
HAL Id: hal-03018513
https://hal.science/hal-03018513v1

Preprint submitted on 22 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantum Programming with Inductive Datatypes
Romain Péchoux, Simon Perdrix, Mathys Rennela, Vladimir Zamdzhiev

To cite this version:
Romain Péchoux, Simon Perdrix, Mathys Rennela, Vladimir Zamdzhiev. Quantum Programming
with Inductive Datatypes. 2020. �hal-03018513�

https://hal.science/hal-03018513v1
https://hal.archives-ouvertes.fr

Quantum Programming with Inductive Datatypes?

Romain Péchouxa, Simon Perdrixa, Mathys Rennelab, Vladimir Zamdzhieva,∗

aUniversité de Lorraine, CNRS, Inria, LORIA, F 54000 Nancy, France
bLeiden University, Leiden, The Netherlands

Abstract

Inductive datatypes in programming languages allow users to define useful data

structures such as natural numbers, lists, trees, and others. In this paper we

show how inductive datatypes may be added to the quantum programming lan-

guage QPL. We construct a sound categorical model for the language and by

doing so we provide the first detailed semantic treatment of user-defined induc-

tive datatypes in quantum programming. We also show our denotational in-

terpretation is invariant with respect to big-step reduction, thereby establishing

another novel result for quantum programming. Compared to classical program-

ming, this property is considerably more difficult to prove and we demonstrate

its usefulness by showing how it immediately implies computational adequacy

at all types. To further cement our results, our semantics is entirely based on

a physically natural model of von Neumann algebras, which are mathematical

structures used by physicists to study quantum mechanics.

Keywords: Quantum programming, Inductive types, Adequacy, W*-algebras

1. Introduction

Quantum computing is a computational paradigm which takes advantage of

quantum mechanical phenomena to perform computation. A quantum com-

puter can solve problems which are out of reach for classical computers (e.g.

factorisation of large numbers [2], solving large linear systems [3]). The recent5

?This article is an extended version of our FoSSaCS paper [1].
∗Corresponding author.

Preprint submitted to Elsevier

developments of quantum technologies point out the necessity of filling the gap

between theoretical quantum algorithms and the actual (prototypes of) quan-

tum computers. As a consequence, quantum software and in particular quantum

programming languages play a key role in the future development of quantum

computing. The present paper makes several theoretical contributions towards10

the design and denotational semantics of quantum programming languages.

1.1. Our Contribution

Our development is based around the quantum programming language QPL

[4] which we extend with inductive datatypes. Our paper is the first to construct

a denotational semantics for user-defined inductive datatypes in quantum pro-15

gramming. In the spirit of the original QPL, our type system is affine (discard-

ing of arbitrary variables is allowed, but copying is restricted). We also extend

QPL with a copy operation for classical data, because this is an admissible op-

eration in quantum mechanics which improves programming convenience. The

addition of inductive datatypes requires a departure from the original denota-20

tional semantics of QPL, which are based on finite-dimensional quantum struc-

tures, and we consider instead (possibly infinite-dimensional) quantum struc-

tures based on W*-algebras (also known as von Neumann algebras), which have

been used by physicists in the study of quantum foundations [5]. As such, our

semantic treatment is physically natural and our model is more accessible to25

physicists and experts in quantum computing compared to most other denota-

tional models.

QPL is a first-order programming language which has procedures, but it does

not have lambda abstractions. Thus, there is no use for a !-modality and we

show how to model the copy operation by describing the canonical comonoid30

structure of all classical types (including the inductive ones).

An important notion in quantum mechanics is the idea of causality which

has been formulated in a variety of different ways. In this paper, we consider a

simple operational interpretation of causality: if the output of a physical process

is discarded, then it does not matter which process occurred [6]. In a symmetric35

2

monoidal categoryC with tensor unit I, this can be understood as requiring that

for any morphism (process) f : A1 → A2, it must be the case that �A2
◦f = �A1

,

where �Ai : Ai → I is the discarding map (process) at the given objects. This

notion ties in very nicely with our affine language, because we have to show that

the interpretation of values is causal, i.e., values are always discardable.40

A major contribution of this paper is that we prove the denotational seman-

tics is invariant with respect to both small-step reduction and big-step reduc-

tion. The latter is more difficult in quantum programming and our paper is

the first to demonstrate such a result. As a corollary, we obtain computational

adequacy, i.e., we provide a denotational characterisation for the probability of45

termination for arbitrary programs.

1.2. Overview and Summary of Results

The main contributions of this article are the following results:

• An extension of QPL with inductive datatypes and a copy operation for

classical data (§2);50

• A type safe operational semantics based on finite-dimensional quantum

operations and classical control structures (§3);

• A physically natural denotational model for quantum programming us-

ing W*-algebras, which are mathematical structures used by physicists to

study quantum mechanics (§4);55

• A detailed semantic treatment of user-defined inductive datatypes: we

describe the causal structure of all types and we describe the comonoid

structure of classical types (§5).

• Invariance of the denotational semantics with respect to small-step and

big-step reduction and a computational adequacy result (implied by causal-60

ity): we provide a denotational characterisation of the probability of ter-

mination for programs of arbitrary types (§5.6).

3

1.3. Publication History

This article is an extended version of the FoSSaCS paper [1]. Compared

to the conference version, the main additions in this article are two extensive65

subsections: Subsection 5.3 which describes in detail the comonoid structure of

classical types; and Subsection 5.7 which describes our proof of the invariance

of the denotational semantics with respect to big-step reduction and also our

computational adequacy result. We have also improved the exposition by adding

examples and providing more detailed descriptions of some concepts.70

2. Syntax of QPL

The syntax of QPL (including our extensions) is summarised in Figure 1. A

well-formed type context, denoted ` Θ, is simply a list of distinct type variables.

A type A is well-formed in type context Θ, denoted Θ ` A, if the judgement

can be derived according to the following rules (see [7, 8] for a more detailed

exposition):

` Θ
Θ ` Θi

` Θ
Θ ` I

` Θ
Θ ` qbit

Θ ` A Θ ` B ? ∈ {+,⊗}
Θ ` A ? B

Θ, X ` A
Θ ` µX.A

A type A is closed if · ` A. Note that nested type induction is allowed. Hence-

forth, we implicitly assume that all types we are dealing with are well-formed.

Example 1. The type of natural numbers is defined as Nat ≡ µX.I+X. Lists75

of a closed type · ` A are defined as List(A) ≡ µY.I +A⊗ Y.

Notice that our type system is not equipped with a !-modality. Indeed, in the

absence of function types, there is no reason to introduce it. Instead, we specify

the subset of types where copying is an admissible operation. The classical types

are a subset of our types defined in Figure 1. They are characterised by the80

property that variables of classical types may be copied, whereas variables of

non-classical types may not be copied (see the rule for copying in Figure 2).

We use small Latin letters (e.g. x, y, u, q, b) to range over term variables.

More specifically, q ranges over variables of type qbit, u over variables of unit

4

Type Variables X,Y, Z

Term Variables x, y, q, b, u

Procedure Names f, g

Types A,B ::= X | I | qbit | A+B | A⊗B | µX.A

Classical Types P,R ::= X | I | P +R | P ⊗R | µX.P

Terms M,N ::= new unit u | discard x |

y = copy x | new qbit q |

b = measure q | q1, . . . , qn ∗= S |

M ;N | skip | while b do M |

x = leftA,BM | x = rightA,BM |

case y of {left x1 →M | right x2 → N} |

x = (x1, x2) | (x1, x2) = x |

y = fold x | y = unfold x |

proc f :: x : A→ y : B {M} | y = f(x)

Type contexts Θ ::= X1, X2, . . . , Xn

Variable contexts Γ,Σ ::= x1 : A1, . . . , xn : An

Procedure contexts Π ::= f1 : A1 → B1, . . . , fn : An → Bn

Type Judgements Θ ` A

Term Judgements Π ` 〈Γ〉 M 〈Σ〉

Figure 1: Syntax of QPL.

5

type I, b over variables of type bit := I + I and x, y range over variables of85

arbitrary type. We use Γ and Σ to range over variable contexts. A variable

context is a function from term variables to closed types, which we write as

Γ = x1 : A1, . . . , xn : An.

We use f, g to range over procedure names. Every procedure name f has an

input type A and an output type B, denoted f : A → B, where A and B are90

closed types. We use Π to range over procedure contexts. A procedure context

is a function from procedure names to pairs of procedure input-output types,

denoted Π = f1 : A1 → B1, . . . , fn : An → Bn.

Remark 2. Unlike lambda abstractions, procedures cannot be passed to other

procedures as input arguments, nor can they be returned as output.95

A term judgement has the form Π ` 〈Γ〉 M 〈Σ〉 (see Figure 2) and indicates

that term M is well-formed in procedure context Π with input variable context

Γ and output variable context Σ. All types occurring within it are closed.

The intended interpretation of the quantum rules are as follows. The term

new qbit q prepares a new qubit q in state |0〉〈0|. The term q1, . . . , qn ∗= S100

applies a unitary transformation S to a sequence of qubits in the standard way.

The term b = measure q performs a quantum measurement on qubit q in the

standard basis {|0〉, |1〉} and stores the measurement outcome in bit b. The

measured qubit is destroyed in the process.

Remark 3. In the syntax of QPL, unitary transformations are referred to by105

names (e.g. H, CNOT, etc.) and not by their matrix representations. However,

to describe the operational and denotational semantics, it is necessary to map

these names to specific matrix representations. For simplicity, we assume that

this mapping is given and we shall use the same notation for both the names

and the matrix representations of the unitary operations which hopefully should110

not lead to confusion. We also leave the set of available unitary transformations

unspecified, but for most purposes it suffices to assume that it contains the H,

T and CNOT unitary maps.

The no-cloning theorem of quantum mechanics [9] shows that arbitrary

6

Π ` 〈Γ〉 new unit u 〈Γ, u : I〉 Π ` 〈Γ, x : A〉 discard x 〈Γ〉

P is a classical type
Π ` 〈Γ, x : P 〉 y = copy x 〈Γ, x : P, y : P 〉

Π ` 〈Γ〉 skip 〈Γ〉
Π ` 〈Γ〉 M 〈Γ′〉 Π ` 〈Γ′〉 N 〈Σ〉

Π ` 〈Γ〉 M ;N 〈Σ〉

Π ` 〈Γ, b : bit〉 M 〈Γ, b : bit〉
Π ` 〈Γ, b : bit〉 while b do M 〈Γ, b : bit〉

Π ` 〈Γ〉 new qbit q 〈Γ, q : qbit〉

Π ` 〈Γ, q : qbit〉 b = measure q 〈Γ, b : bit〉
S is a unitary operator of arity n

Π ` 〈Γ, q1 : qbit, . . . , qn : qbit〉 q1, . . . , qn ∗= S 〈Γ, q1 : qbit, . . . , qn : qbit〉

Π ` 〈Γ, x : A〉 y = leftA,B x 〈Γ, y : A+B〉

Π ` 〈Γ, x : B〉 y = rightA,B x 〈Γ, y : A+B〉

Π ` 〈Γ, x1 : A〉 M1 〈Σ〉 Π ` 〈Γ, x2 : B〉 M2 〈Σ〉
Π ` 〈Γ, y : A+B〉 case y of {leftA,B x1 →M1 | rightA,B x2 →M2 } 〈Σ〉

Π ` 〈Γ, x1 : A, x2 : B〉 x = (x1, x2) 〈Γ, x : A⊗B〉

Π ` 〈Γ, x : A⊗B〉 (x1, x2) = x 〈Γ, x1 : A, x2 : B〉

Π ` 〈Γ, x : A[µX.A/X]〉 y = foldµX.A x 〈Γ, y : µX.A〉

Π ` 〈Γ, x : µX.A〉 y = unfold x 〈Γ, y : A[µX.A/X]〉
Π, f : A→ B ` 〈x : A〉 M 〈y : B〉

Π ` 〈Γ〉 proc f :: x : A→ y : B {M} 〈Γ〉

Π, f : A→ B ` 〈Γ, x : A〉 y = f(x) 〈Γ, y : B〉

Figure 2: Formation rules for QPL terms.

