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TURNPIKE IN LIPSCHITZ–NONLINEAR OPTIMAL CONTROL

CARLOS ESTEVE, BORJAN GESHKOVSKI, DARIO PIGHIN, AND ENRIQUE ZUAZUA

Abstract. We present a new proof of the turnpike property for nonlinear optimal
control problems, when the running target is a steady control-state pair of the under-
lying dynamics. Our strategy combines the construction of suboptimal quasi-turnpike
trajectories via controllability, and a bootstrap argument, and does not rely on an-
alyzing the optimality system or linearization techniques. This in turn allows us to
address several optimal control problems for finite-dimensional, control-affine systems
with globally Lipschitz (possibly nonsmooth) nonlinearities, without any smallness
conditions on the initial data or the running target. These results are motivated by
the large-layer regime of residual neural networks, commonly used in deep learning
applications. We show that our methodology is applicable to controlled PDEs as well,
such as the semilinear wave and heat equation with a globally Lipschitz nonlinearity,
once again without any smallness assumptions.
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1. Introduction

The turnpike property reflects the fact that, for suitable optimal control problems set
in a sufficiently large time horizon, any optimal solution thereof remains, during most
of the time, close to the optimal solution of a corresponding “static” optimal control
problem. This optimal static solution is referred to as the turnpike – the name stems
from the idea that a turnpike is the fastest route between two points which are far
apart, even if it is not the most direct route. In many cases, the turnpike property
is described by an exponential estimate – for instance, the optimal trajectory yT (t) is
O
(
e−µt + e−µ(T−t))–close to the optimal static solution y, for t ∈ [0, T ] and for some

µ > 0.
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The prevalent (but not exclusive) argument for proving exponential turnpike results
relies on a thorough analysis of the optimality system provided by the Pontryagin Max-
imum Principle. In the context of linear quadratic optimal control problems, under
appropriate controllability or stabilizability conditions, turnpike is established via prop-
erties of the optimality system characterizing the optimal controls and states through
the coupling with the adjoint system, see Porretta & Zuazua [31].

In the case of nonlinear dynamics, this argument thus requires nonlinearities which
are continuously differentiable. A linearization argument is used – the linear study and
a fixed point argument provide nonlinear results under smallness assumptions on the
initial data and the target, see Zuazua et al. [32, 36]. The smallness conditions on
the initial data can be removed in some specific cases (see e.g. Pighin [29]), but to the
best of our knowledge, the assumptions on the running target have not been as of yet
(albeit, they may be removed under restrictive assumptions, such as strict dissipativity,
uniqueness of minimizers and C2–regular nonlinearities – see [34]). This is due to the
lack of tools for showing that the linearized optimality system corresponds to a linear-
quadratic control problem satisfying the turnpike property, when the running target of
the original nonlinear control problem is large.

There has been an ever-increasing need however, brought by applications in deep
learning via residual neural networks (ResNets) (see [10, 11, 18]), of turnpike results
for nonlinear optimal control problems without smallness conditions on the data or
the running target, and for systems with globally Lipschitz-continuous but possibly
nonsmooth nonlinearities.

In deep learning, one wishes to find a map which interpolates a dataset {~xi, ~yi}Ni=1

where ~xi ∈ Rdx and ~yi ∈ Rdy and gives accurate predictions on unknown points ~x ∈ Rdx .
Such a task may be accomplished by minimizing∫ T

0

N∑
i=1

‖Pxi(t)− ~yi‖2 dt+

∫ T

0
‖u(t)‖2 dt, (1.1)

where u := [w, b]> and P : Rdx → Rdy is an affine surjective map, subject to{
ẋi(t) = σ(w(t)xi(t) + b(t)) in (0, T )

xi(0) = ~xi,
(1.2)

with w ∈ L2(0, T ;Rdx×dx) and b ∈ L2(0, T ;Rdx) designating the controls, whereas
σ ∈ Lip(R) with σ(0) = 0 is a scalar nonlinear function, defined componentwise in
(1.2). The most frequently used nonlinearities in practical applications are rectifiers:
σ(x) = max{αx, x} for α ∈ [0, 1), and sigmoids: σ(x) = tanh(x). The order of the
nonlinearity σ and the affine map within may be permuted to obtain a driftless control-
affine system {

ẋi(t) = w(t)σ(xi(t)) + b(t) in (0, T )

xi(0) = ~xi.
(1.3)

Combinations and variants of (1.2) and (1.3) may also be used, see e.g. [23]. Optimizing
u over N � 1 different initial data establishes robustness, so that the neural networks
(1.2) and (1.3) may correctly perform future predictions on unknown points.

In Figure 1, we see stabilization for the trajectories to some points xi ∈ P−1({~yi}),
which are uncontrolled steady states of (1.2) and (1.3). This motivates the choice of
running target as a steady control-state pair we consider in this work ((1.4)), which
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would then entail bounds for (1.1) (see [11]). The practical interest of the turnpike
and stabilization analysis when T � 1 presented herein is its link to the large-layer
regime and approximation capacity (dual to [7]) of ResNets, which are the forward
Euler discretizations of (1.2) and (1.3) (see [10]). This regime is the common setting
for many deep learning applications [22]. We refer the reader to [11] for further details.
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Figure 1. A binary classification task in deep learning. One aims to
separate the data points {~xi}i in R2 (top left) with respect to their color
by using the controlled flow of (1.2) – (1.3) at time T = 15, here done by
minimizing (1.1) (~yi = ±1 for red/blue). We visualize the evolution of
the trajectories of (1.3) (top right) and their output (bottom left). We
see a stabilization property for the projections, but also the trajectories
to some points xi ∈ P−1({~yi}) (bottom right). Displayed below is the
inferred classifier on [−2, 2]2, generalizing the shape of the dataset.
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Our contributions. To answer this need, and motivated by problems as those above,
in this work we provide a different perspective on the turnpike property in the context
of nonlinear dynamics, and we bring forth the following contributions.
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1. In Section 2, we consider optimal control problems consisting of minimizing

JT (u) := φ(y(T )) +

∫ T

0
‖y(t)− y‖2 dt+

∫ T

0
‖u(t)− u‖2 dt (1.4)

subject to ẏ = f(y, u), where f is of control-affine form. Under the assumption
that the running target (u, y) is a steady control-state pair, namely f(y, u) = 0,
and that the system is controllable with an estimate on the cost (see Assump-
tion 1), in Theorem 2.1 we prove the exponential turnpike property described
above. The main novelty lies in the fact that the nonlinearity f is only assumed
to be globally Lipschitz continuous, and the result comes without any smallness
conditions on the initial data or the specific running target. In this case, exist-
ing results such as those presented in Trélat & Zuazua [36, 34] do not apply,
as they either require smallness assumptions or uniqueness of minimizers, and
C2–nonlinearities.

Moreover, whenever the functional to be minimized does not contain a final-
time cost (such as φ(y(T )) in JT above), we can prove (see Corollary 2.1 below)
that the exponential arc near the final time t = T disappears, thus entailing an
exponential stabilization property for the optimal state to the running target.

2. In Section 3, the finite-dimensional results are extended to analogue optimal
control problems for underlying PDE dynamics. This is illustrated in Theo-
rem 3.1, Corollary 3.1 and Theorem 3.2 in the context of the semilinear wave
and heat equation with globally Lipschitz–only nonlinearity, once again under
the assumption that the running target is a steady control-state pair. We make
no smallness assumptions neither on it, nor on the initial data, thus covering
some cases where results from [15, 29, 32, 42] are not applicable.

Notation. We denote by ‖ · ‖ the standard euclidean norm, and N := {1, 2, . . .}. We
denote by Lip(R) (resp. Liploc(R)) the set of functions f : R → R which are globally
(resp. locally) Lipschitz continuous.

2. Finite-dimensional systems

2.1. Setup. Let d ≥ 1 and m ≥ 1. We will consider differential control systems where
the state y(t) lives in Rd and the control input u(t) in Rm. Given T > 0, we focus on
control-affine systems, namely canonical nonlinear systems

ẏ = f(y, u) in (0, T ) (2.1)

with a nonlinearity f of the form

f(y, u) = f0(y) +

m∑
j=1

ujfj(y) for (y, u) ∈ Rd × Rm, (2.2)

where the vector fields f0, . . . , fm ∈ Lip(Rd;Rd) are only assumed to be globally Lips-
chitz continuous. This formulation includes (1.3) – see Remark 3 for possible extensions
to (1.2).

For any given initial datum y0 ∈ Rd and control input u ∈ L1(0, T ;Rm), system (2.1),
with f as in (2.2), admits a unique solution y ∈ C0([0, T ];Rd) with y(0) = y0. This can
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be shown by means of a fixed point theorem and the Grönwall inequality applied to the
integral formulation

y(t) = y0 +

∫ t

0
f(y(s), u(s)) ds.

Given y0 ∈ Rd, we will investigate the behavior when T � 1 of global minimizers
uT ∈ L2(0, T ;Rm) to nonnegative functionals of the form

JT (u) := φ(y(T )) +

∫ T

0
‖y(t)− y‖2 dt+

∫ T

0
‖u(t)‖2 dt, (2.3)

and of the corresponding solutions yT to (2.1) with yT (0) = y0. Here, φ ∈ C0(Rd;R+)
is a given final cost, while y ∈ Rd is a given running target which we select as an
uncontrolled steady state of the nonlinear dynamics, namely

f0(y) = 0. (2.4)

We provide further comments on the specific choice of the running target just below, in
Remark 1. Due to the coercivity of JT and the explicit form of f in (2.2), the existence
of a minimizer of JT follows from the direct method in the calculus of variations.

Due to the presence of the state tracking term in the definition of JT , which regulates
the state over the entire time interval [0, T ], the well-known turnpike property is expected
to hold: over long time horizons, the optimal control-state pair (uT , yT ) should be "near"
the optimal steady control-state pair (us, ys), namely a solution to the problem

inf
u∈Rm

‖y − y‖2 + ‖u‖2 subject to f(y, u) = 0. (2.5)

Now note that, due to the assumption (2.4) on the running target y, and the form of
the nonlinearity f in (2.2), it can be seen that (us, ys) ≡ (0, y) designates the unique
optimal stationary solution, namely the unique solution to (2.5).

Remark 1 (Controlled steady states). The choice of the running target y in (2.4) is
tailored to our proof strategy and the choice of the functional JT in (2.3). The key
feature our methodology requires is that the Lagrangian L(u, y) = ‖y − y‖2 + ‖u − u‖2
equals zero when evaluated at the optimal steady state. In fact, we could more generally
consider the functional

JT (u) := φ(y(T )) +

∫ T

0
‖y(t)− y‖2 dt+

∫ T

0
‖u(t)− u‖2 dt

where (u, y) ∈ Rm × Rd is chosen so that f(y, u) = 0 (with f as in (2.2)), as discussed
in the introduction. The results presented below could then readily be adapted to this
case (by additionally changing (2.9) and Assumption 1 to an L2–bound of uT − u). We
have taken u = 0 for presentational simplicity.

In the context of nonlinear optimal control, such turnpike results have been shown
by Trélat & Zuazua in [36] (see also [34]) for C2–regular nonlinearities f . This order of
regularity is required due to the proof strategy, which relies on linearizing the optimality
system given by the Pontryagin Maximum Principle. As a consequence, the results in
[36] are also local, in the sense that smallness conditions are assumed on the initial data
and target in view of applying a fixed point argument. In this work, we take a further
step and obtain global results for globally Lipschitz nonlinearities.
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2.2. Main results. The notion of controllability plays a key role in the context of
turnpike. Hence, before proceeding, we state the following assumption.

Assumption 1 (Controllability & cost estimate). We will assume that (2.1) is con-
trollable in some time T0 > 0, meaning that there exists some time T0 > 0 such that
for any y0, y1 ∈ Rd, there exists a control u ∈ L2(0, T0;Rm) such that the corresponding
solution y ∈ C0([0, T0];Rd) to (2.1) with y(0) = y0 satisfies y(T0) = y1.

We will moreover assume that there exists an r > 0 and a constant C(T0) > 0 such
that

inf
u

such that
y(0)=y0, y(T0)=y

‖u‖L2(0,T0;Rm) ≤ C(T0)
∥∥y0 − y

∥∥ , (2.6)

and
inf
u

such that
y(0)=y, y(T0)=y1

‖u‖L2(0,T0;Rm) ≤ C(T0)
∥∥y1 − y

∥∥ , (2.7)

hold for any y0, y1 ∈
{
x ∈ Rd : ‖x− y‖ ≤ r

}
, where y ∈ Rd is fixed as in (2.4).

We discuss the feasibility of this assumption later on, in Remark 4. Note that this is
not a smallness assumption – it merely stipulates that, inside some ball centered at y,
the cost of controlling from and to y can be estimated by means of the distance to y.

We may now state our first main result.

Theorem 2.1 (Turnpike). Assume that f0, . . . , fm ∈ Lip(Rd;Rd) in (2.2), and assume
that (2.1) is controllable in some time T0 > 0 in the sense of Assumption 1. Let y0 ∈ Rd
be given, and let y ∈ Rd be as in (2.4). Then there exists a time T ∗ > 0 and constants
C1, C2, µ > 0 such that for any T ≥ T ∗, any global minimizer uT ∈ L2(0, T ;Rm) to JT
defined in (2.3) and corresponding optimal state yT solution to (2.1) with yT (0) = y0

satisfy

‖yT (t)− y‖ ≤ C1

(
e−µt + e−µ(T−t)

)
(2.8)

for all t ∈ [0, T ], and
‖uT ‖L2(0,T ;Rm) ≤ C2. (2.9)

We sketch the idea of the proof (which may be found in Section 5.2) in Section 2.2.1
below. The rate µ > 0 appearing in (2.8) depends on the datum y0 due to the mul-
tiplicative form of the control, but is uniform with respect to y0 when the control is
additive, namely, when f1, . . . , fm are nonzero constants. This is due to the form of
the constant provided by Grönwall arguments (e.g. in Lemma 4.1 and Lemma 5.2).

Remark 2 (On (2.9)). An exponential estimate for the optimal control uT is a hallmark
of turnpike results obtained by analyzing the optimality system. Therein, the optimal
control can be characterized explicitly via the adjoint state, which, much like the optimal
state, fulfills an exponential estimate. Since in this work we do not use the optimality
system, we do not have as much information on uT (t) as we have on yT (t) − y. The
latter quantity, in addition to being penalized by JT , may be further estimated by using
the system dynamics. In the context of driftless systems, we show that uT (t) too is
in O

(
e−µt + e−µ(T−t)) in Corollary 2.2, by using the homogeneity of the system with

respect to the control.
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Before proceeding with further remarks, let us state a couple of important corollaries
of Theorem 2.1.

Firstly, when one considers an optimal control problem for JT without a final cost for
the endpoint y(T ), namely taking φ ≡ 0 in (2.3), Theorem 2.1 can in fact be improved
to an exponential stabilization estimate to the running target y.

