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Abstract—Abnormally-synchronized, high-voltage spindles
(HVSs) are associated with motor deficits in 6-hydroxy-
dopamine-lesioned parkinsonian rats. The non-stationary,
spike-and-wave HVSs (5-13 Hz) represent the cardinal
parkinsonian state in the local field potentials (LFPs).
Although deep brain stimulation (DBS) is an effective
treatment for the Parkinson’s disease, continuous stimulation
results in cognitive and neuropsychiatric side effects. There-
fore, an adaptive stimulator able to stimulate the brain only
upon the occurrence of HVSs is demanded. This paper
proposes an algorithm not only able to detect the HVSs with
low latency but also friendly for hardware realization of an
adaptive stimulator. The algorithm is based on autoregres-
sive modeling at interval, whose parameters are learnt online
by an adaptive Kalman filter. In the LFPs containing 1131
HVS episodes from different brain regions of four parkin-
sonian rats, the algorithm detects all HVSs with 100%
sensitivity. The algorithm also achieves higher precision
(96%) and lower latency (61 ms), while requiring less
computation time than the continuous wavelet transform
method. As the latency is much shorter than the mean
duration of an HVS episode (4.3 s), the proposed algorithm
is suitable for realization of a smart neuromodulator for
mitigating HVSs effectively by closed-loop DBS.

Keywords—Parkinson’s disease, Autoregressive modeling,

Adaptive Kalman filter, Hilbert-Huang transform, Smart

neuromodulator, Closed-loop deep brain stimulation.

ABBREVIATIONS

AKF Adaptive Kalman filter

AR Autoregressive model

cDBS Closed-loop deep brain stimulation

CWT Continuous wavelet transform

DBS Deep brain stimulation

FN False negative

FP False positive

FPGA Field-programmable gate array

HHT Hilbert-Huang transform

HVS High-voltage spindle

LFP Local field potential

ML Machine-learning

PACF Partial autocorrelation function

PD Parkinson’s disease

PSD Power spectral density

SNR Signal-to-noise ratio

TP True positive

TR Detection threshold

6-OHDA 6-Hydroxydopamine

INTRODUCTION

Parkinson’s disease (PD) is the second most preva-

lent neurodegenerative disease, for which long-term

medication usually becomes less or even adversely

effective. Its major motor symptoms include resting
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tremor, rigidity, bradykinesia, and postural instabil-

ity.15,21 Deep brain stimulation (DBS) has been a

promising alternative for treating motor symptoms in

advanced PD patients. It stimulates subthalamic nu-

cleus, for example, with current pulses at a constant

frequency (~ 130 Hz) to reset pathological neural

synchrony, so as to alleviate the motor deficits in PD.

However, such an ‘‘open-loop’’ DBS system stimulates

the brain continuously at a constant frequency

(~ 130 Hz), and is found to induce side effects such as

distorted gait, impaired cognition or speech,15 and

shortens the battery life.7 Therefore, stimulating the

brain only upon the occurrence of pathological syn-

chrony is desirable for minimizing the side effects and

extending the battery life. This approach is called

‘‘closed-loop’’ DBS.

As PD mainly results from the depletion of

dopaminergic neurons, the local field potentials (LFPs)

