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Abstract 
 

The microelectronics industry is expressing an increased demand for the development of non-destructive 

tools and methods for health control and diagnostics in multilayered structures. The purpose of these tools is to 

detect problems such as delaminations, inclusions and microcracks. The aim of this paper is to study the effect of 

imperfect interfaces on the wave propagation in multilayered structures. This type of structure represents the 

typical architecture of many microelectronic components. This study will be based on the calculation of the 

reflection coefficient and the guided waves dispersion curves. The investigated structure is an isotropic trilayer 

where two metallic layers are bonded together by an adhesive layer made of an epoxy resin. Comparisons were 

performed in order to evaluate numerically the influence of several properties of the adhesive layer on the guided 

waves behavior. In addition, an imperfect viscoelastic interface layer model [1] has been implemented in order to 

simulate different adherence qualities between the metallic layers. 

 

Keywords: reflection coefficient; multilayer; imperfect interface; guided waves; dispersion curves; V(z,f) 

method; modeling. 

1.  Introduction 

The need for monitoring the structural health of multilayered components in the microelectronics industry 

has driven the development of nondestructive techniques to characterize their integrity. Therefore, a reliable 

nondestructive method to evaluate the interface quality is of great utility. 

Models assessing the adhesion quality between two solids have already been developed [2–5]. Rokhlin et 

al.[1,6] established imperfect interface analytical models based on an interfacial layer, located between two 

substrates, whose thickness is much smaller than the wavelength in the interface medium. Furthermore, 

theoretical and numerical analysis have been performed to describe the wave interaction with imperfect 

interlayer interfaces using spring boundary conditions [2,7–9]. The interfacial soundness can therefore be 

characterized by the normal and shear stiffnesses of the modeled interface. In order to obtain these interfacial 

stiffnesses, procedures addressing the amplitude reflection or transmission coefficients of bulk ultrasonic waves 

have been proposed [10–13]. 

Studies on guided waves in multilayered structures have also been conducted in order to investigate the 

interfacial areas [14–21]. In [16], the authors studied numerically and experimentally the impact of different 

interfacial conditions on the ultrasonic guided waves propagation in multilayered structures. They came to the 

conclusion that for particular frequency ranges and values of applied stress the velocity of the S0 mode is 

affected by the interfacial conditions.  

The viscoelastic interface layer model established by Rokhlin et al.[1] was applied in the case of two 

isotropic half spaces bounded together. In this work, the same viscoelastic model is used, but implemented in the 

modeling of the reflection coefficient of a multilayered structure. This study is included in the frame of V(z) 

measurements in order to characterize adherence properties in multilayered structures. When inversing the V(z, f) experimental data, it allows to rebuild the reflection coefficient with respect to the incidence angle and 

frequency R(θ, f) with a simple experimental set-up, that works in normal incidence only, with the use of a 

forward transducer of large angular aperture. The guided modes of the structure are sensitive to the interface 

conditions between layers, for this, each guided mode needs to be isolated. Thus, the reflection coefficient is 

used in this study as a parameter of control since it gives the resonance modes which are shown to correspond to 

the guided modes of the structure. In addition, the study of the reflection coefficient avoids the difficulty in 

guided waves measurements, thanks to the V(z, f) method as previously described. The aim of this paper is, thus, 
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to study the effect of the degradation of the boundary conditions, relative to an adhesive joint, on the reflection 

coefficient magnitude and the corresponding guided waves behavior. 

This paper is structured as follows: in Section 2, the theoretical background, based on the transfer matrix 

method [22] and the viscoelastic interface layer, is described. The pertinence of the comparison of the minima of 

the reflection coefficient obtained for a trilayer immersed in water with the guided waves dispersion curves in 

vacuum is established in Section 3. In the same Section, the waves coupling phenomenon between the different 

layers is highlighted. Section 4 presents studies of the influence of the different parameters of the adhesive joint.  

2.  Theoretical background 

An isotropic multilayered structure consisting of N layers is considered (Figure 1). Each layer k of this 

structure has a thickness d� and the total thickness is equal to D. The multilayer structure is immersed in water 

(media 0 and N + 1) and a longitudinal wave is assumed to be incident on the structure with an angle θ�. 

The displacements and stresses existing at the bottom of a layer are connected to those at the top of the same 

layer by means of a layer transfer matrix as described in relation (1). 

 


 u�u�σ��σ��
� = B 
 u��u��σ���σ���� (1) 

where u�, u� and  u�� , u��  are respectively the horizontal and vertical components of the displacements of the 

lower and the upper face of a layer. B is the 4*4 layer transfer matrix. 