Corollary 2.1 (Stabilization). Suppose that φ ≡ 0 in JT defined in (2.3). Under the
assumptions of Theorem 2.1, there exists a time T ∗ > 0, and constants C1, C2, µ > 0
such that for any T ≥ T ∗, any global minimizer uT ∈ L2(0, T ;Rm) to JT defined in
(2.3) and corresponding optimal state yT solution to (2.1) with yT (0) = y0 satisfy (2.9)
as well as

‖yT (t)− y‖ ≤ C1e
−µt (2.10)

for all t ∈ [0, T ].

We refer to Section 5.3 for a proof. In fact, Corollary 2.1 may be proven independently
of Theorem 2.1 by a simple adaptation of the proof strategy. This is illustrated in the
proof of Theorem 3.2 in the context of the semilinear heat equation.

On another hand, when the underlying dynamics (2.1) are of driftless control affine
form (namely, f0 ≡ 0 in (2.2)), we can obtain an exponential decay for the optimal
controls as well. Note that in this case, any y ∈ Rd is an admissible running target for
JT , since f(y, 0) = 0 for any y ∈ Rd.

Corollary 2.2 (Control decay). Suppose that f0 ≡ 0 in (2.2). Under the assumptions
of Theorem 2.1, there exists a time T ∗ > 0, and constants C, µ > 0 such that for any T ≥
T ∗, any global minimizer uT ∈ L2(0, T ;Rm) to JT defined in (2.3) and corresponding
optimal state yT solution to (2.1) with yT (0) = y0 satisfy (2.8) as well as

‖uT (t)‖ ≤ C
(
e−µt + e−µ(T−t)

)
(2.11)

for a.e. t ∈ [0, T ].
If moreover, φ ≡ 0 in JT defined in (2.3), in addition to (2.10), there exist constants

C1, µ1 > 0 independent of T such that

‖uT (t)‖ ≤ C1e
−µ1t (2.12)

holds for a.e. t ∈ [0, T ].

Corollary 2.1 and Corollary 2.2 are in particular applicable for the continuous time
analog (1.3) of ResNets (see Remark 3 for (1.2)).

The proof of Corollary 2.2 (see Section 5.4) will follow by firstly using a specific
suboptimal control (constructed using the time-scaling specific to driftless systems) to
estimate JT (uT ) and obtain∫ t+h

t
‖uT (s)‖2 ds ≤

∫ t+h

t
‖yT (s)− y‖2 ds

for h small enough, an estimate which, coupled with the turnpike estimates of Theo-
rem 2.1 – Corollary 2.1 and the Lebesgue differentiation theorem, will suffice to conclude.

The proof of Theorem 2.1 may be found in Section 5.2. It roughly follows the following
scheme (see also Figure 2 just below).
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2.2.1. Sketch of the proof of Theorem 2.1. For simplicity, suppose that T ≥ 2T ∗.
1). By controllability, we first construct a suboptimal quasi-turnpike control u1

which is such that the associated state y1 satisfies y1(T0) = y, and u1(t) = 0
for t ∈ [T0, T ]. Thus y1(t) = y for t ∈ [T0, T ]. Due to the form of JT in (2.3), this
would imply that JT (u1) is independent of T , and by using JT (uT ) ≤ JT (u1),
would also entail a uniform bound of JT (uT ) with respect to T . A Grönwall
argument ensures that, moreover,

‖yT − y‖L2(0,T ;Rd) + ‖yT (t)− y‖ ≤ C0 for all t ∈ [0, T ] (2.13)

for some C0 > 0 independent of T . (2.13) alone is enough to obtain the desired
exponential estimates for t ∈ [0, T ∗] ∪ [T − T ∗, T ], an interval whose length is
independent of T . More details can be found in Lemma 5.1.

2). Since T ∗ ≤ T
2 , by a simple contradiction argument (see Lemma 5.3), there exist

τ1 ∈ [0, T ∗) and τ2 ∈ (T − T ∗, T ] such that

‖yT (τi)− y‖ ≤
‖yT − y‖L2(0,T ;Rd)√

T ∗

(2.13)
≤ C0√

T ∗
. (2.14)

3). On [τ1, τ2], the optimal control uT will minimize a functional without the final
cost φ(yT (T )) but with a terminal constraint on the state yT . By controllability,
using a second suboptimal quasi-turnpike control u2 satisfying estimates as
those in Assumption 1, and using JT (uT ) ≤ JT (u2) along with a Grönwall
argument, one shows an estimate of the form

‖yT (t)− y‖ ≤ C1

(∥∥yT (τ1)− y
∥∥ +

∥∥yT (τ2)− y
∥∥) (2.15)

(2.14)
≤ 2C2

1√
T ∗

(2.16)

for all t ∈ [τ1, τ2], thus also for t ∈ [T ∗, T − T ∗] ⊂ [τ1, τ2] where C1 > 0 is
independent of T . Assumption 1 is used precisely in this step, and is essential in
obtaining an estimate of the mould of (2.15). For more details, see Lemma 5.2.

4). A bootstrap argument (Section 5.2): estimate (2.16) can be iterated by shrinking
the time interval to obtain an estimate of the form

‖yT (t)− y‖ ≤
(

2C2
1√
T ∗

)n
for [nT ∗, T − nT ∗] (2.17)

for "suitable" n ≥ 1. Then taking T ∗ > 4C4
1 and a suitable choice of n in (2.17)

will yield the exponential estimate for t ∈ [T ∗, T − T ∗].

2.3. Comments on the main results. Several pertinent remarks are in order.

Remark 3 (On the nonlinearity). With little modifications, Theorem 2.1 and Corol-
lary 2.1 also apply to system (2.1) with nonlinearities f of the form

f(y, u) =

m∑
j=1

fj(ujy) for (y, u) ∈ Rd × Rm (2.18)

where the vector fields f1, . . . , fm ∈ Lip(Rd;Rd) are additionally assumed to be positively
homogeneous of degree 1, and an H1–penalization instead of only L2 of the control ap-
pears in the definition of JT , in order to assert sufficient compactness for proving the
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•
0 T ∗ T − T ∗ T

t

quasi-turnpike bootstrap quasi-turnpike

Figure 2. A sketch of the scheme. We use a quasi-turnpike control to
bound JT (uT ) uniformly in T , which entails the exponential estimates
on [0, T ∗] ∪ [T − T ∗, T ]. We then perform a bootstrap by iteratively
shrinking symmetric intervals within [T ∗, T − T ∗] in view of obtaining
an estimate of the mould of (2.17).

existence of minimizers. Such nonlinearities are motivated by (1.2). Due to the homo-
geneity of the vector fields in (2.18), the corresponding optimal steady states coincide
with those of the driftless case, namely (us, ys) = (0, y) for any y ∈ Rd.

Remark 4 (On Assumption 1). Both parts of Assumption 1 are needed in our strategy.
• In the driftless case (f0 = 0 in (2.2)), the Chow-Rashevskii theorem (see [6,
Chapter 3, Section 3.3]), characterized by iterated Lie brackets, is a neces-
sary and sufficient condition for the global exact controllability of systems with
smooth vector fields. But general necessary and sufficient conditions which en-
sure the exact controllability of control-affine systems are not known to our
knowledge – see [6, Chapter 3]. This is mainly due to the drift term f0, which
affects the geometry of the problem and may pose obstructions to the control-
lability in arbitrary time – see [2] for a survey on these issues. We do insist
however, that we merely require controllability in a possibly large time T0, and
not necessarily in any arbitrarily small time.

• The assumptions (2.6) – (2.7) are more commonly encountered in the linear
systems setting, and thus also for nonlinear systems obtained by perturbation
arguments. In such contexts, it is well-known (see e.g. [41, Remark 2.2]) that
the minimal L2–norm control u satisfies

‖u‖L2(0,T0;Rm) ≤ C(T0)
(∥∥y0

∥∥+
∥∥y1
∥∥)

for some C(T0) > 0. This makes Assumption 1 entirely plausible in the settings
mentioned above. Indeed, we consider z := y−y, then either z0 = 0 (if y0 = y)
or z1 = 0 (if y1 = y). The control u steering y from y0 to y1 in time T would
then be the same as the one steering z from either 0 to y1 − y or from y0 − y
to 0 in time T , and the above estimate would yield the desired assumption.

To complete this discussion, we refer to [11, Theorem 5.2], where in the
context of driftless systems motivated by neural networks (see the Introduction),
we prove a local controllability result along with estimates (2.6) – (2.7). The
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main caveat when comparing to the setting we consider here is that in neural
networks, the control is typically a matrix of dimension d × d (eventhough we
find a single control for N � 1 initial data), allowing us to access the entire
state, whereas here it is a vector in Rm, possibly with m < d. Nonetheless,
driftless systems motivated by neural networks remain a case where our results
apply.

3. Infinite-dimensional systems

We illustrate the flexibility of the finite-dimensional arguments and adapt them to
the semilinear wave and heat equation. As a matter of fact, the only difference between
the finite and infinite dimensional setting is in the proof of uniform control and state
bounds by means of quasi-turnpike strategies. The specific proof of turnpike is identical
in both cases. We distinguish the case of the wave and heat equation because of the
validity of the PDE analog of Assumption 1, as made more precise below.

3.1. Semilinear wave equation. Let T > 0 and let Ω ⊂ Rd be a bounded and (at
least C2) regular domain. We will be interested in control systems of the form

∂2
t y −∆y + f(y) = u1ω in (0, T )× Ω

y = 0 on (0, T )× ∂Ω

(y, ∂ty)|t=0 = y0 in Ω.

(3.1)

Here f ∈ Lip(R), ω ⊂ Ω is open (with geometric assumptions given in (3.4)), whereas
y0 =

(
y0

1, y
0
2

)
is a given initial datum. It is well-known, by fixed-point arguments, that

for any initial data y0 =
(
y0

1, y
0
2

)
∈ H1

0 (Ω) × L2(Ω) and for any u ∈ L2((0, T ) × ω),
there exists a unique finite-energy solution y ∈ C0([0, T ];H1

0 (Ω)) ∩ C1([0, T ];L2(Ω)) to
(3.1).

As in the finite-dimensional case, we will address the behavior when T � 1 of global
minimizers uT ∈ L2((0, T )× ω) to nonnegative functionals of the form

JT (u) := φ(y(T )) +

∫ T

0
‖y(t)− y‖2H1

0 (Ω) dt+

∫ T

0
‖∂ty(t)‖2L2(Ω) dt+

∫ T

0
‖u(t)‖2L2(ω) dt,

(3.2)
and of the corresponding solution yT to (3.1). Here φ ∈ C0(L2(Ω);R+) is a given final
cost, while y ∈ H1

0 (Ω) is a running target which we select as an uncontrolled steady
state of (3.1), namely we assume that y is some solution1 to{−∆y + f(y) = 0 in Ω

y = 0 on ∂Ω.
(3.3)

We henceforth moreover assume that f,Ω are such that a solution to (3.3) exists. This
can be ensured in a variety of different cases, including, for instance (see [5, 25] for
further results):

1There is no need for the solution of (3.3) to be unique.
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• If f(0) = 0, then clearly y ≡ 0 is one solution. But if moreover there exist
p ∈

(
1, d+2

d−2

)
(p ∈ (1,∞) for d = 1, 2), ν < λ1(Ω) and θ > 2 such that

|f(s)| ≤ C(1 + |s|p) for all s ∈ R

−
∫ s

0
f(ζ) dζ ≤ ν

2
s2 for |s| small

0 < −θ
∫ s

0
f(ζ) dζ ≤ −s

∫ s

0
f(ζ) dζ for |s| large,

then a nontrivial solution y ∈ H1
0 (Ω), y 6≡ 0 also exists. We refer to [5, Theorem

2.5.6]. This fact is a consequence of the mountain pass theorem. Here λ1(Ω)
denotes the first eigenvalue of the Dirichlet Laplacian −∆.

• When d = 1 and Ω = (−R,R), then both necessary and sufficient conditions
on f can be provided ensuring the existence of nontrivial solutions – see [5,
Theorem 1.2.3].

The case of a controlled steady state (namely adding u1ω in (3.3)) may also be
considered, under the condition that the functional JT is modified appropriately as
discussed in Remark 1. The existence of minimizers to JT again follows by the direct
method in the calculus of variations.

We note that, since y is fixed as above, the pair (us, ys) ≡ (0, y) is the unique solution
to the steady-state optimal control problem

inf
u ∈L2(ω)

‖y − y‖2H1
0 (Ω) + ‖u‖2L2(ω) subject to

{−∆y + f(y) = u1ω in Ω

y = 0 on ∂Ω.

This is because the functional in the expression above attains its minimum, equal to 0,
precisely at (0, y), a pair which satisfies the constraint provided by the elliptic equation.

Before proceeding, we need to define the appropriate geometric setup for ensuring
the exact controllability of (3.1) when d ≥ 2. For any fixed x◦ ∈ Rd \ Ω, we define

Γ◦ := {x ∈ ∂Ω : (x− x◦) · ν(x) > 0}
where ν(x) denotes the outward unit normal at x ∈ ∂Ω. The set Γ◦ coincides with the
subset of the boundary arising usually in the context of the multiplier method [24]. We
will suppose that for some δ > 0,

ω = Oδ(Γ◦) ∩ Ω, (3.4)

where Oδ(Γ◦) :=
{
x ∈ Rd : |x− x′| < δ for some x′ ∈ Γ◦

}
. It is known that, under

these geometric assumptions on ω, and since f ∈ Lip(R), there exists some time Tmin =
Tmin(Ω, ω) > 0 such that the wave equation (3.1) is exactly controllable in any time
T0 > Tmin, see [12, 39] and also [9, Section 7.2] (see also the introduction of [19] for an
ample survey of controllability results for semilinear wave equations). These results are
extensions of the one-dimensional results in [40].

We may now state our main result in the context of the wave equation.

Theorem 3.1 (Turnpike). Suppose that f ∈ Lip(R) and Ω ⊂ Rd are such that (3.3) ad-
mits at least one solution, and let y ∈ H1

0 (Ω) be any such solution. Let φ ∈ C0(L2(Ω);R+),
and suppose that ω is as in (3.4). For any y0 ∈ H1

0 (Ω) × L2(Ω), there exists a time
T ∗ > Tmin(ω,Ω) and constants C1, C2 > 0 and µ > 0, such that for any T ≥ T ∗, any
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global minimizer uT ∈ L2((0, T )× ω) to JT defined in (3.2) and corresponding optimal
state yT solution to (3.1) satisfy

‖yT (t)− y‖H1
0 (Ω) + ‖∂tyT (t)‖L2(Ω) ≤ C1

(
e−µt + e−µ(T−t)

)
for all t ∈ [0, T ], and

‖uT ‖L2((0,T )×ω) ≤ C2.

Moreover, µ > 0 is independent of y0.

