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Linear/non-linear (LNL) models, as described by Benton, soundly model a LNL term calculus and
LNL logic closely related to intuitionistic linear logic. Every such model induces a canonical en-
richment that we show soundly models a LNL lambda calculus for string diagrams, introduced by
Rios and Selinger (with primary application in quantum computing). Our abstract treatment of this
language leads to simpler concrete models compared to those presented so far. We also extend the
language with general recursion and prove soundness. Finally, we present an adequacy result for
the diagram-free fragment of the language which corresponds to a modified version of Benton and
Wadler’s adjoint calculus with recursion.

In keeping with the purpose of the special issue, we also describe the influence of Samson Abram-
sky’s research on these results, and on the overall project of which this is a part.

1 Dedication

We are pleased to contribute to this volume honoring SAMSON ABRAMSKY’s many contributions to
logic and its applications in theoretical computer science. This contribution is an extended version of
the paper [28], which concerns the semantics of high-level functional quantum programming languages.
This research is part of a project on the same general theme. The project itself would not exist if it
weren’t for Samson’s support, guidance and participation. And, as we document in the final section
of this contribution, Samson’s research has had a direct impact on this work, and also points the way
for further results along the general line we are pursuing. We are now in the fifth year of the project,
and Samson has been a continual inspiration, both directly by his participation in the Tulane team, and
indirectly by including us in a number of related activities he helped organize that exposed us to a variety
of topics, all of which have been interesting and many of which have a direct connection to our research.
We’re happy to acknowledge his contributions, and we hope he enjoys reading about the research we
report here.

1.1 Some personal comments

The first author first learned about the work of Samson via [2]. This work captures many features of
quantum physics in a categorical framework, which highly impressed the first author, who soon discov-
ered that this was just the tip of Samson’s work. There are not many scientists as versatile as Samson,
given the number of different subjects he made significant contributions to, and his courage to explore
new areas is very inspiring. This author was of course a bit nervous when he finally met Samson in real
life at the Simons Institute in Berkeley, but it turned out that Samson is also very friendly, and we had
several enjoyable conversations about mathematics and computer science, but also about the life beyond
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science. The author hopes to learn much more from Samson in the future. Thank you for being such an
inspiration!

The second author first met Samson in 1984 while spending a sabbatical at Oxford, when Samson
was a member of the semantics group at Imperial College. Our paths have crossed often since then,
at scientific meetings and during visits at each other’s institutions. While we have never co-authored
a paper together, we did edit a volume on Information Flow [5], which grew out of Samson’s Clifford
Lectures at Tulane in 1998, and the follow-on meetings that we jointly helped organize. This author is
reminded of the many important discussions that took place during such meetings, often occurring on
the inevitable “conference outing". The first such chat this author can recall was during a walk in the
dunes at Asilomar during the 1989 LiCS meeting, a meeting highlighted by Dana’s Sunday morning
sermon. But by far the most vivid memory is the night canopy tour on the outing following the Costa
Rica Informatic Phenomena meeting, during which Samson let out a totally uncharacteristic yell as he
threw himself into the dark clinging to a zip line. We also learned a lot about sloths on that trip. Those
talks always were stimulating and informative, and often a lot of fun. Thank you, Samson!

The third author first met Samson at his PhD interview in Oxford in 2012. The interview went very
well and he then became a PhD student of Samson for the next four years. Over the course of the PhD,
Samson provided very valuable advice and support, which of course, the author appreciates very much.
After the end of this author’s PhD, we have met many times in numerous other scientific events which
was very enjoyable as always. Samson’s many contributions to many different parts of logic are clearly
very impressive and Samson himself has been a big inspirational figure throughout this author’s career.
Over the years, we have also spent a lot of time in social events and outings in many different places and
in this way the third author got to know Samson outside of professional settings which was always very
interesting and very fun. Thank you, Samson!

2 Introduction

In recent years string diagrams have found applications across a range of areas in computer science and
related fields: in concurrency theory, where they are used to model Petri nets [32]; in systems theory,
where they are used in a calculus of signal flow diagrams [10]; and in quantum computing [23, 13] where
they represent quantum circuits and have been used to completely axiomatize the Clifford+T segment of
quantum mechanics [15].

But as the size of a system grows, constructing string diagram representations by hand quickly be-
comes intractable, and more advanced tools are needed to accurately represent and reason about the
associated diagrams. In fact, just generating large diagrams is a difficult problem. One area where this
has been addressed is in the development of circuit description languages. For example, Verilog [44]
and VHDL [45] are popular hardware description languages that are used to generate very large digital
circuits. More recently, the PNBml language [42] was developed to generate Petri nets, and Quipper [22]
and QWIRE [33] are quantum programming languages (among others) that are used to generate (and
execute) quantum circuits.

In this paper we pursue a more abstract approach. We consider a lambda calculus for string diagrams
whose primary purpose is to generate complicated diagrams from simpler components. However, we
do not fix a particular application domain. Our development only assumes that the string diagrams
we are working with enjoy a symmetric monoidal structure. Our goal is to help lay a foundation for
programming languages that generate string diagrams, and that support the addition of extensions for
specific application domains along with the necessary language features.
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More generally, we believe the use of formal methods could aid us in obtaining a better conceptual
understanding of how to design languages that can be used to construct and analyze large and complicated
(families) of string diagrams.

Our Results. We study several calculi in this paper, beginning with the combined LNL (CLNL) cal-
culus, which is the diagram-free fragment of our main language. The CLNL calculus, described in
Section 3, can be seen as a modified version of Benton’s LNL calculus, first defined in [8]. The crucial
difference is that in CLNL we allow the use of mixed contexts, so there is only one type of judgement.
This reduces the number of typing rules, and allows us to extend the language to support the generation
of string diagrams. We also present a categorical model for our language, which is given by an LNL
model with finite coproducts, and prove its soundness.

Next, in Section 4, we describe our main language of interest, the enriched CLNL calculus, which we
denote ECLNL. The ECLNL calculus adopts the syntax and operational semantics of Proto-Quipper-M,
a circuit description language introduced by Rios and Selinger [38], but we develop our own categorical
model. Ours is the first abstract categorical model for the language, which is again given by an LNL
model, but endowed with an additional enrichment structure. The enrichment is the reason we chose
to rename the language. By design, ECLNL is an extension of the CLNL calculus that adds language
features for manipulating string diagrams. We show that our abstract model satisfies the soundness and
constructivity requirements (see [38], Remark 4.1) of Rios and Selinger’s original model. As special
instances of our abstract model, we recover the original model of Rios and Selinger, and we also present
a simpler concrete model, as well as one that is order enriched.

In Section 5 we resolve the open problem posed by Rios and Selinger of extending the language
with general recursion. We show that all the relevant language properties are preserved, and then we
prove soundness for both the CLNL and ECLNL calculi with recursion, after first extending our abstract
models with some additional structure. We then present concrete models for the ECLNL calculus that
support recursion and also support generating string diagrams from any symmetric monoidal category.
We conclude the section with a concrete model for the CLNL calculus extended with recursion that we
also prove is computationally adequate at non-linear types.

In Section 6, we conclude the paper and discuss further possible developments, such as adding in-
ductive and recursive types, as well as a treatment of dependent types.

