ) is a constant depending only on T .

This theorem is shown in the Appendix. Most of the proof is a subcase of a remarkable result in [START_REF] Dus | On L ∞ Stabilization of Diagonal Semilinear Hyperbolic Systems by Saturated Boundary Control[END_REF]Theorem A.1], where the authors study the framework of saturating boundary conditions. The only differences are some slight changes in the estimates to deal with a nonlocal functional and a density argument.

These changes are indicated in Appendix A, together with a proper definition of the notion of weak solution to System (1), (3).

Remark 2.2. As it could be expected, the well posedness also holds for more regular solutions. In particular for any u 0 ∈ H 1 (0, L) satisfying the compatibility conditions given by ( 3), the Cauchy problem ( 1), ( 3) with initial condition

u(0, •) = u 0 has a unique solution u ∈ C 0 ([0, T ], H 1 (0, L)) ∩ C 1 ([0, T ], L 2 (0, L)).
This is also shown in Appendix A.

Before stating our main result, we recall the definition of exponential stability for the L 2 norm.

Definition 2.1 (Exponential stability). We say that System (1)-( 3) is exponentially stable for the L 2 norm with decay rate γ and gain C if there exists constants δ > 0, γ > 0, and C > 0 such that for any T > 0 and

u 0 ∈ L 2 (0, L) such that u 0 L 2 ≤ δ, the Cauchy problem (1)-(3) with initial condition u(0, •) = u 0 has a unique solution u ∈ C 0 ([0, T ], L 2 (0, L)) and u(t, •) L 2 ≤ Ce -γt u 0 L 2 . ( 6 
)
Moreover, if

δ = +∞, (7) 
then the system is said globally exponentially stable.

We can now state our main result.

Theorem 2.2. Let a system be of the form (1), [START_REF] Leugering | On the modelling and stabilization of flows in networks of open canals[END_REF], where

Λ ∈ C 1 ([0, L])
and B is Lipschitz with respect to u. If there exist K ∈ M n (R) satisfying (4),

J ∈ C 1 ([0, L]; M n (R))
where J(x) is a diagonal matrix with positive coefficients, and M ∈ C 0 ([0, L]; M n (R)), such that the following conditions are satisfied

1. (Interior condition) -(J 2 Λ) + J 2 M + M J 2 (8) 
is positive definite and there exists D ∈ C 1 ([0, L]; M n (R)) where D(x) is a diagonal matrix with positive coefficients, such that

C g < λ m 2 max i,x (D i ) max i,x (D i J 2 i ) , (9) 
where C g is the Lipschitz constant of g :=B -M and λ m denotes the smallest eigenvalue of

-D(J 2 Λ) D + DJ 2 M D + DM J 2 D, (10) 
2. (Boundary condition) the matrix

  J 2 + (L)Λ + (L) 0 0 J 2 -(0)|Λ -(0)|   -K   J 2 + (0)Λ + (0) 0 0 J 2 -(L)|Λ -(L)|   K (11) 
is positive semidefinite, then the system is globally exponentially stable for the L 2 norm. Moreover the

gain is J -1 L ∞ J L ∞ and an admissible decay rate is λ m (2 max i,x (D i J 2 i )) -1 - C g max i,x (D i )
We prove this theorem in Section 3. Note that (9) does not involve directly the Lipschitz constant of B but the Lipschitz constant of g= B -M , which is B minus a linear part that can be chosen. Of course, the Lipschitz constant of B would be suitable by setting M = 0, but other choices of M could lead to less restrictive conditions. Let us note that the apparent complexity of the interior condition aims at giving a good explicit computable bound on C g for practical applications: indeed finding the values of λ m can be numerically solved.

Besides, choosing D = Id or K = C G I would also give a sufficient condition that is simpler to write, but the sufficient condition would be more restrictive.