7

qubits cannot be copied. Because of this, copying is restricted only to clas-115

sical types, as indicated in Figure 2, and this allows us to avoid runtime errors.

Like the original QPL [4], our type system is also affine and so any variable can

be discarded (see the formation rule for the term discard x in Figure 2).

3. Operational Semantics of QPL

In this section we describe the operational semantics of QPL. The central120

notion is that of a program configuration which provides a complete descrip-

tion of the current state of program execution. It consists of four components

that must satisfy some coherence properties: (1) the term which remains to be

executed; (2) a value assignment, which is a function that assigns formal ex-

pressions to variables as a result of execution; (3) a procedure store which keeps125

track of what procedures have been defined so far and (4) the quantum state

computed so far.

Value Assignments. A value is an expression defined by the following grammar:

v, w ::= ∗ | n | leftA,Bv | rightA,Bv | (v, w) | foldµX.Av

where n ranges over the natural numbers. Think of ∗ as representing the unique

value of unit type I and of n as representing a pointer to the n-th qubit of

a quantum state ρ. Specific values of interest are ff := leftI,I∗ and tt :=130

rightI,I∗ which correspond to false and true respectively. Values play an

important role in the operational semantics. They are assigned to variables and

formally represent the computational data computed so far that is stored in

each variable.

A qubit pointer context is a set Q of natural numbers. Given two disjoint

qubit pointer contexts Q1 and Q2, we write Q1, Q2 for the union of the two

contexts, as usual. A value v of type A is well-formed in qubit pointer context

Q, denoted Q ` v : A, if the judgement is derivable from the following rules:

· ` ∗ : I {n} ` n : qbit
Q ` v : A

Q ` leftA,Bv : A+B

Q ` v : B

Q ` rightA,Bv : A+B

8

Q1 ` v : A Q2 ` w : B Q1 ∩Q2 = ∅
Q1, Q2 ` (v, w) : A⊗B

Q ` v : A[µX.A/X]

Q ` foldµX.Av : µX.A

We see that if Q ` v : A, then the set of natural numbers appearing within v135

is exactly Q. Each such natural number i within v should be thought of as a

pointer to the i-th qubit of some quantum state. Moreover, if v is well-formed,

then its type and qubit pointer context are uniquely determined.

Remark 4. We wish to point out that it is not possible to locally and individually

equip each value with quantum information due to the possibility of quantum140

entanglement, i.e., the global quantum state which is being manipulated may

not be separable. Because of this, we use pointers that identify individual qubits

of the global quantum state which we manipulate.

If v is a value with Q ` v : P where P is classical, then we say v is a classical

value.145

Lemma 5. If Q ` v : P is a well-formed classical value, then Q = ∅.

Therefore, classical values cannot refer to any quantum data.

A value assignment is a function from term variables to values, which we

write as V = {x1 = v1, . . . , xn = vn}, where xi are variables and vi are values. A

value assignment is well-formed in qubit pointer context Q and variable context150

Γ, denoted Q; Γ ` V, if V has exactly the same variables as Γ, so that Γ = {x1 :

A1, . . . , xn : An}, and Q = Q1, . . . , Qn, s.t. Qi ` vi : Ai. Such a splitting of Q

is necessarily unique, if it exists, and some of the Qi may be empty.

Procedure Stores. A procedure store is a set of procedure definitions, written as:

Ω = {f1 :: x1 : A1 → y1 : B1 {M1}, . . . , fn :: xn : An → yn : Bn {Mn}} .

A procedure store is well-formed in procedure context Π, written Π ` Ω, if the

judgement is derivable via the following rules:

· ` ·
Π ` Ω Π, f : A→ B ` 〈x : A〉 M 〈y : B〉

Π, f : A→ B ` Ω, f :: x : A→ y : B {M}

9

Program Configurations. A program configuration is a quadruple (M | V | Ω | ρ),

where M is a term, V is a value assignment, Ω is a procedure store and ρ ∈155

C2n×2n is a finite-dimensional density matrix with 0 ≤ tr(ρ) ≤ 1. The density

matrix ρ represents a (mixed) quantum state and its trace may be smaller than

one because we also use it to encode probability information (see Remark 6).

We write size(ρ) = n to indicate that ρ is an n-qubit state.

A well-formed program configuration is a configuration (M | V | Ω | ρ),160

where there exist (necessarily unique) Π,Γ,Σ, Q, such that: (1) Π ` 〈Γ〉 M 〈Σ〉

is a well-formed term; (2) Q; Γ ` V is a well-formed value assignment; (3)

Π ` Ω is a well-formed procedure store; and (4) Q = {1, 2, . . . , size(ρ)}. We

write Π; Γ; Σ;Q ` (M | V | Ω | ρ) to indicate this situation. The formation

rules enforce that the qubits of ρ and the qubit pointers from V are in a 1-1165

correspondence.

The small step semantics is defined for configurations (M | V | Ω | ρ) by

induction on M in Figure 3 and we now explain the notations used therein.

In the rule for discarding, we use two functions that depend on a value v.

They are trv, which modifies the quantum state ρ by tracing out all of its qubits

which are used in v, and rv which simply reindexes the value assignment, so that

the pointers within rv(V) correctly point to the corresponding qubits of trv(ρ),

which is potentially of smaller dimension than ρ. Formally, for a well-formed

value v, let Q and A be the unique qubit pointer context and type, such that

Q ` v : A. Then trv(ρ) is the quantum state obtained from ρ by tracing out all

qubits specified by Q. Given a value assignment V = {x1 = v1, . . . , xn = vn},

10

(new unit u | V | Ω | ρ) (skip | V, u = ∗ | Ω | ρ)

(discard x | V, x = v | Ω | ρ) (skip | rv(V) | Ω | trv(ρ))

(y = copy x | V, x = v | Ω | ρ) (skip | V, x = v, y = v | Ω | ρ)

(new qbit q | V | Ω | ρ) (skip | V, q = size(ρ) + 1 | Ω | ρ⊗ |0〉〈0|)

(#„q ∗= S | V, #„q = #„m | Ω | ρ) (skip| V, #„q = #„m | Ω | S #„m(ρ))

(b = measure q | V, q = m | Ω | ρ) (skip | rm(V), b = ff | Ω | m〈0|ρ|0〉m)

(b = measure q | V, q = m | Ω | ρ) (skip | rm(V), b = tt | Ω | m〈1|ρ|1〉m)

(skip;P | V | Ω | ρ) (P | V | Ω | ρ)

(P | V | Ω | ρ) (P ′ | V ′ | Ω′ | ρ′)
(P ;Q | V | Ω | ρ) (P ′;Q | V ′ | Ω′ | ρ′)

(while b do M | V, b = ff | Ω | ρ) (skip | V, b = ff | Ω | ρ)

(while b do M | V, b = tt | Ω | ρ) (M ; while b do M | V, b = tt | Ω | ρ)

(y = left x | V, x = v | Ω | ρ) (skip | V, y = left v | Ω | ρ)

(y = right x | V, x = v | Ω | ρ) (skip | V, y = right v | Ω | ρ)

(case y of {left x1 →M1 | right x2 →M2 } | V, y = left v | Ω | ρ)

(M1 | V, x1 = v | Ω | ρ)

(case y of {left x1 →M1 | right x2 →M2 } | V, y = right v | Ω | ρ)

(M2 | V, x2 = v | Ω | ρ)

(x = (x1, x2) | V, x1 = v1, x2 = v2 | Ω | ρ) (skip | V, x = (v1, v2) | Ω | ρ)

((x1, x2) = x | V, x = (v1, v2) | Ω | ρ) (skip | V, x1 = v1, x2 = v2 | Ω | ρ)

(y = fold x | V, x = v | Ω | ρ) (skip | V, y = fold v | Ω | ρ)

(y = unfold x | V, x = fold v | Ω | ρ) (skip | V, y = v | Ω | ρ)

(proc f :: x : A→ y : B {M} | V | Ω | ρ) (skip | V | Ω, f :: x : A→ y : B {M} | ρ)

(y1 = f(x1) | V, x1 = v | Ω, f :: x2 : A→ y2 : B {M} | ρ)

(Mα | V, x1 = v | Ω, f :: x2 : A→ y2 : B {M} | ρ)

Figure 3: Small-step operational semantics of QPL.

11

then rv(V) = {x1 = r′v(v1), . . . , xn = r′v(vn)}, where:

r′v(w) =

∗, if w = ∗

k − |{i ∈ Q | i < k}|, if w = k ∈ N and where Q ` v : A

left r′v(w′), if w = left w′

right r′v(w′), if w = right w′

(r′v(w1), r′v(w2)) if w = (w1, w2)

fold r′v(w
′), if w = fold w′

In the rule for unitary transformations, the superoperator S #„m applies the

unitary map S to the vector of qubits specified by #„m. In the rules for measure-170

ment, the m-th qubit of ρ is measured in the computational basis, the measured

qubit is destroyed in the process and the measurement outcome is stored in the

bit b. More specifically, |i〉m = I2m−1 ⊗ |i〉 ⊗ I2n−m and m〈i| is its adjoint, for

i ∈ {0, 1}, and where In is the identity matrix in Cn×n.

Remark 6. Because of the way we decided to handle measurements, reduction175

(− −) is a nondeterministic operation, where we encode the probabilities

of reduction within the trace of our density matrices in a similar way to [10].

Equivalently, we may see the reduction relation as probabilistic provided that we

normalise all density matrices and decorate the reductions with the appropriate

probability information as specified by the Born rule of quantum mechanics.180

The nondeterministic view leads to a more concise and clear presentation and

because of this we have chosen it over the probabilistic view.

The introduction rule for procedures simply defines a procedure which is

added to the procedure store. In the rule for calling procedures, the term Mα

is α-equivalent to M and is obtained from it by renaming the input x2 to x1,185

renaming the output y2 to y1 and renaming all other variables within M to

some fresh names, so as to avoid conflicts with the input, output and the rest

of the variables within V .