The proof of turnpike (see Section 6) is identical to the finite-dimensional case. Some
technical adaptations are however needed for obtaining the quasi-turnpike bounds,
wherein one uses the Duhamel formula for mild solutions in view of applying an in-
tegral Grönwall argument, in the spirit of the ODE setting.

Remark 5 (On the choice of JT ). We note that in existing turnpike results for the
wave equation, e.g. [17, 35, 42], a slightly weaker functional is sometimes considered.
For instance, in [42] for the linear wave equation, only the L2(0, T ;H1

0 (Ω))–norm of
y − y is penalized, and not the L2((0, T ) × Ω)–norm of ∂ty, yet turnpike is shown to
hold for the full state (y, ∂ty). This is justified by the equipartition of energy property,
which states that, along a given time interval [0, T ], the energy concentrated on the y
component in H1

0 (Ω) and on the ∂ty component in L2(Ω) is comparably the same up
to a compact remainder term. We choose to work with a functional penalizing the full
state of the system due to the specificity of our proof strategy.

Similarly to the finite-dimensional case, when φ ≡ 0 in (3.2), Theorem 3.1 entails an
exponential stabilization property for the optimal states, namely

Corollary 3.1 (Stabilization). Suppose that φ ≡ 0 in JT defined in (3.2). Under
the assumptions of Theorem 3.1, there exists a time T ∗ > Tmin(ω,Ω) and constants
C1, C2, µ > 0 such that for any T ≥ T ∗, any global minimizer uT ∈ L2((0, T ) × ω) to
JT defined in (3.2) and corresponding optimal state yT solution to (3.1) satisfy

‖yT (t)− y‖H1
0 (Ω) + ‖∂tyT (t)‖L2(Ω) ≤ C1e

−µt

for all t ∈ [0, T ] and
‖uT ‖L2((0,T )×ω) ≤ C2.

Moreover, µ > 0 is independent of y0.

3.2. Semilinear heat equation. To complete our presentation, we will also discuss
control systems of the form

∂ty −∆y + f(y) = u1ω in (0, T )× Ω

y = 0 on (0, T )× ∂Ω

y|t=0 = y0 in Ω,

(3.5)

were f ∈ Lip(R), ω ⊂ Ω is any open, non-empty subset, whereas y0 is a given initial
datum. It is well-known that for any given T > 0, y0 ∈ L2(Ω) and u ∈ L2((0, T )× ω),
there exists a unique globally-defined solution y ∈ C0([0, T ];L2(Ω)) ∩ L2(0, T ;H1

0 (Ω))
to (3.5).

We will again study global minimizers uT ∈ L2((0, T )×ω) to nonnegative functionals
of the form

JT (u) :=

∫ T

0
‖y(t)− y‖2L2(Ω) dt+

∫ T

0
‖u(t)‖2L2(ω) dt, (3.6)
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and the corresponding solution yT to (3.5) in the regime T � 1. Once again, y ∈ L2(Ω)
is a running target which we select as an uncontrolled steady state, namely a solution to
(3.3). The existence of minimizers to JT defined in (3.6) follows by the direct method
in the calculus of variations.

Theorem 3.2 (Stabilization). Suppose that f ∈ Lip(R) and Ω ⊂ Rd are such that
(3.3) admits at least one solution, and let y ∈ H1

0 (Ω) be any such solution. For any
y0 ∈ L2(Ω), there exists T ∗ > 0 and constants C1, C2, µ > 0 such that for any T ≥ T ∗,
any global minimizer uT ∈ L2((0, T ) × ω) of JT defined in (3.6) and corresponding
optimal state yT solution to (3.5) satisfy

‖yT (t)− y‖L2(Ω) ≤ C1e
−µt

for all t ∈ [0, T ], and
‖uT ‖L2((0,T )×ω) ≤ C2.

Moreover, µ > 0 is independent of y0.

We refer to Section 7 for the proof.

We consider the heat equation in addition to the wave equation because of the validity
of the PDE analog of Assumption 1. The heat equation is exactly controllable to
controlled trajectories, namely solutions ŷ to (3.5) for given controls û. Instead of an
estimate such as (2.7), one has ‖u− û‖L2((0,T0)×ω) ≤ C(T0)

∥∥y0 − ŷ(0)
∥∥
L2(Ω)

(see e.g.
[30, Lemma 8.3] and the references therein) for minimal L2–norm controls u steering y
to ŷ in time T0. Such an estimate does not suffice for applying our methodology, as we
clearly need to estimate the minimal L2–norm control by means of the distance of the
initial data to the target. Nonetheless, we illustrate that the stabilization result can be
shown independently of the turnpike result. Indeed, the proof closely follows that of
Theorem 2.1, with the exception that we only need to perform the bootstrap forward
in time, whence we do not require that the system is controllable to anything else but
a steady state. We refer to Section 7 for more details.

The semilinear heat equation is a commonly used benchmark for nonlinear turnpike
results, thus this example serves to compare with existing results, such as those in [29].

Remark 6 (On the nonlinearity). The assumption that f is globally Lipschitz in (3.1)
and (3.5) could perhaps be relaxed to a locally Lipschitz f (for which blow-up is avoided
and controllability is ensured – for instance, f(y) = y3), under the condition that one
can show a uniform L∞((0, T ) × Ω)–estimate of yT with respect to T > 0. Arguments
of this sort in the context of turnpike can be found in [29] under smallness assump-
tions on the target. We refer to the end of Section 8.1 for a discussion of a (possibly
technical) impediment encountered in applying our methodology to the cubic heat equa-
tion. In addition to the controllability properties it entails for (3.1) – (3.5) as blow-up is
avoided,we use the Lipschitz character of f in the estimates in Lemma 6.1, Lemma 6.2
and Lemma 7.1.

4. Preliminary results

We begin by presenting a couple of simple but important lemmas, containing bounds
of the quantity ‖y(t)−y‖ for both the nonlinear ODE and PDE setting, solely by means
of ‖y0−y‖ and the tracking terms appearing in the functional JT . These bounds would
thus imply that bounding the functional JT uniformly in T would entail a bound for
the desired quantity ‖y(t)− y‖.
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Let us begin with the ODE estimate.

Lemma 4.1. Let T > 0 be given, and let y ∈ Rd be as in (2.4). For any data u ∈
L2(0, T ;Rm) and y0 ∈ Rd, let y ∈ C0([0, T ];Rd) be the solution to (2.1) with y(0) = y0.
Then there exist constants C1 = C1(f, y) > 0 and C2 = C2(f) independent of T such
that

‖y(t)− y‖ ≤ C
(∥∥y0 − y

∥∥+ ‖u‖L2(0,T ;Rm) + ‖y − y‖L2(0,T ;Rd)

)
holds for all t ∈ [0, T ], where

C := C1 exp
(
C2‖u‖L2(0,T ;Rm)

)
.

As insinuated by the form of the constant in the estimate, the proof follows a Grönwall
argument. However, as this constant depends on T only through the L2–norm of the
control u, we present the proof for the sake of clarity.

Proof of Lemma 4.1. Let us first suppose that t ∈ [0, 1]. By integrating the equation
satisfied by y, and using the fact that f0, . . . , fm ∈ Lip(Rd;Rd) and t ≤ 1, as well as
Cauchy-Schwarz, it may be seen that

‖y(t)− y‖ ≤ C0

(∥∥y0 − y
∥∥+ ‖u‖L2(0,T ;Rm)

)
for some C0 = C0(f) > 0.

Now suppose that t ∈ (1, T ]. We begin by showing that for any such t, there exists
a t∗ ∈ (t− 1, t] such that

‖y(t∗)− y‖ ≤ ‖y − y‖L2(0,T ;Rd). (4.1)

To this end, we argue by contradiction. Suppose that

‖y(t∗)− y‖ > ‖y − y‖L2(0,T ;Rd)

for all t∗ ∈ (t− 1, t]. Then

‖y − y‖2L2(0,T ;Rd) =

∫ T

0
‖y(t)− y‖2 dt ≥

∫ t

t−1
‖y(τ)− y‖2 dτ > ‖y − y‖2L2(0,T ;Rd),

which contradicts the hypothesis. Thus (4.1) holds.
Consequently, we know that there exists t∗ ∈ (t − 1, t] such that (4.1) holds. By

integrating the equation satisfied by y in [t∗, t], namely writing

y(t)− y = y(t∗)− y +

∫ t

t∗

f0(y) +

m∑
j=1

ujfj(y)

 dτ

= y(t∗)− y +

∫ t

t∗
(f0(y)− f0(y)) dτ +

∫ t

t∗

m∑
j=1

uj (fj(y)− fj(y)) dτ

+

∫ t

t∗

m∑
j=1

ujfj(y) dτ,

we see that, by using the Lipschitz character of f0, . . . , fm and Cauchy-Schwarz for the
sums,

‖y(t)−y‖ ≤ ‖y(t∗)−y‖+C0(f)

∫ t

t∗

(
1+‖u(τ)‖

)
‖y(τ)−y‖ dτ+C1(f, y)

∫ t

t∗
‖u(τ)‖ dτ.
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Now applying a combination of Cauchy-Schwarz, the fact that t− t∗ ≤ 1, (4.1), and the
Grönwall inequality to the inequality just above, we obtain

‖y(t)−y‖ ≤ C2 exp

C3(f)

√
1 +

∫ t

t∗
‖u(τ)‖2 dτ

(‖y − y‖L2(0,T ;Rd) + ‖u‖L2(0,T ;Rm)

)
,

for some C2(f, y) > 0 and C3(f) > 0, from which, using
√
x2 + y2 ≤ x+ y for x, y > 0,

the desired statement readily follows. �

Remark 7. Let us make two brief observations.
• We note that in the case where the running target is (u, y) with f(y, u) = 0 and
u 6= 0, and thus we minimize JT defined in (1.4), we argue as above to obtain
a bound of the form

‖y(t)− y‖ ≤ C
(∥∥y0 − y

∥∥+ ‖u− u‖L2(0,T ;Rm) + ‖y − y‖L2(0,T ;Rd)

)
with C ∼ exp

(
‖u− u‖L2(0,T ;Rm)

)
. Obtaining a dependence of the constant C

with respect to ‖u−u‖L2(0,T ;Rm) rather than just ‖u‖L2(0,T ;Rm) is important, as
by using the functional and optimality arguments, we will be able to obtain a
uniform bound with respect to T of the former, which does not necessarily entail
a bound on the latter. The argument for deducing such a bound is identical to
the proof of Lemma 4.1 – assume that m = 1 for notational simplicity, and
observe that, since f0(y) + uf1(y) = 0,

y(t)− y = y(t∗)− y +

∫ t

t∗
(f0(y)− f0(y)) ds+

∫ t

t∗
(u− u) (f1(y)− f1(y)) ds

+

∫ t

t∗
(u− u) f1(y) ds+

∫ t

t∗
u (f1(y)− f1(y)) ds.

One may then proceed as before.

• It may readily be seen that if the control is of additive rather than multiplicative
form, i.e. if f1, . . . , fm are nonzero constants, then the constant appearing in
the estimate provided by Lemma 4.1 will not depend on the time horizon T .

We state and prove an analogous result for the semilinear heat equation (3.5). The
proof is almost identical to the ODE case, but we sketch it for the sake of clarity.

Lemma 4.2. Let T > 0 be given, and let y be as in (3.3). For any u ∈ L2((0, T )× ω)
and y0 ∈ L2(Ω), let y ∈ C0([0, T ];L2(Ω))∩L2(0, T ;H1

0 (Ω)) be the unique weak solution
to (3.5). Then there exists a constant C = C(f) > 0 independent of T such that

‖y(t)− y‖L2(Ω) ≤ C
(∥∥y0 − y

∥∥
L2(Ω)

+ ‖u‖L2((0,T )×ω) + ‖y − y‖L2((0,T )×Ω)

)
holds for all t ∈ [0, T ].

Proof of Lemma 4.2. The proof closely follows that of Lemma 4.1. We first note that
by uniqueness, y− y can be shown (see [1]) to coincide with the unique mild solution to

∂tz −∆z + f(z + y)− f(y) = u1ω in (0, T )× Ω

z = 0 on (0, T )× ∂Ω

z|t=0 = y0 − y in Ω
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which is given by the Duhamel/variation by constants formula:

y(t)− y = et∆(y0 − y) +

∫ t

0
e(t−s)∆u(s)1ω ds−

∫ t

0
e(t−s)∆(f(y)− f(y)) ds, (4.2)

where
{
et∆
}
t>0

denotes the heat semigroup on L2(Ω) generated by the Dirichlet Lapla-
cian −∆ : H2(Ω) ∩H1

0 (Ω) → L2(Ω). Of course, (4.2) is interpreted as an identity in
L2(Ω). We may thus proceed and use (4.2) throughout.

First suppose that 0 < t ≤ 1. Using the well-known property
∥∥et∆∥∥ ≤ e−λ1(Ω)t ≤ 1

of the heat semigroup (where λ1(Ω) > 0 denotes the first eigenvalue of the Dirichlet
Laplacian), and the Lipschitz character of f , we find using (4.2) that

‖y(t)− y‖L2(Ω) ≤
∥∥et∆ (y0 − y

)∥∥
L2(Ω)

+

∫ t

0

∥∥∥e(t−s)∆u(s)
∥∥∥
L2(ω)

ds

+

∫ t

0

∥∥∥e(t−s)∆(f(y(s))− f(y))
∥∥∥
L2(Ω)

ds

≤
∥∥y0 − y

∥∥
L2(Ω)

+

∫ t

0
‖u(s)‖L2(ω) ds

+ C0

∫ t

0
‖y(t)− y‖L2(Ω) ds,

where C0 = C0(f) > 0 is the Lipschitz constant of f . As t ≤ 1, we may use Cauchy-
Schwarz and Grönwall to conclude.

Now suppose that t ∈ (1, T ]. Arguing as in the proof of Lemma 4.1, we know that
there exists a t∗ ∈ (t− 1, t] such that

‖y(t∗)− y‖L2(Ω) ≤ ‖y − y‖L2((0,T )×Ω) (4.3)

holds. By writing the Duhamel formula for y − y in [t∗, t], namely writing

y(t)− y = et∆ (y(t∗)− y) +

∫ t

t∗
e(t−s)∆u(s) ds−

∫ t

t∗
e(t−s)∆(f(y)− f(y)) ds

we see just as before that

‖y(t)− y‖L2(Ω) ≤ ‖y(t∗)− y‖L2(Ω) +

∫ t

0
‖u(s)‖L2(ω) ds+ C0

∫ t

t∗
‖y(t)− y‖L2(Ω) ds

where C0 = C0(f) > 0 is the Lipschitz constant of f . Using the fact that t∗− t ≤ 1 and
(4.3), we may, as before, apply Cauchy-Schwarz and Grönwall to conclude. �

We finally show the analog estimate for the semilinear wave equation, which is, after
defining the proper functional setup, identical to the proof of Lemma 4.2.