Remark 2.3 (Linear case). When B is a local and linear operator we recover the result found in [16, Proposition 5.1] (see also [START_REF] Diagne | Lyapunov exponential stability of 1-D linear hyperbolic systems of balance laws[END_REF] when B is in addition marginally diagonally stable). Indeed, we can choose M = B, then g = 0 and the interior condition is reduced to the existence of J, diagonal matrix with positive coefficients such that -(ΛJ 2 ) + J 2 M + M J 2 is positive definite.

Remark 2.4 (Local case). In the special case where the system is local, i.e. B is a function on R × [0, L] and B(u, x) = B(u(t, x), x), the condition (9) of the previous theorem can be slightly improved as follows: assume that B is Lipschitz with respect to the first variable with a Lipschitz constant C(x) ∈ L 2 (0, L), then for any matrix M , g = B -M is also Lipschitz with respect to the first variable and we can denote again its Lipschitz constant by C g (x) ∈ L 2 (0, L). Then, the interior condition (9) in Theorem 2.2 can be replaced by

C g < λ m (x) max i (J 2 i )(x) or C g < µ m (x) max i (J i )(x) inf i (J i )(x) , (12) 
where λ m (x) and µ m (x) are the smallest eigenvalues at a given x of the matrix given by ( 8) and ( 10) respectively.

Input-to-State Stability

In fact, this result can be extended to a more general notion: the Inputto-State Stability (ISS). This notion is more relevant when looking at practical implications as it takes into account the external disturbances that can arise.

When such disturbance arise, System (1), ( 3) is replaced by

∂ t u + Λ(x)∂ x u + B(u, x) + d 1 (t, x) = 0,   u + (t, 0) u -(t, L)   = G   u + (t, L) u -(t, 0)   + d 2 (t), (13) 
where d 1 and d 2 are respectively the distributed and boundary disturbances.

We define the ISS as follows:

Definition 2.2 (Input-to-State Stability). We say that System ( 13) is strongly Input-to-State stable (or ISS) with fading memory for the L 2 norm if there exists positive constants δ > 0, C 1 > 0, C 2 > 0, γ > 0, such that for any T > 0 and any u 0 ∈ L 2 (0, L) with u 0 L 2 ≤ δ and

d 1 L 2 + d 2 L 2 ≤ δ, there exists a unique solution u ∈ C 0 ([0, T ], L 2 ([0, L]))
to System (1), (3), and

u(t, •) L 2 ≤ C 1 e -γt u 0 L 2 + C 2 e -γ(t-s) d 1 (s, x) L 2 ((0,t)×(0,L)) + e -γ(t-s) d 2 (s) L 2 (0,t) , for any t ∈ [0, T ]. (14) 
Moreover, if δ = +∞, then the system is said to be globally strongly ISS with fading memory.

This defines a strong notion of ISS with an exponentially fading memory.

The fading memory comes from the e -γ(t-s) in the L 2 norms of d 1 and d 2 .

It means that the influence of the disturbances at a given time s decreases exponentially with time. One could have chosen other and less restrictive fading factors (see [START_REF] Karafyllis | Input-to-state stability for PDEs[END_REF]Chapter 7] for a more complete description of ISS estimates with fading memory). The constants C 1 and C 2 are called the gains of the ISS estimate. When such notion of ISS cannot be achieved, weaker notions exist and can be found for instance in [START_REF] Mironchenko | Characterizations of input-to-state stability for infinite-dimensional systems[END_REF]. We have the following result, analogous to Theorem 2.2

Theorem 2.3. Let a system be of the form [START_REF] Wang | Exact controllability for nonautonomous first order quasilinear hyperbolic systems[END_REF] where

Λ ∈ C 1 ([0, L]), d 1 ∈ L 2 ((0, T ) × (0, L)), d 2 ∈ H 1 ([0, T ]
) and B is Lipschitz with respect to u. If the condition (9) is satisfied and the matrix defined by (11) is positive definite, then the system is globally strongly ISS with fading memory for the L 2 norm.