Theorem 7 (Subject reduction). Assume that Π; Γ; Σ;Q ` (M | V | Ω | ρ). If

12

(M | V | Ω | ρ) (M ′ | V ′ | Ω′ | ρ′), then Π′; Γ′; Σ;Q′ ` (M ′ | V ′ | Ω′ | ρ′),190

for some (necessarily unique) contexts Π′,Γ′, Q′.

Remark 8. Notice that in the above theorem, the output context Σ is invariant.

Assumption 9. From now on we assume all configurations are well-formed.

A configuration (M | V | Ω | ρ) is said to be terminal if M = skip. Program

execution finishes at terminal configurations, which are characterised by the195

property that they do not reduce any further. We will use calligraphic letters

(C,D, . . .) to range over configurations and we will use T to range over terminal

configurations. For a configuration C = (M | V | Ω | ρ), we write for brevity

tr(C) := tr(ρ) and we shall say C is normalised whenever tr(C) = 1. We say that

a configuration C is impossible if tr(C) = 0 and we say it is possible otherwise.200

Theorem 10 (Progress). If C is a configuration, then either C is terminal or

there exists a configuration D, such that C D. Moreover, if C is not terminal,

then tr(C) =
∑
C D tr(D) and there are at most two such configurations D.

In the situation of the above theorem, the probability of reduction is given by

Pr(C D) := tr(D)/tr(C), for any possible C (see Remark 6) and Theorem 10205

shows the total probability of all single-step reductions is 1. If C is impossible,

then C occurs with probability 0 and subsequent reductions are also impossible.

Probability of Termination. Given configurations C and D let Seqn(C,D) :=

{C0 · · · Cn| C0 = C and Cn = D}, and let Seq≤n(C,D) =
⋃n
i=0 Seqn(C,D).

Finally, let TerSeq≤n(C) :=
⋃
T terminal Seq≤n(C, T). In other words, TerSeq≤n(C)210

is the set of all reduction sequences from C which terminate in at most n

steps (including 0 if C is terminal). For every terminating reduction sequence

r = (C · · · T), let End(r) := T , i.e. End(r) is simply the (terminal) end-

point of the sequence.

For any configuration C, the sequence
(∑

r∈TerSeq≤n(C) tr(End(r))
)
n∈N

is

increasing with upper bound tr(C) (follows from Theorem 10). For any possible

13

while b do {

new qbit q;

q *= H;

discard b;

b = measure q

}

Figure 4: A QPL program.

(M | b = tt | · | 1)

(M | b = tt | · | 0.5)

(M | b = tt | · | 0.25)

∗

∗

(skip | b = ff | · | 0.5)

∗

(skip | b = ff | · | 0.25)

∗

(skip | b = ff | · | 0.125)

∗···

∗

Figure 5: A reduction graph (in this case tree), where M is the program in Figure 4.

C, we define:

Halt(C) :=

∞∨
n=0

∑
r∈TerSeq≤n(C)

tr(End(r))/tr(C) (1)

which is exactly the probability of termination of C. This is justified, because215

Halt(T) = 1, for any terminal (and possible) configuration T and Halt(C) =∑
C D

D possible
Pr(C D)Halt(D). We write ∗ for the reflexive and transitive

closure of .

Example 11. Let M be the term in Figure 4. The body of the while loop has

the effect of performing a fair coin toss (realised through quantum measurement220

in the standard way) and storing the outcome in variable b. Therefore, starting

from configuration C = (M | b = tt | · | 1), as in Figure 5, the program has the

effect of tossing a fair coin until ff shows up. The set of terminal configurations

reachable from C is {(skip | b = ff | · | 2−i) | i ∈ N≥1} and the last component

of each configuration is a 1×1 density matrix which is exactly the probability of225

reducing to the configuration. Therefore Halt(C) =
∑∞
i=1 2−i = 1. Notice that,

14

proc GHZnext :: l : ListQ -> l : ListQ {

new qbit q;

case l of

nil -> q*=H;

l = q :: nil

| q’ :: l’ -> q’,q *= CNOT;

l = q :: q’ :: l’

}

proc GHZ :: n : Nat -> l : ListQ {

case n of

zero -> l = nil

| s(n’) -> l = GHZnext(GHZ(n’))

}

Figure 6: Procedures for generating GHZn.

even though termination is guaranteed, there is no upper bound on the length

of the reduction sequences of C.

Example 12. The GHZn state is defined as γn := (|0〉⊗n + |1〉⊗n)(〈0|⊗n +

〈1|⊗n)/2. In Figure 6, we define a procedure GHZ, which given a natural number230

n, generates the state γn, which is represented as a list of qubits of length

n. The procedure uses an auxiliary procedure GHZnext, which given a list of

qubits representing the state γn, returns the state γn+1 again represented as

a list of qubits. The two procedures make use of some (hopefully obvious)

syntactic sugar. In Figure 7, we also present the last few steps of a reduction235

sequence which produces γ3 starting from configuration (l = GHZ(n) | n =

s(s(s(zero))) | Ω | 1), where Ω contains the above mentioned procedures. In

the reduction sequence we only show the term in evaluating position and we

omit some intermediate steps. The type ListQ is a shorthand for List(qbit)

from Example 1.240

Note that the probability of termination of the initial configuration in Fig-

15

(l = GHZnext(l) | l = 2 :: 1 :: nil | Ω | γ2)

(new qbit q; · · · | l = 2 :: 1 :: nil | Ω | γ2)

(case l of · · · | l = 2 :: 1 :: nil, q = 3 | Ω | γ2 ⊗ |0〉〈0|)
∗

(q’,q *=CNOT; · · · | l’ = 1 :: nil, q = 3, q’ = 2 | Ω | γ2 ⊗ |0〉〈0|)

(l = q :: q’ :: l’ | l’ = 1 :: nil, q = 3, q’ = 2 | Ω | γ3)
∗

(skip | l = 3 :: 2 :: 1 :: nil | Ω | γ3)

(l = GHZ(n) | n = s(s(s(zero))) | Ω | 1)
∗

Figure 7: A reduction sequence producing GHZ3.

ure 7 is 1, because it always reduces to the terminal configuration (skip | l =

3 :: 2 :: 1 :: nil | Ω | γ3) and tr(γ3) = 1.

4. W*-algebras

In this section we describe our denotational model. It is based on W*-245

algebras, which are algebras of observables (i.e. physical entities), with inter-

esting domain-theoretic properties. We recall some background on W*-algebras

and their categorical structure. We refer the reader to [5] for an encyclopaedic

account on W*-algebras.

4.1. Domain-theoretic Preliminaries250

Recall that a directed subset of a poset P is a non-empty subset X ⊆ P in

which every pair of elements of X has an upper bound in X. A poset P is a

directed-complete partial order (dcpo) if each directed subset has a supremum.

A poset P is pointed if it has a least element, usually denoted by ⊥. A monotone

map f : P → Q between posets is Scott-continuous if it preserves suprema of255

directed subsets. If P and Q are pointed and f preserves the least element, then

16

we say f is strict. We write DCPO (DCPO⊥!) for the category of (pointed)

dcpo’s and (strict) Scott-continuous maps between them.

4.2. Definition of W*-algebras

A complex algebra is a complex vector space V equipped with a bilinear260

multiplication (− · −) : V × V → V , which we often write as juxtaposition.

A Banach algebra A is a complex algebra A equipped with a submultiplicative

norm ‖ − ‖ : A → R≥0, i.e. ∀x, y ∈ A : ‖x · y‖ ≤ ‖x‖‖y‖. A ∗-algebra A is

a complex algebra A with an involution (−)∗ : A → A such that (x∗)∗ = x,

(x+ y)∗ = (x∗ + y∗), (xy)∗ = y∗x∗ and (λx)∗ = λx∗, for x, y ∈ A and λ ∈ C. A265

C*-algebra is a Banach ∗-algebra A which satisfies the C*-identity, i.e. ‖x∗x‖ =

‖x‖2 for all x ∈ A. A C*-algebra A is unital if it has an element 1 ∈ A, such

that for every x ∈ A : x1 = 1x = x. All C*-algebras in this paper are unital

and for brevity we regard unitality as part of their definition.

Example 13. The algebra Mn(C) of n × n complex matrices is a C*-algebra.270

In particular, the set of complex numbers C has a C*-algebra structure since

M1(C) ∼= C. More generally, the n × n matrices valued in a C*-algebra A also

form a C*-algebra Mn(A). The C*-algebra of qubits is qbit := M2(C).

An element x ∈ A of a C*-algebra A is called positive if ∃y ∈ A : x = y∗y.

The poset of positive elements of A is denoted A+ and its order is given by275

x ≤ y iff (y − x) ∈ A+. The unit interval of A is the subposet [0, 1]A ⊆ A+ of

all positive elements x such that 0 ≤ x ≤ 1.

Let f : A→ B be a linear map between C*-algebras A and B. We say that f

is positive if it preserves positive elements. We say that f is completely positive

if it is n-positive for every n ∈ N, i.e. the mapMn(f) : Mn(A)→Mn(B) defined280

for every matrix [xi,j]1≤i,j≤n ∈Mn(A) byMn(f)([xi,j]1≤i,j≤n) = [f(xi,j)]1≤i,j≤n

is positive. The map f is called multiplicative, involutive, unital if it preserves

multiplication, involution, and the unit, respectively. The map f is called sub-

unital whenever the inequalities 0 ≤ f(1) ≤ 1 hold. A state on a C*-algebra A

is a completely positive unital map s : A→ C.285

17

Although W*-algebras are commonly defined in topological terms (as C*-

algebras closed under several operator topologies) or equivalently in algebraic

terms (as C*-algebras which are their own bicommutant), one can also equiva-

lently define them in domain-theoretic terms [11], as we do next.

A completely positive map between C*-algebras is normal if its restriction290

to the unit interval is Scott-continuous [11, Proposition A.3]. A W*-algebra is a

C*-algebra A such that the unit interval [0, 1]A is a dcpo, and A has a separating

set of normal states: for every x ∈ A+, if x 6= 0, then there is a normal state

s : A→ C such that s(x) 6= 0 [5, Theorem III.3.16].

A linear map f : A→ B between W*-algebras A and B is called an NCPSU-295

map if f is normal, completely positive and subunital. The map f is called an

NMIU-map if f is normal, multiplicative, involutive and unital. We note that

every NMIU-map is necessarily an NCPSU-map and that W*-algebras are closed

under formation of matrix algebras as in Example 13.

4.3. Categorical Structure300

Let W∗
NCPSU be the category of W*-algebras and NCPSU-maps and let

W∗
NMIU be its full-on-objects subcategory of NMIU-maps. Throughout the rest

of the paper let C := (W∗
NCPSU)op and let V := (W∗

NMIU)op. QPL types are

interpreted as functors JΘ ` AK : V|Θ| → V and closed QPL types as objects

JAK ∈ Ob(V) = Ob(C).One should think ofV as the category of values, because305

the interpretation of our values from §3 are indeed V-morphisms. General QPL

terms are interpreted as morphisms of C, so one should think of C as the

category of computations. We now describe the categorical structure of V and

C and later we justify our choice for working in the opposite categories.