recorded from the basal-ganglia-thalamocortical net-

work are useful for indicating the state of a parkinso-

nian brain.7,15,21,23 The elevated beta-band synchrony

(15–30 Hz) in the LFPs is associated with bradykinesia

and rigidity.1,19,24,26 Several studies demonstrate that

closed-loop DBS (cDBS) is superior to open-loop DBS

in ameliorating the beta-band synchrony.7,19,23,24,26

However, the resting tremor is not related to the beta-

band synchrony,1 but found more related to the

abnormally-synchronized, high-voltage spindles

(HVSs) in the basal-ganglia-thalamocortical network

of 6-hydroxydopamine (6-OHDA) lesioned PD rats.4,5

HVSs are synchronous, spike-and-wave, rhythmic

oscillations at 5-13 Hz.12,13,31 In contrast to beta-band

synchrony,7,15,19,23,24,26 HVSs are relatively neglected

in cDBS despite its prevalence in basal-ganglia-thala-

mocortical network after dopamine depletion.4,5,12,13,31

An algorithm based on continuous wavelet transform

(CWT) had been proposed for detecting HVSs of

parkinsonian rats.22 The simplified CWT algorithm

was further realized in the field-programmable gate

array (FPGA)9 or a microcontroller8 for closed-loop

experiments. However, the HVS could only be detected

after its onset for more than 500 ms in these cDBS

systems, while the mean duration of an HVS episode is

around 4.3 s (Table 1). The first 500 ms of HVS could

already induce pathological changes in the basal-gan-

glia-thalamocortical network. Therefore, an algorithm

able to detect the early-onset of HVS is demanded for

minimizing the effects of HVSs.

Conventional machine-learning (ML) algorithms

such as decision trees or neural networks are not

considered in this study because HVSs vary widely

across different brain regions and rats. These conven-

tional algorithms need to be trained on all data from

every brain region and rat. However, the non-station-

ary occurrence of HVSs usually results in insufficient
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number of HVSs for training a conventional ML

algorithm. Moreover, the ML algorithm contains a too

large number of parameters, which not only increase

model complexity but also become unfriendly for

hardware implementation. Let N denotes the number

of training examples, and d the data dimension. The

training time complexity is O N: logN:dð Þ for decision

trees, for example, and is O N ijþ jkþ klð Þð Þ for a 4-

layer neural network with i, j, k, and l nodes in each

layer.10

This paper proposes an unsupervised learning algo-

rithmnot only able to detect the early-onset ofHVSs but

also friendly for implementation in low-power, re-

source-constrained systems. The proposed algorithm is

based on adaptive autoregressive modeling at inter-

val,3,11 and themodel parameters are learnt online by an

adaptive Kalman filter (AKF).28Themain contribution

of this article include (i) Developing an algorithm based

on Hilbert-Huang transform to label 1273 HVS epi-

sodes. (ii) Identifying a low-dimensional, frequency-se-

lective, autoregressive model for predicting HVSs from

a very-short (6 samples, 144 ms) prior data. (iii) Devel-

oping the online-learning algorithm robust for adapting

the model parameters to estimate the time-varying

spectrum of HVSs even if LFPs are recorded from dif-

ferent brain regions or different rats. (iv) Evaluating the

improved performance of the proposed algorithm in

comparison with the CWT method over 1131 HVS

episodes from four PD rats.

MATERIALS AND METHODS

Animals

Four male, 3–4 month-old Sprague-Dawley (Bio-

LASCO Taiwan Co., Ltd., Taipei, Taiwan) rats (R1-

R4) were kept under standard housing conditions at

constant temperature (22 ± 1�C), humidity (relative,

50%), and 12-h light/dark cycles. Water was available

ad libitum. Food intake was limited to 10-20 g/day to

maintain constant animal weight. Animal care and

surgery were approved by the Institutional Animal

Care and Use Committee (Approval No.10321) of the

National Tsing Hua University in Taiwan. All the

experimental procedures in this study adhered to the

animal guidelines regulated by the Council of Agri-

culture under the Animal Protection Act in Taiwan.

Stereotaxic Surgery

Rats were anesthetized for 1.5 h with Urethane dis-

solved in phosphate buffer solution (1.25 g/Kg) and

0.1 ml of Balanize, and then fixed in a stereotactic

apparatus (Stoelting Co., IL, USA). 30 lg of 6-OHDA

(6-hydroxydopamine hydrochloride; Sigma-Aldrich, St

Louis, MO, USA) was dissolved in 6 ll of phosphate

buffer solution containing 0.2% (w/v) ascorbic acid, and

was then injected into the medial forebrain bundle (AP

2 4.4 mm, ML +1.2 mm, DV 2 8.8 mm from breg-

ma) at a flow rate of 0.5 ll/min by using a dental needle

(27GTerumo, Terumo Co., Tokyo, Japan). Four weeks

following the injection of 6-OHDA, the lesioned group

of rats were classified as successful PDmodels according

to the amphetamine-induced rotational behaviour

(Amp, 3 mg/kg, ip). The rotational speed of the PD rats

was measured to be greater than six turns per minute.