Lemma 4.3. Let T > 0 be given, and let y be as in (3.3). For any u ∈ L2((0, T )× ω)
and y0 = (y0

1, y
0
2) ∈ H1

0 (Ω) × L2(Ω), let y ∈ C0([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)) be

the unique weak solution to (3.1). Then there exists a constant C = C(f,Ω) > 0
independent of T such that

‖y(t)− y‖H1
0 (Ω) + ‖∂ty(t)‖L2(Ω)

≤ C
(∥∥y0

1 − y
∥∥
H1

0 (Ω)
+
∥∥y0

2

∥∥
L2(Ω)

+ ‖u‖L2((0,T )×ω) + ‖y − y‖H1
0 ((0,T )×Ω) + ‖∂ty‖L2((0,T )×Ω)

)
holds for all t ∈ [0, T ].
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Proof of Lemma 4.3. Once (3.1) is written as a first order evolution equation in an
appropriate Hilbert space X, the proof is identical to that of Lemma 4.2. Define the
energy space X := H1

0 (Ω)× L2(Ω), and consider the closed, densely-defined operator

A :=

[
0 Id
∆ 0

]
, D(A) = D(∆)×H1

0 (Ω),

where D(∆) = H2(Ω) ∩ H1
0 (Ω). The operator A is skew-adjoint and thus generates

a strongly continuous semigroup
{
etA
}
t>0

in X by virtue of the Stone-Lumer-Phillips
theorem (see e.g. [37, Theorem 3.8.6]). We now denote

y :=

[
y
∂ty

]
, y :=

[
y
0

]
.

Analog arguments to those in Lemma 4.2 lead us to deduce that

y(t)− y = etA
(
y0 − y

)
+

∫ t

0
e(t−s)A

[
0

u(s)1ω − f(y(s)) + f(y)

]
ds (4.4)

for t > 0 is the unique mild solution to the equation satisfied by the perturbation
y−y. Of course, (4.4) is interpreted as an identity in X. By virtue of the conservative
character of the semigroup, namely

∥∥etAg∥∥
X

= ‖g‖X for all t > 0 and g ∈ X, we see
that one may apply precisely the same arguments as in the proof of Lemma 4.2, this
time to the integral formulation (4.4) in X (with an intermediate application of the
Poincaré inequality after using the Lipschitz character of f) to conclude. �

5. Proof of Theorem 2.1

In this section, we present the proof of Theorem 2.1, Corollary 2.1 and Corollary 2.2.
The proof of Theorem 2.1 requires a couple of preliminary results. In particular, we will,
by means of a quasi-turnpike control strategy, provide bounds – uniform with respect
to the time horizon T– of the tracking terms appearing in the definition (2.3) of the
functional JT for the optimal control-state pairs (uT , yT ).

5.1. Quasi-turnpike lemmas. Both of the following results are heavily based on the
specific choice of target y as a steady state of the nonlinear system with 0 control, and
on the (locally) Lipschitz character of the nonlinear terms.

We begin with the following lemma.

Lemma 5.1. Let y0 ∈ Rd be given, and assume that system (2.1) is controllable in
some time T0 > 0. Let T > 0 be fixed, and let uT ∈ L2(0, T ;Rm) be a global minimizer
to JT defined in (2.3), with yT denoting the associated solution to (2.1) with yT (0) = y0.

Then, there exists a constant C = C(f, φ, T0, y, y
0) > 0 independent of T > 0 such

that
‖uT ‖L2(0,T ;Rm) + ‖yT − y‖L2(0,T ;Rd) + ‖yT (t)− y‖ ≤ C (5.1)

holds for all t ∈ [0, T ].

Proof of Lemma 5.1. We begin by considering the case T ≥ T0. Using the controllability
assumption, we know that there exists a control u† ∈ L2(0, T0;Rm) such that the
corresponding solution y† toẏ

† = f
(
y†, u†

)
in (0, T0)

y†(0) = y0
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•
0

T0 T

u(0)

Figure 3. Proof of Lemma 5.1. The first two terms appearing in
(5.1) also appear in the functional JT (uT ). We thus construct an ad-
missible quasi-turnpike control uaux (red), for which the correspond-
ing state yaux (blue) coincides with y over (T0, T ). In this way, as
JT (uT ) ≤ JT (uaux), and JT (uaux) is independent of T , we can conclude.
The estimate of the third term then follows from Lemma 4.1.

•
0

T0 T
y0

y

satisfies y†(T0) = y. Now set

uaux(t) :=

{
u†(t) in (0, T0)

0 in (T0, T )

and let yaux be the corresponding solution to (2.1) with yaux(0) = y0. Clearly yaux(t) = y
for t ∈ [T0, T ]. Hence, using φ ≥ 0 and JT (uT ) ≤ JT (uaux), we see that

‖yT − y‖2L2(0,T ;Rd) + ‖uT ‖2L2(0,T ;Rm) ≤ φ(y) +
∥∥∥y† − y∥∥∥2

L2(0,T0;Rd)
+
∥∥∥u†∥∥∥2

L2(0,T0;Rm)
.

As the right hand side in the above inequality is clearly independent of T , we conclude
the proof by applying Lemma 4.1 after noting the uniform boundedness of ‖uT ‖L2(0,T ;Rm)

with respect to T > 0.

Now suppose that T ≤ T0. In this case, we use φ ≥ 0 and the optimality inequality
JT (uT ) ≤ JT (uT0+1) with the effect of obtaining

‖yT − y‖2L2(0,T ;Rd) + ‖uT ‖2L2(0,T ;Rm)

≤ φ (yT0+1(T )) + ‖yT0+1 − y‖2L2(0,T ;Rd) + ‖uT0+1‖2L2(0,T ;Rm)
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Now the trajectory yT0+1 ∈ C0([0, T0 + 1];Rd) is uniformly bounded with respect to T
by virtue of the case presented just above. Whence, using the continuity of φ, as well
as T ≤ T0, we may conclude that

‖yT − y‖2L2(0,T ;Rd) + ‖uT ‖2L2(0,T ;Rm) ≤ C

for some C > 0 independent of T . We may use Lemma 4.1 to conclude. �

We will now focus on an auxiliary control problem with fixed endpoints. Namely,
given yτ1 , yτ2 ∈ Rd, and 0 ≤ τ1 < τ2 ≤ T , this problem consists in minimizing the
nonnegative functional

Jτ1,τ2(u) :=

∫ τ2

τ1

‖y(t)− y‖2 dt+

∫ τ2

τ1

‖u(t)‖2 dt (5.2)

over all u ∈ Uad, where y ∈ C0([τ1, τ2];Rd) denotes the unique solution to{
ẏ = f(y, u) in (τ1, τ2)

y(τ1) = yτ1
(5.3)

where
Uad :=

{
u ∈ L2(τ1, τ2;Rm) : y(τ2) = yτ2

}
.

The following lemma is of key importance in what follows. It ensures that the optimal
controls (for Jτ1,τ2) and trajectories are in fact bounded by means of the distance of the
starting point yτ1 and endpoint yτ2 from the running target y. This estimate will be
the cornerstone of the bootstrap argument performed in the proof of Theorem 2.1.

Lemma 5.2. Let y ∈ Rd be as in (2.4), and assume that system (2.1) is controllable
in some time T0 > 0 in the sense of Assumption 1. Let r > 0 be the radius provided by
Assumption 1, and let yτ1 , yτ2 ∈ Rd be such that

‖yτi − y‖ ≤ r
for i = 1, 2. Let 0 ≤ τ1 < τ2 ≤ T be fixed such that τ2 − τ1 ≥ 2T0, and let uT ∈ Uad be
a global minimizer to Jτ1,τ2 defined in (5.2), with yT denoting the associated solution to
(5.3) with yT (τ2) = yτ2.

Then, there exists a constant C = C(f, T0, y, r) > 0 independent of T, τ1, τ2 > 0 such
that

‖uT ‖2L2(τ1,τ2;Rm) + ‖yT − y‖2L2(τ1,τ2;Rd) + ‖yT (t)− y‖2 ≤ C
(
‖yτ1 − y‖2 + ‖yτ2 − y‖2

)
holds for all t ∈ [τ1, τ2]. Moreover, the map r 7−→ C(f, T0, y, r) is non-decreasing as a
function from R+ to R+.

The key idea of the proof of Lemma 5.2 lies in the construction of an auxiliary
suboptimal quasi-turnpike control (steering the corresponding trajectory from yτ1 to
yτ2 in time τ2 − τ1, whilst remaining at y over an interval of length τ2 − τ1 − 2T0; see
the figure just below) in view of estimating each individual addend of Jτ1,τ2(uT ), which
is the minimal value of the functional Jτ1,τ2 . This construction will yield the desired
result.

Proof of Lemma 5.2. Using the controllability assumption, we know the following.
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•
τ1

τ1 + T0
τ2τ2 − T0uaux(τ1)

Figure 4. Proof of Lemma 5.2. The first two terms appearing in the
estimate implied by Lemma 5.2 also appear in the functional Jτ1,τ2(uT ).
We thus construct an admissible quasi-turnpike control uaux (red), for
which the corresponding state yaux (blue) coincides with y over (τ1 +
T0, τ2 − T0). In this way, as Jτ1,τ2(uT ) ≤ Jτ1,τ2(uaux), and Jτ1, τ2(uaux)
is independent of T, τ1, τ2, we can conclude. The estimate of the third
term then follows from Lemma 4.1.

•
τ1

τ1 + T0
τ2τ2 − T0

yτ1

yτ2

y

• There exists a control u† ∈ L2(τ1, τ1 + T0;Rm) satisfying

∥∥∥u†∥∥∥2

L2(τ1,τ1+T0;Rm)
≤ C(T0) ‖yτ1 − y‖2 , (5.4)

for some C(T0) > 0, and which is such that the corresponding solution y† to

ẏ
† = f

(
y†, u†

)
in (τ1, τ1 + T0)

y†(τ1) = yτ1
(5.5)
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satisfies y†(τ1 +T0) = y. By integrating (5.5), and using the Lipschitz character
of f0, . . . , fm, Grönwall’s inequality, Cauchy-Schwarz and (5.4), we see that∥∥∥y†(t)∥∥∥ ≤ C0

(
‖yτ1‖+

∥∥∥u†∥∥∥
L2(τ1,τ1+T0;Rm)

+ 1

)
exp

(
C0

∥∥∥u†∥∥∥
L2(τ1,τ1+T0;Rm)

)
≤ C1

(
‖yτ1‖+ ‖yτ1 − y‖+ 1

)
exp

(
C1 ‖yτ1 − y‖

)
≤ C1

(
‖yτ1‖+ r + 1

)
exp

(
C1r

)
≤ C2

(
‖y‖+ r + 1

)
exp

(
C2r

)
(5.6)

for some C0 = C0(f, T0) > 0, C1 = C1(f, T0) > 0, C2 = C2(f, T0) > 0, and
for every t ∈ (τ1, τ1 + T0). Then, by integrating (5.5) once again, and using
f0(y) = 0, Cauchy-Schwarz and (5.6), we moreover see that∥∥∥y†(t)− y∥∥∥ ≤ ‖yτ1 − y‖+

∫ t

τ1

m∑
j=1

∣∣∣u†j(s)∣∣∣ ∥∥∥fj(y†)∥∥∥ ds+

∫ t

τ1

∥∥∥f(y†)− f(y)
∥∥∥ ds

≤ ‖yτ1 − y‖+ C3

∥∥∥u†∥∥∥
L2(τ1,τ1+T0;Rm)

+ C(f)

∫ t

τ1

∥∥∥y†(s)− y∥∥∥ ds (5.7)

for some C3(f, T0, r, y) > 0, with C(f) > 0 being the Lipschitz constant of
the vector fields fj . Finally, applying Grönwall’s inequality to (5.7) and using
(5.4), we deduce that∥∥∥y†(t)− y∥∥∥ ≤ C4 exp (C(f)T0) ‖yτ1 − y‖ (5.8)

for some C4(f, T0, y, r) > 0 independent of T, τ1, τ2 > 0, and for every t ∈
(τ1, τ1 + T0). Note that in view of (5.6), both C3 and C4 are non-decreasing
with respect to the parameter r > 0.

• There exists a control u‡ ∈ L2(τ1, τ1 + T0;Rm) satisfying∥∥∥u‡∥∥∥2

L2(τ1,τ1+T0;Rm)
≤ C(T0) ‖y − yτ2‖2 , (5.9)

and which is such that the corresponding solution y‡ toẏ
‡ = f

(
y‡, u‡

)
in (τ1, τ1 + T0)

y‡(τ1) = y
(5.10)

satisfies y‡(τ1 + T0) = yτ2 . By integrating (5.10), and using the Lipschitz
character of f0, . . . , fm, Grönwall’s inequality, Cauchy-Schwarz and (5.9), we
see that∥∥∥y‡(t)∥∥∥ ≤ C5

(
‖y‖+

∥∥∥u‡∥∥∥
L2(τ1,τ1+T0;Rm)

+ 1

)
exp

(
C5

∥∥∥u‡∥∥∥
L2(τ1,τ1+T0;Rm)

)
≤ C6

(
‖y‖+ ‖y − yτ2‖+ 1

)
exp

(
C6 ‖y − yτ2‖

)
≤ C6

(
‖y‖+ r + 1

)
exp

(
C6r

)
(5.11)
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for some C5(f) > 0 and C6(f, T0) > 0, and for every t ∈ (τ1, τ1 +T0). Then, by
integrating (5.10) once again, and using f0(y) = 0, Cauchy-Schwarz and (5.11),
we moreover see that∥∥∥y‡(t)− y∥∥∥ ≤ ∫ t

τ1

m∑
j=1

∣∣∣u‡j(s)∣∣∣ ∥∥∥fj(y‡)∥∥∥ ds+

∫ t

τ1

∥∥∥f(y‡)− f(y)
∥∥∥ ds

≤ C7

∥∥∥u‡∥∥∥
L2(τ1,τ1+T0;Rm)

+ C(f)

∫ t

τ1

∥∥∥y‡(s)− y∥∥∥ ds (5.12)

for some C7(f, T0, r, y) > 0, with C(f) > 0 being the Lipschitz constant of
the vector fields fj . Finally, applying Grönwall’s inequality to (5.12) and using
(5.9), we deduce that∥∥∥y‡(t)− y∥∥∥ ≤ C8 exp (C(f)T0) ‖yτ2 − y‖ (5.13)

for some C8(f, T0, y, r) > 0 independent of T, τ1, τ2 > 0, and for every t ∈
(τ1, τ1 + T0). Note that in view of (5.6), both C7 and C8 are non-decreasing
with respect to the parameter r > 0.