Related Work. Categorical models are fundamental for our results, and the ones we present rely on the
LNL models first described by Benton in [8]. Our work also is inspired by the language Proto-Quipper-
M [38] by Rios and Selinger, the latest of the circuit description languages Selinger and his group have
been developing. Our ECLNL calculus has the same syntax and operational semantics as Proto-Quipper-
M, but there are significant differences in the denotational models. Rios and Selinger start with a sym-
metric monoidal category M, then they consider a fully faithful strong symmetric monoidal embedding
of M into another category M that has some suitable categorical structure (e.g. M := [Mop,Set]), so that
the category Fam(M) is symmetric monoidal closed and contains M. Their model is then given by the
symmetric monoidal adjunction between Set and Fam(M), which allows them to distinguish “parame-
ter" (non-linear) terms and “state" (linear) terms. They show their language is type safe, their semantics
is sound, and they remark that it also is computationally adequate at observable types (there is no recur-
sion, so all programs terminate). The semantics for our ECLNL calculus enjoys the same properties, but
we present both an abstract model and a simpler concrete model that doesn’t involve a Fam(−) construc-
tion. Moreover, we also describe an extension with recursion, based on ideas by Benton and Wadler [7],
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and present an adequacy result for the diagram-free fragment of the language.
QWIRE [33] also is a language for reasoning about quantum circuits. QWIRE is really two lan-

guages, a non-linear host language and a quantum circuits language. QWIRE led Rennela and Staton
to consider a more general language Ewire [36, 37], which can be used to describe circuits that are not
necessarily quantum. Ewire supports dynamic lifting, and they prove a soundness result assuming the
reduction system for the non-linear language is normalizing. They also discuss extending Ewire with
conditional branching and inductive types over the ⊗- and ⊕-connectives (but not(). However, these
extensions require imposing additional structure on the diagrams, such as the existence of coproducts
and fold/unfold gates. In our approach, we assume only that the diagrams enjoy a symmetric monoidal
structure. In addition, our language also supports general recursion, whereas Ewire does not. An im-
portant similarity is that Ewire also makes use of enriched category theory to describe the denotational
model.

Aside from Ewire and Proto-Quipper-M, the other languages we mentioned cannot generate arbitrary
string diagrams, and some of them do not have a formal denotational semantics.

3 An alternative LNL calculus

LNL models were introduced by Benton [8] as a means to soundly model an interesting LNL calculus
together with a corresponding logic. The goal was to understand the relationship between intuitionistic
logic and intuitionistic linear logic. In this section, we show that LNL models also soundly model a
variant of the LNL calculus where, instead of having two distinct typing judgements (linear and non-
linear), there is a single type of judgement whose context is allowed to be mixed. A similar idea was
briefly discussed by Benton in his original paper [8]. The syntax and operational semantics for this
language are derived as a special case of the language of Rios and Selinger [38]. We denote the resulting
language by CLNL, which we call the "Combined LNL" calculus.

As with the other calculi we consider, we begin our discussion by first describing a categorical
model for CLNL. This makes the presentation of the language easier to follow. A categorical model of
the CLNL calculus is given by an LNL model with finite coproducts, as the next definition shows.

Definition 3.1 ([8]). A model of the CLNL calculus (CLNL model) is given by the following data: a
cartesian closed category (CCC) with finite coproducts (V,×,→,1,∏, /0); a symmetric monoidal closed
category (SMCC) with finite coproducts (C,⊗,(, I,+,0); and a symmetric monoidal adjunction:

V ` C

F

G

We also adopt the following notation:

• The comonad-endofunctor is ! := F ◦G.

• The unit of the adjunction F a G is η : Id .−→ G◦F.

• The counit of the adjunction F a G is ε : ! .−→ Id.

Throughout the remainder of this section, we consider an arbitrary, but fixed, CLNL model. The
CLNL calculus, which we introduce next, is interpreted in the category C.

The syntax of the CLNL calculus is presented in Figure 1. It is exactly the diagram-free fragment of
the ECLNL calculus, and because of space reasons, we only show the typing rules for ECLNL. However,
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the typing rules of the CLNL calculus can be easily derived from those for ECLNL by ignoring the Q
label contexts (see the (pair) rule example below). Of course, ECLNL has some additional terms not in
CLNL, so the corresponding typing rules should be ignored as well.

Observe that the non-linear types are a subset of the types of our language. Note also that there is no
grammar which defines linear types. We say that a type that is not non-linear is linear. This definition
is strictly speaking not necessary, but it helps to illustrate some concepts. In particular, any type A( B
is therefore considered to be linear, even if A and B are non-linear. The interpretation of a type A is an
object JAK of C, defined by induction in the usual way (Figure 2).

Recall that in an LNL model with coproducts, we have:

I ∼= F(1); 0∼= F( /0);

F(X)⊗F(Y )∼= F(X×Y ); F(X)+F(Y )∼= F(X
∏

Y )

because F is strong (symmetric) monoidal and also a left adjoint. Based on these observations, we can
define a non-linear interpretation LPM ∈ V of non-linear types P by induction in the following way:

LIM := 1;

L0M := /0;

LP⊗QM := LPM× LQM;
LP+QM := LPM

∏
LQM;

L!AM := GJAK.

Then a simple induction argument shows the next proposition.

Proposition 3.2. For every non-linear type P, there is a canonical isomorphism ιP : JPK∼= FLPM.

A context is a function from a finite set of variables to types. We write contexts as Γ = x1 : A1,x2 :
A2, . . . ,xn : An, where the xi are variables and Ai are types. Its interpretation is as usual JΓK= JA1K⊗·· ·⊗
JAnK. A variable in a context is non-linear (linear) if it is assigned a non-linear (linear) type. A context
that contains only non-linear variables is called a non-linear context. Note, that we do not define linear
contexts, because our typing rules refer only to contexts that either are non-linear or arbitrary (mixed).

A typing judgement has the form Γ ` m : A, where Γ is an (arbitrary) context, m is a term and A
is a type. Its interpretation is a morphism JΓ ` m : AK : JΓK→ JAK in C, defined by induction on the
derivation. For the typing rules of CLNL, the label contexts Q,Q′, etc. from Figure 1 should be ignored.
For example, the (pair) rule in CLNL becomes:

Φ,Γ1 ` m : A Φ,Γ2 ` n : B
(pair)

Φ,Γ1,Γ2 ` 〈m,n〉 : A⊗B

The type system enforces that a linear variable is used exactly once, whereas a non-linear variable may
be used any number of times, including zero. Unlike Benton’s LNL calculus, derivations in CLNL are
in general not unique, because non-linear variables may be part of an arbitrary context Γ. For example,
if P1 and P2 are non-linear types, then:

x : P1 ` x : P1 y : P2 ` y : P2 (pair)
x : P1,y : P2 ` 〈x,y〉 : P1⊗P2

x : P1 ` x : P1 x : P1,y : P2 ` y : P2 (pair)
x : P1,y : P2 ` 〈x,y〉 : P1⊗P2
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The CLNL Calculus
Variables x,y,z
Types A,B,C ::= 0 | A+B | I | A⊗B | A( B | !A
Non-linear types P,R ::= 0 | P+R | I | P⊗R | !A
Variable contexts Γ ::= x1 : A1,x2 : A2, . . . ,xn : An

Non-linear variable contexts Φ ::= x1 : P1,x2 : P2, . . . ,xn : Pn

Terms m,n, p ::= x | c | let x = m in n | �Cm | leftA,Bm | rightA,Bm |
case m of {left x→ n | right y→ p} | ∗ | m;n | 〈m,n〉 |
let 〈x,y〉= m in n | λxA.m | mn | lift m | force m

Values v,w ::= x | c | leftA,Bv | rightA,Bv | ∗ | 〈v,w〉 | λxA.m | lift m
Term Judgements Γ ` m : A (typing rules below - ignore Q contexts)

The ECLNL Calculus
Extend the CLNL syntax with:

Labels `,k
Labelled string diagrams S,D
Types A,B,C ::= · · · | α | Diag(T,U)
Non-linear types P,R ::= · · · | Diag(T,U)
M-types T,U ::= α | I | T ⊗U
Label contexts Q ::= `1 : α1, `2 : α2, . . . , `n : αn

Terms m,n, p ::= · · · | ` | boxT m | apply(m,n) | (~̀,S,~̀′)
Label tuples ~̀,~k ::= ` | ∗ | 〈~̀,~k 〉
Values v,w ::= · · · | ` | (~̀,S,~̀′)
Configurations (S,m)
Term Judgements Γ;Q ` m : A
Configuration Judgements Q ` (S,m) : A;Q′ (see Definition 4.6)

The Typing Rules

(var)
Φ,x : A; /0 ` x : A

(label)
Φ;` : α ` ` : α

(const)
Φ; /0 ` c : Ac

(*)
Φ; /0 ` ∗ : I

Γ;Q ` m : 0
(initial)

Γ;Q `�Cm : C
Γ;Q ` m : A

(left)
Γ;Q ` leftA,Bm : A+B

Γ;Q ` m : B
(right)