 

The continuity conditions then make it possible to establish a global transfer matrix resulting from the 

product of the transfer matrices of the successive layers. This global matrix allows the displacements and stresses 

of the top layer to be related to those of the bottom one as follows: 

T = �� I�B�
���
��� � I� (2) 

where T is the global transfer matrix of the multilayered structure, I� is the interface matrix relating the 

displacements and stresses of the consecutive layers. B� is the local transfer matrix of layer k and I� is the 

interface matrix relating the displacements and stresses of the upper layer of the multilayer to those existing in 

the coupling fluid (water in this case). 

 

In the model, imperfect interfaces are modeled by an interfacial layer. The latter possesses a thickness much 

smaller than those of the other layers of the structure. The imperfect interface layer has been modeled by a 

viscoelastic material whose properties vary according to its structure [1]. This virtual material obeys to the 

Maxwell model. Such a material is represented as a series association of a hookean spring and a purely viscous 

damper. The viscoelasticity is described by an imaginary component in the elastic coefficients of the material 

constituting the interface layer. 

 



 

Figure 1: Multilayered structure geometry 

 

Thus, the bulk modulus and the shear modulus of the interfacial layer are respectively: 

 K = K� � (K∞  K�) ! "#$#�%"#$#  i "$�%"#$#'  (3) 

 μ = μ∞ ! "#$#�%"#$#  i "$�%"#$#'    (4) 

 

where K� is the bulk modulus at the low frequency limit (corresponding to a liquid state); K∞ and μ∞ are 

respectively the bulk and the shear moduli of the material at the high frequency limit (corresponding to a solid 

state); ω is the angular frequency of the excitation signal; τ is the relaxation time. 

 

Parameters K�, K∞ and μ∞ have been selected to match those of an epoxy resin [23]. Their values are 

displayed in Table 1. 

Table 1: Elastic moduli of the viscoelastic interfacial medium 

K� K∞ μ∞ 1.9 GPa 3.6 GPa 1.2 GPa 

 

The modification of the non-dimensional product parameter ωτ makes it possible to change the mechanical 

properties of the interface layer. If we vary the value of this parameter from 0 to �∞, the material constituting 

this layer can behave as an ideal fluid up to as a solid in regard to the propagating waves. Indeed, Figure 2 shows 

that the imaginary part of the shear modulus of the viscoelastic material is maximal for ωτ = 1. Below the value 

1, the imaginary part clearly dominates the real one, which results in an exacerbated dissipation property of the 

interface layer, since the latter tends towards a liquid state. For values of ωτ greater than 10 the shear modulus 

reaches a threshold equal to the value of the shear modulus of the material in its purely solid state. Thus, varying 

the value of this parameter makes it possible to simulate a degradation of the adherence quality which can be 

physically explained by the presence of defects such as delaminations [23]. 



 

Figure 2: Evolution of the real and imaginary parts of the shear modulus μ with respect to the parameter ωτ 

When writing the continuity conditions of displacements and stresses at the top and bottom interfaces with 

those of the surrounding fluid and using relations (1) and (2), one can obtain the expression of the reflection 

coefficient [24,25] as follows: 

 

               R = 56675##78(5#69:;<=>?= %56# >?=9:;<=)7(566%5##)%8(56# >?=9:;<=75#69:;<=>?= )                (5) 

where: 

                               M�� = TAATB�  TA�TBA                         (6) M�A = TA�TB�  TA�TB� MA� = T�ATB�  T��TBA MAA = T�ATB�  T��TBA 
 Z� = ρ�V� is the acoustic impedance of the water surrounding the multilayer (with ρ� the density of water and V� 

the sound speed in water) and θ� the angle of incidence at which the wave penetrates in the studied multilayered 

structure.  

 

In order to analyze the wave propagation inside the multilayered plates, the free guided waves dispersion 

curves have to be calculated. If we consider a multilayered structure surrounded by vacuum, it is possible to 

calculate the dispersion curves of the guided waves by adopting the free surfaces conditions. These conditions 

result in the following relation between the displacements and stresses located respectively at the bottom 

(referred to by the superscript bot) and the top (referred to by the superscript top) of the structure:  

 

   

IJ
Ku�LMNu�LMNσ��LMNσ��LMN OP

Q = 
T�� T�A T�� T�BTA� TAA TA� TABT�� T�A T�� T�BTB� TBA TB� TBB
�

IJ
Ku�NMRu�NMRσ��NMRσ��NMR OP

Q
  (7) 

 

 

As we want to determine the free guided wave, corresponding to the multilayer structure surrounded by 

vacuum, it implies that the stress components σ�� and σ�� at the top and bottom interface of the multilayer have 

to be null. 