Now set

uaux(t) :=


u†(t) in (τ1, τ1 + T0)

0 in (τ1 + T0, τ2 − T0)

u‡ (t− (τ2 − τ1 − T0)) in (τ2 − T0, τ2),

and let yaux be the corresponding solution to (5.3). By construction, we have

yaux(t) = y†(t) in [τ1, τ1 + T0],

and thus
yaux(t) = y in [τ1 + T0, τ2 − T0], (5.14)

whereas we also have yaux(τ2) = yτ2 , whence uaux ∈ Uad.
We now evaluate Jτ1, τ2 at uaux, which by virtue of a simple change of variable as

well as (5.14), (5.4), (5.8), (5.9) and (5.13), leads us to

Jτ1,τ2(uaux) =
∥∥∥u†∥∥∥

L2(τ1,τ1+T0;Rm)
+
∥∥∥u‡∥∥∥

L2(τ1,τ1+T0;Rm)

+

∫ τ1+T0

τ1

∥∥∥y†(t)− y∥∥∥2
dt+

∫ τ1+T0

τ1

∥∥∥y‡(t)− y∥∥∥2
dt

≤ C9

(
‖y − yτ1‖2 + ‖y − yτ2‖2

)
(5.15)

where C9 = C9(f, y, T0, r) > 0 is independent of T, τ1, τ2 > 0, and is non-decreasing
with respect to r. Hence uT ∈ Uad is uniformly bounded with respect to T, τ1, τ2 > 0,
as in view of (5.15) we have

‖yT − y‖2L2(τ1,τ2;Rd) + ‖uT ‖2L2(τ1,τ2;Rm) ≤ Jτ1,τ2 (uT ) ≤ Jτ1,τ2 (uaux)

≤ C9

(
‖y − yτ1‖2 + ‖y − yτ2‖2

)
.

An application of Lemma 4.1 combined with the uniform boundedness of ‖uT ‖L2(τ1,τ2;Rm)

with respect to T, τ2, τ1 > 0 suffices to conclude. �

Before proceeding with the proof of Theorem 2.1, we will need the following key
lemma.
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Lemma 5.3. Let X be a Banach space, T > 0 and f ∈ C0([0, T ];X). For any τ ≤ T
2 ,

there exist t1 ∈ [0, τ) and t2 ∈ (T − τ, T ] such that

‖f(ti)‖X ≤
‖f‖L2(0,T ;X)√

τ
for i = 1, 2.

Proof of Lemma 5.3. Denote

η(τ) :=
‖f‖L2(0,T ;X)√

τ
.

We argue by contradiction. Assume that either

‖f(t)‖X > η(τ) for all t ∈ [0, τ)

or
‖f(t)‖X > η(τ) for all t ∈ (T − τ, T ].

hold. Then we have∫ T

0
‖f(t)‖2X dt ≥

∫ τ

0
‖f(t)‖2X dt+

∫ T

T−τ
‖f(t)‖2X dt > τη(τ)2.

Hence

η(τ)2 <
1

τ

∫ T

0
‖f(t)‖2X dt = η(τ)2,

which yields a contradiction. This concludes the proof. �

5.2. Proof of Theorem 2.1. We are now in a position to prove our first main result.

Proof of Theorem 2.1. We begin by noting that (2.9) follows immediately from Lemma 5.1.
We thus concentrate on proving (2.8) – we split the proof in two parts.

Before proceeding, let us first note that by Lemma 5.1, there exists a constant
C1(f, T0, y, y

0) > 0 such that whenever T ≥ 2T0,

‖yT (t)− y‖ ≤ C1 for all t ∈ [0, T ]. (5.16)

Let r > 0 be the radius provided by Assumption 1. By Lemma 5.2, we know that
there exists a constant C2(f, T0, y, r) > 0 such that for any τ1, τ2 ∈ [0, T ] such that
τ2 − τ1 ≥ 2T0 and

‖yT (τi)− y‖ ≤ r
for i = 1, 2, the estimate

‖yT (t)− y‖ ≤ C2

(
‖yT (τ2)− y‖+ ‖yT (τ1)− y‖

)
for all t ∈ [τ1, τ2]

holds. Now let

τ > 16C4
2 +

C2
1

r2
+

4C2
1C

2
2

r2
+ T0 (5.17)

and let
T ≥ 2τ + 2T0

be fixed. The choice of the "buffer" time τ will become clear in what follows (in fact,
it will also be seen that T ∗ := τ+T0

2 in the statement of the theorem).
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Part 1: We note that for t ∈
[
0, τ + T0

]
and t ∈

[
T − (τ + T0), T

]
, the desired

estimate (2.8) can be obtained without too much difficulty, as the length of both time
intervals is independent of T . Indeed, by (5.16), for any µ > 0 we have

‖yT (t)− y‖ ≤ C1 = C1e
µt e−µt

≤ C1e
µ(τ+T0)

(
e−µt + e−µ(T−t)

)
(5.18)

for t ∈
[
0, τ + T0

]
, and

‖yT (t)− y‖ ≤ C1 = C1e
µ(T−t) e−µ(T−t)

≤ C1e
µ(τ+T0)

(
e−µt + e−µ(T−t)

)
(5.19)

for t ∈
[
T − (τ + T0), T

]
.

Thus, it only remains to be seen what happens when t ∈
[
τ + T0, T − (τ + T0)

]
. We

will address this case by means of a bootstrap argument in Part 2 just below.

Part 2: We now aim to show (2.8) for t ∈
[
τ + T0, T − (τ + T0)

]
. To this end, we

proceed in three steps.
Step 1). Preparation. Since τ ≤ T

2 , by Lemma 5.3 and Lemma 5.1, there exist a
couple of time instances τ1 ∈ [0, τ) and τ2 ∈ (T − τ, T ] such that

‖yT (τi)− y‖ ≤
‖yT − y‖L2(0,T ;Rd)√

τ
≤ C1√

τ
. (5.20)

Note that, by virtue of the choice of τ in (5.17), we have that C1√
τ
≤ r and thus

‖yT (τi)− y‖ ≤ r (5.21)

also holds. We shall now restrict our analysis onto [τ1, τ2], and extrapolate onto
the subset

[
τ, T − τ

]
. First note that uT |[τ1,τ2] is a global minimizer2 of Jτ1,τ2

defined in (5.2) with fixed endpoints yτ1 = yT (τ1) and yτ2 = yT (τ2), and thus
clearly yT |[τ1,τ2] solves (5.3). As

τ2 − τ1 ≥ T − 2τ ≥ 2T0,

in view of (5.21), we may use Lemma 5.2 with the effect of deducing that

‖yT (t)− y‖ ≤ C2

(
‖yT (τ1)− y‖+ ‖yT (τ2)− y‖

)
(5.22)

holds for all t ∈ [τ1, τ2]. Setting

κ := max

{
1,
C1

C2

}
,

and applying (5.20) to inequality (5.22), we deduce that

‖yT (t)− y‖ ≤ κ2C2
2√
τ

(5.23)

holds for all t ∈ [τ1, τ2]. As τ1 ≤ τ and T − τ ≤ τ2, estimate (5.23) clearly
holds for all t ∈

[
τ, T − τ

]
.

2This can be shown by contradiction.
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Step 2). Bootstrap. Inequality (5.23) motivates performing a bootstrap – we will show
that for any n ∈ N satisfying

n ≤ 1

τ

(
T

2
− T0

)
,

one has

‖yT (t)− y‖ ≤ κ

2

(
4C2

2√
τ

)n
for t ∈

[
nτ, T − nτ

]
. (5.24)

The choice of n is done as to guarantee that T−2nτ ≥ 2T0 in view of a repeated
application of Lemma 5.2. Note that (5.22), combined with the choice of τ in
(5.17), also implies that

‖yT (t)− y‖ ≤ r (5.25)

for all t ∈ [τ, T − τ ].
To prove (5.24), we proceed by induction. The case n = 1 clearly holds by

(5.23). Thus, assume that (5.24) holds – we aim to show that (5.24) holds at
step n+ 1. To this end, let

n+ 1 ≤ 1

τ

(
T

2
− T0

)
.

This clearly implies that

τ ≤ T − 2nτ

2
. (5.26)

As in Step 1, since T − 2nτ ≥ 2T0, it can be seen that uT |[nτ,T−nτ ] is a global
minimizer of Jnτ,T−nτ defined in (5.2). Taking these facts into account, and
noting that (5.25) holds3, we can apply Lemma 5.3 on [nτ, T−nτ ] (note (5.26)),
and Lemma 5.2 with τ1 = nτ and τ2 = T − nτ , to deduce that there exist a
couple of times t1 ∈

[
nτ, (n+ 1)τ

)
and t2 ∈

(
T − (n+ 1)τ, T − nτ

]
such that

‖yT (ti)− y‖ ≤
‖yT − y‖L2(nτ,T−nτ ;Rd)√

τ

≤ C2√
τ

(
‖yT (nτ)− y‖+ ‖yT (T − nτ)− y‖

)
We now use the induction hypothesis (5.24) to obtain

‖yT (ti)− y‖ ≤ κ
2C2√
τ

(
4C2

2√
τ

)n
(5.27)

Now since

t2 − t1 ≥ T − 2(n+ 1)τ ≥ 2T0,

3Note that nτ ≥ τ and T − nτ ≤ T − τ , so (5.25) also holds for t ∈ [nτ, T − nτ ], hence Lemma 5.2
is applicable.
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and since uT |[t1,t2 is a global minimizer of Jt1,t2 defined in (5.2), combining
Lemma 5.24 and (5.27) we are led to deduce that

‖yT (t)− y‖ ≤ C2

(
‖yT (t1)− y‖+ ‖yT (t2)− y‖

)
≤ κ

2

4C2
2√
τ

(
4C2

2√
τ

)n
(5.28)

for t ∈ [t1, t2]. Since t1 < (n+1)τ and T −(n+1)τ < t2, estimate (5.28) clearly
also holds for t ∈

[
(n+ 1)τ, T − (n+ 1)τ

]
. Identity (5.24) is thus proven.

Step 3). Conclusion. We now look to use (5.24) as to conclude the proof. Suppose
that t ∈

[
τ + T0, T − (τ + T0)

]
. We set

n(t) := min

{⌊
t

τ + T0

⌋
,

⌊
T − t
τ + T0

⌋}
,

where bzc denotes the integer part of z ∈ R. Clearly n(t) ≥ 1 and

n(t)τ ≤ t ≤ T − n(t)τ.

Moreover, since z 7→ z−2T0
z is non-decreasing,

n(t) ≤ T

2(τ + T0)
=

T

2τ

2(τ + T0)− 2T0

2(τ + T0)

≤ T

2τ

T − 2T0

T

=
1

τ

(
T

2
− T0

)
.

We may then apply (5.24) to obtain

‖yT (t)− y‖ ≤ κ

2

(
4C2

2√
τ

)n(t)

. (5.29)

As τ > 16C2
2 , we see that 4C2

2√
τ
< 1. Moreover, since either n(t) ≥

⌊
t

τ+T0

⌋
− 1

or n(t) ≥
⌊
T−t
τ+T0

⌋
− 1 holds, we may rewrite (5.29) to obtain

‖yT (t)− y‖ ≤ κ

2
exp

(
−n(t) log

( √
τ

4C2
2

))

≤ κ

2

√
τ

4C2
2

exp

− log
( √

τ
4C2

2

)
τ + T0

t

+ exp

− log
( √

τ
4C2

2

)
τ + T0

(T − t)

 . (5.30)

Whence, (2.8) holds for all t ∈
[
τ + T0, T − (τ + T0)

]
, with

C :=
κ

2

√
τ

4C2
2

and

µ :=
log
( √

τ
4C2

2

)
τ + T0

> 0. (5.31)

4May be applied once again since (5.25) holds for t = t1 ≥ τ and t = t2 ≤ T − τ .
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By virtue of (5.18), (5.19) and (5.30), we deduce that (2.8) holds for all t ∈ [0, T ], with
T ∗ := τ + T0,

C := max

{
C1,

κ

2

√
τ

4C2
2

}
and µ as in (5.31). This concludes the proof. �

5.3. Proof of Corollary 2.1. Let us now provide a proof to Corollary 2.1.

Proof of Corollary 2.1. By Theorem 2.1, with φ ≡ 0, there exist constants C1 > 0 and
µ1 > 0 such that

‖yT (t)− y‖ ≤ C1

(
e−µ1t + e−µ1(T−t)

)
holds for all t ∈ [0, T ]. We now distinguish two cases.

• If t ∈
[
0, T2

]
, we also have

‖yT (t)− y‖ ≤ C1

(
e−µ1t + e−µ1(T−t)

)
≤ 2C1e

−µ1 t
2 . (5.32)

The desired estimates thus holds in this case.

• We now consider the case t ∈
[
T
2 , T

]
. First set

uaux(t) :=


uT (t) for t ∈

[
0,
T

2

]
0 for t ∈

[
T

2
, T

]
.

The state yaux, solution to (2.1) with yaux(0) = y0 associated to uaux is precisely

yaux(t) =


yT (t) for t ∈

[
0,
T

2

]
yT

(
T

2

)
for t ∈

[
T

2
, T

]
.

Using the inequality JT (uT ) ≤ JT (uaux) along with (5.32) gives∫ T

T
2

‖uT (t)‖2 dt+

∫ T

T
2

‖yT (t)− y‖2 dt ≤
∫ T

T
2

∥∥∥∥yT (T2
)
− y
∥∥∥∥2

dt

≤
∫ T

T
2

4C2
1 exp(−µ1T ) dt

≤ 2C2
1T exp(−µ1T )

≤ C2 exp

(
−µ1

T

4

)
, (5.33)

for some C2 > 0 independent of T > 0.
Now by Lemma 4.1, for any t ∈

[
T
2 , T

]
,

‖yT (t)− y‖ ≤ C3

(∥∥∥∥yT (T2
)
− y
∥∥∥∥+ ‖uT ‖L2(T

2
,T ;Rm) + ‖yT − y‖L2(T

2
,T ;Rd)

)
for some C3 > 0 of the form

C3 ∼ exp
(
‖uT ‖L2(T

2
,T ;Rm)

)
.
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In view of (2.9), ‖uT ‖L2(T
2
,T ;Rm) is bounded uniformly with respect to T ,

and thus C3 > 0 is independent of T . Combining the above estimate with
(5.33) leads us to

‖yT (t)− y‖ ≤ C4 exp

(
−µ1

T

4

)
≤ C4 exp

(
−µ1

t

4

)
, (5.34)

for some C4 > 0 independent of T > 0 and for all t ∈
[
T
2 , T

]
.

Combining (5.32) and (5.34), we see that for C5 := max{2C1, C4} and µ := µ1
4 , the

stabilization estimate

‖yT (t)− y‖ ≤ C5e
−µt,

for all t ∈ [0, T ]. This concludes the proof. �

5.4. Proof of Corollary 2.2. We finish this section with the proof of Corollary 2.2,
which stipulates an exponential decay of optimal controls in the context of driftless
control-affine systems, namely (2.1) with a nonlinearity of the form

f(y, u) =

m∑
j=1

ujfj(y) for (y, u) ∈ Rd × Rm. (5.35)

We recall that, here, f1, . . . , fm ∈ Lip(Rd;Rd).
We begin with the following simple result.