Stainless steel electrodes (0.002’’ in diameter, A-M

Systems, USA) were implanted in the basal-ganglia-

thalamocortical network for recording LFPs from lay-

ers 5b and 2/3 of the primarymotor cortex, layers 5b and

2/3 of the secondary motor cortex, layers 5b and 2/3 of

the primary somatosensory cortex, the dorsal region of

striatum, and the ventrolateral thalamus.

Data Acquisition

The recording electrodes were connected to a

headstage (T8G20, Triangle BioSystems, USA) with a

voltage gain of 20. The LFPs were further amplified

(x100) and band-pass filtered (0.1-1 kHz) by a differ-

ential amplifier (Model 1700, A-M Systems, USA).

These recordings were digitized at a 1 kHz sampling

rate and then saved on the computer by a PCI-6251

data acquisition card (National Instruments Corpora-

tion, Texas, USA). LFPs were recorded from eight

brain regions of R1 and from four brain regions of R2-

R4 as the rats moved freely. R1-R4 were recorded for

47, 59, 60, and 20 minutes, respectively. The mean

likelihood for HVSs to occur in these recordings was

only 5.9%. Therefore, out of each recording channel

was an 11-minute-long LFP extracted (Supplementary

S1) to contain not only all HVSs but also non-spin-

dling segments before and after the occurrence of

HVSs. Non-spindling segments are still more than

HVS segments to mimic the real situation, as well as to

evaluate the algorithm’s robustness against different

background noises.

Each extracted LFP was further divided into one-

minute-long training data plus 10-minute-long testing

data. The training dataset is used to identify the opti-

mal model order and interval (p* and s in Section Au-

toregressive Modeling), the learning rate

(Supplementary S4), and detection thresholds (Sup-

plementary S7) for the proposed algorithm, while the

testing dataset is used to examine the algorithm’s

ability to adapt model parameters (wn in Eq. (2)) by

online learning. The performance of the proposed

algorithm is further compared with the CWT algo-

rithm through computer simulation (Section Perfor-

3



mance Comparison) with MATLAB R2020a (The

Mathworks, Natick, MA, USA). Moreover, the

training and the testing datasets exhibit similar mean

HVS distributions and signal-to-noise ratios (SNRs)

across the four rats. Table 1 summarizes the statistics

on the density, duration, peak-to-peak amplitude,

distribution, and SNR of HVSs in the datasets. Obvi-

ously, the HVS is a non-stationary signal with great

variability, making it difficult to detect HVSs reliably

with a simple threshold.

Labeling HVSs by Hilbert-Huang Transform

The onset and end of HVS episodes are detected by

the spike-and-wave pattern and the oscillation fre-

quency (5–13 Hz).12 The Hilbert-Huang transform

(HHT) has been used to analyze non-stationary signals

with the data-driven basis functions to achieve sharp

time and frequency localization.18 The raw LFPs from

the primary motor cortex (layer 5b) of R2 in Fig. 1a

show the spike-and-wave pattern of HVSs (t1–t2, t3–t4).

LFPs are analyzed with HHT to compute the instan-

taneous frequency and energy. The Hilbert spectrum

(Fig. 1b) is obtained by plotting the energy in the time-

frequency plane to show the time-varying spectra of

HVSs. The mean HVS energy (Fig. 1c) is determined

by averaging the energies over the 5-13 Hz band. It is

further smoothed by the Gaussian window of length

200 ms.

HVSs exhibit higher energy (Fig. 1b) between 5 and

13 Hz resulting in higher mean HVS energy (Fig. 1c)

than the non-spindling LFPs. The HVS onset (t1 or t3
in Fig. 1) is defined as the timestamp at which the

mean HVS energy exceeds a predefined threshold (TR)

for 200 ms. Over-threshold timestamps that do not

show the spike-and-wave pattern are rejected. TR is

computed by Eq. (1) using the mean l and standard

deviation r of the mean HVS energies over the 1-s-long

non-spindling LFPs.

TR ¼ lþ br ð1Þ

The scaling factor b and TR are identified for each

LFP recording in the training dataset (Supplementary

S2). This algorithm is used as the gold standard

method to label HVSs in this study.