The proof of this theorem is very similar to the proof of Theorem 2.2. The only difference being that the assumption on [START_REF] Qin | Global smooth solutions of dissipative boundary value problems for first order quasilinear hyperbolic systems[END_REF] has to be slightly stronger than in Theorem 2.2 (positive definite instead of positive semidefinite). A way to adapt the proof of Theorem 2.2 is given in 4. Besides, the gains can again be computed explicitly as a function of K, B and Λ (see [START_REF] Dus | On L ∞ Stabilization of Diagonal Semilinear Hyperbolic Systems by Saturated Boundary Control[END_REF]).

Exponential stability in the L 2 norm

Proof of Theorem 2.2. Let a semilinear system be of the form (1), (3) with Λ ∈ C 1 ([0, L], M n (R)) and B being L 2 with respect to u with Lipschitz con-stant C B . We will first show Theorem 2.2 for H 1 solutions and then recover it for L 2 solutions using a density argument. Let T > 0, and let u 0 ∈ H 1 (0, L). From Theorem 2.1 and Remark 2.2, there exists a unique solution u ∈ C 0 ([0, T ], H 1 (0, L))∩C 1 ([0, T ], L 2 (0, L)) associated to this initial condition.

Let us now define the following Lyapunov function candidate:

V (u) = L 0 (J(x)u(t, x)) J(x)u(t, x)dx, (15) 
where

J = diag(J 1 , ..., J n ) ∈ C 1 ([0, L], D + n (R n ))
, where D + n is the space of diagonal matrices with positive coefficients. The function V is well defined on

L 2 (0, L) and equivalent to u(t, •) 2 L 2 , as u(t, •) 2 L 2 J -1 -2 L ∞ ≤ V (u) ≤ J 2 L ∞ u(t, •) 2 L 2 . ( 16 
)
We would like to show that V decreases exponentially quickly along u. Before has the form (15) with J(x) = diag(q i e -µsix ) where s i = 1 if Λ i > 0 and s i = -1 if Λ i < 0 and q i and µ are positive constants to be chosen. In our case however, such function might not work. This is due to the inhomogeneity and this a phenomena that can be seen in balance laws in general [START_REF] Bastin | On boundary feedback stabilization of non-uniform linear 2× 2 hyperbolic systems over a bounded interval[END_REF]. For instance, in [START_REF] Hayat | A quadratic Lyapunov function for Saint-Venant equations with arbitrary friction and space-varying slope[END_REF] is found a basic quadratic Lyapunov function that exists for any length L > 0 provided good boundary conditions, while this could not happen with a basic quadratic Lyapunov function made of exponential weights.

As u ∈ C 1 ([0, T ], L 2 (0, L)), V (u(t,
•)) can be differentiated with time, and we have

dV (u(t, •)) dt = L 0 2u J 2 ∂ t udx = - L 0 2u J 2 Λ∂ x udx -2 L 0 u J 2 B(u, x)dx = -u J 2 Λu L 0 + L 0 u (J 2 Λ) udx -2 L 0 u J 2 B(u, x)dx. ( 17 
)
We used here that J and Λ commute as they are both diagonal. Now, let M ∈ C 0 ([0, L], M n (R)) to be selected later on and set g(u, x) = B(u, x)-M (x)u(t, x)

which is again Lipschitz in u in the sense of (2). We have

dV (u(t, •)) dt = -u J 2 Λu L 0 + L 0 u (J 2 Λ) udx -2 L 0 u J 2 M udx -2 L 0 u J 2 g(u, x)dx = -u J 2 Λu L 0 - L 0 u [-(J 2 Λ) + J 2 M + M J 2 ]udx -2 L 0 u J 2 g(u, x)dx (18) 
where we used that u J 2 M u = u M J 2 u, as it is a scalar. Now, we set

I 2 : = u J 2 Λu L 0 , I 3 : = L 0 u [-(J 2 Λ) + J 2 M + M J 2 ]udx + 2 L 0 u J 2 g(u, x)dx (19) 
We would like to show that under assumptions 1. and 2. of Theorem 2.2, I 2 is a nonnegative definite quadratic form with respect to the boundary conditions, and