 

 

Taking into account the nullity of the previous stress components, equation (7) possesses non trivial solutions 

only if: 

 



     ST�� T�ATB� TBAS = 0    (8) 

 
The numerical resolution of equation (8) allows, thus, to get the phase velocities of the free guided waves 

with respect to frequency. This equation can also be established by nullifying the denominator of the reflection 

coefficient, presented in the relation (5), and setting the parameter Z� to zero. Indeed, since the poles of the 

reflection coefficient correspond to the generalized guided waves radiating in the incident fluid environment 

("leaky guided waves"), the free guided waves are obtained by setting the acoustic impedance, Z�, of the incident 

coupling fluid to zero, leading to equivalently determine the roots of the scalar value MA� = 0. The solutions of 

equation (8) are obtained numerically using the MATLAB® software. In our case, for each frequency, the phase 

velocities of the guided waves are derived via the process described above. These results are plotted, with respect 

to frequency, in order to build the dispersion curves of the free guided waves. This protocol provides accurate 

dispersion curves, even if some modes appear discontinuous due to the computation steps of the frequency and 

incident angle.  

 

3. Reflection coefficient minima and free guided waves dispersion curves   

 for a perfect interface 

In Section 2, the methodology to obtain the reflection coefficient and the plate waves dispersion curves has 

been exposed. 

 

The simulations were conducted on an aluminum/epoxy resin/steel multilayer structure as illustrated on 

Figure 3. It is considered in the rest of this paper as the reference trilayer. The adhesive layer bonding the 

aluminum and steel layers is much thinner than the thicknesses of the metallic layers in order to be considered as 

an interface layer. The material properties of the constituents [23,26]  are displayed on Table 2. 

 

 

 

Figure 3: Isotropic multilayered structure: Aluminum / Epoxy resin / Steel, having respectively the 

thicknesses UV = 1.2 mm, U = 0.05 mm and UY = 0.5 mm 

 

Table 2: Material properties of the isotropic multilayer 

Material Aluminum  Epoxy resin  Steel  

 

Velocities (m/s) 

C] = 6320 C^ = 3130 

C] = 2082 C^ = 1000 

C] = 5900 C^ = 3190 

 

Density (kg/m�)  

 

2700 

 

1200 

 

 

7800 

 



 

 

In this Section, the validity of the calculation of the guided waves dispersion curves is compared to the 

results obtained via Finite Element (FE) method. 

 The equivalence between these curves and the reflection coefficient minima is then established when the 

impedance of the coupling fluid is negligible with respect to that of the solid materials. Finally, the guided 

modes coupling the three layers constituting the structure will be highlighted (i.e. the modes that propagate in the 

three layers). 

a. Validity of the guided waves dispersion curves and their comparison with 

the reflection coefficient minima  

 

In order to test our algorithm calculating the Lamb waves dispersion curves, numerical simulations are 

carried out using COMSOL Multiphysics® FEA software with the Solid Mechanics module. When using 

COMSOL, the trilayer sample is considered infinite along the x� and xA directions, in free boundary conditions 

and in vacuum. To this aim, a unit cell is meshed and Bloch-Floquet periodic boundary conditions are applied on 

its left and right sides. The Finite Element (FE) model is realized with a quadrangular regular mesh made of 

2505 domain elements and 1022 boundary elements. An eigenfrequency parametric study is then performed 

where the wavenumber value kb = ωcφ (ce being the guided wave phase velocity) is the sweep parameter. 

 

The guided waves dispersion curves can be equivalently plotted displaying the phase velocity or the 

incidence angle with respect to the frequency. Indeed, according to the Snell's law, the incident angle θ� 

corresponding to each guided wave mode is given by:  

 θ� = arcsin hi=jkl             (9) 

The representation displaying θ� with respect to the frequency facilitates the comparison between the 

reflection coefficient modulus |R(θ, f)| and the dispersion curves. 

 

Figure 4 displays a comparison between the free guided waves dispersion curves calculated, using the 

reflection coefficient, via a MATLAB® algorithm, and the same dispersion curves calculated via COMSOL® 

following the process described above. A perfect agreement is denoted on this figure when comparing the curves 

obtained, for the structure described on Figure 3, through the theoretical model and the FE method for 0 MHz <f < 9 pqr. Thus, it can be concluded that our algorithm calculating the guided waves dispersion curves in 

multilayered structures with perfect interface conditions provides satisfactory and reliable results. 

 

 

Figure 4: Comparison between the dispersion curves obtained by FE simulation on COMSOL® and by the 

MATLAB® algorithm for the reference trilayer 



Figure 5 shows a comparison between the free guided waves dispersion curves, with respect to the incidence 

angle and the frequency, and the minima of the reflection coefficient obtained for this trilayer immersed in water 

within the frequency range 0 MHz - 9 MHz. The guided modes displayed on Figure 5 are pseudo symmetrical 

and pseudo anti-symmetrical because of  the lack of a symmetrical plane in the structure [27] along the x� 

direction. In order to identify each propagation mode in the reference trilayer structure, the different modes will 

be simply labeled Ms with 0 < i < 16 in the considered frequency range. The subscript i increases in the 

ascending order of the cutoff frequencies, except for M� and M�. 