FIGURE 1. (a) LFPs recorded from the primary motor cortex (layer 5b) of R2; (b) Corresponding Hilbert spectrum computed by
HHT. Colors are scaled from minimum (white) to maximum (black) values of energy. (c) Temporal distribution of mean HVS energy
showing the increase in energy during the occurrence of HVSs.
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Autoregressive Modeling

Eight one-minute-long LFPs in the training dataset

were band-pass filtered to extract the HVSs in the 5-

13 Hz band. The autocorrelation functions2 of the fil-

tered LFPs are shown in Fig. 2a. The exponentially-

decaying, sinusoidal oscillations in Fig. 2a imply that

the transient dynamics of HVSs are underlain by a

high-order autoregressive (AR) model.2 Let ARs(p
*)

denotes the AR model with a model order p* and a

sampling time-lag s, and AR1(p) the p-order standard

AR model with s = 1. For ease of reading, AR1(p) is

replaced by AR(p) in the following. For a time series

x1; x2; . . . ; xNð ÞT of length N, the value xn at discrete-

time n could be predicted by the ARs(p
*) model as x̂n

from the past p* observations according to Eq. (2):

x̂n ¼
X

p�

i¼1

xn�iswi nð Þ þ rn

¼ xTn�swn þ rn

ð2Þ

where xn�s ¼ xn�s; xn�2s; . . . ; xn�p�s

� �T
consists of past

p* samples, equally-separated by the time interval of s.

wn ¼ w1 nð Þ;w2 nð Þ; . . . ;wp� nð Þ
� �T

is the coefficient vec-

tor. rn is a zero-mean, white Gaussian noise with

variance r2R. Predicting x̂n with the standard AR(p)

model consists simply in substituting p for p* and set-

ting s = 1 in Eq. (2).

The selection of p and p* depends ultimately on the

feature of interest and the resulting performance. The

first peaks in Fig. 2a indicate the LFPs exhibit a higher

degree of linear predictability at the time lag of 143 ms.

Therefore, setting p = 143 could enhance the pre-

dictability of HVSs for the standard AR(p) model.14

However, the standard AR(p) model could often lead

to over-smoothed temporal and spectral estimates for

frequency-selective oscillations.3,11 A high-dimensional

model also demands more computing resources in

hardware implementation. To discriminate the distinct

spectral peaks of spindling and non-spindling LFPs

accurately, as well as to make the algorithm hardware-

friendly, the ARs(p
*) model is preferable.3,11

The optimal model order p* is identified by calcu-

lating the partial autocorrelation functions2 (PACFs)

of the eight filtered LFPs in the training dataset. The

PACF includes only the direct correlation between the

time series and its value at time lag d, and the PACF of

an ideal ARs(p
*) process approaches zero as d increases

beyond the optimal p*. As shown by Fig. 2b, the

PACFs are very close to the 95% confidence interval

when d increases beyond 6. Therefore, the optimal p* is

chosen as 6 and s as 24, such that the effective model

order of ARs(p
*) (¼ p� � s ¼ 144) approximately

equals p. The model parameters are further cross-val-

idated on the other 12 LFPs in the training dataset to

evaluate the goodness-of-fit metrics (defined in Ap-

pendix A).

The On-Line Learning Algorithm

The Kalman filter is widely used in closed-loop

algorithms to estimate the control signals with less

computational load.27,29 The standard AR(p) model

had been employed to describe the temporally-evolving

harmonics in the LFPs.16,20 According to the analysis

in Section Autoregressive Modeling, this study em-

ploys the ARs(p
*) model instead to predict the onset of

HVSs. The model coefficients are learnt online by

AKF28 using the architecture in Fig. 3b. Each raw

LFP d nð Þ first undergoes the preprocessing steps in

Fig. 3a (detailed in Supplementary S3) to obtain

x nð Þ to facilitate faster convergence of wn. x nð Þ is di-

FIGURE 2. (a) Autocorrelation functions and (b) Partial autocorrelation functions of eight band-pass filtered LFPs in the training
dataset.
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vided into segments (e.g. Segment1 in Fig. 3c) by

overlapping sliding windows of length wL = 144 ms,

and then downsampled by a factor of s as xn�s (the

black dots in Fig. 3c). Two successive LFP segments

are separated by the time interval dL = 1 ms. In other

words, the algorithm predicts the onset of HVS every

1 ms.