Both C and V have a symmetric monoidal structure when equipped with310

the spatial tensor product, denoted here by (−⊗−), and tensor unit I := C [12,

Section 10]. Moreover, V is symmetric monoidal closed and also complete and

cocomplete [12]. C and V have finite coproducts, given by direct sums of W*-

algebras [13, Proposition 4.7.3]. The coproduct of objects A and B is denoted

by A + B and the coproduct injections are denoted leftA,B : A → A + B and315

18

rightA,B : B → A + B. Given morphisms f : A → C and g : B → C, we

write [f, g] : A + B → C for the unique cocone morphism induced by the

coproduct. Moreover, coproducts distribute over tensor products [13, §4.6].

More specifically, there exists a natural isomorphism dA,B,C : A ⊗ (B + C) →

(A ⊗ B) + (A ⊗ C) which satisfies the usual coherence conditions. The initial320

object in C is moreover a zero object and is denoted 0. The W*-algebra of bits

is bit := I + I = C⊕ C.

The categoriesV,C and Set are related by symmetric monoidal adjunctions:

Set V
F

` C
J

`
G R

[14, pp. 11]

and the subcategory inclusion J preserves coproducts and tensors up to equality.

Interpreting QPL within C and V is not an ad hoc trick. In physical terms,

this corresponds to adopting the Heisenberg picture of quantum mechanics and325

this is usually done when working with infinite-dimensional W*-algebras (like

we do). Semantically, this is necessary, because (1) our type system has condi-

tional branching and we need to interpret QPL terms within a category with

finite coproducts; (2) we have to be able to compute parameterised initial alge-

bras to interpret inductive datatypes. The category W∗
NCPSU has finite prod-330

ucts, but it does not have coproducts, so by interpreting QPL terms within

C = (W∗
NCPSU)op we solve problem (1). For (2), the monoidal closure of

V = (W∗
NMIU)op is crucial, because it implies the tensor product preserves

ω-colimits.

Convex Sums. In both C and W∗
NCPSU, morphisms are closed under convex335

sums, which are defined pointwise, as usual. More specifically, given NCPSU-

maps f1, . . . , fn : A → B and real numbers pi ∈ [0, 1] with
∑
i pi ≤ 1, then the

map
∑
i pifi : A→ B is also an NCPSU-map.

Order-enrichment. For W*-algebras A and B, we define a partial order on

C(A,B) by : f ≤ g iff g − f is a completely positive map. Equipped with340

this order, our category C is DCPO⊥!-enriched [15, Theorem 4.3]. The least

19

tr : Mn(C)→ C newρ : C→M2n(C)

tr :: A 7→
∑
iAi,i newρ :: a 7→ aρ

tr† : C→Mn(C) new†ρ : M2n(C)→ C

tr† :: a 7→ aIn new†ρ :: A 7→ tr(Aρ)

meas : M2(C)→ C⊕ C unitaryS : M2n(C)→M2n(C)

meas ::

a b

c d

 7→ (
a d

)
unitaryS :: A 7→ SAS†

meas† : C⊕ C→M2(C) unitary†S : M2n(C)→M2n(C)

meas† ::
(
a d

)
7→

a 0

0 d

 unitary†S :: A 7→ S†AS

Figure 8: A selection of maps in the Schrödinger picture (f : A → B) and their Hermitian

adjoints (f† : B → A) used in the Heisenberg picture.

element in C(A,B) is also a zero morphism and is given by the map 0 : A→ B,

defined by 0(x) = 0. Also, the coproduct structure and the symmetric monoidal

structure are both DCPO⊥!-enriched [13, Corollary 4.9.15] [15, Theorem 4.5].

4.4. Quantum Operations345

For convenience, our operational semantics adopts the Schrödinger picture

of quantum mechanics, which is the picture most experts in quantum comput-

ing are familiar with. However, as we have just explained, our denotational

semantics has to adopt the Heisenberg picture. The two pictures are equivalent

in finite dimensions and we will now show how to translate from one to the350

other. By doing so, we provide an explicit description (in both pictures) of the

required quantum maps that we need to interpret QPL.

Consider the maps in Figure 8. The map tr is used to trace out (or discard)

parts of quantum states. Density matrices ρ are in 1-1 correspondence with the

maps newρ, which we use in our semantics to describe (mixed) quantum states.355

The meas map simply measures a qubit in the computational basis and returns

a bit as measurement outcome. The unitaryS map is used for application of

20

a unitary transformation S. These maps work as described in the Schrödinger

picture of quantum mechanics, i.e., the category W∗
NCPSU. For every map

f : A→ B among those mentioned, f† : B → A indicates its Hermitian adjoint360

1. In the Heisenberg picture, composition of maps is done in the opposite way,

so we simply write f‡ := (f†)op ∈ C(A,B) for the Hermitian adjoint of f when

seen as a morphism in (W∗
NCPSU)op = C. Thus, the mapping (−)‡ translates

the above operations from the Schrödinger picture (the category W∗
NCPSU) to

the Heisenberg picture (the category C) of quantum mechanics.365

4.5. Parameterised Initial Algebras

In order to interpret inductive datatypes, we need to be able to compute

parameterised initial algebras for the functors induced by our type expressions.

V is ideal for this, because it is cocomplete and monoidal closed and so all type

expressions induce functors on V which preserve ω-colimits.370

Definition 14 (cf. [8, §6.1]). Given a category A and a functor T : An → A,

with n ≥ 1, a parameterised initial algebra for T is a pair (T], φT), such that:

• T] : An−1 → A is a functor;

• φT : T ◦ 〈Id, T]〉 ⇒ T] : An−1 → A is a natural isomorphism;

• For every A ∈ Ob(An−1), the pair (T]A, φTA) is an initial T (A,−)-algebra.375

Proposition 15. Every ω-cocontinuous functor T : Vn → V has a parame-

terised initial algebra (T], φT) with T] : Vn−1 → V being ω-cocontinuous.

Proof. V is cocomplete, so this follows from [17, §4.3].

5. Denotational Semantics of QPL

In this section we describe the denotational semantics of QPL.380

1This adjoint exists, because A and B are finite-dimensional W*-algebras which there-

fore have the structure of a Hilbert space when equipped with the Hilbert-Schmidt inner

product [16, pp. 145].

21

5.1. Interpretation of Types

The interpretation of a type Θ ` A is a functor JΘ ` AK : V|Θ| → V, defined

by induction on the derivation of Θ ` A in Figure 9. As usual, one has to prove

this assignment is well-defined by showing the required initial algebras exist.

Proposition 16. The assignment in Figure 9 is well-defined.385

Proof. By induction, every JΘ ` AK is an ω-cocontinuous functor and thus it

has a parameterised initial algebra by Proposition 15.

Lemma 17 (Type Substitution). Given types Θ, X ` A and Θ ` B, then:

JΘ ` A[B/X]K = JΘ, X ` AK ◦ 〈Id, JΘ ` BK〉.

Proof. Straightforward induction.

For simplicity, the interpretation of terms is only defined on closed types and

so we introduce more concise notation for them. For any closed type · ` A we390

write for convenience JAK := J· ` AK(∗) ∈ Ob(V), where ∗ is the unique object

of the terminal category 1. Notice also that JAK ∈ Ob(C) = Ob(V).

Definition 18. Given a closed type · ` µX.A, we define an isomorphism (in

V):

foldµX.A : JA[µX.A/X]K = JX ` AKJµX.AK ∼= JµX.AK : unfoldµX.A

where the equality is given by Lemma 17 and the isomorphism is given by the

initial algebra structure.

Example 19. The interpretation of the types from Example 1 are JNatK =395 ⊕ω
i=0 C and JList(A)K =

⊕ω
i=0 JAK⊗i. Specifically, JList(qbit)K =

⊕ω
i=0 C2i×2i .

5.2. Discarding

Our type system is affine, so we have to construct discarding maps at all

types. The tensor unit I is a terminal object in V (but not in C) which leads

us to the next definition.400

22

JΘ ` AK : V|Θ| → V

JΘ ` ΘiK = Πi

JΘ ` IK = KI

JΘ ` qbitK = Kqbit

JΘ ` A+BK = + ◦ 〈JΘ ` AK, JΘ ` BK〉

JΘ ` A⊗BK = ⊗ ◦ 〈JΘ ` AK, JΘ ` BK〉

JΘ ` µX.AK = JΘ, X ` AK]

Figure 9: Interpretations of types. KA is the constant-A-functor.

Definition 20 (Discarding map). For any W*-algebra A, let �A : A → I be

the unique morphism of V with the indicated domain and codomain.

We will see that all values admit an interpretation as V-morphisms and

are therefore discardable. In physical terms, this means values are causal (in

the sense mentioned in the introduction). Of course, this is not true for the405

interpretation of general terms (which correspond to C-morphisms).

5.3. Copying

Our language is equipped with a copy operation on classical data, so we

have to explain how to copy classical values. We do this by constructing a copy

map defined at all classical types using results from [17, 18]. In this subsection,410

we will show that by using the categorical data of Set V
F

`

G
, one

can define a copy map 4JP K : JP K → JP K ⊗ JP K for every classical type · ` P ,

such that the triple
(
JP K,4JP K, �JP K

)
forms a cocommutative comonoid in V.

In later subsections, we will see that the interpretations of our classical values

are comonoid homomorphisms (with respect to this comonoid structure) and415

therefore they may be copied.

23

5.3.1. Overview of the construction

We describe the comonoid structure of classical types within our category V

(and therefore also in C). Our methods are based on those of [17, 18], but there

are some small differences compared to that work. In particular, we have less420

structure to work with, but our type expressions are also simpler. Nevertheless,

the main idea is the same: we present an additional (classical) type interpreta-

tion for classical types within a cartesian category (in our case Set) which then

allows us to carry the comonoid structure into V via a symmetric monoidal

adjunction. In our case, the adjunction is denoted Set V
F

`

G
and425

it is defined in [19], but here we only use the categorical properties mentioned

in §4, so we omit the definition of the adjunction.

5.3.2. Classical Interpretation of Classical Types

The classical interpretation of a classical type Θ ` P is given by a functor

LΘ ` P M : Set|Θ| → Set, defined by induction on the derivation of Θ ` P in the

following way:

LΘ ` P M : Set|Θ| → Set

LΘ ` ΘiM = Πi

LΘ ` IM = K1

LΘ ` P +RM = q ◦ 〈LΘ ` P M, LΘ ` RM〉

LΘ ` P ⊗RM = × ◦ 〈LΘ ` P M, LΘ ` RM〉

LΘ ` µX.P M = LΘ, X ` P M],

where × is the categorical product in Set and where q is the categorical co-

product in Set. This assignment is well-defined, because every LΘ ` P M is an ω-430

cocontinuous functor on Set and thus it has a parameterised initial algebra [18,

§4.3]. For any closed classical type · ` P , we write LP M := L· ` P M(∗) ∈ Ob(Set).