Γ;Q ` rightA,Bm : A+B

Φ,Γ1;Q1 ` m : A+B Φ,Γ2,x : A;Q2 ` n : C Φ,Γ2,y : B;Q2 ` p : C
(case)

Φ,Γ1,Γ2;Q1,Q2 ` case m of {left x→ n | right y→ p} : C

Φ,Γ1;Q1 ` m : I Φ,Γ2;Q2 ` n : C
(seq)

Φ,Γ1,Γ2;Q1,Q2 ` m;n : C
Φ,Γ1;Q1 ` m : A Φ,Γ2,x : A;Q2 ` n : B

(let)
Φ,Γ1,Γ2;Q1,Q2 ` let x = m in n : B

Φ,Γ1;Q1 ` m : A Φ,Γ2;Q2 ` n : B
(pair)

Φ,Γ1,Γ2;Q1,Q2 ` 〈m,n〉 : A⊗B
Φ,Γ1;Q1 ` m : A⊗B Φ,Γ2,x : A,y : B;Q2 ` n : C

(let-pair)
Φ,Γ1,Γ2;Q1,Q2 ` let 〈x,y〉= m in n : C

Γ,x : A;Q ` m : B
(abs)

Γ;Q ` λxA.m : A( B
Φ,Γ1;Q1 ` m : A( B Φ,Γ2;Q2 ` n : A

(app)
Φ,Γ1,Γ2;Q1,Q2 ` mn : B

Φ; /0 ` m : A
(lift)

Φ; /0 ` lift m :!A

Γ;Q ` m :!A
(force)

Γ;Q ` force m : A
Γ;Q ` m :!(T (U)

(box)
Γ;Q ` boxT m : Diag(T,U)

Φ,Γ1;Q1 ` m : Diag(T,U) Φ,Γ2;Q2 ` n : T
(apply)

Φ,Γ1,Γ2;Q1,Q2 ` apply(m,n) : U
/0;Q ` ~̀ : T /0;Q′ ` ~̀′ : U S ∈ML(Q,Q′)

(diag)
Φ; /0 ` (~̀,S,~̀′) : Diag(T,U)

Figure 1: Syntax of the CLNL and ECLNL calculi.
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JαK := E(JαKM); J0K := 0; JA+BK := JAK+ JBK JIK := I JA⊗BK := JAK⊗ JBK

JA( BK := JAK( JBK J!AK :=!JAK JDiag(T,U)K := F(C (JT K,JUK))

JΦ,x : A; /0 ` x : AK := JΦK⊗ JAK �⊗id−−→ I⊗ JAK
∼=−→ JAK

JΦ;` : α ` ` : αK := JΦK⊗ JαK �⊗id−−→ I⊗ JαK
∼=−→ JαK

JΦ; /0 ` c : AcK := JΦK �−→ I
JcK−−→ JAcK

JΦ,Γ1,Γ2;Q1,Q2 ` let x = m in n : BK := JΦK⊗ JΓ1K⊗ JΓ2K⊗ JQ1K⊗ JQ2K
∆⊗id−−−→ JΦK⊗ JΦK⊗ JΓ1K⊗ JΓ2K⊗ JQ1K⊗ JQ2K

∼=−→ JΦK⊗ JΓ2K⊗ JΦK⊗ JΓ1K⊗ JQ1K⊗ JQ2K
id⊗JmK⊗id−−−−−−→ JΦK⊗ JΓ2K⊗ JAK⊗ JQ2K

JnK−−→ JBK

JΓ;Q `�Cm : CK := JΓK⊗ JQK
JmK−−→ 0 !−→C

JΓ;Q ` leftA,Bm : A+BK := JΓK⊗ JQK
JmK−−→ JAK left−−→ JAK+ JBK =−→ JA+BK

JΓ;Q ` rightA,Bm : A+BK := JΓK⊗ JQK
JmK−−→ JBK

right−−→ JAK+ JBK =−→ JA+BK

JΦ; /0 ` ∗ : IK := JΦK �−→ I

JΦ,Γ1,Γ2;Q1,Q2 ` case m of {left x→ n | right y→ p} : CK := JΦK⊗ JΓ1K⊗ JΓ2K⊗ JQ1K⊗ JQ2K
∆⊗id−−−→ JΦK⊗ JΦK⊗ JΓ1K⊗ JΓ2K⊗ JQ1K⊗ JQ2K

∼=−→ JΦK⊗ JΓ2K⊗ JΦK⊗ JΓ1K⊗ JQ1K⊗ JQ2K
id⊗JmK⊗id−−−−−−→ JΦK⊗ JΓ2K⊗ JA+BK⊗ JQ2K

∼=−→ (JΦK⊗ JΓ2K⊗ JAK⊗ JQ2K)+(JΦK⊗ JΓ2K⊗ JBK⊗ JQ2K)
[JnK,JpK]−−−−−→ JCK

JΦ,Γ1,Γ2;Q1,Q2 ` m;n : CK := JΦK⊗ JΓ1K⊗ JΓ2K⊗ JQ1K⊗ JQ2K
∆⊗id−−−→ JΦK⊗ JΦK⊗ JΓ1K⊗ JΓ2K⊗ JQ1K⊗ JQ2K

∼=−→ JΦK⊗ JΓ1K⊗ JQ1K⊗ JΦK⊗ JΓ2K⊗ JQ2K
JmK⊗id−−−−→ I⊗ JΦK⊗ JΓ2K⊗ JQ2K
∼=−→ JΦK⊗ JΓ2K⊗ JQ2K

JnK−−→ JCK

JΦ,Γ1,Γ2;Q1,Q2 ` 〈m,n〉 : A⊗BK := JΦK⊗ JΓ1K⊗ JΓ2K⊗ JQ1K⊗ JQ2K
∆⊗id−−−→ JΦK⊗ JΦK⊗ JΓ1K⊗ JΓ2K⊗ JQ1K⊗ JQ2K

∼=−→ JΦK⊗ JΓ1K⊗ JQ1K⊗ JΦK⊗ JΓ2K⊗ JQ2K
JmK⊗JnK−−−−−→ JAK⊗ JBK

JΦ,Γ1,Γ2;Q1,Q2 ` let 〈x,y〉= m in n : CK := JΦK⊗ JΓ1K⊗ JΓ2K⊗ JQ1K⊗ JQ2K
∆⊗id−−−→ JΦK⊗ JΦK⊗ JΓ1K⊗ JΓ2K⊗ JQ1K⊗ JQ2K

∼=−→ JΦK⊗ JΓ1K⊗ JQ1K⊗ JΦK⊗ JΓ2K⊗ JQ2K
JmK⊗id−−−−→ JA⊗BK⊗ JΦK⊗ JΓ2K⊗ JQ2K

∼=−→ JΦK⊗ JΓ2K⊗ JAK⊗ JBK⊗ JQ2K
JnK−−→ JCK

JΓ;Q ` λxA.m : A( BK := JΓK⊗ JQK
curry(JmK◦∼=)−−−−−−−−→ JAK( JBK

Figure 2: Denotational semantics of the ECLNL calculus
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JΦ,Γ1,Γ2;Q1,Q2 ` mn : BK := JΦK⊗ JΓ1K⊗ JΓ2K⊗ JQ1K⊗ JQ2K
∆⊗id−−−→ JΦK⊗ JΦK⊗ JΓ1K⊗ JΓ2K⊗ JQ1K⊗ JQ2K

∼=−→ JΦK⊗ JΓ1K⊗ JQ1K⊗ JΦK⊗ JΓ2K⊗ JQ2K
JmK⊗JnK−−−−−→ JA( BK⊗ JAK ev−→ JBK

JΦ; /0 ` lift m :!AK := JΦK lift−→!JΦK
!JmK−−→!JAK

JΓ;Q ` force m : AK := JΓK⊗ JQK
JmK−−→!JAK ε−→ JAK

JΓ;Q ` boxT m : Diag(T,U)K := JΓK⊗ JQK
JmK−−→ !(JT K( JUK)