Given an initial LFP segment of 144 ms (the black

curve in Fig. 3c), the ARs model estimates x̂n for every

time step (the dashed blue curve in Fig. 3c). According

to the difference between the real xn (the red curve in

Fig. 3c) and the estimated x̂n at each time step, the

AKF not only updates wn but also tunes the mea-

surement noise variance r2R nð Þ and the process noise

covariance matrix Q nð Þ (see Appendix B for detailed

formula). The HVS detector estimates the power

spectral density (PSD) from wn to determine the HVS

power PAKF (Appendix B). The LFP segment is clas-

sified as HVS if PAKF exceeds a predefined threshold.

Performance Evaluation

Detection of HVSs by Continuous Wavelet Transform

LFPs are analyzed in MATLAB by CWT with the

complex Morlet wavelet.22 The wavelet energy E t; fð Þ
over time t and frequency f is computed as the square

of CWT coefficients C t; fð Þ as:

E t; fð Þ ¼ C t; fð Þj j2; e tð Þ ¼ r
13

5

E t; fð Þdf ð3Þ

The HVS energy e tð Þ in Eq. (3) is computed by

summing E t; fð Þ over the bandwidth of 5-13 Hz. The

time-frequency distribution of E t; fð Þ (Supplementary

S6) is used to characterize the spectrotemporal features

of HVSs.22 In the CWT-based detection algorithm, the

raw LFPs are segmented by windowing with

wL = 512 ms and dL = 24 ms. The value of wL

should be greater than 500 ms to achieve the time-

frequency resolution required for reliable detection of

HVSs. The value of dL is chosen in accordance with the

value of s in the ARs model, so as to reduce compu-

tational load without degrading detection perfor-

FIGURE 3. (a) Preprocessing steps for raw data; (b) The prediction and detection architectures in the online-learning algorithm;
(c) The timing relationship among the observed LFP, the prediction input, and the LFP predicted by the online-learning AR

s
model.
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mance. As shown in Eq. (4), the HVS powerPCWT is

determined by averaging e tð Þ over the duration wL of

each LFP segment.

PCWT ¼
1

wL

r
wL

0

e tð Þdt ð4Þ

The occurrence of HVSs is inferred by very-high values

of PCWT (Fig. 5c) compared to that of non-spindling

LFPs. Thus, the LFP segment is classified as HVS if

PCWT exceeds a predefined threshold.

Performance Metrics

The performance of the online-learning and CWT

algorithms is evaluated with reference to the ground-

truth in the labeled testing dataset (Section Labeling

HVSs by Hilbert-Huang Transform). As the testing

dataset exhibits imbalanced number of HVS and non-

HVS segments, the detection performance is quantified

by the three metrics in Eqs. (5)–(7) where true positive

(TP) refers to correct detection of HVS. Misclassifi-

cation of a HVS or a non-HVS is denoted as a false

negative (FN) or a false positive (FP), respectively.

The recall (or sensitivity) represents the TP rate,

while the precision quantifies the ability to detect HVSs

correctly. The F-score is often used as an overall per-

formance index for the given detection threshold.

Based on the performance metrics and detection la-

tency, the optimal TRs are identified for each LFP

recording in the training dataset (Supplementary S7).

Recall ¼
TP

TP þ FN
ð5Þ

Precision ¼
TP

TP þ FP
ð6Þ

F - score ¼
2 � Recall � Precision

Recall þ Precision
ð7Þ

Finally, the performances of the two algorithms with

optimal TRs are evaluated in terms of detecting the

onset of HVSs in the testing dataset.

RESULTS

The Online-Learning ARs Model

Figure 4a shows the exemplar results of learning

non-spindling (< tON) and spindling (�tON) LFPs by

the proposed algorithm, where the onset of HVS (tON)

is determined according to Section Labeling HVSs by

Hilbert-Huang Transform. The 144-ms-long, black

segment (t0–t1 in Fig. 4a) indicates the initial input to

the ARs model. The model coefficients are then up-

dated according to the error between the predicted

LFPs (the dashed blue signal) and the real LFPs (red

signal) every 1 ms. Updating both ARs coefficients and

noises online enables the ARs model to accurately

predict the spike-and-wave HVSs. As shown in

Fig. 4b, the HVS power (PAKF in Section The On-Line

Learning Algorithm) estimated at (t1 + 1) ms is only

0.05, while it is already 0.11 at t2. PAKF further

increases to 1.85 at t3 owing to the increase in HVS

amplitude. With the predetermined threshold (TR =

0.1, Supplementary S7), the HVS is detected with the

latency of 36 ms (Fig. 4a), and the detection response

for an one-minute-long LFP recording is shown in

Fig. 4c. All HVSs are detected with 100% precision

and mean latency of 46 ms.