Lemma 5.4. Let T0 > 0, y0 ∈ Rd and uT0 ∈ L2(0, T0;Rm) be given, and let yT0 ∈
C0([0, T0];Rd) be the unique solution to{

ẏT0 = f(yT0 , uT0) in (0, T0)

yT0(0) = y0 (5.36)

with f as in (5.35). Let T > 0, and define

uT (t) :=
T0

T
uT0

(
t
T0

T

)
for t ∈ [0, T ],

and

yT (t) := yT0

(
t
T0

T

)
for t ∈ [0, T ].

Then yT ∈ C0([0, T ];Rd) is the unique solution to (2.1) with yT (0) = y0 associated to
uT .

This sort of time-scaling in the context of driftless control affine systems is commonly
used in control theoretical contexts – a canonical example is the proof of the Chow-
Rashevskii controllability theorem, see [6, Chapter 3, Section 3.3]. We provide the short
proof for completeness.
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Proof of Lemma 5.4. Using the fact that yT0 is the solution to (7.8) and the change of
variable τ = s TT0 , we see that

yT (t) := yT0

(
t
T0

T

)
= y0 +

∫ t
T0
T

0
f(yT0(s), uT0(s)) ds

= y0 +

∫ t

0

T0

T
f

(
yT0

(
τ
T0

T

)
, uT0

(
τ
T0

T

))
dτ

= y0 +

∫ t

0
f (yT (τ), uT (τ)) dτ.

It follows that yT solves (2.1) with yT (0) = y0, and we conclude by uniqueness. �

Proof of Corollary 2.2. As t 7→ ‖uT (t)‖2 is in L1(0, T ), by the Lebesgue differentiation
theorem, we have

‖uT (t)‖2 = lim
h↘0+

1

h

∫ t+h

t
‖uT (s)‖2 ds

for almost every t ∈ (0, T ). Hence, we will aim at estimating the integral on the right
hand side by constructing an appropriate auxiliary suboptimal auxiliary control, and
conclude by passing to the limit as h↘ 0+. We will split the proof in two parts, namely
separate the proof of (2.11) (i.e. φ 6≡ 0) and (2.12) (i.e. φ ≡ 0); they mainly differ in
the construction of the suboptimal auxiliary control required very last estimate (5.45)
before concluding.

Part 1: Proof of (2.11). Fix t ∈ [0, T ) and 0 < h� 1 so that t+ 2h2 + 2h ∈ [0, T ].
Let us set

uaux(s) :=



uT (s) for s ∈ [0, t]

1

2
uT

(
t+

s− t
2

)
for s ∈

(
t, t+ 2h2

]
h+ 2

2
uT

((
h+ 2

2

)
s− h+ 2

2
(t+ 2h2) + t+ h2

)
for t ∈

(
t+ 2h2, t+ 2h2 + 2h

]
uT (s) for s ∈

(
t+ 2h2 + 2h, T

]
.

The specific choice of uaux will become clear in what follows – the factor h in the third
line will be essential in the subsequent estimates. By Lemma 5.4, the state yaux, solution
to (2.1) associated to uaux is precisely

yaux(s) =



yT (s) for s ∈ [0, t]

yT

(
t+

s− t
2

)
for s ∈

(
t, t+ 2h2

]
yT

((
h+ 2

2

)
s− h+ 2

2
(t+ 2h2) + t+ h2

)
for t ∈

(
t+ 2h2, t+ 2h2 + 2h

]
yT (s) for t ∈

(
t+ 2h2 + 2h, T

]
.

Note in particular that yaux(T ) = yT (T ), whence φ(yaux(T )) = φ(yT (T )). Our goal is
then to rewrite the simple inequality JT (uT ) ≤ JT (uaux) as to estimate the infinitesimal
average of ‖uT (t)‖2 taken about t by the infinitesimal average of ‖yT (t) − y‖2 taken
about t, for which we have an exponential estimate by Theorem 2.1.

We proceed as follows.
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• On one hand, using the change of variable τ := t+ s−t
2 we see that

∫ t+2h2

t
‖uaux(s)‖2 ds =

∫ t+2h2

t

∥∥∥∥1

2
uT

(
t+

s− t
2

)∥∥∥∥2

ds

=
1

2

∫ t+h2

t
‖uT (τ)‖2 dτ. (5.37)

On another hand, via τ :=
(
h+2

2

)
s− h+2

2 (t+ 2h2) + t+ h2 we see that

∫ t+2h2+2h

t+2h2
‖uaux(s)‖2 ds

=

∫ t+2h2+2h

t+2h2

∥∥∥∥h+ 2

2
uT

((
h+ 2

2

)
s− h+ 2

2
(t+ 2h2) + t+ h2

)∥∥∥∥2

ds

=
h+ 2

2

∫ t+h2+2h

t+h2
‖uT (τ)‖2 dτ. (5.38)

Combining (5.37) and (5.38) and since 0 < h� 1, it follows that

∫ T

0
‖uaux(s)‖2 ds =

∫ t

0
‖uaux(s)‖2 ds+

∫ t+2h2

t
‖uaux(s)‖2 ds

+

∫ t+2h2+2h

t+2h2
‖uaux(s)‖2 ds+

∫ T

t+2h2+2h
‖uaux(s)‖2 ds

=

∫ t

0
‖uT (s)‖2 ds+

1

2

∫ t+h2

t
‖uT (τ)‖2 dτ

+
h+ 2

2

∫ T+h2+2h

t+h2
‖uT (τ)‖2 dτ +

∫ T

t+2h2+2h
‖uT (τ)‖2 dτ

≤
∫ T

0
‖uT (s)‖2 ds− 1

2

∫ t+h

t
‖uT (s)‖2 ds

+
h

2

∫ t+h2+2h

t+h2
‖uT (τ)‖2 dτ. (5.39)

• We now focus on rewriting the state tracking term. On one hand, by means of
τ := t+ s−t

2 we see that

∫ t+2h2

t
‖yaux(s)− y‖2 ds =

∫ t+2h2

t

∥∥∥∥yT (t+
s− t

2

)
− y
∥∥∥∥2

ds

= 2

∫ t+h2

t
‖yT (τ)− y‖2 dτ. (5.40)
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On another hand, via τ :=
(
h+2

2

)
s− h+2

2 (t+ 2h2) + t+ h2 we see that

∫ t+2h2+2h

t+2h2
‖yaux(s)− y‖2 ds

=

∫ t+2h2+2h

t+2h2

∥∥∥∥yT ((h+ 2

2

)
s− h+ 2

2
(t+ 2h2) + t+ h2

)
− y
∥∥∥∥2

ds

=
2

h+ 2

∫ t+h2+2h

t+h2
‖yT (τ)− y‖2 dτ. (5.41)

Combining (5.40) and (5.41) and since 0 < h� 1, we obtain

∫ T

0
‖yaux(s)− y‖2 ds =

∫ t

0
‖yaux(s)− y‖2 ds+

∫ t+2h2

t
‖yaux(s)− y‖2 ds

+

∫ t+2h2+2h

t+2h2
‖yaux(s)− y‖2 ds+

∫ T

t+2h2+2h
‖yaux(s)− y‖2 ds

=

∫ t

0
‖yT (s)− y‖2 ds+ 2

∫ t+h2

t
‖yT (τ)− y‖2 dτ

+
2

h+ 2

∫ t+h2+2h2

t+h2
‖yT (τ)− y‖2 dτ +

∫ T

t+2h2+2h
‖yT (τ)− y‖2 dτ

≤
∫ T

0
‖yT (s)− y‖2 ds+

∫ t+h

t
‖yT (s)− y‖2 ds. (5.42)

We may now proceed with the main argument. Using the optimality of uT , and
applying (5.39) and (5.42), we see that

JT (uT ) ≤ JT (uaux) = φ (yaux(T )) +

∫ T

0
‖yaux(s)− y‖2 ds+

∫ T

0
‖uaux(s)‖2 ds

= φ(yT (T )) +

∫ T

0
‖yT (s)− y‖2 +

∫ t+h

t
‖yT (s)− y‖2 ds

+

∫ T

0
‖uT (s)‖2 ds− 1

2

∫ t+h

t
‖uT (s)‖2 ds

+
h

2

∫ t+h2+2h

t+h2
‖uT (s)‖2 ds. (5.43)

From (5.43), one clearly sees that

1

2

∫ t+h

t
‖uT (s)‖2 ds ≤

∫ t+h

t
‖yT (s)− y‖2 ds+

h

2

∫ t+h2+2h

t+h2
‖uT (s)‖2 ds. (5.44)
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We combine estimate (5.44) with (2.8) to deduce that

1

h

∫ t+h

t
‖uT (s)‖2 ds .

1

h

∫ t+h

t
‖yT (s)− y‖2 ds+

∫ t+h2+2h

t+h2
‖uT (s)‖2 ds

≤ C

h

∫ t+h

t

(
e−µs + e−µ(T−s)

)2
ds+

∫ t+h2+2h

t+h2
‖uT (s)‖2 ds

≤ C

h

∫ t+h

t

(
e−µt + e−µ(T−t−h)

)2
ds+

∫ t+h2+2h

t+h2
‖uT (s)‖2 ds

= C
(
e−µt + e−µ(T−t−h)

)2
+

∫ t+h2+2h

t+h2
‖uT (s)‖2 ds (5.45)

for some C > 0 independent of T . Thus, by using the Lebesgue differentiation theorem
and the Lebesgue dominated convergence theorem (applied to the integrable function
s 7→ ‖uT (s)‖21(t+h2,t+h2+2h)(s)) in (5.45), we deduce that

‖uT (t)‖ = lim
h↘0+

(
1

h

∫ t+h

t
‖uT (s)‖2 ds

)1/2

≤ C
(
e−µt + e−µ(T−t)

)
,

as desired.

Part 2: Proof of (2.12). This part is somewhat simpler due to the fact that φ ≡ 0.
Hence the suboptimal control has a much simpler structure as we do not require a
factor of h to deal with a remainder term as in (5.43). From there on, the arguments
are identical to those above.

Fix any t ∈ [0, T ) and 0 < h� 1, so that t+ 2h ∈ [0, T ] and set

uaux(s) :=


uT (s) for s ∈ [0, t]

1

2
uT

(
t+

s− t
2

)
for s ∈ (t, t+ 2h]

uT (s− h) for s ∈ (t+ 2h, T ].

By Lemma 5.4, the state yaux, solution to (2.1) associated to uaux is precisely

yaux(s) =


yT (s) for s ∈ [0, t]

yT

(
t+

s− t
2

)
for s ∈ (t, t+ 2h]

yT (s− h) for t ∈ (t+ 2h, T ].
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Arguing by means of simple changes of variable just as we did for obtaining (5.39) and
(5.42), and using the suboptimality of uaux, we can readily see that

JT (uT ) ≤ JT (uaux) =

∫ T

0
‖uaux(s)‖2 ds+

∫ T

0
‖yaux(s)− y‖2 ds

=

∫ T−h

0
‖uT (s)‖2 ds− 1

2

∫ t+h

t
‖uT (s)‖2 ds

+

∫ T−h

0
‖yT (s)− y‖2 +

∫ t+h

t
‖yT (s)− y‖2 ds

≤
∫ T

0
‖uT (s)‖2 ds− 1

2

∫ t+h

t
‖uT (s)‖2 ds

+

∫ T

0
‖yT (s)− y‖2 +

∫ t+h

t
‖yT (s)− y‖2 ds. (5.46)

From (5.46), one clearly sees that

1

2

∫ t+h

t
‖uT (s)‖2 ds ≤

∫ t+h

t
‖yT (s)− y‖2 ds. (5.47)

We combine estimate (5.47) with (2.12) to deduce that

1

h

∫ t+h

t
‖uT (s)‖2 ds .

1

h

∫ t+h

t
‖yT (s)− y‖2 ds

≤ C

h

∫ t+h

t
e−2µs ds

≤ C

h

∫ t+h

t
e−2µt ds

= Ce−2µt. (5.48)

Thus by the Lebesgue differentiation theorem, using (5.48) we deduce that

‖uT (t)‖ = lim
h↘0+

(
1

h

∫ t+h

t
‖uT (s)‖2 ds

)1/2

≤ Ce−µt,

as desired. This concludes the proof. �

6. Proof of Theorem 3.1

In this section, we provide details of the proof of Theorem 3.1. The proof of Corol-
lary 3.1 follows by repeating the proof of Corollary 2.1 in the appropriate functional
setting, so we omit it.

Proof of Theorem 3.1. Once (3.1) is written as a first order evolution equation set in
X := H1

0 (Ω) × L2(Ω) (see the proof of Lemma 4.3 for this setup), the only noticeable
difference in the proof of Theorem 3.1 with respect to the proof of Theorem 2.1 are
the specific quasi-turnpike lemmas one applies in the preparation (Lemma 6.1 in Part
1 & Step 1 of Part 2) and bootstrap (Lemma 6.2 in Step 2). So one simply repeats the
proof of Theorem 2.1 whilst applying Lemma 6.1, Lemma 6.2 and Lemma 5.3 with X
as above. Whence, the proof follows from these two lemmas, stated and proven just
below. �
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Lemma 6.1. Let y0 = (y0
1, y

0
2) ∈ H1

0 (Ω)× L2(Ω) be given. Let T > 0 be fixed, and let
uT ∈ L2((0, T )× ω) be a global minimizer to JT defined in (3.2), with yT denoting the
associated solution to (3.1). Then, there exists a constant C = C(f, φ, ω,Ω, y,y0) > 0
independent of T > 0 such that

JT (uT ) + ‖yT (t)− y‖2H1
0 (Ω) + ‖∂tyT (t)‖2L2(Ω) ≤ C

holds for all t ∈ [0, T ].

Proof of Lemma 6.1. The proof follows the lines of that of Lemma 5.1, simply adapted
to the PDE setting. Fix T0 ≥ Tmin where Tmin = Tmin(ω,Ω) > 0 is the minimal
controllability time for the semilinear wave equation.

We begin by considering the case T > T0. By controllability, we know that exists
some control u† ∈ L2((0, T0)× ω) such that the corresponding solution y† to

∂2
t y
† −∆y† + f(y†) = u†1ω in (0, T0)× Ω

y† = 0 on (0, T0)× ∂Ω

(y†, ∂ty
†)|t=0 = y0 in Ω.

satisfies y†(T0) = y and ∂ty†(T0) = 0 a.e. in Ω. Now set

uaux(t) :=

{
u†(t) in (0, T0)

0 in (T0, T )

and let yaux be the corresponding solution to (3.1). Clearly

yaux(t) = y and ∂ty
aux(t) = 0 for t ∈ [T0, T ] a.e. in Ω.

Combining this fact with JT (uT ) ≤ JT (uaux), we see that

JT (uT ) ≤ φ(y) +
∥∥∥y† − y∥∥∥2

L2(0,T0;H1
0 (Ω))

+
∥∥∥∂ty†∥∥∥2

L2((0,T )×Ω)
+
∥∥∥u†∥∥∥2

L2((0,T0)×ω)
.