 The black color corresponds to the minima of the reflection coefficient while the white color corresponds to 

the reflection coefficient equal to 1 in modulus. The reflection coefficient minima have excellent agreement with 

the free guided modes. Indeed, in most cases, the guided waves correspond to the minima of the reflection 

coefficient, when the coupling fluid density is small compared to the mass densities of the layers involved [27–

29].  

 

 

 

Figure 5: Comparison between reflection coefficient minima and guided waves dispersion curves plotted with 

respect to the incidence angle for the reference trilayer 

When the assumption of a negligible impedance of the coupling fluid is made, the only guided mode that 

does not appear on the reflection coefficient minima is M�. In other words, this free guided mode does not have 

its equivalent in the resonance modes propagating in the trilayer structure. 

 

b. Contribution of the different layers to the dispersion curves 
 

  An assumption was made that the guided waves dispersion curves calculated for the multilayer displayed on 

Figure 3 may consist in modes corresponding to the aluminum and steel layers taken separately and modes 

coupling those two layers via the adhesive layer of epoxy. This assumption is based on the fact that the 

impedance of the adhesive layer is largely inferior to those of the metallic ones. Because of this impedance 

discrepancy, some trilayer modes, at least for some frequency ranges, were expected to be mainly "trapped" in 

either the aluminum or the steel layer. The goal here is to identify the modes affected the most by the presence of 

the epoxy resin and hence, those that will be the most sensitive to the changes in the adherence quality. 

 

 In order to test this hypothesis, the free Lamb waves dispersion curves of the aluminum and steel layers are 

compared to the free guided waves in the trilayer. The dispersion curves of the trilayer are chosen here instead of 

the minima of the reflection coefficient for readability purposes only, since they are equivalent as it is shown on 

Figure 5. 

 

 



 

Figure 6: Comparison between the trilayer dispersion curves and the free Lamb modes of the aluminum and steel 

layers considered independently 

For the aluminum and steel plates taken independently, and considering the frequency range of study, their 

antisymmetric Lamb modes are named respectively Asu (with 0 < i < 5) and Aŝ  (with 0 < i < 2) and the 

symmetrical ones are named Ssu (with 0 < i < 4) and Sŝ  (with i = 0; 1). 

 

Figure 6 shows that, as expected, the dispersion curves obtained for the trilayer structure possess many 

modes very close to those of the aluminum and steel layers, considered separately, and within particular 

frequency ranges. Indeed, these modes possess the same dispersive behavior as some Lamb modes propagating 

in the aluminum and steel plates. In order to determine the frequency extremities of the trilayer modes 

corresponding to Lamb modes propagating in the aluminum or steel layer, the following criterion have been 

observed: the limit for the incidence angle discrepancy, allowing to consider the modes as similar, has been set 

to 12.7 %. This maximum value has been chosen as it corresponds to the shift in incidence angle occurring 

between the MA and S�u modes (which have been considered as similar modes) at f = 2.47 MHz. It is to be noted, 

however, that in most cases, the discrepancy in incidence angle is much smaller than 12.7 %, and many modes 

are superimposed such as Mz and SAu for 4.3 MHz < f < 9 MHz. 

 

 Nevertheless, some modes do not fit any modes present in the layers taken independently from the 

multilayer. These modes are the most interesting when it comes to investigating the interface quality because 

they correspond to the multilayered structure and therefore to the effect of the adhesive layer. 

 

The M� mode, which can be considered as a pseudo S� mode, propagating in the multilayer has a remarkable 

behavior that will be of great interest when the contact between the two metallic layers will be modified. Indeed, 

this mode is clearly a multilayer coupling mode especially for lower frequencies as it is visible on Figure 6 for a 

frequency range roughly located between 0.5 MHz and 3.5 MHz. This result corroborates the experimental and 

numerical results obtained by Balvantín et al. [16] who showed that within particular frequency ranges and 

applied load the propagation velocity of the S� mode is affected by the interfacial conditions. 

 

It is noticeable that the clearest coupling modes (M�, MA, M�) related to the global multilayered structure 

occur at low frequencies (0.5 MHz < f < 2 MHz). Since the wavelengths of the coupling modes are greater 

when the frequency decreases, the last ones become less sensitive to the individual layers, but more sensitive to 

the global multilayered structure. 

 

A more detailed identification of the modes propagating in the trilayer structure is displayed on Table 3. Each 

mode propagating in the structure is either attributed to an aluminum or steel mode or to a coupling mode, 

depending on the frequency range. As noticed above, the coupling modes are those allowing to study the changes 

in interface quality because they depend strongly on the multilayered structure and therefore on the presence of 

the bonding layer between the two metallic ones.  