Our next proposition shows that the standard and classical type interpreta-

tions are strongly related via a natural isomorphism, which is crucial for defining

the comonoid structure.435

24

JΘ ` P K

F×|Θ|

Set V

Set|Θ|

LΘ ` P M

F

V|Θ|

∼=

Figure 10: Relationship between type interpretations.

Proposition 21. For any classical type Θ ` P there exists a natural isomor-

phism

ιΘ`P : JΘ ` P K ◦ F×|Θ| ∼= F ◦ LΘ ` P M (see Figure 10),

defined by induction on the derivation of Θ ` P. Therefore, in the special case

when Θ = ·, there exists an isomorphism ιP : JP K ∼= F LP M given by ιP := ι·`P∗ .

Proof. The definition of ιΘ`P and the proof of the theorem is essentially the

same as [18, Theorem 6.1.2] and it is presented in detail in [17, A.8].

5.3.3. Constructing the copy map440

Using ιP , we can define a copy map on the interpretation of closed classical

types.

Definition 22. For any closed classical type · ` P we define a morphism:

4JP K :=

(
JP K ι−→ F LP M

F 〈id,id〉−−−−−→ F (LP M× LP M)
∼=−→ F LP M⊗ F LP M ι−1⊗ι−1

−−−−−−→ JP K⊗ JP K
)

called copying.

Proposition 23.
(
JP K,4JP K, �JP K

)
is a cocommutative comonoid in V.

Proof. First, observe that �JP K =
(
JP K ι−→ F LP M F1−−→ F1

∼=−→ I
)
, because I is445

terminal in V. The rest of the proof is then identical to [18, Proposition 6.3.3].

Next, we identify the comonoid homomorphisms with respect to the above

comonoid structure.

25

Definition 24. Given closed classical types P and R, we say that a morphism450

f : JP K→ JRK is classical if f =

(
JP K ι−→ F LP M Ff ′−−→ F LRM ι−1

−−→ JRK
)
, for some

f ′ : LP M→ LRM in Set.

Proposition 25. For every classical morphism f : JP K→ JRK, we have:

4JRK ◦ f = (f ⊗ f) ◦ 4JP K and �JRK ◦f = �JP K.

Therefore, f is a comonoid homomorphism with respect to Proposition 23.

Proof. Essentially the same as [18, Proposition 6.3.6].

5.3.4. Folding and Unfolding of Classical Types455

In order to prove soundness of our semantics, we have to be able to copy all

classical values. Thus, we have to show that folding and unfolding of classical

inductive types are classical morphisms in the sense of Definition 24. We show

this next.

Lemma 26 (Type Substitution). Let Θ, X ` P and Θ ` R be classical types.460

Then (see Figure 11):

1. LΘ ` P [R/X]M = LΘ, X ` P M ◦ 〈Id, LΘ ` RM〉;

2. ιΘ`P [R/X] = ιΘ,X`P 〈Id, LΘ ` RM〉 ◦ JΘ, X ` P K〈F×|Θ|, ιΘ`R〉

Proof. Special case of [18, Lemma 6.1.5], where γ = id. Detailed proof is avail-

able in [17, A.9].465

We may now define folding and unfolding for the classical interpretation of

classical inductive types.

Definition 27. Given a closed classical type · ` µX.P, we define an isomor-

phism:

fold
µX.P

: LP [µX.P/X]M = LX ` P MLµX.P M ∼= LµX.P M : unfold
µX.P

Like in the standard type interpretation, substitution holds up to equality,

so the above folding/unfolding is given simply by the initial algebra structure of

the indicated functors. We conclude the subsection with a proposition showing470

how the different folds/unfolds relate to one another.

26

JΘ ` P [R/X]K ◦ F×|Θ| F ◦ LΘ ` P [R/X]M

F ◦ LΘ, X ` P M ◦ 〈Id, LΘ ` RM〉

JΘ, X ` P K ◦ 〈F×|Θ|, JΘ ` RK ◦ F×|Θ|〉

JΘ, X ` P K ◦ 〈F×|Θ|, F ◦ LΘ ` RM〉

JΘ, X ` P K ◦ 〈Id, JΘ ` RK〉 ◦ F×|Θ|

JΘ, X ` P K ◦ F×(|Θ|+1) ◦ 〈Id, LΘ ` RM〉

ι〈Id, LΘ ` RM〉
JΘ, X ` P K〈F×|Θ|, ι〉

ι

Figure 11: The commuting diagram of natural isomorphisms for Lemma 26.

F fold

JP [µX.P/X]K JµX.P K

F LP [µX.P/X]M

fold

F LµX.P M

ι ι−1

Figure 12: Relationships between the different fold/unfold maps.

Proposition 28. Given a closed classical type · ` µX.P, then

foldµX.P = (ιµX.P)−1 ◦ F fold
µX.P

◦ ιP [µX.P/X]

(see Figure 12).

Proof. This is simply a special case of [18, Theorem 6.1.7].

This shows that folding/unfolding of classical types is a classical isomorphism

(Definition 24) and may thus be copied.475

5.4. Interpretation of Terms

Given a variable context Γ = x1 : A1, . . . , xn : An, we interpret it as the

object JΓK := JA1K ⊗ · · · ⊗ JAnK ∈ Ob(C). The interpretation of a procedure

context Π = f1 : A1 → B1, . . . , fn : An → Bn is defined to be the pointed

27

dcpo JΠK := C(A1, B1)×· · ·×C(An, Bn). A term Π ` 〈Γ〉 M 〈Σ〉 is interpreted480

as a Scott-continuous function JΠ ` 〈Γ〉 M 〈Σ〉K : JΠK→ C(JΓK, JΣK) defined by

induction on the derivation of Π ` 〈Γ〉M 〈Σ〉 in Figure 13. For brevity, we often

write JMK := JΠ ` 〈Γ〉 M 〈Σ〉K, when the contexts are clear or unimportant.

We now explain some of the notation used in Figure 13. The rules for ma-

nipulating qubits use the morphisms new‡|0〉〈0|,meas‡ and unitary‡S which are

defined in §4. For the interpretation of while loops, given an arbitrary mor-

phism f : A⊗ bit→ A⊗ bit of C, we define a Scott-continuous endofunction

Wf : C (A⊗ bit, A⊗ bit)→ C(A⊗ bit, A⊗ bit)

Wf (g) =
[
id⊗ leftI,I , g ◦ f ◦ (id⊗ rightI,I)

]
◦ dA,I,I ,

where the isomorphism dA,I,I : A ⊗ (I + I) → (A ⊗ I) + (A ⊗ I) is explained

in §4. For any pointed dcpo D and Scott-continuous function h : D → D, its485

least fixpoint is lfp(h) :=
∨∞
i=0 h

i(⊥), where ⊥ is the least element of D.

Remark 29. The term semantics for defining and calling procedures does not

involve any fixpoint computations. The required fixpoint computations are done

when interpreting procedure stores, as we shall see next.

5.5. Interpretation of Configurations490

Before we may interpret program configurations, we first have to describe

how to interpret values and procedure stores.

Interpretation of Values. A qubit pointer context Q is interpreted as the ob-

ject JQK = qbit⊗|Q|. A value Q ` v : A is interpreted as a morphism in V

JQ ` v : AK : JQK −→ JAK, which we abbreviate as JvK if Q and A are clear from495

context. It is defined by induction on the derivation of Q ` v : A in Figure 14.

For the next theorem, recall that if Q ` v : A is a classical value, then Q = ·.

Theorem 30. Let Q ` v : A be a value. Then:

1. JvK is discardable (i.e. causal). More specifically, �JAK ◦ JvK = �JQK = tr‡.

2. If A is classical, then JvK is copyable, i.e., 4JAK ◦ JvK = (JvK⊗ JvK) ◦ 4I .500

28

JΠ ` 〈Γ〉 new unit u 〈Γ, u : I〉K := π 7→ r−1

JΠ ` 〈Γ, x : A〉 discard x 〈Γ〉K := π 7→ (r ◦ (id⊗ �))

JΠ ` 〈Γ, x : P 〉 y = copy x 〈Γ, x : P, y : P 〉K := π 7→ (id⊗4)

JΠ ` 〈Γ〉 new qbit q 〈Γ, q : qbit〉K := π 7→
(

(id⊗ new‡|0〉〈0|) ◦ r
−1
)

JΠ ` 〈Γ, q : qbit〉 b = measure q 〈Γ, b : bit〉K := π 7→
(
id⊗meas‡

)
JΠ ` 〈Γ, #„q :

„

qbit〉 #„q ∗= S 〈Γ, #„q :
„

qbit〉K := π 7→
(
id⊗ unitary‡S

)
JΠ ` 〈Γ〉 M ;N 〈Σ〉K := π 7→ (JNK(π) ◦ JMK(π))

JΠ ` 〈Γ〉 skip 〈Γ〉K := π 7→ id

JΠ ` 〈Γ, b : bit〉 while b do M 〈Γ, b : bit〉K := π 7→ lfp(WJMK(π))

JΠ ` 〈Γ, x : A〉 y = leftA,B x 〈Γ, y : A+B〉K := π 7→ (id⊗ leftA,B)

JΠ ` 〈Γ, x : B〉 y = rightA,B x 〈Γ, y : A+B〉K := π 7→
(
id⊗ rightA,B

)
JΠ ` 〈Γ, y : A+B〉 case y of {left x1 →M1 | right x2 →M2} 〈Σ〉K :=

π 7→ ([JM1K(π), JM2K(π)] ◦ d)

JΠ ` 〈Γ, x1 : A, x2 : B〉 x = (x1, x2) 〈Γ, x : A⊗B〉K := π 7→ id

JΠ ` 〈Γ, x : A⊗B〉 (x1, x2) = x 〈Γ, x1 : A, x2 : B〉K := π 7→ id

JΠ ` 〈Γ, x : A[µX.A/X]〉 y = fold x 〈Γ, y : µX.A〉K := π 7→ (id⊗ fold)

JΠ ` 〈Γ, x : µX.A〉 y = unfold x 〈Γ, y : A[µX.A/X]〉K := π 7→ (id⊗ unfold)

JΠ ` 〈Γ〉 proc f :: x : A→ y : B {M} 〈Γ〉K := π 7→ id

JΠ, f : A→ B ` 〈Γ, x : A〉 y = f(x) 〈Γ, y : B〉K := (π, f) 7→ (id⊗ f) ,

where r is the right monoidal unit. For simplicity, we omit the monoidal asso-

ciator.

Figure 13: Interpretation of QPL terms.

29

J· ` ∗ : IK := idI

J{n} ` n : qbitK := idqbit

JQ ` leftA,Bv : A+BK := left ◦ JvK

JQ ` rightA,Bv : A+BK := right ◦ JvK

JQ1, Q2 ` (v, w) : A⊗BK := JvK⊗ JwK

JQ ` foldµX.Av : µX.AK := fold ◦ JvK

Figure 14: Interpretation of values.