Performance Comparison

Figure 5 compares the performance of the proposed

algorithm and CWT in terms of detecting HVSs in the

LFPs with different SNRs (8 dB (Fig. 5a), 3.4 dB

(Fig. 5e)), where tON indicates the onset of HVSs. As

discussed in Section Performance Metrics, the optimal

TRs of the two algorithms are determined from the

training dataset (Supplementary S7). The online-

learning algorithm (TR = 0.3) detects the HVS

161 ms earlier than the CWT (TR = 0.85l) in Fig-

s. 5a–5d. The LFPs in Fig. 5e exhibit more spurious

oscillations (t3–tON), which are suspected to be sleeping

spindles.17 Although these oscillations exhibit highest

energy within 3–5 Hz (t3–tON in Fig. 5f), the energies

in 5-13 Hz are also relatively higher in the period

encircled by the dashed-line, as compared with the

non-spindling LFPs in Fig. 5b. As a result, the HVS

power estimated by the CWT (TR = 0.6 lm) is very

sensitive to the spurious oscillations, resulting in three

false positives (Fig. 5h). In contrast, the HVS power

estimated by the proposed algorithm remains below

TR (0.35) during t3–tON, while increasing to a large

value after tON in Fig. 5g. Therefore, the proposed

algorithm achieves 100% precision (Fig. 5g) and de-

tects the HVS 27 ms earlier than the CWT. These

exemplar results indicate that the online-learning

algorithm is able to detect the early-onset of HVSs

among spurious oscillations, even if these oscillations

exhibit similar spectro-temporal features to HVSs. In

addition, the time taken by the proposed algorithm

and CWT for processing the one-minute- long LFP

recording in our computer simulation (with Intel i7

CPU) is 20 and 26 s, respectively.

The performance of the proposed algorithm and

CWT is compared more thoroughly over all LFPs in

the testing dataset. For the total 1131 HVSs in the

testing dataset, the proposed algorithm and CWT

achieve mean detection latency of 61 and 74 ms,

7



respectively (Table 2). There is a trade-off between

detection precision and latency. As short detection

latency is more crucial for suppressing the HVSs by

cDBS, the optimal TRs are identified for each LFP

recording in the training dataset (Supplementary S7).

Both methods achieve a perfect recall value of 1,

indicating all HVSs are detected. The CWT method

achieves lower precision (< 0.8) for the 6th LFP

recording in Table 2. The corresponding LFP record-

ing exhibited relatively more background noise. In

contrast, the proposed algorithm achieves not only

shorter latency but also better precision and F-score.

The improved performance is mainly attributed to

online adaptation of both model coefficients and the

uncertainty in the AKF. Compared to conventional

methods,6,8,19,22,24,26 the proposed algorithm requires a

prior LFP of only 144 ms (6 samples), much shorter

than those required for detecting beta-band synchrony

(400 ms in Little et al.19 1 s in Quinn et al.24 and Rosa

et al.,26 and 2 s in Camara et al.6), or those for

detecting HVSs (500 ms in Perumal and Chen22 and

Chen et al.8). Therefore, the proposed algorithm is

computationally-efficient and inherently able to detect

HVSs with shorter latency.

DISCUSSION

Motivation Towards Predictive Modeling Approach

The CWT has been shown to detect HVSs using our

custom-designed complex Morlet wavelet in Perumal

and Chen.22 The detection latency could be further

reduced by decreasing dL (the separation between

successive screening windows). However, the CWT

(wL = 512 ms, dL = 1 ms) takes 600 s to scan the

one-minute-long LFP recording in our computer sim-

ulation (Intel i7 CPU). With dL = 1 ms, the mean

latency is reduced only by 10 ms, as compared to the

CWT with dL = 24 ms, for the first LFP recording in

Table 2.