∼=−→ JDiag(T,U)K

JΦ,Γ1,Γ2;Q1,Q2 ` apply(m,n) : UK := JΦK⊗ JΓ1K⊗ JΓ2K⊗ JQ1K⊗ JQ2K
∆⊗id−−−→ JΦK⊗ JΦK⊗ JΓ1K⊗ JΓ2K⊗ JQ1K⊗ JQ2K

∼=−→ JΦK⊗ JΓ1K⊗ JQ1K⊗ JΦK⊗ JΓ2K⊗ JQ2K
JmK⊗JnK−−−−−→ JDiag(T,U)K⊗ JT K

∼=−→ !(JT K( JUK)⊗ JT K ε⊗id−−−→ (JT K( JUK)⊗ JT K ev−→ JUK

JΦ; /0 ` (~̀,S,~̀′) : Diag(T,U)K := JΦK �−→ I
∼=−→ F(1)

F(Ψ(φ(~̀,S,~̀′)))−−−−−−−−−→ JDiag(T,U)K

Figure 2: Denotational semantics of the ECLNL calculus (cont’d)

are two different derivations of the same judgement. While this might seem to be a disadvantage, it
leads to a reduction in the number of rules, it allows a language extension that supports describing string
diagrams (see Section 4), and it allows us to easily add general recursion (see Section 5). Moreover, the
interpretation of any two derivations of the same judgement are equal (see Theorem 4.5).
Definition 3.3. A morphism f : JP1K→ JP2K is called non-linear, if

f = JP1K
ι−→ FLP1M

F( f ′)−−−→ FLP2M
ι−1

−−→ JP2K,

for some f ′ ∈ V(LP1M,LP2M).
Definition 3.4. We define maps on non-linear types as follows:

Discard: �P := JPK ι−→ FLPM F1−→ F1
∼=−→ I;

Copy: ∆P := JPK ι−→ FLPM
F(〈id,id〉)−−−−−→ F(LPM× LPM)

∼=−→ FLPM⊗FLPM ι−1⊗ι−1

−−−−−→ JPK⊗ JPK;

Lift: liftP := JPK ι−→ FLPM Fη−−→ !FLPM !ι−1

−−→ !JPK.
Proposition 3.5. If f : JP1K→ JP2K is non-linear, then:
• �P2 ◦ f = �P1 ;

• ∆P2 ◦ f = ( f ⊗ f )◦∆P1 ;

• liftP2 ◦ f = ! f◦ liftP1 .

The operational and denotational semantics for the languages we discuss are presented in Figures 2
and 3. The rules for CLNL are obvious special cases of those for ECLNL (which we discuss in the next
section). The evaluation rules for CLNL can be derived from those of ECLNL (Figure 3) by ignoring the
diagram components. For example, the evaluation rule for (pair) is given by:

m ⇓ v n ⇓ v′

〈m,n〉 ⇓ 〈v,v′〉
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Similarly, the denotational interpretations of terms in CLNL can be derived from those of ECLNL (Fig-
ure 2) by ignoring the Q label contexts. For example, the interpretation of JΦ,Γ1,Γ2 ` 〈m,n〉 : A⊗BK is
given by the composition:

JΦK⊗ JΓ1K⊗ JΓ2K
∆⊗id−−−→ JΦK⊗ JΦK⊗ JΓ1K⊗ JΓ2K

∼=−→ JΦK⊗ JΓ1K⊗ JΦK⊗ JΓ2K
JmK⊗JnK−−−−−→ JAK⊗ JBK.

Theorem 3.6. Theorems 4.5 – 4.10 also hold true when restricted to the CLNL calculus in the obvious
way.

4 Enriching the CLNL calculus

In this section we introduce the enriched CLNL calculus, ECLNL, whose syntax and operational se-
mantics coincide with those of Proto-Quipper-M [38]. We rename the language in order to emphasize
its dependence on its abstract categorical model, an LNL model with an associated enrichment. The
categorical enrichment provides a natural framework for formulating the models we use, and for stating
the constructivity properties (see Subsection 4.3) that we want our concrete models to satisfy.

We begin by briefly recalling the main ingredients of categories enriched over a symmetric monoidal
closed category (V,⊗,(, I):

• A V-enriched category (briefly, a V-category) A consists of a collection of objects; for each
pair of objects A,B there is a ‘hom’ object A (A,B) ∈ V; for each object A, there is a ‘unit’
morphism uA : I → A (A,A) in V; and given objects A,B,C, there is a ‘composition’ morphism
cABC : A (A,B)⊗A (B,C)→A (A,C) in V.

• A V-functor F : A →B between V-categories assigns to each object A ∈A an object FA ∈B,
and to each pair of objects A,A′ ∈A a V-morphism FAA′ : A (A,A′)→B(FA,FA′);

• A V-natural transformation between V-functors F,G : A →B consists of V-morphisms αA : I→
B(FA,GA) for each A ∈A ;

• A V-functor F : A →B has a right V-adjoint G : B→A if there is a V-isomorphism, B(FA,B)∼=
A (A,GB) that is V-natural in both A and B;

The V-morphisms that occur in these definitions are all subject to additional conditions expressed in
terms of commuting diagrams in V; for these we refer to [11, Chapter 6], which provides a detailed
exposition on enriched category theory. We denote the category of V-categories by V-Cat.

The first example of a V-enriched category is the category V that has the same objects as V and
whose hom objects are given by V (A,B) = A( B. We refer to this category as the self-enrichment of V.
If A is a V-category, then the V-copower of an object A ∈A by an object X ∈V is an object X�A ∈A
together with an isomorphism A (X�A,B)∼= V (X ,A (A,B)), which is V-natural in B.

Any (lax) monoidal functor G : C→ V between symmetric monoidal closed categories induces a
change of base functor G∗ : C-Cat→ V-Cat assigning to each C-category A a V-category G∗A with
the same objects as A , but with hom objects given by (G∗A )(A,B) = GA (A,B). In particular, if V
is locally small (which we always assume), then the functor V(I,−) : V→ Set is a monoidal functor;
the corresponding change of base functor assigns to each V-category A its underlying category, which
we denote with A, i.e., the same letter but in boldface. We note that the underlying category of V is
isomorphic to V. Moreover, if the monoidal functor G above has a strong monoidal left adjoint, then the
corresponding change of base functor maps C-categories to V-categories with isomorphic underlying
categories, and C-functors to V-functors with the same underlying functors (up to the isomorphisms
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between the underlying categories). If V has all coproducts, then V(I,−) has a left adjoint V : Set→ V
that is monoidal [11, Proposition 6.4.6]. Applying the corresponding change of base functor to a locally
small category equips this category with the free V-enrichment.

Symmetric monoidal categories can be generalized to V-symmetric monoidal categories, where the
monoidal structure is also enriched over V [31, §4]. It follows from [31, Proposition 6.3] that the functor
G∗ above maps C-symmetric monoidal categories to V-symmetric monoidal categories. If for each fixed
A ∈ V, the V-functor (−⊗A) has a right V-adjoint, denoted (A( −), then we call A a V-symmetric
monoidal closed category. We note that the (−⊗−) and (−( −) bifunctors on V can be enriched to
V-bifunctors on V (i.e., such that their underlying functors correspond to the original functors) such that
V becomes a V-symmetric monoidal closed category.

Finally, if V has finite products, a V-category A is said to have V-coproducts if it has an object 0
and for each A,B ∈A there is an object A+B ∈A together with isomorphisms

1∼= A (0,C), A (A,C)×A (B,C)∼= A (A+B,C),

V-natural in C.

Definition 4.1. An enriched CLNL model is given by the following data:

1. A cartesian closed category V together with its self-enrichment V , such that V has finite V-
coproducts;

2. A V-symmetric monoidal closed category C with underlying category C such that C has V-
copowers and finite V-coproducts;

3. A V-adjunction: V ` C ,

− � I

C (I,−)

together with a CLNL model on the underlying adjunc-

tion.

We also adopt the following notation: F and G are the underlying functors of (−� I) and C (I,−)
respectively and we use the same notation for the underlying CLNL model as in Definition 3.1.