Proof. The first statement follows immediately, because I is terminal in V. For

the second statement, the proof is essentially the same as [18, Proposition 6.3.7].

The proof begins by defining for every classical value · ` v : P a classical value

interpretation L· ` v : P M : 1 → LP M in Set. It is defined by induction on the

derivation of · ` v : P in the following way:

L· ` ∗ : IM := id1

L· ` leftP,Rv : P +RM := inl ◦ LvM

L· ` rightP,Rv : P +RM := inr ◦ LvM

L· ` (v, w) : P ⊗RM := 〈LvM, LwM〉

L· ` foldµX.P v : µX.P M := fold ◦ LvM,

where inl and inr are the coproduct injections in Set; 〈f, g〉 is the unique map

induced by the product in Set and fold is defined in Definition 27. To finish the

proof, we show that

J· ` v : P K =

(
I
ιI−→ F1

F L·`v:P M−−−−−−→ F LP M
(ιP)−1

−−−−→ JP K
)
,

i.e., we show that J· ` v : P K is a classical morphism (Definition 24) and it is

therefore copyable (Proposition 25). The fold case follows by Proposition 28

and the remaining cases follow easily from the axioms of symmetric monoidal

adjunctions.

30

We see that, as promised, interpretations of values may always be discarded

and interpretations of classical values may also be copied. Next, we explain how

to interpret value contexts. For a value context Q; Γ ` V , its interpretation is

the morphism:

JQ; Γ ` V K =

(
JQK

∼=−→ JQ1K⊗ · · · ⊗ JQnK
Jv1K⊗···⊗JvnK−−−−−−−−−→ JΓK

)
,

where Qi ` vi : Ai is the splitting of Q (see §3) and JΓK = JA1K ⊗ · · · ⊗ JAnK.505

Some of the Qi can be empty and this is the reason why the definition depends

on a coherent natural isomorphism. We write JV K as a shorthand for JQ; Γ ` V K.

Obviously, JV K is also causal thanks to Theorem 30.

Interpretation of Procedure Stores. The interpretation of a well-formed proce-

dure store Π ` Ω is an element of JΠK, i.e. a |Π|-tuple of morphisms from C. It

is defined by induction on Π ` Ω :

J· ` ·K = ()

JΠ, f : A→ B ` Ω, f :: x : A→ y : B {M}K = (JΩK, lfp(JMK(JΩK,−))).

Interpretation of Configurations. Density matrices ρ ∈M2n(C) are in 1-1 corre-

spondence with W∗
NCPSU-morphisms newρ : C → M2n(C) which are in turn in

1-1 correspondence with C-morphisms new‡ρ : I → qbit⊗n. Using this observa-

tion, we can now define the interpretation of a configuration C = (M | V | Ω | ρ)

with Π; Γ; Σ;Q ` (M | V | Ω | ρ) to be the morphism

JΠ; Γ; Σ;Q ` (M | V | Ω | ρ)K :=(
I

new‡ρ−−−→ qbit⊗size(ρ) JQ;Γ`V K−−−−−−→ JΓK
JΠ`〈Γ〉 M 〈Σ〉K(JΠ`ΩK)−−−−−−−−−−−−−−−→ JΣK

)
.

For brevity, we simply write J(M | V | Ω | ρ)K or even just JCK to refer to the

above morphism.510

5.6. Soundness, Adequacy and Big-step Invariance

Since our operational semantics allows for branching, soundness is show-

ing that the interpretation of configurations is equal to the sum of small-step

reducts.

31

Theorem 31 (Soundness). For any non-terminal configuration C :

JCK =
∑
C D

JDK.

Proof. By induction on the shape of the term component of C.515

Remark 32. The above sum and all sums that follow are well-defined convex

sums of NCPSU-maps where the probability weights pi have been encoded in

the density matrices.

A natural question to ask is whether JCK is also equal to the (potentially

infinite) sum of all terminal configurations that C reduces to. In other words,520

is the interpretation of configurations also invariant with respect to big-step

reduction. This is indeed the case and proving this requires considerable effort.

Theorem 33 (Big-step Invariance). For any configuration C, we have:

JCK =

∞∨
n=0

∑
r∈TerSeq≤n(C)

JEnd(r)K

Proof. The proof of this theorem is very technical and it is deferred to the next

subsection.

Let us consider an example which shows how this theorem may be used.525

Example 34. Consider the program M and configuration C from Example 11.

We may compute the interpretation of C via a fixpoint computation using the

definitions we have already provided, but we may also use Theorem 33 to recover

32

it from the set of terminal configurations C reduces to. Hence, we obtain:

JCK =

∞∨
n=0

∑
r∈TerSeq≤n(C)

JEnd(r)K

=

∞∨
n=0

n∑
i=1

J(skip | b = ff | · | 2−i)K

=

∞∑
i=1

J(skip | b = ff | · | 2−i)K

=

∞∑
i=1

2−iJffK

=

(∞∑
i=1

2−i

)
JffK

= JffK,

where JffK : I → bit is the interpretation of the false value. That is, JffK : I →

I + I, is the V-morphism which is opposite to the W∗
NMIU-map π1 : C⊕C→ C

defined by π1

(
a b

)
= a, i.e., the projection on the first component.

Theorem 33 is the main result of our paper. This is a powerful result, because

with big-step invariance in place, computational adequacy2 at all types is now a530

simple consequence of the causal properties of our interpretation. Observe that

for any configuration C, we have a subunital map �◦JCK : C→ C and evaluating

it at 1 yields a real number (� ◦ JCK) (1) ∈ [0, 1].

Theorem 35 (Adequacy). For any normalised C : (� ◦ JCK) (1) = Halt(C).

Proof. Before we may prove this, we need to make a simple observation about535

terminal configurations.

Let T = (skip | V | Ω | ρ) be a terminal configuration. Then

(� ◦ JT K) (1) = tr(ρ) (2)

2Recall that a computational adequacy result has to establish an equivalent purely deno-

tational characterisation of the operational notion of non-termination.

33

To see this, we reason as follows:

(� ◦ JT K) (1) =
(
� ◦ id ◦ JV K ◦ new‡ρ

)
(1) (Definition)

=
(
tr‡ ◦ new‡ρ

)
(1) (Causality of values (see §5.5))

= new†ρ(tr
†(1)) (Definition)

= tr(ρ) (Definition)

Finally, to prove adequacy, we reason as follows:

(� ◦ JCK) (1) =

� ◦ ∞∨
n=0

∑
r∈TerSeq≤n(C)

JEnd(r)K

 (1) (Theorem 33)

=

∞∨
n=0

∑
r∈TerSeq≤n(C)

(� ◦ JEnd(r)K) (1)

=

∞∨
n=0

∑
r∈TerSeq≤n(C)

tr(End(r)) (Equation (2))

= Halt(C) (Definition)

If C is not normalised, then adequacy can be recovered simply by normalising:

(� ◦ JCK) (1) = tr(C)Halt(C), for any possible configuration C. The adequacy

formulation of [20] and [21] is now a special case of our more general formulation.540

Corollary 36. Let M be a closed program of unit type, i.e. · ` 〈·〉 M 〈·〉. Then:

J(M | · | · | 1)K (1) = Halt(M | · | · | 1).

Proof. By Theorem 35 and because �I = id.

5.7. Proof of Theorem 33 (Big-step Invariance)

For brevity, we define

JC ⇓K :=

∞∨
n=0

∑
r∈TerSeq≤n(C)

JEnd(r)K.

34

Note, that the sequence
(∑

r∈TerSeq≤n(C) JEnd(r)K
)
n∈N

is an increasing chain in

our order and thus we may take its supremum, as we did above.

To show Theorem 33 is to show:

JCK = JC ⇓K.

As a simple consequence of Soundness (Theorem 31), we get the following.545

Corollary 37. For any configuration C, we have JCK ≥ JC ⇓K.

Proof. We have JCK ≥
∑
r∈TerSeq≤n(C) JEnd(r)K which follows by induction on n

using Theorem 31. The corollary follows by taking the supremum over n.

In the remainder of this subsection, we will show that the converse inequality

also holds, thereby finishing the proof of Theorem 33.550

5.7.1. Proof Strategy

Our proof strategy is based on that of [20] where the authors establish com-

putational adequacy at unit type.

In §5.7.2 we extend the QPL language with finitary (or bounded) primitives

for recursion and we update the operational and denotational semantics in an555

appropriate way, so that the established language properties continue to hold

(Theorem 38). In §5.7.3 we prove adequacy via the following steps: we show

that any finitary configuration is strongly normalising (Lemma 39) which then

allows us to prove invariance of the interpretation for finitary configurations with

respect to big-step reduction (Corollary 40); we show that the finitary configu-560

rations approximate the ordinary configurations both operationally (Lemma 42)

and denotationally (Lemma 44); using these results we prove invariance of the

denotational semantics with respect to big-step reduction for the ordinary QPL

language (Theorem 33).

5.7.2. Language Extension565

We extend the syntax of QPL by adding indexed procedure names. We

use fn, gn with n ∈ N to range over indexed procedure names. An indexed

35

procedure name fn can be used at most n times in the operational semantics

(see below), whereas an (ordinary) procedure name f may be used any number

of times. We write fn : A → B to indicate that the indexed procedure name570

has input type A and output type B. Procedure contexts are now also allowed

to contain indexed procedure names, in addition to standard procedure names.

Procedure contexts which contain a procedure name fn cannot contain the

unindexed procedure name f or any other other indexed procedure names fm

with m 6= n.575

The term language is extended by adding new terms, some of which are

indexed by natural numbers n ≥ 0. These terms are governed by the following

formation rules:

Π ` 〈Γ〉 0Γ,Σ 〈Σ〉

Π ` 〈Γ, b : bit〉 M 〈Γ, b : bit〉
Π ` 〈Γ, b : bit〉 whilen b do M 〈Γ, b : bit〉

Π, fn : A→ B ` 〈x : A〉 M 〈y : B〉
Π ` 〈Γ〉 proc fn :: x : A→ y : B {M} 〈Γ〉

Π, fn : A→ B ` 〈Γ, x : A〉 y = fn(x) 〈Γ, y : B〉
The newly added terms are the bounded primitives for recursion that we need

to prove adequacy. The term 0 should be thought of as representing an aborted

computation (this is different from skip which represents doing nothing). We

will later see it is interpreted by the zero map (the linear map which sends

everything to the zero element) which explains its notation. The new loop580

construct whilen should be thought of as a while loop that would perform

at most n loops and any subsequent loop immediately results in an aborted

computation. Similarly, a procedure name fn can be called at most n times and

any subsequent call to this procedure also results in an aborted computation.