I 3 ≥ µ u L 2
where µ is a positive constant. We will show that this is exactly the point of Assumptions 1. and 2.. Let us start with I 2 . From (3),

I 2 =   u + (t, L) u -(t, L)   J 2 (L)Λ(L)   u + (t, L) u -(t, L)   -   u + (t, 0) u -(t, 0)   J 2 (0)Λ(0)   u + (t, 0) u -(t, 0)   = m i=1 J 2 i (L)Λ i (L)u 2 i (L) - n i=m+1 J 2 i (0)Λ i (0)u i (0) 2 + n i=m+1 J 2 i (L)Λ i (L)   G i   u + (t, L) u -(t, 0)     2 - m i=1 J 2 i (0)Λ i (0)   G i   u + (t, L) u -(t, 0)     2 . ( 20 
)
We set x i := 0 if i ∈ {1, ..., m} and x i := L if i ∈ {m + 1, ..., n}. Then using that Λ i > 0 for i ∈ {1, ..., m} and Λ i < 0 otherwise, and using (4),

I 2 = n i=1 J 2 i (L -x i )|Λ i (L -x i )|u 2 i (L -x i ) - n i=1 J 2 i (x i )|Λ i (x i )|   G i   u + (t, L -x i ) u -(t, L -x i )     2 ≥ n i=1 J 2 i (L -x i )|Λ i (L -x i )|u 2 i (L -x i ) - n i=1 J 2 i (x i )|Λ i (x i )|   n j=1 K ij |u j (t, L -x j )|   2 , (21) 
This can be rewritten as

I 2 ≥ Y N Y, (22) 
where Y is a vector with components Y i = |u i (t, L -x i )| and N is given by

N = J 2 + (L)|Λ+(L)| 0 0 J 2 -(0)|Λ-(0)| -K J 2 + (0)|Λ+(0)| 0 0 J 2 -(L)|Λ-(L)| K. (23) 
From ( 11) the matrix N is positive semidefinite, thus

I 2 ≥ 0. (24) 
Let us now deal with I 3 . Assume that the condition (9) holds. Then there exists

D ∈ C 1 ([0, L], M n (R)) such that D(x) is diagonal with positive coefficients for any x ∈ [0, L]. Thus -D(J 2 Λ) D + DJ 2 M D + DM J 2 D ( 25 
)
is a symmetric and definite positive matrix and we denote by λ m its smallest eigenvalue on [0, L]. We have from ( 19), using Cauchy-Schwarz inequality and using the fact that g is Lipschitz with u and the fact that g(0, x) = B(0, x) = 0,

I 3 ≥ L 0 (D -1 u) [-D(J 2 Λ) D + DJ 2 M D + DM J 2 D](D -1 u)dx -2 L 0 |D -1 u| 2 dx 1/2 L 0 |DJ 2 g(u, x)| 2 dx 1/2 ≥ L 0 (D -1 u) [-D(J 2 Λ) D + DJ 2 M D + DM J 2 D](D -1 u)dx -2 max i,x (D i J 2 i (x)) L 0 |D -1 u| 2 dx 1/2 L 0 |g(u, x)| 2 dx 1/2 ≥ L 0 (D -1 u) [-D(J 2 Λ) D + DJ 2 M D + DM J 2 D](D -1 u)dx -2 max i,x (D i J 2 i (x)) L 0 |D -1 u| 2 dx 1/2 C g L 0 |u| 2 dx 1/2 ≥ L 0 (D -1 u) [-D(J 2 Λ) D + DJ 2 M D + DM J 2 D](D -1 u)dx -2C g max i,x (D i J 2 i (x)) max i,x (D i (x)) L 0 |D -1 u| 2 dx 1/2 ≥ λ m D -1 u 2 L 2 -2C g max i,x (D i J 2 i (x)) max i,x (D i (x)) D -1 u 2 L 2 . (26) 
Therefore if