By definition, every enriched CLNL model is a CLNL model with some additional (enriched) struc-
ture. But as the next theorem shows, every CLNL model induces the additional enriched structure as well.
The CCC V can be equipped with its self-enrichment V in a canonical way. The symmetric monoidal
structure of the adjunction then allows us to equip the SMCC C with a V-enrichment by making use of
the induced change-of-base functors which stem from the adjunction. Then one can show that the now
constructed V-enriched category C has V-copowers and the original adjunction enriches to a V-enriched
one. We conclude:

Theorem 4.2. Every CLNL model induces an enriched CLNL model.

Proof. Combine [16, Proposition 6.7] and [31, Theorem 11.2].

The following proposition will be useful when defining the semantics of our language.

Proposition 4.3. In every enriched CLNL model:

1. There is a V-natural isomorphism G(A( B)∼= C (A,B);

2. !(A( B)∼= F(C (A,B)).



B. Lindenhovius, M. Mislove & V. Zamdzhiev 11

3. There is a natural isomorphism Ψ : C(A,B)∼= V(1,C (A,B)).

Proof.

(1.) G(A( B) = C (I,A( B)∼= C (A,B);

(2.) Apply F to (1.);

(3.) C(A,B)∼= C(I,A( B)∼= C(F1,A( B)∼= V(1,G(A( B))∼= V(1,C (A,B)).

4.1 The String Diagram model

The ECLNL calculus is designed to describe string diagrams. So we first explain exactly what kind of
diagrams we have in mind. The morphisms of any symmetric monoidal category can be described using
string diagrams [39]1. So, we choose an arbitrary symmetric monoidal category M, and then the string
diagrams we will be working with are exactly those that correspond to the morphisms of M.

For example, if we set M = FdCStar, the category of finite-dimensional C*-algebras and completely
positive maps, then we can use our calculus for quantum programming. Another interesting choice for
quantum computing, in light of recent results [15], is setting M to be a suitable category of ZX-calculus
diagrams. If M = PNB, the category of Petri Nets with Boundaries [43], then our calculus may be used
to generate such Petri nets.

As with CLNL, our discussion of ECLNL begins with its categorical model.

Definition 4.4. An ECLNL model is given by the following data:

• An enriched CLNL model (Definition 4.1);

• A symmetric monoidal category (M,�,J) and a strong symmetric monoidal functor E : M→ C.

For the remainder of the section, we consider an arbitrary, but fixed, ECLNL model.

4.2 Syntax and Semantics

We first introduce new types in our syntax that correspond to the objects of M. Using terminology
introduced in [38], where string diagrams are referred to as circuits, we let W be a fixed set of wire types,
and we assume there is an interpretation J−KM : W →Ob(M). We use α,β , . . . to range over the elements
of W . For a wire type α , we define the interpretation of α in C to be JαK = E(JαKM). The grammar for
M-types is given in Figure 1, and we extend J−KM to M-types in the obvious way.

To build more complicated string diagrams from simpler components, we need to refer to certain
wires of the component diagrams, to specify how to compose them. This is accomplished by assigning
labels to the wires of our string diagrams, as demonstrated in the following construction.

Let L be a countably infinite set of labels. We use letters `,k to range over the elements of L. A
label context is a function from a finite subset of L to W, which we write as `1 : α1, . . . , `n : αn. We use
Q1,Q2, . . . to refer to label contexts. To each label context Q = `1 : α1, . . . , `n : αn, we assign an object of
M given by JQKM := Jα1KM� · · ·� JαnKM. If Q = /0, then JQKM = J. We denote label tuples by ~̀ and~k ;
these are simply tuples of label terms built up using the (pair) rule.

We now define the category ML of labelled string diagrams:

• The objects of ML are label contexts Q.

• The morphisms of ML(Q1,Q2) are exactly the morphisms of M(JQ1KM,JQ2KM).

1The interested reader can consult [39] for more information on string diagrammatic representations of morphisms.
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(S,x) ⇓ Error (S, `) ⇓ (S, `) (S,c) ⇓ (S,c)
(S,m) ⇓ (S′,v) (S′,n[v/x]) ⇓ (S′′,v′)

(S, let x = m in n) ⇓ (S′′,v′)

(S,m) ⇓ (S′,v)
(S,�m) ⇓ Error

(S,m) ⇓ (S′,v)
(S, left m) ⇓ (S′, left v)

(S,m) ⇓ (S′,v)
(S, right m) ⇓ (S′, right v)

(S,m) ⇓ (S′, left v) (S′,n[v/x]) ⇓ (S′′,v′)
(S,case m of {left x→ n|right y→ p}) ⇓ (S′′,v′)

(S,m) ⇓ (S′, right v) (S′,n[v/y]) ⇓ (S′′,v′)
(S,case m of {left x→ n|right y→ p}) ⇓ (S′′,v′)

(S,m) ⇓ otherwise
(S,case m of {left x→ n|right y→ p}) ⇓ Error

(S,∗) ⇓ (S,∗)
(S,m) ⇓ (S′,∗) (S′,n) ⇓ (S′′,v′)

(S,m;n) ⇓ (S′′,v′)
(S,m) ⇓ otherwise
(S,m;n) ⇓ Error

(S,m) ⇓ (S′,v) (S′,n) ⇓ (S′′,v′)
(S,〈m,n〉) ⇓ (S′′,〈v,v′〉)

(S,m) ⇓ (S′,〈v,v′〉) (S′,n[v / x,v′ / y]) ⇓ (S′′,w)
(S, let 〈x,y〉= m in n) ⇓ (S′′,w)

(S,m) ⇓ otherwise
(S, let 〈x,y〉= m in n) ⇓ Error

(S,λx.m) ⇓ (S,λx.m)

(S,m) ⇓ (S′,λx.m′) (S′,n) ⇓ (S′′,v) (S′′,m′[v/x]) ⇓ (S′′′,v′)
(S,mn) ⇓ (S′′′,v′)

(S,m) ⇓ otherwise
(S,mn) ⇓ Error

(S, lift m) ⇓ (S, lift m)
(S,m) ⇓ (S′, lift m′) (S′,m′) ⇓ (S′′,v)

(S, force m) ⇓ (S′′,v)
(S,m) ⇓ otherwise
(S, force m) ⇓ Error

(S,m) ⇓ (S′, lift n) freshlabels(T ) = (Q,~̀) (idQ,n~̀) ⇓ (D,~̀′)

(S,boxT m) ⇓ (S′,(~̀,D,~̀′))

(S,m) ⇓ (S′, lift n) freshlabels(T ) = (Q,~̀) (idQ,n~̀) ⇓ otherwise
(S,boxT m) ⇓ Error

(S,m) ⇓ otherwise
(S,boxT m) ⇓ Error

(S,m) ⇓ (S′,(~̀,D,~̀′)) (S′,n) ⇓ (S′′,~k ) append(S′′,~k ,~̀,D,~̀′) = (S′′′,~k ′)

(S,apply(m,n)) ⇓ (S′′′,~k ′)

(S,m) ⇓ (S′,(~̀,D,~̀′)) (S′,n) ⇓ (S′′,~k ) append(S′′,~k ,~̀,D,~̀′) undefined
(S,apply(m,n)) ⇓ Error

~k ,~̀

(S,(~̀,D,~̀′)) ⇓ (S,(~̀,D,~̀′))

Figure 3: Operational semantics of the ECLNL calculus



B. Lindenhovius, M. Mislove & V. Zamdzhiev 13

So, by construction, J−KM : ML →M is a full and faithful functor. Observe that if Q and Q′ are label
contexts that differ only by a renaming of labels, then Q∼= Q′. Moreover, for any two label contexts Q1
and Q2, by renaming labels we can construct Q′1 ∼= Q1 such that Q′1 and Q2 are disjoint.