 



Figure 6 shows also that the M� mode, which does not appear on the reflection coefficient minima, is very 

closely related to the steel Lamb mode A�̂ in the considered frequency interval. In that sense, M� is not relevant 

when it comes to assess the bonding interface quality because it is not a trilayer coupling mode. Thus, the fact 

that the M� mode does not appear in the reflection coefficient minima is not really limiting in the context of our 

study.   

Table 3: Identification of the Lamb modes propagating in the trilayer structure with respect to the aluminum and 

steel layers as well as the coupling modes 

 

 

Trilayer 

modes 

Aluminum layer modes and 

frequency ranges (MHz) 

Steel layer modes  and 

frequency ranges (MHz) 

Coupling modes frequency 

ranges (MHz) M�  A�̂: 3 < f < 8.42 8.42 < f < 9 

M� A�u : 3 < f < 9 S�̂: 0 < f < 0.47 0.47 < f < 3 

MA S�u: 1.4 < f < 9  0.49 < f < 1.4 

M� S�u: 3.27 < f < 6 S�̂: 2 < f < 3.27 S�̂: 6 < f < 9 

1 < f < 2 

MB A�u : 1.43 < f < 3.44 A�u : 6.2 < f < 9 

S�̂: 3.44 < f < 6.2  

M| A�u : 2.6 < f < 9   

Mz AAu : 3.34 < f < 4.3 SAu: 4.3 < f < 9 

 2.9 < f < 3.34 

M}  A�̂: 3.22 < f < 9  

M~ SAu: 3.9 < f < 4.2 AAu : 5.45 < f < 9 

A�̂: 4.2 < f < 5.45  

M� A�u : 5.2 < f < 5.46 S�u: 8.7 < f < 9 

S�̂: 5.46 < f < 8.7  

M�� S�u: 5.35 < f < 5.54 A�u : 5.7 < f < 9 

 5.54 < f < 5.7 

M�� S�u: 5.76 < f < 8.65 S�̂: 5.76 < f < 6 S�̂: 8.65 < f < 9 

 

M�A ABu : 6.5 < f < 9 AÂ: 6.34 < f < 6.5  

M�� ABu : 6.5 < f < 6.58 SBu: 7.8 < f < 9 

AÂ: 6.58 < f < 7.8  

M�B SBu: 7.73 < f < 8 AÂ: 8 < f < 9  

M�| A|u : 7.95 < f < 9   

M�z   8.93 < f < 9 



As a conclusion, the guided modes propagating in the reference trilayer are composed of modes 

corresponding to the free Lamb waves of the aluminum or steel layers or coupling modes related to the global 

structure. Depending on the frequency ranges, these coupling modes parts are of the most interest in the 

following parts of our study since they provide information about the adherence quality between the metallic 

layers. These three types of modes are identified in Table 3. 

4.  Impact of different parameters of an adhesive joint 

In the previous Section, the guided waves propagating in the reference trilayer have been labeled and some 

modes have shown to be more sensitive to the changes impacting the interface layer. In the current Section, the 

effect of different parameters of the adhesive layer on the reflection coefficient will be studied and compared 

with the free dispersion curves of the trilayer previously obtained. 

a. Thickness of the adhesive layer 

Figure 7 presents a comparison between the reflection coefficient calculated for the trilayer with two 

different thicknesses of the adhesive layer and the dispersion curves of the free guided waves of the reference 

structure defined in Figure 3 where the initial thickness of the adhesive layer is named h. The comparison has 

been done with thicknesses equal respectively to h� = h/2 and h�� = 2h. 

 

 
 

 

Figure 7: Comparison between the reflection coefficient calculated for the trilayer with different thicknesses of 

the adhesive layer and the free guided waves dispersion curves of the reference trilayer having an interface 

thickness h: a) h� = �A and b) h�� = 2h 



First of all, Figure 7 shows that globally the discrepancy between the free guided waves dispersion curves 

and the reflection coefficient minima increase in the case of a greater thickness. For instance, some modes like MA and M� do not appear or appear only partially for  2 MHz < f < 6 pqr for the thicker interface layer when 

they are clearly represented for thinner one. 

 Shifts with respect to the dispersion curves do exist in both cases but they are accentuated in the case of  h�� = 2h as illustrated on MB mode for 5.4 MHz < f < 7.1 pqr or M} mode for  7.3 MHz < f < 8.8 pqr. For 

the higher frequencies (7.9 MHz < f < 9 pqr), some minima of the reflection coefficient shift towards higher 

incidence angles which is equivalent to say that the modes MB, M|, Mz, M} and M� propagate at lower velocities 

in the structure including a thicker adhesive layer. This behavior can be related to the increased effect of the 

thicker epoxy layer in which the wave velocities are inferior to those in the metals. 