C g < λ m /(2 max i,x (D i (x)) max i,x (D i (x)J 2 i (x))) then I 3 ≥ µ D -1 u L 2 , (27) 
with µ = λ m -2C g max i,x

(D i J 2 i (x)) max i,x
(D i (x)) > 0. Thus from ( 16), the positive definiteness of D, hence D -1 , ( 18), [START_REF] Hu | Boundary exponential stabilization of 1-d inhomogeneous quasilinear hyperbolic systems[END_REF], and ( 27) we can set γ = µ(max(D i J 2 i )) -1 > 0 such that such that for any t ∈ [0, T ].

dV (u(t, •) dt ≤ -γV, (28) 
and therefore

V (u(t, •)) ≤ V (u(s, •))e -γ(t-s) , ∀ 0 ≤ s ≤ t ≤ T. (29) 
From ( 16), this implies that

u(t, •) L 2 ≤ J -1 L ∞ J L ∞ e -γ 2 (t-s) u 0 L 2 , (30) 
which is exactly the estimate wanted with decay rate γ/2. So far this estimate is only true for H 1 solutions. However, it only involves the L 2 norm. Thus, as the system is well-posed in C 0 ([0, T ], L 2 (0, L)) and • L ∞ ((0,T );L 2 (0,L)) is lower semicontinuous, the estimate (30) also hold for L 2 solutions by density (more details on this argument can be found in the proof of [START_REF] Bastin | Exponential boundary feedback stabilization of a shock steady state for the inviscid Burgers equation[END_REF]Lemma 4.2]).

Adapting the proof in the ISS case

In this section we show how to adapt the proof of Theorem 2.2 to get Theorem 2.3.

Proof. Let us consider System (13) and let T > 0. Let u 0 ∈ H 1 (0, L) and u ∈ C 1 ([0, T ], H 1 (0, L)) the associated solution. Then, defining V as in [START_REF] Hayat | A quadratic Lyapunov function for Saint-Venant equations with arbitrary friction and space-varying slope[END_REF], and differentiating along u, we obtain as previously

dV (u(t, •)) dt = -I 2 -I 3 -2 L 0 u J 2 d 1 dx, (31) 
where I 2 and I 3 are given by [START_REF] Hayat | Exponential stability of density-velocity systems with boundary conditions and source term for the H 2 norm[END_REF]. Thus, using Young's inequality

dV (u(t, •)) dt = -I 2 -I 3 + ε 0 V + J 2 L ∞ ε 0 d 1 (t, •) 2 L 2 , (32) 
where ε 0 > 0 and can be chosen. As previously, from (9), I 3 ≥ µV where µ > 0.

Therefore, choosing ε 0 = µ/2, we have

-I 3 + ε 0 V ≤ - µ 2 V. (33) 
Concerning I 2 , if we denote by I 2,0 the quantity in the absence of disturbances (i.e. the quantity given by the first equality of ( 21)) we get

I 2 = I 2,0 - n i=1 J 2 i (x i )|Λ i (x i )|   d 2 2,i + 2d 2,i G i   u + (t, L) u -(t, 0)     ≥ Y N Y - n i=1 J 2 i (x i )|Λ i (x i )| 1 + 1 ε d 2 2,i -εYK   J 2 + (0)|Λ + (0)| 0 0 J 2 -(L)|Λ -(L)|   KY, (34) 
where we used Young's inequality and where N is the matrix given in [START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF], Y is defined as in [START_REF] Xiang | Null controllability of a linearized Korteweg-de Vries equation by backstepping approach[END_REF], and ε > 0 is to be chosen. Using the definition of N and the fact that N is positive definite (and not positive semidefinite in contrast with Theorem 2.2), we get by continuity that there exists ε > 0 such that