We equip the category ML with the unique (up to natural isomorphism) symmetric monoidal structure
that makes J−KM a symmetric monoidal functor. We then have Q⊗Q′ ∼= Q∪Q′ for any pair of disjoint
label contexts. We use S,D to range over the morphisms of ML and we visualise them in the following
way:

`1

`2

`n `′m

`′1
`′2S

··
·

··
·

α1

α2

αn

β1

β2

βm

where S : {`1 : α1, . . . , `n : αn}→ {`′1 : β1, . . . , `
′
m : βm} ∈ML and JSKM : Jα1KM� · · ·�JαnKM→ Jβ1KM�

· · ·� JβmKM ∈M.
A label context Q = `1 : α1, . . . , `n : αn is interpreted in C as JQK = Jα1K⊗·· ·⊗ JαnK or by JQK = I

if Q = /0. A labelled string diagram S : Q→ Q′ is interpreted in C as the composition:

JSK := JQK
∼=−→ E(JQKM)

E(JSKM)
−−−−→ E(JQ′KM)

∼=−→ JQ′K.

We also add the type Diag(T,U) to the language (see Figure 1); Diag(T,U) should be thought of as
the type of string diagrams with inputs T and outputs U , where T and U are M-types.

The term language is extended by adding the labels and label tuples just discussed, and the terms
boxT m, apply(m,n) and (~̀,S,~̀′). The term boxT m should be thought of as "boxing up" an already
completed diagram m; apply(m,n) represents the application of the boxed diagram m to the state n;
and the term (~̀,S,~̀′) is a value which represents a boxed diagram. Users of the ECLNL programming
language are not expected to write labelled string diagrams S or terms such as (~̀,S,~̀′). Instead, these
terms are computed by the programming language itself. Depending on the diagram model, the language
should be extended with constants that are exposed to the user, for example, for quantum computing, a
constant H : Diag(qubit,qubit) could be utilised by the user to build quantum circuits.

The term typing judgements from the previous section are now extended to include a label context
as well, which is separated from the variable context using a semicolon; the new format of a term typing
judgement is Γ;Q ` m : A. Its interpretation is a morphism JΓK⊗ JQK→ JAK in C that is defined by
induction on the derivation as shown in Figure 2.

In the definition of the (diag) rule in the denotational semantics, we use a function φ , which we
now explain. From the premises of the rule, it follows that J~̀K : JQK→ JT K and J~̀′K : JQ′K→ JUK are
isomorphisms. Then, φ(~̀,S,~̀′) is defined to be the morphism:

φ(~̀,S,~̀′) = JT K
J~̀K
−1

−−−→ JQK
JSK−−→ JQ′K

J~̀′K−−→ JUK.

Theorem 4.5. Let D1 and D2 be derivations of a judgement Γ;Q ` m : A. Then JD1K = JD2K.
Because of this theorem, we write JΓ;Q ` m : AK instead of JDK.
A configuration is a pair (S,m), where S is a labelled string diagram and m is a term. Operationally,

we may think of S as the diagram that has been constructed so far, and m as the program which remains
to be executed.

Definition 4.6. A configuration is said to be well-typed with inputs Q, outputs Q′ and type A, which we
write as Q ` (S,m) : A;Q′, if there exists Q′′ disjoint from Q′, s.t. S : Q→ Q′′ ∪Q′ is a labelled string
diagram and /0;Q′′ ` m : A.
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Thus, in a well-typed configuration, the term m has no free variables and its labels correspond to a
subset of the outputs of S. We interpret a well-typed configuration Q ` (S,m) : A;Q′, by:

J(S,m)K := JQK
JSK−−→ JQ′′K⊗ JQ′K

J /0;Q′′`m:AK⊗id−−−−−−−−→ JAK⊗ JQ′K

The big-step semantics is defined on configurations; because of space reasons, we only show an ex-
cerpt of the rules in Figure 3. The rest of the rules are standard. A configuration value is a configuration
(S,v), where v is a value. The evaluation relation (S,m) ⇓ (S′,v) then relates configurations to configu-
ration values. Intuitively, this can be interpreted in the following way: assuming a constructed diagram
S, then evaluating term m results in a diagram S′ (obtained from S by appending other subdiagrams de-
scribed by m) and value v. There’s also an error relation (S,m) ⇓ Error which indicates that a run-time
error occurs when we execute term m from configuration S. There are many such Error rules, but they
are uninteresting, so we omit some of them (also see Theorem 4.8).

The operational semantics is presented in Figure 3. The evaluation rule for boxT m makes use of a
function freshlabels. Given a M-type T , freshlabels(T ) returns a pair (Q,~̀) such that /0;Q ` ~̀ : T , where
the labels in ~̀ are fresh in the sense that they do not occur anywhere else in the derivation. This can
always be done, and the resulting Q and ~̀ are determined uniquely, up to a renaming of labels (which is
inessential).

The evaluation rule for apply(m,n) makes use of a function append. Given a labelled string diagram
S′′ together with a label tuple ~k and term (~̀,D,~̀′), it is defined as follows. Assuming that ~̀ and ~k
correspond exactly to the inputs of D and that ~̀′ contains exactly the outputs of D, then we may construct
a term (~k ,D′,~k ′) which is equivalent to (~̀,D,~̀′) in the sense that they only differ by a renaming of labels.
Moreover, we may do so by choosing D′ and ~k ′ such that the labels in ~k ′ are fresh. Then, assuming the
labels in~k correspond to a subset of the outputs of S′′, we may construct the labelled string diagram S′′′

given by the composition:

S′′··
·

··
·
··
· D′
~k ′~k

··
·

Finally, append(S′′,~k ,~̀,D,~̀′) returns the pair (S′′′,~k ′) if the above assumptions are met, and is undefined
otherwise (which would result in a run-time error).

Example 4.7. Let us assume that our string diagram model is given by quantum circuits. More precisely,
assume that M contains at least the following diagram generators:

H T

representing the diagrams that describe (from left to right): the Hadamard gate, the T gate and the
CNOT gate of quantum computing. Assume further that the syntax of the language is extended with a
built-in wire type qubit and term constants H : Diag(qubit,qubit), T : Diag(qubit,qubit) and CNOT :
Diag(qubit⊗qubit,qubit⊗qubit) which are the user-exposed constants for constructing quantum cir-
cuits. Here we are overloading notation which hopefully should not lead to confusion.

Next, consider the term m≡ apply(CNOT,〈apply(H,q1),q2〉), where

/0;q1 : qubit,q2 : qubit ` m : qubit⊗qubit.
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This represents a unitary operation on two qubits, where we first apply a Hadamard gate on the first qubit
and then we apply a CNOT gate on the two qubits, with the first one being the control. If we add some
(obvious) rules for dealing with constants in the operational semantics, then we may evaluate m when it
appears as part of a configuration. For example, (idqubit⊗qubit,m) ⇓ (S,〈q3,q4〉), where S is the labelled
string diagram given by

Hq1

q2 q4

q3

where we have omitted annotating the types of the wires (which are all qubit).

Theorem 4.8 (Error freeness [38]). If Q ` (S,m) : A;Q′ then (S,m) 6⇓ Error.

Theorem 4.9 (Subject reduction [38]). If Q ` (S,m) : A;Q′ and (S,m) ⇓ (S′,v), then Q ` (S′,v) : A;Q′.

With this in place, we may now show our abstract model is sound. We remark that our abstract model
is strictly more general than the one of Rios and Selinger (see Section 2, Related Work).

Theorem 4.10. (Soundness) If Q ` (S,m) : A;Q′ and (S,m) ⇓ (S′,v), then J(S,m)K = J(S′,v)K.

4.3 A constructive property

If we assume, in addition, that E : M→ C is fully faithful, then setting M(T,U) := C (ET,EU) for
T,U ∈M defines a V-enriched categoryM with the same objects as M, and whose underlying category
is isomorphic to M. Moreover, E enriches to a fully faithful V-functor E :M→ C . As a consequence,
our abstract model enjoys the following constructive property:

C(JΦK,JT K( JUK)∼= C(F(X),JT K( JUK)∼=
V(X ,G(JT K( JUK))∼= V(X ,C (JT K,JUK))∼=
V(X ,C (EJT KM,EJUKM)) = V(X ,M(JT KM,JUKM))

where we use the additional structure only in the last step. This means that any well-typed term Φ; /0 `
m : T ( U corresponds to a V-parametrised family of string diagrams. For example, if V = Set (or
V = CPO), then we get precisely a (Scott-continuous) function from X toM(JT KM,JUKM) or in other
words, a (Scott-continuous) family of string diagrams from M.