 

The minima corresponding to the trilayer coupling modes M�, MA and M� in the frequency range 0 MHz <f < 1.7 pqr are shifted when the thickness of the adhesive layer varies. This observation can be extended 

globally to all the coupling modes. When the thickness gets greater, these minima shift towards the lower 

frequencies and vice versa. This is in line with the fact that the smaller the thickness the higher the frequency 

must be in order to detect this interface layer. 

 

To summarize, as could be expected, the discrepancies between the reflection coefficient minima and the 

guided waves dispersion curves of the reference trilayer structure increase when the thickness of the adhesive 

layer grows. For several modes, the phase velocities of the resonance modes of |R| (modulus of the reflection 

coefficient) in the trilayer decrease when the thickness of the bonding layer increases. In addition, the position of 

the minima, with respect to the frequency, shift accordingly to the thickness of the interface layer, especially for 

the coupling modes M�, MA and M�. These results can be valuable for monitoring the thickness of an adhesive 

layer in a multilayer. 

b. Density of the adhesive layer 

The impact of the epoxy density is studied through a comparison (Figure 8) between the free guided waves 

dispersion curves of the reference trilayer (Figure 3) and the reflection coefficient minima of the multilayer 

structure with two different densities of the adhesive layer ρ� = ρ/2 and ρ�� = 2ρ, ρ being the initial density of 

the epoxy resin.  

 

 
 



 

Figure 8: Comparison between the reflection coefficient calculated for the trilayer with two different densities of 

the adhesive layer and the free dispersion curves of the reference trilayer having an interface density �: a) ρ� = �A 

and b) ρ�� = 2ρ 

When observing the reflection coefficient minima, the ρ� case generates less visible resonance modes than 

the ρ�� one. The decrease in density of the interface layer seems to lead to an increase of the reflection coefficient 

magnitude, therefore to a reduction of the number of minima which leads to a disappearance of some resonance 

modes in the trilayer. Indeed, when the density of the adhesive layer decreases, its impedance decreases too 

which leads to a greater reflection magnitude and prevents some resonance modes to propagate in the structure. 

Conversely, the increase of the density of the interface layer causes an increase of the depth and width 

respectively of the peaks and valleys of the reflection coefficient. As it can be observed for several resonance 

modes such as those corresponding to MA in the frequency range 2 MHz < f < 6 pqr and MB in the frequency 

range 3.5 MHz < f < 6 pqr, the width can be used as an index for determining some change in the density of 

the interface layer. 

 

The minima of the reflection coefficient corresponding to the trilayer coupling modes M�, MA and M� in the 

frequency range 0 MHz < f < 1.7 pqr are shifted when the density of the adhesive layer varies. When the 

density grows, most of the resonance modes corresponding to coupling modes shift towards higher frequencies 

and conversely. 

 

Another observation can be made: for the lower density (ρ�) most of the resonance modes correspond 

globally more to the aluminum plate Lamb waves than to those of the steel plate as illustrated in Figure 9. This 

might be due to the fact that the reduced impedance of the adhesive layer tends to isolate the aluminum layer 

regarding the propagating waves. Exceptions can be observed for the minima corresponding to the modes S�̂ for 2.3 MHz < f < 5.8 pqr, A�̂ for 3.4 MHz < f < 4.1 pqr and S�̂ for 5.5 MHz < f < 5.8 pqr that rather 

correspond to the free Lamb waves propagating in the bottom steel layer. These modes occur for lower 

frequencies which leads to think that the waves are more sensitive to the bottom layer for the greater values of 

the wavelength allowing to inspect a thicker portion of the trilayer. 

 

 



 
 

 

Figure 9: Comparison between the reflection coefficient of the trilayer containing an adhesive layer with a ρ�density and Lamb waves dispersion curves of the aluminum plate a) and steel plate b) 

To summarize, when the density of the adhesive layer decreases, less resonance modes are generated in the 

structure because of the increased impedance discrepancy between the interface layer and the metallic ones. A 

better agreement is observed between the reflection coefficient minima and the upper layer free Lamb waves for 

a lower density of the interface layer. This behavior seems to be related to the "isolation" of the upper layer due 

to the reduced impedance of the bonding layer. Finally, the width and depth of several reflection coefficient 

minima can be used to monitor the adhesive layer density. 

c. Viscoelastic interface layer model 

The adhesive layer bonding the aluminum and steel layers is considered here as a viscoelastic interface layer. 

This model [1] assesses the interface quality through the value of the parameter ωτ. The simulations have been 

performed using the exact interface matrix given by Rokhlin et al. The exact interface matrix is chosen here 

because it can represent an actual adhesive layer. Indeed, this approach does not require the introduction of a 

very thin interface layer (with respect to the wavelength) synonymous of approximated interface matrices 

obtained after asymptotic expansions. 

 The reflection coefficient obtained for three values of ωτ is compared to the free guided waves dispersion 

curves of the trilayer containing a perfect adhesive layer (Figure 10). The values chosen are: 0.1, 1, 10. 