N -εK   J 2 + (0)|Λ + (0)| 0 0 J 2 -(L)|Λ -(L)|   K is semipositive definite. ( 35 
)
Therefore,

I 2 ≥ -(1 + ε -1 ) J 2 ∞ Λ ∞ |d 2 (t)| 2 and (32) becomes dV (u(t, •)) dt ≤ - µ 2 V + 2 J 2 L ∞ µ d 1 (t, •) 2 L 2 + (1 + ε -1 ) J 2 ∞ Λ ∞ |d 2 (s)| 2 , (36) 
thus, using Gronwall's Lemma,

V (u(t, •)) ≤ V (u 0 )e -µt 2 + 2 J 2 L ∞ µ t 0 e -µ 2 (t-s) d 1 (s, •) 2 L 2 + µ 2 (1 + ε -1 ) Λ ∞ |d 2 (t)| 2 ds, (37) 
which, together with ( 16) and the concavity of the square root function gives

u(t, •) L 2 ≤ J -1 L ∞ J L ∞ u 0 L 2 e -µt 4 + J -1 L ∞ J L ∞ 2 µ max 1, µ 2 (1 + ε -1 ) Λ L ∞ e -µ 2 (t-s) d 1 (s, x) L 2 ((0,t)×(0,L)) + + d 2 (t) L 2 (0,t) , (38) 
which is the ISS estimate wanted and this holds for any H 1 solutions. And, by density, this holds also for any L 2 solutions. Note that the gains of the estimate can again be computed explicitly. This ends the proof of Theorem 2.3

Numerical simulations

In this section we present a numerical illustration of the previous result on a simple example. We consider a system inspired from [16, Section 5.6] and given as

∂ t u 1 + ∂ x u 1 = cL -1 sin L 0 u 2 (t, x)dx ∂ t u 2 -∂ x u 2 = cL -1 sin L 0 u 1 (t, x)dx u 1 (t, 0) -u 2 (t, 0) = 0 u 1 (t, L) -u 2 (t, L) = ku 1 (t, L) (39) 
where one boundary condition can be imposed through a design parameter k while the other one is imposed. Note first that in open-loop, i.e. k = 0, the null steady-state is an unstable steady-states for any c ∈ R and any length of the domain L > 0. Indeed, there is a continuum of travelling wave solutions: for

any ε > 0    u 1 (x) = εe 2πi L (t-x) u 2 (x) = εe -2πi L (t-x) (40) 
is a solution of (39) with k = 0. Nevertheless, Theorem 2.2 can be applied to find a feedback in closed loop as long as |c|L < 1/2: set M = 0, D = Id, ε > 0 to be defined, and k = 1/(1 + 2Lε -1 ). Set also, J

= diag( √ L + ε -x, √ L + ε + x),
one has Λ = diag(1, -1) therefore -(J 2 Λ) = I d and therefore is positive definite with smallest eigenvalue 1. Besides max i,x (J 2 i ) = ε + 2L and

g(U ) -g(V ) 2 L 2 = 1 L 2 L 0   c sin L 0 U 2 (x)dx c sin L 0 U 1 (x)dx -   -   c sin L 0 V 2 (x)dx c sin L 0 C 1 (x)dx -   2 dx ≤ |c|L -1   L 0 |U 2 -V 2 |dx 2 + L 0 |U 1 -V 1 |dx 2   ≤ |c| U -V 2 L 2 . (41) 
Hence, condition (9) becomes |c| < (ε + 2L) -1 . Now, as |c| < (2L) -1 , one can choose ε = 3(|c| -1 -2L)/4 such that condition ( 9) is satisfied. Finally, one can easily check that condition [START_REF] Qin | Global smooth solutions of dissipative boundary value problems for first order quasilinear hyperbolic systems[END_REF] becomes

(1 -k) 2 ≤ ε ε + 2L , (42) 
which is also satisfied from our definition of k. Thus Theorem 2.2 applies and the system is globally stable for the L 2 norm. On Figure 1 

Conclusion and perspective

We derived sufficient conditions for the global stability in the L 2 norm of semilinear systems with Lipschitz boundary conditions and source term (potentially nonlocal). We also showed that a strong ISS property with respect to boundary and internal disturbances holds globally under the same conditions.