These results show that the improved latency

achieved by shortening dL is overshadowed by its huge

computational complexity. CWT with dL = 1 ms

requires nearly 23 times longer computing time than

CWT with dL = 24 ms. Therefore, the CWT algo-

rithm (wL = 512 ms, dL = 24 ms) is used in this study

for performance comparison. Although CWT achieved

reliable detection performance (Table 2) across the

testing dataset, it is not hardware-friendly for realiza-

tion in resource-constrained systems. This motivates us

FIGURE 4. (a) Prediction by the online-learning AR
s
model for the LFPs recorded from the primary motor cortex (layer 5b) of R2.

t0 = 18001 ms, t1 = 18144 ms, tON = 19037 ms, t2 = 19073 ms, t3 = 19142 ms; (b) Estimated HVS power; (c) Detection response for
an one-minute-long LFP recording.
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to design the computationally-efficient adaptive

learning algorithm for a predictive model to detect the

early-onset of HVSs.

Advantages of the Online-Learning Algorithm

The proposed algorithm is computationally more

efficient, and achieves improved precision (96%) and

latency (61 ms) for LFPs recorded from different brain

regions of R1-R4. The CWT method achieves mean

precision of 94% and mean latency of 74 ms, while it

requires longer window size (512 samples) and 30%

more computation time. Both methods reliably detect

the HVSs with sensitivity of 100%. Nevertheless, the

AKF tuned both process and measurement noises

simultaneously, so that the ARs coefficients were up-

dated in accordance with the uncertainty estimated at

every time step, as well as the knowledge gained from

previous LFP segments. These features enable the

proposed algorithm to achieve lower latency and ulti-

mate precision in Table 2.

The proposed algorithm has the following merits.

(1) It requires a much shorter prior window (144 ms)

of LFPs than the CWT (512 ms). (2) The low dimen-

sionality of ARs model (p* = 6) facilitates the detec-

tion response from only six samples (out of 144

samples), whereas the CWT uses the entire window of

512 samples. (3) It achieves better precision across the

LFPs with spurious oscillations (6th LFP recording in

Table 2) than the CWT. (4) Its computation time (20 s)

is relatively lower than the CWT (26 s). Furthermore,

the Kalman filter has lower computational complexity

of O 3p�2
� �

for each time step, and has been used for

real-time estimation of physiological tremor.29 Thus,

the proposed algorithm is more computationally-effi-

cient and hardware-friendly.

Applicability to Closed-Loop DBS Systems

The proposed algorithm is not only able to detect

HVSs but also applicable as a frequency-selective

classifier for neuromodulation. For example, syn-

chronous oscillatory beta- and gamma-band activities

are found related to schizophrenia.30 In addition, the

loss of nucleus basalis of Meynert neurons resulted in

increased HVS episodes (6-10 Hz) associated with

spatial memory deficits.25 For different biomarkers,

the ARs model parameters can be selected according to

the same methods described in Section Materials and

Methods, so as to capture distinct target oscillatory

features. Automatic detection of different pathological

FIGURE 5. LFPs recorded from the (a) primary somatosensory cortex (layer 5b) of R3, and (e) primary somatosensory cortex
(layer 2/3) of R1 showing spurious oscillations before the onset of HVS (tON); (b, f) Corresponding time-frequency distributions
computed by HHT. Colors are scaled from minimum (white) to maximum (black) values of energy. HVSs exhibit very-higher energy
in the 5-13 Hz band during tON–t2 (b) or tON–t4 (f); Detection response and estimated HVS power showing the early-detection of HVS
by the (c, g) online-learning algorithm at tC and tG, and (d, h) CWT at tD and tH.
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signatures would then improve the DBS treatment for 
other neurological or psychiatric disorders.

The proposed online-learning algorithm will be 
realized in FPGA to facilitate real-time, parallel com-

putation in animal experiments. On the other hand, it 
is interesting to derive a multivariate ARs model to 
learn multi-channel LFPs simultaneously. The learnt 
coefficients of the multivariate ARs model would help 
to indicate the correlation among different brain 
regions, revealing how pathological signals are gener-
ated and propagated. This understanding would help 
us to develop novel stimulation protocol for regulating 
the neural networks efficiently.
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