 



 
 

 
 

 

Figure 10: Comparison between the reflection coefficient calculated for the trilayer with different values of ωτ 

for the interface layer and the free guided waves dispersion curves of the reference trilayer: a) ωτ = 0.1; b) ωτ = 1 and c) ωτ = 10 



As shown on Figure 2, ωτ = 0.1 corresponds to an interface layer where the imaginary part of the shear 

modulus is dominant, ωτ = 1 to the case where the imaginary part is maximum but with an equivalent 

contribution of the real part, and finally ωτ = 10 to a state where the real part is largely predominant over the 

imaginary one and the shear modulus is very close to that of epoxy resin in its solid state. 

 

From a practical point of view, ωτ = 0.1 represents a highly delaminated interface with a very strong 

influence of the induced fluid fraction on the wave propagation. The case where ωτ = 1 describes a moderately 

degraded adhesive layer with an important attenuation but insuring a reasonable transmission of shear 

displacement and stress. Finally, ωτ = 10 models a quasi perfect interface layer that possesses a shear modulus 

very close to that of a perfect solid epoxy layer. 

 

For ωτ = 0.1, the agreement with the free guided waves dispersion curves is degraded compared to the 

higher values of ωτ. Indeed, some resonance modes such as M| for 3.4 MHz < f < 5.5 pqr and M�� for 5.8 MHz < f < 6.9 pqr are highly attenuated. Also, some extended minima areas connecting different 

resonance modes can be observed. For instance, M�� and M�A are connected between 6.9 MHz and 7.5 MHz and 

so are M�B and M�| between 8 MHz and 8.6 MHz. This behavior can be due to the fact that the reflection 

coefficient undergoes a strong attenuation for these resonance modes in these frequency ranges. Thus, it could be 

expected that these modes possess predominantly shear components since the imaginary part is dominant for ωτ = 0.1 as explained previously. 

 

When ωτ = 1, the dissipative nature of the interface is maximum which leads to a spreading out of the 

minima areas (for example in the 1 MHz < f < 3 pqr range) and their deepening (shown by very dark color). 

The extension of the minima areas makes the discrimination of some very close modes impossible. Such a 

behavior can be observed for M�, M� between 2.3 MHz and 4.3 MHz and for M�, M�� between 5.2 MHz and 5.6 MHz. This is not observed when ωτ = 0.1 because, even though the dissipative nature of  the interface is 

predominant, the imaginary part of the shear modulus is much lower than the maximum value reached for ωτ =1. 

 

The best agreement with the free waves dispersion curves is obtained for ωτ = 10. The example of the M� 

mode illustrates this. Indeed, the minimum of the reflection coefficient corresponding to this mode only appears 

for ωτ = 10. In addition, the minima are narrowest for this value of ωτ which makes it easier to identify guided 

modes through comparison with the dispersion curves. 

 

A remark must be made about the behavior of the MA and M� coupling modes in the frequency range 0.5 MHz < f < 1.5 pqr: they do not seem to be generated for any of the ωτ values considered here. 

 

In summary, the quality of the interface between the two metallic layers can be modified via the value of ωτ 

and the viscoelastic nature of the interface layer has clear effects on the reflection coefficient of the multilayer 

structure. Indeed, the higher the value of ωτ, the better the agreement with the free guided waves of the 

reference trilayer  and the contribution of the viscoelastic dissipation, related to a delamination state, gets weaker 

and weaker. This can be a means to assess the quality of an interface and characterize the viscosity of an 

adhesive layer. Indeed, the results obtained here can be used to monitor the state of curing of an adhesive joint 

by evaluating its complex shear modulus through the value of �� over time. 

d. �� and �� parameters 

In this Section, the K� and KN parameters [1,30] are taken into account in the interface layer transfer matrix in 

order to observe the influence of the parameter �� on the reflection coefficient. K� and KN are respectively the 

normal and transverse stiffnesses of the interface layer and have dimensions N/m�. This approach allows to 

assess the interface quality in a straightforward and simple way. Indeed, in practical cases a delamination 

introduces a fluid fraction in the interface layer, so varying the value of KN makes sense in order to quantify the 

amount of shear stress transmitting through the interface. The goal here is also to assess the relevance of the K�/KN approach in the studied configuration. The stiffnesses K� and KN are defined by: 

 K� = ��%A���          (10) 

 KN = ���                (11) 

 

where Λs and μs are the Lame constants of the interfacial medium. 



 

To extract K� and KN from respectively the component BA� and B�B of the interface layer matrix given by 

Rokhlin et al. [1], a first order approximation has to be performed assuming that λ� (the longitudinal wavelength 

in the interface layer) is much greater than the thickness h of the interface layer.  

In the present study, the transfer matrix components are kept identical but now the longitudinal and 

transverse waves velocities are recalculated with respect to the Lame constants. Considering the equations (9) 

and (10), the Lame constants vary depending on the values of K�, KN and h of the studied cases. 