This result could have many applications in practice. Knowing whether such conditions are optimal for the existence of a basic quadratic Lyapunov function, at least for n = 2 as it is in the linear and local case, is an open question. Another interesting direction for future works would be to try to extend, at least partially, these results to quasilinear but Lipschitz nonlocal systems. and therefore u

(1) n → u in C 0 ([0, T ], L 2 ), which implies that u = u (1) in C 0 ([0, T ], L 2 ). This holds for any T > 0, and ends the proof.

Well-posedness in the ISS case

The well-posedness of system ( 13) is again a consequence of the three properties of the operator (A + B) and the results in [START_REF] Miyadera | Translations of Mathematical Monographs[END_REF]. In particular, let T > 0 and u 0 ∈ L 2 (0, L), and assume (d with boundary conditions (3), and where B is seen again as an operator on L 2 (0, L). The interest of this reformulation is that the boundary conditions of v are now again (3) and do not depend on time (contrary to the boundary conditions of ( 13)) except through v (see also [START_REF] Ferrante | Boundary Control Design for Conservation Laws in the Presence of Measurement Noise[END_REF]). Using the fact that (A + B) 

satisfies

Remark 2 . 1 (

 21 Choice of K). Of course the matrix K = C G I, where I is the identity matrix and C G the Lipschitz constant of G would work. However, there might be other matrices K satisfying (4) and some could lead to potentially less restrictive conditions in Theorem 2.2 than the matrix C G I (see (11) below).

  going any further, let us comment on the choice of the form of this Lyapunov function candidate. Functions of this type are sometimes called basic quadratic Lyapunov function or basic Lyapunov function for the L 2 norm because they can be seen as the simplest functional equivalent of the L 2 norm. A commonly used Lyapunov function candidate for hyperbolic systems of conservation laws

we represent the L 2

 2 norm of the solution for various values of k when c = 1/4 and L = 1. In blue is represented the open-loop situation (i.e. k = 0), in green the closed-loop situation with k = 3/4, and in red k = 1/2.

Figure 1 :

 1 Figure 1: Stability of the system (39) in open-loop (blue) and closed-loop with k = 3/4 (green) and k = 1/2 (red). horizontal axis represents time, and vertical axis represents the L 2 norm of the solution with initial condition u 1,0 (x) = √ 2πx and u 2,0 (x) = e -2πx .

1 , d 2 )

 12 ∈ L 2 ((0, T ) × (0, L)) × H 1 (0, T ), and setL : x → diag(L i (x)) where L i (x) = (L -x)/L if i ∈ {1, ..., m} and L i = x/L if i ∈ {m + 1, ..., n}. A function u ∈ C 0 ([0, T ], L 2 (0, L)) is an L 2 solution to (13), u(0, •) = u 0 , if and only if v(t, x) := u(t, x) -L(x)d 2 (t) is an L 2 solution to ∂ t v = -(A + B)v + d 1 + [(Λ∂ x + B)(Ld 2 ) -L ḋ2 ] v(0, •) = u 0 -L(x)d 2 (0) =: v 0 , (A.[START_REF] Qin | Global smooth solutions of dissipative boundary value problems for first order quasilinear hyperbolic systems[END_REF] 

  the range condition and is dissipative of type ζ, from [54, Theorem 5.18 and Remark 2°], there exists a unique integral solution u ∈ C 0 ([0, T ]; L 2 (0, L)), satisfying a definition analogous to Appendix A.1 (the precise definition is omitted here due to the lack of space).