As the right hand side in the above inequality is clearly independent of T , we conclude
by applying Lemma 4.3.

Now suppose that T ≤ T0. We use the optimality inequality JT (uT ) ≤ JT (uT0+1) to
obtain

JT (uT ) ≤ φ (yT0+1(T )) + ‖yT0+1 − y‖2L2(0,T ;H1
0 (Ω))

+ ‖∂tyT0+1‖2L2(0,T ;L2(Ω)) + ‖uT0+1‖2L2((0,T )×ω).

By the previous case addressed just above, the trajectory yT0+1 ∈ C0([0, T0 +1];L2(Ω))
is bounded uniformly with respect to T . Hence, using the fact that φ ∈ C0(L2(Ω);R+)
and T ≤ T0, we deduce that

JT (uT ) ≤ C (6.1)

for some C > 0 independent of T . Combining (6.1) with Lemma 4.3 allows us to
conclude. �

We note that since f ∈ Lip(R), following the spirit of our finite-dimensional argu-
ments, since (3.1) is a Lipschitz perturbation of an exactly controllable linear system,
the following claim holds.



TURNPIKE IN LIPSCHITZ–NONLINEAR OPTIMAL CONTROL 35

Claim 6.1 (Cost estimate). Let T0 > Tmin, where Tmin = Tmin(Ω, ω) > 0 is the minimal
controllability time for (3.1). There exists r > 0 and C = C(T0, ω, f) > 0 such that

inf
u

such that
(y,∂ty)|t=0=y0

and
(y,∂ty)|t=T0

=(y,0)

‖u‖2L2((0,T0)×ω) ≤ C
(∥∥y0

1 − y
∥∥2

H1
0 (Ω)

+
∥∥y0

2

∥∥2

L2(Ω)

)
,

and
inf
u

such that
(y,∂ty)|t=0=(y,0)

and
(y,∂ty)|t=T0

=y1

‖u‖2L2((0,T0)×ω) ≤ C
(∥∥y1

1 − y
∥∥2

H1
0 (Ω)

+
∥∥y1

2

∥∥2

L2(Ω)

)
,

hold for any y0 =
(
y0

1, y
0
2

)
and y1 =

(
y1

1, y
1
2

)
such that

y0,y1 ∈
{[

y1

y2

]
∈ H1

0 (Ω)× L2(Ω) :

∥∥∥∥[y1

y2

]
−
[
y
0

]∥∥∥∥
H1

0 (Ω)×L2(Ω)

≤ r
}
,

where y solves (3.1) and y ∈ H1
0 (Ω) is fixed as in (3.3).

As in the finite-dimensional case, the second quasi-turnpike result is one for an
auxiliary control problem with fixed endpoints. For 0 ≤ τ1 < τ2 ≤ T and given
yτ1 ,yτ2 ∈ H1

0 (Ω) × L2(Ω), this auxiliary problem consists in minimizing the nonnega-
tive functional

Jτ1,τ2(u) :=

∫ τ2

τ1

‖y(t)− y‖2H1
0 (Ω) dt+

∫ τ2

τ1

‖∂ty(t)‖2L2(Ω) +

∫ τ2

τ1

‖u(t)‖2L2(ω) dt (6.2)

over all u ∈ Uad, where y ∈ C0([τ1, τ2];H1
0 (Ω)) ∩C1([τ1, τ2];L2(Ω)) denotes the unique

solution to 
∂2
t y −∆y + f(y) = u1ω in (τ1, τ2)× Ω

y = 0 on (τ1, τ2)× ∂Ω

(y, ∂ty)|t=τ1 = yτ1 in Ω.

(6.3)

and where
Uad :=

{
u ∈ L2((τ1, τ2)× ω) : (y, ∂ty)|t=τ2 = yτ2

}
.

We recall that f ∈ Lip(R).
We now state and prove the wave equation analog of Lemma 5.2, which we recall, is

the cornerstone of the bootstrap argument in our turnpike proof.

Lemma 6.2. Let T0 > 0 and r > 0 be provided by Claim 6.1, and let yτ1 ,yτ2 be such
that

yτi ∈
{[

y1

y2

]
∈ H1

0 (Ω)× L2(Ω) :

∥∥∥∥[y1

y2

]
−
[
y
0

]∥∥∥∥
H1

0 (Ω)×L2(Ω)

≤ r
}

for i = 1, 2. Let T > 0 and 0 ≤ τ1 < τ2 ≤ T be fixed such that τ2 − τ1 ≥ 2T0, and let
uT ∈ Uad be a global minimizer to Jτ1,τ2 defined in (6.2), with yT denoting the associated
solution to (6.3). Then, there exists a constant C = C(f, T0,Ω, ω) > 0 independent of
T, τ1, τ2 > 0 such that

Jτ1,τ2(uT ) + ‖yT (t)− y‖2H1
0 (Ω) + ‖∂tyT (t)‖2L2(Ω)

≤ C
(
‖yτ11 − y‖2H1

0 (Ω) + ‖yτ12 ‖2L2(Ω) + ‖yτ21 − y‖2L2(Ω) + ‖yτ22 ‖2L2(Ω)

)
holds for all t ∈ [τ1, τ2].
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Proof of Lemma 6.2. The proof follows the lines of that of Lemma 5.2, with some slight
technical differences. We provide details for the sake of completeness. For notational
purposes, it will be significantly simpler to operate in the canonical first order system
framework presented in the proof of Lemma 4.3. For the same reason, we will also drop
the subscripts of T .

We set X := H1
0 (Ω)× L2(Ω), and we denote

y :=

[
y
∂ty

]
, y :=

[
y
0

]
.

We also recall the definition of the skew-adjoint operator

A :=

[
0 Id
∆ 0

]
, D(A) = D(∆)×H1

0 (Ω),

where D(∆) = H2(Ω) ∩H1
0 (Ω). Then the desired estimate simply writes as

Jτ1,τ2(u) + ‖y(t)− y‖2X ≤ C
(
‖yτ1 − y‖2X + ‖yτ2 − y‖2X

)
for all t ∈ [τ1, τ2]. We proceed similarly as in the proof of Lemma 5.2. Using Claim 6.1,
we know the following.

• There exists a control u† ∈ L2((τ1, τ1 + T0)× ω) satisfying∥∥∥u†∥∥∥2

L2((τ1,τ1+T0)×ω)
≤ C0 ‖yτ1 − y‖2X , (6.4)

for some C0 = C0(T0, ω, f) > 0, and such that the corresponding solution

y† =

[
y†

∂ty
†

]
to∂ty
† −Ay† +

[
0

f(y†)

]
=

[
0

u†1ω

]
in (τ1, τ1 + T0)

y†|t=τ1 = yτ1

satisfies y†(τ1 + T0) = y in X. By writing the Duhamel formula for y† − y,
and using the conservative character of

{
etA
}
t>0

in X, Cauchy-Schwarz, the
Lipschitz character of f and the Poincaré inequality, we see that∥∥∥y†(t)− y

∥∥∥
X
≤
∥∥etA(yτ1 − y)

∥∥
X

+

∫ t

τ1

∥∥∥∥e(t−s)A
[

0
u†(s)1ω

]∥∥∥∥
X

ds

+

∫ t

τ1

∥∥∥∥e(t−s)A
[

0(
f
(
y†
)
− f(y)

)]∥∥∥∥
X

ds

≤ ‖yτ1 − y‖X +
√
T0

∥∥∥u†∥∥∥
L2((τ1,τ1+T0)×ω)

+ C(f,Ω)

∫ t

τ1

∥∥∥y†(s)− y
∥∥∥
X

ds, (6.5)

with C(f, Ω) > 0 depending solely on the Poincaré constant and the Lipschitz
constant of f . Applying Grönwall’s inequality to (6.5) and using (6.4), we
deduce that∥∥∥y†(t)− y

∥∥∥
X
≤ C1 exp (C(f,Ω)T0) ‖yτ1 − y‖X (6.6)
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holds for some C1(f, T0, ω) > 0 independent of T, τ1, τ2 > 0, and for every
t ∈ (τ1, τ1 + T0).

• There exists a control u‡ ∈ L2((τ1, τ1 + T0)× ω) satisfying∥∥∥u‡∥∥∥2

L2((τ1,τ1+T0)×ω)
≤ C0 ‖y − yτ2‖2X , (6.7)

and which is such that the corresponding solution y‡ =

[
y‡

∂ty
‡

]
to∂ty

‡ −Ay‡ +

[
0

f(y‡)

]
=

[
0

u‡1ω

]
in (τ1, τ1 + T0)

y‡|t=τ1 = y

satisfies y‡(τ1 + T0) = yτ2 in X. Arguing just as above, we see that∥∥∥y‡(t)− y
∥∥∥
X
≤
∫ t

τ1

∥∥∥∥e(t−s)A
[

0
u‡(s)1ω

]∥∥∥∥
X

ds+

∫ t

τ1

∥∥∥∥e(t−s)A
[

0(
f
(
y‡
)
− f(y)

)]∥∥∥∥
X

ds

≤
√
T0

∥∥∥u‡∥∥∥
L2((τ1,τ1+T0)×ω)

+ C(f,Ω)

∫ t

τ1

∥∥∥y‡(s)− y
∥∥∥
X

ds, (6.8)

with C(f, Ω) > 0 depending solely on the Poincaré constant and the Lipschitz
constant of f . Applying Grönwall’s inequality to (6.8) and using (6.7), we
deduce that∥∥∥y‡(t)− y

∥∥∥
X
≤ C2 exp (C(f,Ω)T0) ‖yτ2 − y‖X (6.9)

holds for some C2(f, T0, ω) > 0 independent of T, τ1, τ2 > 0, and for every
t ∈ (τ1, τ1 + T0).

Now set

uaux(t) :=


u†(t) in (τ1, τ1 + T0)

0 in (τ1 + T0, τ2 − T0)

u‡ (t− (τ2 − τ1 − T0)) in (τ2 − T0, τ2),

and let yaux =

[
yaux

∂ty
aux

]
be the corresponding solution to (6.3). By construction, we

have
yaux(t) = y†(t) in [τ1, τ1 + T0],

and thus
yaux(t) = y in [τ1 + T0, τ2 − T0], (6.10)

whereas we also have yaux(τ2) = yτ2 , whence uaux ∈ Uad.
We now evaluate Jτ1, τ2 at uaux, which by virtue of a simple change of variable as

well as (6.10), (6.4), (6.6), (6.7) and (6.9), leads us to

Jτ1,τ2(uaux) =
∥∥∥u†∥∥∥

L2((τ1,τ1+T0)×ω)
+
∥∥∥u‡∥∥∥

L2((τ1,τ1+T0)×ω)

+

∫ τ1+T0

τ1

∥∥∥y†(t)− y
∥∥∥2

X
dt+

∫ τ1+T0

τ1

∥∥∥y‡(t)− y
∥∥∥2

X
dt

≤ C3

(
‖y − yτ1‖2X + ‖y − yτ2‖2X

)
(6.11)
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where C3(f, T0,Ω, ω) > 0 is independent of T, τ1, τ2 > 0. By virtue of the optimality of
u and (6.11), we have

Jτ1,τ2 (u) ≤ Jτ1,τ2 (uaux) ≤ C3

(
‖y − yτ1‖2X + ‖y − yτ2‖2X

)
.

An application of Lemma 4.3 suffices to conclude. �

7. Proof of Theorem 3.2

For the semilinear heat equation, we can adapt the proof strategy of Theorem 2.1 to
directly prove the stabilization result stipulated by Theorem 3.2. We provide details of
the proof, as it is not an immediate application of that of Theorem 2.1.

We recall that since f ∈ Lip(R), as presented in [30, Lemma 8.3] (and the references
therein), given any T > 0, y0 ∈ L2(Ω) and y ∈ H1

0 (Ω) solution to (3.3), there exists a
control u ∈ L2((0, T ) × ω) such that the unique solution y to (3.5) satisfies y(T ) = y,
and

‖u‖L2(Ω) ≤ C(T, ω, f)
∥∥y0 − y

∥∥
L2(Ω)

(7.1)

for some C(T, ω, f) > 0 (the dependence on f is through the Lipschitz constant which is
an upper bound for the potential appearing in the associated linear problem). Indeed,
we may consider z := y − y, and the control u steering z to 0 in time T is the same as
that steering y to y in time T . But then, ‖u‖L2(Ω) ≤ C(T, ω, f)‖z(0)‖L2(Ω) from the
linear system and a fixed-point argument.

Suppose yτ1 ∈ L2(Ω) is given. Let T > 0 and 0 ≤ τ1 < T be fixed. Consider

Jτ1,T (u) :=

∫ T

τ1

‖y(t)− y‖2L2(Ω) dt+

∫ T

τ1

‖u(t)‖2L2(ω) dt, (7.2)

where y solves 
∂ty −∆y + f(y) = u1ω in (τ1, T )× Ω

y = 0 on (τ1, T )× ∂Ω

y|t=τ1 = yτ1 in Ω.

(7.3)

We will only need the following lemma, which is similar to Lemma 6.2. In fact, the
blueprint of the proof below is contained therein.

Lemma 7.1. Suppose yτ1 ∈ L2(Ω) is given. Let T > 0 and τ1 be given such that
T > τ1. Let uT ∈ L2((τ1, T ) × ω) be any global minimizer to Jτ1,T defined in (7.2),
with yT denoting the corresponding solution to (7.3). Then, there exists a constant
C = C(f, y, ω) > 0 independent of T, τ1 > 0 and yτ1 such that

Jτ1,T (uT ) + ‖yT (t)− y‖2L2(Ω) ≤ C ‖yτ1 − y‖2L2(Ω)

holds for all t ∈ [τ1, T ].