The formation rules for procedure stores are extended by adding a rule for

indexed procedures:

Π ` Ω Π, fn : A→ B ` 〈x : A〉 M 〈y : B〉
Π, fn : A→ B ` Ω, fn :: x : A→ y : B {M}

36

The notion of a well-formed configuration is defined in the same way as before585

provided one uses the updated notions of well-formed terms and well-formed

procedure stores. The operational semantics is extended by adding the rules:

(0;P | V | Ω | ρ) (0 | V | Ω | ρ)

(while0 b do M | V, b = v | Ω | ρ) (0 | V, b = v | Ω | ρ)

(whilen+1 b do M | V, b = v | Ω | ρ)

(if b then {M ; whilen b do M} else skip | V, b = v | Ω | ρ)

(proc fn :: x : A→ y : B {M} | V | Ω | ρ)

(skip | V | Ω, fn :: x : A→ y : B {M} | ρ)

(y1 = f0(x1) | V, x1 = v | Ω, f0 :: x2 : A→ y2 : B {M} | ρ)

(0 | V, x1 = v | Ω, f0 :: x2 : A→ y2 : B {M} | ρ)

(y1 = fn+1(x1) | V, x1 = v | Ω, fn+1 :: x2 : A→ y2 : B {M} | ρ)

(Mα1 | V, x1 = v | Ωα, f
n :: x2 : A→ y2 : B {Mα2} | ρ)

where in the last rule, Ωα is the procedure store obtained from Ω by renaming

fn+1 to fn within all procedure bodies contained in Ω. Similarly, Mα2 is the590

result of renaming fn+1 to fn within M . The term Mα1 is obtained from M

by also renaming fn+1 to fn and then doing the same term variable renamings

as in the unindexed (call) rule (see §3).

We extend the denotational semantics by adding interpretations for the

37

newly added terms:

JΠ ` 〈Γ〉 0Γ,Σ 〈Σ〉K := π 7→
(

JΓK
0JΓK,JΣK−−−−−→ JΣK

)
JΠ ` 〈Γ, b : bit〉 whilen b do M 〈Γ, b : bit〉K := π 7→(

JΓK⊗ bit
Wn

JMK(π)(0)
−−−−−−−→ JΓK⊗ bit

)
JΠ ` 〈Γ〉 proc fn :: x : A→ y : B {M} 〈Γ〉K := π 7→(

JΓK id−→ JΓK
)

JΠ, fn : A→ B ` 〈Γ, x : A〉 y = fn(x) 〈Γ, y : B〉K := (π, f) 7→(
JΓK⊗ JAK id⊗f−−−→ JΓK⊗ JBK

)
Notice that the interpretations of the indexed (proc) and (call) term rules con-

tain no fixpoint calculations, just like their unindexed counterparts. Similarly to

the unindexed case, the non-trivial calculations take place in the interpretation

of the procedure store rules. The newly added rule for formation of procedure

stores is interpreted in the following way:

JΠ, fn : A→ B ` Ω, fn :: x : A→ y : B {M}K = (JΩK, (JMK(JΩK,−))
n

(0)) .

The interpretation of configurations is now defined in the same way as before,

but also using the newly added rules and updated notions. Finally, the notion595

of terminal configuration is also updated to include configurations of the form

(0 | V | Ω | ρ). With this in place, all language properties stated in the previous

sections also hold true for the extended language.

Theorem 38. Subject Reduction (Theorem 7), Progress (Theorem 10) and

Soundness (Theorem 31) also hold true for the extended language (using the600

updated language notions).

5.7.3. The Proof

A term in the extended language is called finitary if it does not contain any

unindexed procedure names or while loops. A term is called ordinary if it does

not contain any indexed procedure names, indexed while loops or 0Γ,Σ subterms.605

38

In other words, an ordinary term is simply a term in the base QPL language as

described in §2. Similarly, a finitary (ordinary) procedure store Ω is a procedure

store where each procedure name of Ω is indexed (unindexed) and such that its

procedure body is a finitary (ordinary) term. A finitary (ordinary) configuration

is a configuration (M | V | Ω | ρ) where M and Ω are finitary (ordinary). A610

finitary configuration is true to its name, because all of its reduction sequences

terminate in a finite number of steps.

Lemma 39. (Finitary Strong Normalisation) For any finitary configuration C,

there exists n ∈ N, such that the length of every reduction sequence from C is at

most n.615

Corollary 40. For any finitary configuration C, we have JCK = JC ⇓K.

Proof. Using Lemma 39, let n ∈ N be the smallest number such that the length

of every reduction sequence from C is at most n. It follows that

JCK =
∑

r∈TerSeq≤n(C)

JEnd(r)K,

which can be easily shown by induction on n using Theorem 38. The proof

concludes by recognising that

∑
r∈TerSeq≤n(C)

JEnd(r)K =

∞∨
n=0

∑
r∈TerSeq≤n(C)

JEnd(r)K

= JC ⇓K

Next, we define an approximation relation (− J −) between finitary terms

and ordinary terms. It is defined to be the smallest relation satisfying the

following rules:

M ′ JM
proc fn :: x : A→ y : B {M ′} J proc f :: x : A→ y : B {M}

M’
y = fn(x) J y = f(x)

39

M ′ JM
whilen b do M ′ J while b do M

M ′ JM N ′ J N
M ′;N ′ JM ;N

M ′1 JM1 M ′2 JM2

case y of {leftA,B x1 →M ′1 | rightA,B x2 →M ′2 } J
case y of {leftA,B x1 →M1 | rightA,B x2 →M2 }

all other terms except 0.
M JM

We also define an approximation relation (− C −) between finitary procedure

stores and ordinary procedure stores. It is defined to be the smallest relation

satisfying the following rules:

· C ·
Ω′ C Ω M ′ JM

Ω′, fn :: x : A→ y : B {M ′} C Ω, f :: x : A→ y : B {M}

Finally, we define an approximation relation (− @ −) between finitary config-

urations and ordinary configurations. It is defined to be the smallest relation

satisfying the following rule:

M ′ JM Ω′ C Ω
(M ′ | V | Ω′ | ρ) @ (M | V | Ω | ρ)

Remark 41. By definition, if (M ′ | V | Ω′ | ρ) @ (M | V | Ω | ρ), then M and

M ′ do not contain any 0 subterms, nor do Ω and Ω′ in any of their procedure

bodies.620

We proceed with a lemma which shows the relation (− @ −) approximates

the ordinary operational semantics. But first, we introduce two new notions.

Every terminal finitary configuration T is either of the form (skip | V | Ω | ρ)

or (0 | V | Ω | ρ). In the former case we say T is a skip-configuration and in

the latter case we say T is a 0-configuration.625

Lemma 42. Let C0 be an ordinary configuration and C ′0 a finitary configura-

tion with C′0 @ C0. Let r′ = (C′0 · · · C′n) be a terminal reduction sequence,

40

where C′n is a skip-configuration. Then there exists a unique terminal reduc-

tion sequence r = (C0 · · · Cn) such that C′i @ Ci, which we will henceforth

abbreviate by writing r′ @ r.630

Proof. Let C′0 = (M ′ | V ′ | Ω′ | ρ′). The proof follows by induction on n. The

base case n = 0 is trivial and the step case follows by case distinction onM ′.

In other words, the above lemma shows that lockstep execution occurs be-

tween any ordinary reduction sequence and any one of its approximating finitary

reduction sequences, provided the latter terminates in the ordinary sense. This635

allows us to establish the following corollary.

Corollary 43. Let C and C′ be two configurations with C′ @ C. Then

JC′ ⇓K ≤ JC ⇓K.

Proof. It suffices to show for any n ∈ N that∑
r′∈TerSeq≤n(C′)

JEnd(r′)K ≤
∑

r∈TerSeq≤n(C)

JEnd(r)K

from which the corollary follows by taking suprema. Let r′ ∈ TerSeq≤n(C′)

be arbitrary. If End(r′) is a 0-configuration, then JEnd(r′)K = 0 and thus it

contributes nothing to the sum and may be ignored. Otherwise End(r′) is a

skip-configuration and by Lemma 42, there exists a unique r ∈ TerSeq≤n(C),640

such that r′ @ r. In this case End(r′) @ End(r) and since both of them are

skip-configurations, it follows JEnd(r′)K = JEnd(r)K. Moreover, if r′1, r′2 ∈

TerSeq≤n(C′) and also r1 A r′1 6= r′2 @ r2, then r1 6= r2 (to see this, observe that

r′1 and r′2 must differ due to branching from a quantum measurement and thus

so do r1 and r2). Both sums are finite and we showed that for all non-trivial645

summands on the left there exist corresponding summands on the right which

are equal to them, thus the required inequality holds.

The next lemma shows that ordinary configurations are also approximated

by finitary configurations in a denotational sense.

41

Lemma 44. For any ordinary term M , procedure store Ω and configuration C:

JMK =
∨

M ′JM

JM ′K JΩK =
∨

Ω′CΩ

JΩ′K JCK =
∨
C′@C

JC′K.

Proof. Straightforward induction.650

Finally, we can prove Theorem 33.

Proof of Theorem 33. By Corollary 37, it suffices to show JCK ≤ JC ⇓K. We

have:

JCK =
∨
C′@C

JC′K (Lemma 44)

=
∨
C′@C

JC′ ⇓K (Corollary 40)

≤ JC ⇓K (Corollary 43)

6. Conclusion and Related Work

There are many quantum programming languages described in the liter-

ature. For a survey see [22] and [23, pp. 129]. Some circuit programming655

languages (e.g. Proto-Quipper [24, 25, 26]), generate quantum circuits, but do

not necessarily support executing quantum measurements. Here we focus on

quantum languages which support measurement and which have either induc-

tive datatypes or some computational adequacy result.

Our work is the first to present a detailed semantic treatment of user-defined660

inductive datatypes for quantum programming. In [20] and [21], the authors

show how to interpret a quantum lambda calculus extended with a datatype for

lists, but their syntax does not support any other inductive datatypes. These

languages are equipped with lambda abstractions, whereas our language has

only support for procedures. Lambda abstractions are modelled using construc-665

tions from quantitative semantics of linear logic in [20] and techniques from

game semantics in [21]. We believe our model is simpler and certainly more

42

physically natural, because we work only with mathematical structures used by

physicists in their study of quantum mechanics. Both [20] and [21] prove an

adequacy result for programs of unit type. In [27], the authors discuss potential670

categorical models for inductive datatypes in quantum programming, but there

is no detailed semantic treatment provided and there is no adequacy result,

because the language lacks recursion.