  

The value of K� is here set to 10�| N/m� which insures a good transmission of the normal stress. The higher 

the value of KN, the better the contact between the two metals will be. 

Figure 11 is a comparison between the reflection coefficient computed for the values 5.10�A N/m�  and 10�| N/m� of the parameter KN, representing respectively a highly altered interface and a good quality interface, 

and the free guided waves dispersion curves obtained for the reference trilayer (Figure 3). 

This comparison shows that a low value of KN leads, as expected, to a poor agreement with the free plate 

waves dispersion curves. Indeed, some resonance modes are only partially generated (highly attenuated) such as 

those corresponding to MA (1.7 MHz < f < 4.3 pqr) and M� (2.6 MHz < f < 4.6 pqr). Some other resonance 

modes are not excited like the modes which correspond to M�z and MA for 0.5 MHz < f < 1.7 pqr to the 

contrary of the case with KN = 10�| N/m�. These modes are quite specific because they are trilayer coupling 

modes directly related to the presence of the adhesive layer. In that regard, a small value of KN leads to the non-

generation of some coupling modes. These very attenuated resonance coupling modes appear to be mainly shear 

modes because of the strong influence that a low value of KN (or μs) has upon them. 

However, for higher values of KN, a much better agreement is expected. Indeed, the minima shifts with 

respect to the dispersion curves are quite significant. Such a behavior might be due to the ratio β = ��=  that gets 

too small for the most part of the considered frequencies. Indeed, this ratio varies linearly from 0 to 0.22 for f =9 MHz, which seems too small in the context of the K�/KN approach which necessitates a much higher ratio 

allowing to neglect the inertia of the interface layer [1]. 

 

 

 
 



 

Figure 11: Comparison between the reflection coefficient calculated for two different values of KN and the free 

guided waves dispersion curves of the reference trilayer: a) KN = 5 ∗ 10�A N/m� and b) KN = 10�| N/m� 

Finally, the K�/KN approach is shown to be a qualitative tool allowing to assess, in a coherent way, the 

adherence quality within a multilayered structure despite some limitations due to the thickness of the adhesive 

layer. One of the interesting and noticeable effects of a low value of KN is the high attenuation of shear coupling 

modes. The  K�/KN approach does not affect the value of Λs, maintained constantly at a value insuring a very 

high K�, but focuses only on the value of μs which allows to vary the value of the transverse stiffness of the 

adhesive layer, which can be directly related to the bonding quality. The K�/KN approach presented in this study 

is a way to quantify the adherence quality through the transverse stiffness value, which can be related directly to 

the shear velocity and therefore the transverse acoustic impedance. 

5 Conclusion and future work 

In this work, the effect on ultrasonic guided waves of the properties of different interface layers is 

numerically studied in the context of a multilayered structure. Reflection coefficients and free guided waves 

dispersion curves are modeled using the global transfer matrix method. The characterization of variable 

properties of the adhesive layer by means of a comparison with free guided waves dispersion curves of the 

trilayer containing a perfect epoxy layer is proposed. 

An isotropic multilayered system consisting of aluminum, epoxy resin and steel is the configuration studied 

in this work. The equivalence between the reflection coefficient magnitude minima and the free guided waves 

dispersion curves has been established for the considered structure. Multilayer coupling modes have been 

highlighted through a comparison between the free guided waves dispersion curves of the trilayer and the free 

Lamb waves of the aluminum and steel plates respectively. Then, the impact of the thickness and density of the 

adhesive layer has been studied with respect to the guided modes, especially with regard to the coupling modes 

that are the most sensitive to the changes in the interface layer. 

Imperfect interface layer models have also been implemented. These models assess the interface quality 

through a viscoelastic parameter ωτ and the normal and transverse interface stiffnesses K� and KN.The increase 

of ωτ results in a better interface quality and a much better agreement with the free guided waves of the 

reference trilayer. Regarding the K�/KN approach, K� is set at a high value insuring a good transmission of the 

normal stress and two extreme values of KN are tested. A very high value of KN provides reflection coefficient 

minima much closer to the free guided waves dispersion curves of the reference trilayer structure, however the 

agreement is not as good as expected. This behavior might be due to the thickness of the interface layer which is 

too large with respect to the wavelengths generated in the medium. 

This study provides an overview of the impact of the adhesive interface layer nature on the reflection 

coefficient magnitude and the potential of the comparison with the free guided waves dispersion curves in order 

to characterize the interface quality within a multilayered structure. 

Thus, it could be envisaged to characterize interface defects through experimental V(z,f) measurements. For 

this, the reflection coefficients obtained by modeling should be compared to the experimental ones rebuilt thanks 

to the inversion of measured V(z,f) data. Such a study is currently being initiated. 
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