Proof of Lemma 7.1. Fix an arbitrary T0 > 0.
Let us first suppose that T ≥ τ1 + T0. By controllability to the steady state y (see

the discussion around (7.1)), we know that exists a control u† ∈ L2((τ1, τ1 + T0) × ω)
satisfying ∥∥∥u†∥∥∥

L2((τ1,τ1+T0)×ω)
≤ C1 ‖yτ1 − y‖L2(Ω) (7.4)
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for some C1 = C1(T0, ω, f) > 0 and such that the corresponding solution y† to
∂ty
† −∆y† + f(y†) = u†1ω in (τ1, τ1 + T0)× Ω

y† = 0 on (τ1, τ1 + T0)× ∂Ω

y†|t=0 = y0 in Ω.

satisfies y†(τ1 + T0) = y a.e. in Ω. Arguing as in the proof of Lemma 4.2, we see that∥∥∥y†(t)− y∥∥∥
L2(Ω)

≤ ‖yτ1 − y‖L2(Ω) +
√
T0

∥∥∥u†∥∥∥
L2((τ1,τ1+T0)×ω)

+ C(f)

∫ t

τ1

∥∥∥y†(s)− y∥∥∥
L2(Ω)

ds (7.5)

for t ∈ (τ1, τ1 + T0), with C(f) > 0 being the Lipschitz constant of f . Applying
Grönwall’s inequality to (7.5) and using (7.4), we deduce that∥∥∥y†(t)− y∥∥∥

L2(Ω)
≤ C2 exp (C(f)T0) ‖yτ1 − y‖L2(Ω) (7.6)

for some C2(f, T0, ω) > 0 independent of T, τ1, τ2 > 0, and for every t ∈ (τ1, τ1 + T0).
Now set

uaux(t) :=

{
u†(t) in (τ1, τ1 + T0)

0 in (τ1 + T0, T )

and let yaux be the corresponding solution to (3.5). Clearly yaux(t) = y for t ∈ [τ1 +
T0, T ], a.e. in Ω. Hence, using Jτ1,T (uT ) ≤ Jτ1,T (uaux), (7.6) and (7.4), we see that

Jτ1,T (uT ) ≤
∥∥∥y† − y∥∥∥2

L2((τ1,τ1+T0)×Ω)
+
∥∥∥u†∥∥∥2

L2((τ1,τ1+T0)×ω)

≤ C3 ‖yτ1 − y‖2L2(Ω)

for some C3(f, T0, ω) > 0 independent of T, τ1 > 0. Applying Lemma 4.2 suffices to
conclude.

Now suppose that τ1 < T < T0 + τ1. We may then use the optimality inequality
Jτ1,T (uT ) ≤ Jτ1,T (uT0+τ1), and since by the previous step, we know that

Jτ1,T (uT0+τ1) ≤ Jτ1,T0+τ1(uT0+τ1) ≤ C3 ‖yτ1 − y‖2L2(Ω)

where C3 = C3(f, T0, ω) > 0 is independent of T, τ1 > 0, we deduce

Jτ1,T (uT ) ≤ C3 ‖yτ1 − y‖2L2(Ω) . (7.7)

We may conclude by combining (7.7) with Lemma 4.2. �

Proof of Theorem 3.2. The proof is of the same spirit as that of Theorem 2.1, the only
difference being the fact that we only need to bootstrap "forward" in time due to the lack
of final cost, which renders the proof significantly less technical. The control estimate
follows from Lemma 7.1. We thus concentrate solely on estimating the state.

Fix
τ > C4

1

where C1 = C1(f, y, ω) > 0 is the (square root of the) constant appearing in Lemma 7.1,
and let T0 > τ be arbitrary and fixed5. Similarly to the proof of Theorem 2.1, we will

5Note that this choice is independent of the one done in the proof of Lemma 7.1.
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have T ∗ := τ + T0 in the statement. Let

T ≥ τ + T0

be fixed.
First note that for t ∈ [0, τ + T0], just as in Part 1 of the proof of Theorem 2.1, the

desired estimate can easily be obtained for such t since the length of the time interval
is independent of T . Hence, we will solely concentrate on the case t ∈ [τ + T0, T ]. To
this end, we will mimic the steps done in the proof of Theorem 2.1.
Step 1). Preparation. Since 2τ < τ + T0 < T and thus τ ≤ T

2 , by Lemma 5.3 there
exists a τ1 ∈ [0, τ) such that

‖yT (τ1)− y‖L2(Ω) ≤
‖yT − y‖L2((0,T )×Ω)√

τ
≤ C1√

τ

∥∥y0 − y
∥∥
L2(Ω)

. (7.8)

Now the control uT |[τ1,T ] minimizes Jτ1,T with initial data yτ1 = yT (τ1) for
(7.3), to which clearly the solution is yT |[τ1,T ]. So by Lemma 7.1 and (7.8),

‖yT (t)− y‖L2(Ω) ≤ C1‖yT (τ1)− y‖L2(Ω) ≤
C2

1√
τ

∥∥y0 − y
∥∥
L2(Ω)

(7.9)

holds for all t ∈ [τ1, T ]. Since τ1 < τ , (7.9) also holds for all t ∈ [τ, T ].

Step 2). Bootstrap. We bootstrap (7.9) and prove that for any n ∈ N satisfying

n ≤ T

2τ
,

the estimate

‖yT (t)− y‖L2(Ω) ≤
(
C2

1√
τ

)n ∥∥y0 − y
∥∥
L2(Ω)

(7.10)

holds for all t ∈ [nτ, T ]. We proceed by induction. The case n = 1 holds by
(7.9). Thus assume that (7.10) holds at some stage n ∈ N and suppose that

n+ 1 ≤ T

2τ
.

This clearly implies that

τ ≤ T − 2nτ

2
. (7.11)

Now the control uT |[nτ,T ] is a global minimizer of Jnτ,T . We can thus apply
Lemma 7.1 with τ1 = nτ , and Lemma 5.3 (note (7.11)) on [nτ, T − nτ ], to
deduce that there exists t1 ∈ [nτ, (n+ 1)τ) such that

‖yT (t1)− y‖L2(Ω) ≤
‖yT − y‖L2((nτ,T )×Ω)√

τ
≤ C1√

τ
‖yT (nτ)− y‖L2(Ω).

So now we apply the induction hypothesis (7.10) to deduce

‖yT (t1)− y‖L2(Ω) ≤
C1√
τ

(
C2

1√
τ

)n ∥∥y0 − y
∥∥
L2(Ω)

. (7.12)

Since uT |[t1,T ] is a global minimizer of Jt1,T , we can apply Lemma 7.1 and use
(7.12) to deduce that

‖yT (t)− y‖L2(Ω) ≤ C1‖yT (t1)− y‖L2(Ω) ≤
C2

1√
τ

(
C2

1√
τ

)n ∥∥y0 − y
∥∥
L2(Ω)

(7.13)
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holds for all t ∈ [t1, T ]. Clearly, as t1 < (n + 1)τ , (7.13) also holds for all
t ∈ [(n+ 1)τ, T ]. This concludes the induction proof, and so (7.10) does indeed
hold.

Step 3). Conclusion. We now use (7.10) to conclude the proof. Suppose t ∈ [τ +T0, T ]

is arbitrary and fixed. Set n(t) :=
⌊

t
τ+T0

⌋
. Clearly n(t) ≥ 1, t ≥ n(t)τ and

n(t) ≤ T
2τ due to the choice of T0. We may then apply (7.10) to find that

‖yT (t)− y‖L2(Ω) ≤
(
C2

1√
τ

)n(t) ∥∥y0 − y
∥∥
L2(Ω)

(7.14)

Now since τ > C4
1 and n(t) ≥ t

τ+T0
− 1, we can see from (7.14) that

‖yT (t)− y‖L2(Ω) ≤ exp

(
−n(t) log

(√
τ

C2
1

))∥∥y0 − y
∥∥
L2(Ω)

≤
√
τ

C2
1

exp

− log
(√

τ
C2

1

)
τ + T0

t

∥∥y0 − y
∥∥
L2(Ω)

The desired estimate thus holds for all t ∈ [τ + T0, T ], with

µ :=
log
(√

τ
C2

1

)
τ + T0

> 0

and

C :=

√
τ

C2
1

∥∥y0 − y
∥∥
L2(Ω)

.

This concludes the proof. �

8. Concluding remarks and outlook

We have presented a new methodology for proving the turnpike property for nonlinear
optimal control problems set in large time horizons, under the assumption that the
running target is a steady control-state pair, and that the system is controllable with a
local estimate on the cost. These assumptions allow us to bypass necessary optimality
conditions and a study of the adjoint system, and rather relies on calculus of variations–
based arguments.

More precisely, we have concluded that
(1). The exponential turnpike property holds for optimal state trajectories of op-

timal control problems for nonlinear finite and infinite-dimensional dynamics,
whenever the cost functional is coercive with respect to the distance of the
state to the target steady state. The nonlinearity may be assumed to be only
globally Lipschitz continuous (and thus possibly nonsmooth). The result holds
without any smallness assumptions on the initial data.

(2). The last exponential arc (near t = T ) can be removed whenever the optimal
control problem is considered without a final time cost, and thus entails an
exponential stabilization estimate for the optimal state trajectory.
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8.1. Outlook. Let us conclude with a list of select problems related to our study.
• Necessity of assuming that y is a steady state. The assumption that
the running target y in (2.3) is a steady state of the dynamics allows us to
easily obtain quasi-turnpike strategies allowing us to obtain the key estimates
in Lemma 5.1 and Lemma 5.2 (resp. Lemma 6.1, Lemma 6.2, Lemma 7.1 in the
PDE setting). The case of controlled steady states y associated to a presecribed
control u can readily be addressed by penalizing u − u over [0, T ] instead of
solely u as noted in Remark 1. But we were unable to see if this is a necessary
assumption in the nonlinear context in the absence of smallness conditions on
the target, and whether the controlled steady state case can be covered by
solely penalizing u. These questions merit in-depth investigation.

• Weakening Assumption 1. An important hypothesis we made throughout is
Assumption 1, which required that, at least for data y0, y1 in the vicinity of the
free steady state y, the minimal L2–norm control steering the system from y0 to
y may be estimated by

∥∥y0 − y
∥∥, and similarly for that from y to y1. This is a

hallmark of linear control systems, which is also expected for nonlinear systems
for which controllability results are obtained by linearization or perturbation
methods and a fixed-point argument. But in the general context of control-
affine systems, such an assumption may appear restrictive, eventhough it is
local. It is thus of interest to see how the results and methodology can be
pertained whilst weakening Assumption 1.

In fact, more generally, it would be of interest to investigate whether the
methodology presented herein can still be applied by only assuming approxi-
mate controllability with an adequate estimate on the control cost.

• Turnpike with state or control constraints. A problem which has not been
extensively covered in the literature is the turnpike property with positivity (or
box) constraints on either the state or the control. Slightly weaker integral
turnpike results under such constraints have been obtained in [27] by means of
quantitative inequalities. Such a study would complement the already existent
nonlinear controllability under constraints theory – a topic covered in several
recent works, see e.g. [21, 28, 30, 33] and the references therein.

• More general control systems. We have considered homogeneous Dirichlet
boundary conditions in (3.1) and (3.5) merely to avoid additional technical de-
tails. The proofs of Theorem 3.1 (resp. Theorem 3.2) only require that the un-
derlying dynamics are exactly controllable (resp. controllable to a steady state),
thus, the same results hold with Neumann boundary conditions or boundary
controls. Similarly, variable coefficients and lower order terms may be con-
sidered, as long as these coefficients are time-independent, as we are using a
Duhamel formula along with a semigroup representation of the solution.

In fact, we have chosen the wave and heat equation for the sake of presen-
tation, but the respective results could possibly be extended to a more general
scenario of exactly controllable semilinear systems with similar assumptions,
e.g. dispersive equations (Schrödinger, Korteweg-de Vries), coupled systems,
and so on. The necessity of a Duhamel formula may however be an impediment
to the extension of our results to the context of quasilinear systems such as the
porous medium equation (see [13] and the references therein).
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• Bilinear control systems. It would also be of interest to establish the turn-
pike property for bilinear control systems. This would be the somewhat true
analog of the control-affine systems presented herein, and under suitable as-
sumptions on the nonlinearity, one could expect that our methodology applies
to such cases as well. We have not addressed such systems for the simplicity of
presentation and due to the controllability assumptions we make, as the con-
trollability theory for bilinear problems is not complete (albeit, see [3, 4, 8, 26]
for recent developments). Notwithstanding, our results should be applicable to
a system of the form (see [3])

∂ty − ∂2
xy = u(t)f(y) in (0, T )× (0, π)

∂xy(t, 0) = ∂xy(t, π) = 0 in (0, T )

y|t=0 = y0 in (0, π)

where u is a scalar control and f is an appropriate nonlinearity (see [3] for suffi-
cient conditions for ensuring controllability, and globally Lipschitz for applying
our methodology).

• More general nonlinearities. Finally, it would be of interest to investi-
gate problems where our methodology does not immediately apply, such as the
paradigmatic example of the cubic heat equation. This problem consists in
seeing whether one may prove Theorem 3.2 (with the estimate on uT changed
by an estimate of uT − u) for minimizers uT of

JT (u) :=

∫ T

0
‖y(t)− y‖2 dt+

∫ T

0
‖u− u‖2 dt

where yT is the unique solution to
∂ty −∆y + y3 = u1ω in (0, T )× Ω

y = 0 on (0, T )× ∂Ω

y|t=0 = y0 in Ω,

(8.1)

and y ∈ H1
0 (Ω) is a controlled steady state associated to some u ∈ L2(ω) (the

case u ≡ 0 is somewhat trivial due to the inherent stabilization to y ≡ 0). Let
us elaborate on a possible technical impediment in the direct application of our
strategy. Clearly, for Theorem 3.2 to hold in this case, it would suffice to prove
Lemma 7.1 for f(s) = s3 (while replacing the estimate of uT by an estimate of
uT−u). To this end, first of all, for any u ∈ L2((0, T )×ω), using the variational
formulation and standard arguments including Cauchy-Schwarz, Young with ε
and Poincaré inequalities, one can find

d

dt

∫
Ω
|y(t, x)|2 dx ≤ ε

∫
ω
‖u(t, x)‖2 dx

for a.e. t ∈ [0, T ], where ε > C(Ω)
4 , whereas y solves (8.1), and thus

‖y‖C0([0,T ];L2(Ω)) ≤ C1(Ω)
(
‖u‖L2((0,T )×ω) +

∥∥y0
∥∥
L2(Ω)

)
. (8.2)

Following the proof of Lemma 4.2 for f(s) = s3 and using (8.2), we may find

‖y(t)− y‖L2(Ω) ≤ C
(∥∥y0 − y

∥∥
L2(Ω)

+ ‖u− u‖L2((0,T )×ω) + ‖y − y‖L2((0,T )×Ω)

)
,
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where now
C ∼ exp

(
‖u‖L2((0,T )×ω)

)
.

It is precisely at this point where the issue appears, since simply by using the
form of the functional, we are not in a position to prove that ‖u‖L2((0,T )×ω)

is uniformly bounded with respect to T , but rather only ‖u − u‖L2((0,T )×ω).
Should this be possible, then one can expect our methodology to apply to the
cubic heat equation as well, but as things stand, turnpike without smallness
conditions in this case remains open.

Further examples worth analyzing include the heat equation with a con-
vective nonlinearity f(y,∇y), even in one space dimension (e.g. the Burgers
equation); along these lines we refer to [38] for a local turnpike result for the
2d Navier-Stokes system. Similar questions can be asked for the semilinear
wave equation, where the nonlinearity is sometimes only assumed to be super-
linear (see [20] for a subcritical optimal control study) – our methodology a
priori applies if the nonlinearity is either truncated by some cut-off, or if one
manages to prove uniform estimates of ‖yT ‖L∞((0,T )×Ω) with respect to T . Fur-
ther nonlinear problems which could be investigated include hyperbolic systems
(see [16] for a related study) or free boundary problems (see [14] for a control
perspective).
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