Other quantum programming languages without inductive datatypes, but

which prove computational adequacy results include [10, 28]. A model based675

on W*-algebras for a quantum lambda calculus without recursion or inductive

datatypes was described in a recent manuscript [19]. In that model, it appears

that currying is not a Scott-continuous operation, and if so, the addition of

recursion renders the model neither sound, nor adequate. For this reason, we

use procedures and not lambda abstractions in our language.680

To conclude, we presented two novel results in quantum programming: (1)

we provided a denotational semantics for a quantum programming language with

inductive datatypes; (2) we proved that our denotational semantics is invariant

with respect to big-step reduction. We also showed that the latter result is quite

powerful by demonstrating how it immediately implies computational adequacy.685

Our denotational model is based on the theory of W*-algebras, which are

used to study quantum foundations. We hope this would make it useful for

developing static analysis methods (based on abstract interpretation) that can

be used for entanglement detection [29] and we plan on investigating this in

future work.690

Acknowledgements. We thank Andre Kornell, Bert Lindenhovius and Michael

Mislove for discussions regarding this paper. We also thank the anonymous

FoSSaCS referees for their feedback which led to multiple improvements to this

article. MR acknowledges financial support from the Quantum Software Consor-

tium, under the Gravitation programme of the Dutch Research Council NWO.695

The remaining authors were supported by the French projects ANR-17-CE25-

0009 SoftQPro, ANR-17-CE24-0035 VanQuTe and PIA-GDN/Quantex.

43

References

[1] R. Péchoux, S. Perdrix, M. Rennela, V. Zamdzhiev, Quantum programming

with inductive datatypes: Causality and affine type theory, in: J. Goubault-700

Larrecq, B. König (Eds.), Foundations of Software Science and Computa-

tion Structures - 23rd International Conference, FOSSACS 2020, Proceed-

ings, Vol. 12077 of Lecture Notes in Computer Science, Springer, 2020, pp.

562–581. doi:10.1007/978-3-030-45231-5_29.

[2] P. W. Shor, Polynomial-Time Algorithms for Prime Factorization and Dis-705

crete Logarithms on a Quantum Computer, SIAM Review 41 (2) (1999)

303–332. doi:10.1137/S0036144598347011.

[3] A. W. Harrow, A. Hassidim, S. Lloyd, Quantum Algorithm for Lin-

ear Systems of Equations, Phys. Rev. Lett. 103 (2009) 150502. doi:

10.1103/PhysRevLett.103.150502.710

[4] P. Selinger, Towards a quantum programming language, Mathematical

Structures in Computer Science 14 (4) (2004) 527–586. doi:10.1017/

S0960129504004256.

[5] M. Takesaki, Theory of Operator Algebras. Vol. I, II and III, Springer-

Verlag, Berlin, 2002.715

[6] A. Kissinger, S. Uijlen, A categorical semantics for causal structure, in:

32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS

2017, Reykjavik, Iceland, June 20-23, 2017, IEEE Computer Society, 2017,

pp. 1–12. doi:10.1109/LICS.2017.8005095.

[7] M. Abadi, M. P. Fiore, Syntactic Considerations on Recursive Types, in:720

Proceedings, 11th Annual IEEE Symposium on Logic in Computer Science,

New Brunswick, New Jersey, USA, July 27-30, 1996, IEEE Computer So-

ciety, 1996, pp. 242–252. doi:10.1109/LICS.1996.561324.

[8] M. P. Fiore, Axiomatic Domain Theory in Categories of Partial Maps,

Ph.D. thesis, University of Edinburgh, UK (1994).725

44

http://dx.doi.org/10.1007/978-3-030-45231-5_29
http://dx.doi.org/10.1137/S0036144598347011
http://dx.doi.org/10.1103/PhysRevLett.103.150502
http://dx.doi.org/10.1103/PhysRevLett.103.150502
http://dx.doi.org/10.1103/PhysRevLett.103.150502
http://dx.doi.org/10.1017/S0960129504004256
http://dx.doi.org/10.1017/S0960129504004256
http://dx.doi.org/10.1017/S0960129504004256
http://dx.doi.org/10.1109/LICS.2017.8005095
http://dx.doi.org/10.1109/LICS.1996.561324

[9] W. K. Wootters, W. H. Zurek, A single quantum cannot be cloned, Nature

299 (5886) (1982) 802–803.

[10] I. Hasuo, N. Hoshino, Semantics of higher-order quantum computation via

geometry of interaction, Ann. Pure Appl. Logic 168 (2) (2017) 404–469.

doi:10.1016/j.apal.2016.10.010.730

[11] M. Rennela, Operator Algebras in Quantum Computation, Master Thesis,

Université Paris 7 Denis Diderot. (2013). arXiv:1510.06649.

[12] A. Kornell, Quantum collections, International Journal of Mathe-

matics 28 (12) (2017) 1750085. arXiv:1202.2994, doi:10.1142/

S0129167X17500859.735

[13] K. Cho, Semantics for a Quantum Programming Language by Operator

Algebras, Master Thesis, University of Tokyo. (2014).

[14] A. Westerbaan, Quantum Programs as Kleisli Maps, in: R. Duncan,

C. Heunen (Eds.), Proceedings 13th International Conference on Quan-

tum Physics and Logic, QPL 2016, Glasgow, Scotland, 6-10 June 2016.,740

Vol. 236 of EPTCS, 2016, pp. 215–228. doi:10.4204/EPTCS.236.14.

[15] K. Cho, Semantics for a Quantum Programming Language by Operator

Algebras, New Generation Comput. 34 (1-2) (2016) 25–68. doi:10.1007/

s00354-016-0204-3.

[16] B. Westerbaan, Dagger and Dilation in the Category of Von Neumann745

algebras, Ph.D. thesis, Radboud University (2018). arXiv:1803.01911.

[17] B. Lindenhovius, M. Mislove, V. Zamdzhiev, LNL-FPC: The Linear/Non-

linear Fixpoint Calculus, submitted. arXiv:1906.09503.

[18] B. Lindenhovius, M. Mislove, V. Zamdzhiev, Mixed linear and non-linear

recursive types, Proc. ACM Program. Lang. 3 (ICFP) (2019) 111:1–111:29.750

doi:10.1145/3341715.

45

http://dx.doi.org/10.1016/j.apal.2016.10.010
http://arxiv.org/abs/1510.06649
http://arxiv.org/abs/1202.2994
http://dx.doi.org/10.1142/S0129167X17500859
http://dx.doi.org/10.1142/S0129167X17500859
http://dx.doi.org/10.1142/S0129167X17500859
http://dx.doi.org/10.4204/EPTCS.236.14
http://dx.doi.org/10.1007/s00354-016-0204-3
http://dx.doi.org/10.1007/s00354-016-0204-3
http://dx.doi.org/10.1007/s00354-016-0204-3
http://arxiv.org/abs/1803.01911
http://arxiv.org/abs/1906.09503
http://dx.doi.org/10.1145/3341715

[19] K. Cho, A. Westerbaan, Von Neumann Algebras form a Model for the

Quantum Lambda Calculus, manuscript. (2016). arXiv:1603.02133.

[20] M. Pagani, P. Selinger, B. Valiron, Applying quantitative semantics to

higher-order quantum computing, in: S. Jagannathan, P. Sewell (Eds.),755

The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21,

2014, ACM, 2014, pp. 647–658. doi:10.1145/2535838.2535879.

[21] P. Clairambault, M. de Visme, G. Winskel, Game semantics for quan-

tum programming, PACMPL 3 (POPL) (2019) 32:1–32:29. doi:10.1145/760

3290345.

[22] S. J. Gay, Quantum programming languages: survey and bibliography,

Mathematical Structures in Computer Science 16 (4) (2006) 581–600. doi:

10.1017/S0960129506005378.

[23] M. Mosca, M. Roetteler, P. Selinger, Quantum Programming Languages765

(Dagstuhl Seminar 18381), Dagstuhl Reports 8 (9) (2019) 112–132. doi:

10.4230/DagRep.8.9.112.

[24] F. Rios, P. Selinger, A Categorical Model for a Quantum Circuit Descrip-

tion Language, in: QPL, 2017. doi:10.4204/EPTCS.266.11.

[25] N. J. Ross, Algebraic and Logical Methods in Quantum Computation,770

Ph.D. thesis, Dalhousie University. (2015). arXiv:1510.02198.

[26] B. Lindenhovius, M. W. Mislove, V. Zamdzhiev, Enriching a Linear/Non-

linear Lambda Calculus: A Programming Language for String Dia-

grams, in: A. Dawar, E. Grädel (Eds.), Proceedings of the 33rd Annual

ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford,775

UK, July 09-12, 2018, ACM, 2018, pp. 659–668. doi:10.1145/3209108.

3209196.

46

http://arxiv.org/abs/1603.02133
http://dx.doi.org/10.1145/2535838.2535879
http://dx.doi.org/10.1145/3290345
http://dx.doi.org/10.1145/3290345
http://dx.doi.org/10.1145/3290345
http://dx.doi.org/10.1017/S0960129506005378
http://dx.doi.org/10.1017/S0960129506005378
http://dx.doi.org/10.1017/S0960129506005378
http://dx.doi.org/10.4230/DagRep.8.9.112
http://dx.doi.org/10.4230/DagRep.8.9.112
http://dx.doi.org/10.4230/DagRep.8.9.112
http://dx.doi.org/10.4204/EPTCS.266.11
http://arxiv.org/abs/1510.02198
http://dx.doi.org/10.1145/3209108.3209196
http://dx.doi.org/10.1145/3209108.3209196
http://dx.doi.org/10.1145/3209108.3209196

[27] M. Rennela, S. Staton, Classical Control and Quantum Circuits in Enriched

Category Theory, Electr. Notes Theor. Comput. Sci. 336 (2018) 257–279.

doi:10.1016/j.entcs.2018.03.027.780

[28] U. D. Lago, C. Faggian, B. Valiron, A. Yoshimizu, The geometry of paral-

lelism: classical, probabilistic, and quantum effects, in: G. Castagna, A. D.

Gordon (Eds.), Proceedings of the 44th ACM SIGPLAN Symposium on

Principles of Programming Languages, POPL 2017, Paris, France, January

18-20, 2017, ACM, 2017, pp. 833–845.785

URL http://dl.acm.org/citation.cfm?id=3009859

[29] S. Perdrix, Quantum Entanglement Analysis Based on Abstract Interpreta-

tion, in: M. Alpuente, G. Vidal (Eds.), Static Analysis, 15th International

Symposium, SAS 2008, Valencia, Spain, July 16-18, 2008. Proceedings, Vol.

5079 of Lecture Notes in Computer Science, Springer, 2008, pp. 270–282.790

doi:10.1007/978-3-540-69166-2_18.

47

http://dx.doi.org/10.1016/j.entcs.2018.03.027
http://dl.acm.org/citation.cfm?id=3009859
http://dl.acm.org/citation.cfm?id=3009859
http://dl.acm.org/citation.cfm?id=3009859
http://dl.acm.org/citation.cfm?id=3009859
http://dx.doi.org/10.1007/978-3-540-69166-2_18

	Introduction
	Our Contribution
	Overview and Summary of Results
	Publication History

	Syntax of QPL
	Operational Semantics of QPL
	W*-algebras
	Domain-theoretic Preliminaries
	Definition of W*-algebras
	Categorical Structure
	Quantum Operations
	Parameterised Initial Algebras

	Denotational Semantics of QPL
	Interpretation of Types
	Discarding
	Copying
	Overview of the construction
	Classical Interpretation of Classical Types
	Constructing the copy map
	Folding and Unfolding of Classical Types

	Interpretation of Terms
	Interpretation of Configurations
	Soundness, Adequacy and Big-step Invariance
	Proof of Theorem 33 (Big-step Invariance)
	Proof Strategy
	Language Extension
	The Proof

	Conclusion and Related Work