4.4 Concrete Models

The original concrete model of Rios and Selinger is now easily recovered as an instance of our abstract
model:

MSet Fam([Mop,Set])
−� I

Fam([Mop,Set]) (I,−)

` Y
[Mop,Set]

where Fam(−) is the well-known families construction. However, our abstract treatment of the language
allows us to present a simpler sound model:

MSet

−� I

[Mop,Set](I,−)

` Y
[Mop,Set]
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And, an order-enriched model is given by:

MCPO
−� I

[Mop,CPO](I,−)

` Y
[Mop,CPO]

whereM is the free CPO-enrichment of M (obtained by discretely ordering its homsets) and CPO is
the self-enrichment of CPO.

5 The ECLNL calculus with recursion

Additional structure for Benton’s LNL models needed to support recursion was discussed by Benton
and Wadler in [7]. This structure allows them to model recursion in related lambda calculi, and in the
LNL calculus (renamed the "adjoint calculus") as well. However, they present no syntax or operational
semantics for recursion in their LNL calculus and instead they ". . . omit the rather messy details". Here
we extend both the CLNL and ECLNL calculi with recursion in a simple way by using similar additional
semantic structure. We conjecture the simplicity of our extension is due to our use of a single type of
judgement that employs mixed contexts; this is the main distinguishing feature of our CLNL calculus
compared to the LNL calculus of Benton and Wadler. Furthermore, we also include a computational
adequacy result for the CLNL calculus with recursion.

5.1 Extension with recursion

We extend the ECLNL calculus by adding the term rec x!A.m and we add an additional typing rule (left)
and an evaluation rule (right) as follows:

Φ,x :!A; /0 ` m : A
(rec)

Φ; /0 ` rec x!A.m : A
(S,m[lift rec x!A.m / x]) ⇓ (S′,v)

(S, rec x!A.m) ⇓ (S′,v)

Notice that in the typing rule, the label contexts are empty and all free variables in m are non-linear. As
a special case, the CLNL calculus also can be extended with recursion:

Φ,x :!A ` m : A
(rec)

Φ ` rec x!A.m : A
m[lift rec x!A.m / x] ⇓ v

rec x!A.m ⇓ v

In both cases, (parametrised) algebraic compactness of the !-endofunctor is what is needed to soundly
model the extension; Benton and Wadler make the same assumption.

Definition 5.1. An endofunctor T : C→C is algebraically compact if T has an initial T -algebra T (Ω)
ω−→

Ω for which Ω
ω−1

−−→ T (Ω) is a final T -coalgebra. If the category C is monoidal, then an endofunctor
T : C→C is parametrically algebraically compact if the endofunctor A⊗T (−) is algebraically compact
for every A ∈ C.

We note that this notion of parametrised algebraic compactness is weaker than Fiore’s corresponding
notion [17], but it suffices for our purposes. This allows us to extend both ECLNL and CLNL models
with recursion in the same way.

Definition 5.2. A model of the (E)CLNL calculus with recursion is given by a model of the (E)CLNL
calculus for which the !-endofunctor is parametrically algebraically compact.
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ΦΦ⊗ΦΦ⊗!Φ ∆id⊗ lift

Φ⊗!ΩΦ ΩΦ

ω
−1
Φ

γΦid⊗!γΦ

ΩΦ

σm

Φ⊗!ΩΦ

A

ωΦ

Φ⊗!A

id⊗!σm

m

idid

Figure 4: Definition of σm and γΦ.

If Φ∈C is a non-linear object, then the endofunctor Φ⊗!(−) is algebraically compact. Let Φ⊗!ΩΦ

ωΦ−→
ΩΦ be its initial algebra and let m : Φ⊗!A→ A be an arbitrary morphism. We define γΦ and σm to be
the unique anamorphism and catamorphism, respectively, such that the diagram in Figure 4 commutes.
Using this notation, we extend the denotational semantics to interpret recursion by adding the rule:

JΦ; /0 ` rec x!A.m : AK := σJmK ◦ γJΦK.

Observe that when Φ = /0, we get:

Jrec x!A.mK = JmK◦!Jrec x!A.mK◦ lift = JmK◦ Jlift rec x!A.mK

which is precisely a linear fixpoint in the sense of Braüner [12].

Theorem 5.3. Theorems 4.5 – 4.10 from the previous section remain true for the (E)CLNL calculus
extended with recursion.

5.2 Concrete Models

Let CPO be the category of cpo’s (possibly without bottom) and Scott-continuous functions, and let
CPO⊥! be the category of pointed cpo’s and strict Scott-continuous functions.

We present a concrete model for an arbitrary symmetric monoidal M. Let M be the free CPO-
enrichment of M. ThenM has the same objects as M and hom-cpo’sM(A,B) given by the hom-sets
M(A,B) equipped with the discrete order.M is then a CPO-symmetric monoidal category with the same
monoidal structure as M.

LetM⊥ be the free CPO⊥!-enrichment of M. Then,M⊥ has the same objects as M and hom-cpo’s
M⊥(A,B) =M(A,B)⊥, where (−)⊥ : CPO → CPO⊥! is the domain-theoretic lifting functor. M⊥ is
then a CPO⊥!-symmetric monoidal category with the same monoidal structure as that ofM where, in
addition, ⊥A,B satisfies the conditions of Proposition 5.7 (see Section 5.3 below).

By using the enriched Yoneda lemma together with the Day convolution monoidal structure, we see
that the enriched functor category [Mop

⊥ ,CPO⊥!] is CPO⊥!-symmetric monoidal closed.

Theorem 5.4. The following data:
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MCPO M⊥[Mop
⊥ ,CPO⊥!]

−� I

[Mop
⊥ ,CPO⊥!](I,−)

` Y

is a sound model of the ECLNL calculus extended with recursion.

Proof. The subcategory inclusionM ↪→M⊥ is CPO-enriched, faithful and strong symmetric monoidal,
as is the enriched Yoneda embedding Y . The CPO-copower (−� I) is given by:

(−� I) = (−• I)◦ (−)⊥,

where (−• I) : CPO⊥! → [Mop
⊥ ,CPO⊥!] is the CPO⊥!-copower with the tensor unit (see [11]). This

follows because the right adjoint and the adjunction factor through CPO⊥!. Parametrised algebraic
compactness of the !-endofunctor follows from [17, pp. 161-162].

Moreover, the concrete model enjoys a constructive property similar to the one in Subsection 4.3.
Using the same argument, if Φ; /0 ` m : T (U, then we obtain:

[Mop
⊥ ,CPO⊥!](JΦK,JT K( JUK)∼= CPO(X ,M⊥(JT KM,JUKM))

Therefore, the interpretation of m corresponds to a Scott-continuous function from X toM⊥(JT KM,JUKM).
In other words, this is a family of string diagram computations, in the sense that every element is either
a string diagram of M or a non-terminating computation.

Theorem 5.5. The CLNL model CPO CPO⊥!

(−)⊥

`

U

, where U is the forgetful functor, is a

sound model for the CLNL calculus with recursion.

Proof. Again, parametrised algebraic compactness of the !-endofunctor follows from [17, pp. 161-
162].

5.3 Computational adequacy

In this subsection we show that computational adequacy holds at non-linear types for the concrete CLNL
model given in the previous subsection.

We begin by showing that in any (E)CLNL model with recursion, the category C is pointed, which
allows us to introduce a notion of undefinedness. Towards that end, we first introduce a slightly weaker
notion, following Braüner [12].

Definition 5.6. A symmetric monoidal closed category is weakly pointed if it is equipped with a mor-
phism ⊥A: I→ A for each object A, such that for every morphism h : A→ B, we have h ◦ ⊥A=⊥B . In

this case, for each pair of objects A and B, there is a morphism ⊥A,B= A
λ
−1
A−−→ I⊗A

uncurry(⊥A(B)−−−−−−−−−→ B.

Proposition 5.7 ([12]). Let A be a weakly pointed category. Then:

1. f ◦ ⊥A,B=⊥A,C for each morphism f : B→C;

2. ⊥B,C ◦ f =⊥A,C for each morphism f : A→ B;

3. ⊥A,B ⊗ f =⊥A⊗C,B⊗D for each morphism f : C→ D.
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4. f⊗⊥A,B=⊥C⊗A,D⊗B for each morphism f : C→ D.