see[START_REF] Hayat | Stabilization of 1D nonlinear hyperbolic systems by boundary controls[END_REF] Definition 1.4.3] for a proper definition and[START_REF] Hayat | A quadratic Lyapunov function for Saint-Venant equations with arbitrary friction and space-varying slope[END_REF] for an overview of this method

see[START_REF] Xiang | Null controllability of a linearized Korteweg-de Vries equation by backstepping approach[END_REF] for more details
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Appendix A. Well-posedness of the system

In this section we deal with the well-posedness of the system and extend [38, Theorem A.1] to get Theorem 2.1. But first, we give the definition of a weak L 2 solution for System (1), [START_REF] Leugering | On the modelling and stabilization of flows in networks of open canals[END_REF]. Definition Appendix A.1. Let u 0 ∈ L 2 (0, L). We say that u ∈ C 0 ([0, +∞); L 2 (0, L)) is an L 2 solution of the Cauchy problem (1), (3), u(0, •) = u 0 , if for every T > 0 there exists a sequence of functions u 0,n ∈ H 1 (0, L) satisfying [START_REF] Leugering | On the modelling and stabilization of flows in networks of open canals[END_REF] and such that

where u n ∈ C 0 ([0, T ], H 1 (0, L)) is a weak solution of (1), (3) with initial condition u 0,n , i.e. u n satisfies (3) and for any φ

Remark Appendix A.1. As noted in [START_REF] Dus | On L ∞ Stabilization of Diagonal Semilinear Hyperbolic Systems by Saturated Boundary Control[END_REF], this definition is slightly different from the definition given in [START_REF] Bastin | Stability and Boundary Stabilisation of 1-D Hyperbolic Systems[END_REF]Definition A.3] when looking at linear systems.

The reason comes from the nonlinear boundary conditions which may prevent the adjoint of the boundary operator from existing. Of course, in the linear case, a solution in the sense of [START_REF] Bastin | Stability and Boundary Stabilisation of 1-D Hyperbolic Systems[END_REF]Definition A.3] is also a solution in the sense of Definition Appendix A.1.

With this definition in mind, we prove Theorem 2.1, by slightly adapting the proof of [START_REF] Dus | On L ∞ Stabilization of Diagonal Semilinear Hyperbolic Systems by Saturated Boundary Control[END_REF]Theorem A.1] Proof of Theorem 2.1. Let T > 0. We define the operator A = -Λ(x)∂ x on the domain D(A) defined by

We also consider B as an operator on the domain D(B) = L 2 (0, L), and in the

First of all, we can restrict ourselves to the case where Λ has only positive components. Indeed, if not, we define v = (v i ) i∈{1,...,n} by

and

Clearly, u is a L 2 solution to the system (1), (3) if and only if v is an L 2 solution to a system of the form ( 1 or equivalently that for any v ∈ D(A + B), there exists u ∈ H 1 (0, L) such that

The difficulty comes from the nonlinearity of the equation and this was the main point shown in [START_REF] Dus | On L ∞ Stabilization of Diagonal Semilinear Hyperbolic Systems by Saturated Boundary Control[END_REF]Theorem A.1]. In our case, all we need to do is to change slightly their proof to take into account the nonlocal operator and the fact that Λ depends on x. The latter is easy to take into account by replacing e -Λ -1 x/ρ by e -x 0 (Λ -1 (s)/ρ)ds when integrating, which has a similar behavior (this holds as Λ is diagonal). To take into account the nonlocal operator, we need to get the estimate [38, (26)] while replacing the estimations in [38, 2.2.1], which hold

where C 2 is a constant that depends only on the parameters of the system.

This enables to recover the estimate [38, (26)] which is then used to apply 

which implies the convergence of u n to u in C 0 ([0, T ], L 2 (0, L)). To conclude we only need to show that this is the unique solution in the sense of Definition Appendix A.1. Let assume that there is another solution u (1) with initial condition u 0 . Let T > 0. By assumption there exists a sequence u 

n → u (1) in C 0 ([0, T ], L 2 (0, L)). For any n ∈ N, u

n ∈ C 1 ([0, T ], L 2 (0, L)), therefore u