Lemma 5.8. Any weakly pointed category with an initial object 0 is pointed. Moreover, ⊥A=⊥I,A and
⊥A,B are zero morphisms.

Theorem 5.9. For every model of the (E)CLNL calculus with recursion, C is a pointed category with

⊥A= I
γI−→ΩI

σεA−−→ A,

where ΩI is the carrier of the initial algebra for the !-endofunctor.

Proof. It suffices to show for any h : A→ B that h ◦ ⊥A=⊥B which follows from the naturality of ε and
initiality of σε .

In particular, we have: J /0; /0 ` rec x!A.force x : AK =⊥JAK . Thus, the interpretation of the simplest
non-terminating program (of any type) is a zero morphism, as one would expect. Naturally, we use the
zero morphisms of C to denote undefinedness in our adequacy result.

Assume that C is CPO-enriched and that ⊥A,B is least in C (A,B). We shall use
∨

i ai to denote the
supremum of the increasing chain (ai)i∈N. For any Scott-continuous function K : C (A,B)→ C (A,B), let
K0 =⊥A,B and Ki+1 = K(Ki), for i ∈ N. Then

∨
i Ki is the least fixpoint of K. Note that K isn’t strict in

general.

Lemma 5.10. Consider an (E)CLNL model with recursion, where V = CPO and where ⊥A,B is least
in C (A,B), for all objects A and B (or equivalently C is CPO⊥!-enriched). Let m : Φ⊗!A→ A be a
morphism in C. Let Km be the Scott-continuous function Km : C (Φ,A)→ C (Φ,A) given by Km( f ) =
m◦ (id ⊗! f )◦ (id⊗ lift)◦∆. Then:

σm ◦ γΦ =
∨

i

Ki
m.

The significance of this lemma is that it provides an equivalent semantic definition for the (rec) rule
in terms of least fixpoints, provided we assume order-enrichment for our (E)CLNL models.

For the remainder of the section, we consider only the CLNL calculus which we interpret in the
CLNL model of Theorem 5.5. Therefore, in what follows C = CPO⊥!.

Lemma 5.11. Let /0 ` v : P be a well-typed value, where P is a non-linear type. Then J /0 ` v : PK 6= ⊥ .

Next, we prove adequacy using the standard method based on formal approximation relations, a
notion first devised by Plotkin [35].

Definition 5.12. For any type A, let:

VA := {v | v is a value and /0 ` v : A};
TA := {m | /0 ` m : A}.

We define two families of formal approximation relations:

EA ⊆ (C(I,JAK)−{⊥})×VA

vA ⊆ C(I,JAK)×TA

by induction on the structure of A:

(A1) f EI ∗ iff f = idI;

(A2.1) f EA+B left v iff ∃ f ′. f = left◦ f ′ and f ′ EA v;
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(A2.2) f EA+B right v iff ∃ f ′. f = right◦ f ′ and f ′ EB v;

(A3) f EA⊗B 〈v,w〉 iff ∃ f ′, f ′′, such that:
f = f ′⊗ f ′′ ◦λ

−1
I and f ′ EA v and f ′′ EB w;

(A4) f EA(B λx. m iff ∀ f ′ ∈ C(I,JAK),∀v ∈VA :

f ′ EA v⇒ eval◦ ( f ⊗ f ′)◦λ
−1
I vB m[v/x];

(A5) f E!A lift m iff f is a non-linear morphism and
εA ◦ f vA m;

(B) f vA m iff f 6=⊥⇒ ∃v ∈VA. m ⇓ v and f EA v.

So, the relation E relates morphisms to values and v relates morphisms to terms.

Lemma 5.13. If f EP v, where P is a non-linear type, then f is a non-linear morphism.

Lemma 5.14. For any m ∈ TA, the property (− vA m) is admissible for the (pointed) cpo C (I,JAK) in
the sense that Scott fixpoint induction is sound.

Proof. One has to show ⊥ vA m, which is trivial, and also that (−vA m) is closed under suprema of
increasing chains of morphisms, which is easily proven by induction on A.

Proposition 5.15. Let Γ `m : A, where Γ = x1 : A1, . . . ,xn : An. Let vi ∈VAi such that fi EAi vi. If f is the
composition:

f := I
∼=−→ I⊗·· ·⊗ I

f1⊗···⊗ fn−−−−−→ JΓK
JΓ`m:AK−−−−−→ JAK,

then f vA m[v / x].

Proof. By induction on the derivation of m. For the (rec) case, one should use Lemma 5.14 and Lemma 5.10.

Definition 5.16. We shall say that a well-typed term m terminates, in symbols m ⇓, iff there exists a
value v, such that m ⇓ v.

The next theorem establishes sufficient conditions for termination at any type.

Theorem 5.17 (Termination). Let /0 ` m : A be a well-typed term. If J /0 ` m : AK 6=⊥, then m ⇓ .

Proof. This is a special case of the previous proposition when Γ = /0. We get J /0 ` m : AKvA m, and thus
m ⇓ by definition of vA.

We can now finally state our adequacy result.

Theorem 5.18 (Adequacy). Let /0 ` m : P be a well-typed term, where P is a non-linear type. Then:

m ⇓ iff J /0 ` m : PK 6=⊥ .

Proof. The right-to-left direction follows from Theorem 5.17. The other direction follows from sound-
ness and Lemma 5.11.

The model of Theorem 5.5 was presented as an example by Benton and Wadler [7] for their LNL
calculus extended with recursion, however without stating an adequacy result. We have now shown that
it is computationally adequate at non-linear types for our CLNL calculus.
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6 Conclusion

We begin by briefly reviewing our results. Starting from Benton’s LNL calculus [8], we defined the
CLNL calculus, which adopts a single combined typing judgement, as opposed to the more traditional
approach with separate non-linear and linear typing judgements. Our approach is inspired by the lan-
guage Proto-Quipper-M and its initial model [38], in which the combined typing judgement is meant to
be a convenience for the programmer. We showed that these calculi — Benton’s LNL and our CLNL –
have the same categorical models, and we showed the CLNL calculus can be extended with recursion
in the same categorical model, bringing rigor to the discussion in [7]. Next, we showed that the CLNL
calculus can be extended with language features that turn it into a lambda calculus for string diagrams,
which we named the ECLNL calculus (this is essentially Proto-Quipper-M [38]). We then identified
the abstract models of ECLNL by considering the categorical enrichment of LNL models. Our abstract
approach allowed us to identify concrete models that are simpler than those previously considered, and
it also allowed us to extend the language with general recursion, thereby solving an open problem posed
by Rios and Selinger. The enrichment structure also made it possible to easily establish the constructiv-
ity properties that are expected to hold of a string diagram description language. Finally, we proved an
adequacy result for the CLNL calculus, which is the diagram-free fragment of the ECLNL calculus.

There are a number of ingredients in the development of these results that deserve further discussion:
• Categorical quantum mechanics;

• Linear logic and linear/non-linear models;

• Domain theory and support for recursion;

• String diagrammatic languages and calculi.
Our aim is to document Samson’s influence on these developments, and on the direction of future re-
search along these lines.

The first item on the list has yet to be mentioned. The work of Abramsky and Coecke [6] established
the beginning of the program on categorical quantum mechanics which has played a crucial role in the
development of logical methods for quantum information processing and has led to the development
of quantum diagrammatic calculi, most notably, the ZX-calculus [14], which provide an alternative to
the usual linear algebraic language for quantum computing. In this paper, we have also focused on
a diagrammatic approach to quantum information processing where our language is used to generate
(quantum) circuit diagrams. However, we only take into account the symmetric monoidal structure of
the diagrams, whereas a large (and very important) part of categorical quantum mechanics focuses further
on the compact closed structure of the diagrams which is a key component in the design of many quantum
diagrammatic calculi (e.g. ZX-calculus). It will be interesting to see whether our work can be extended
to also take into account the compact closed structure and we return to this point below when we discuss
future work.

Soon after its introduction, Girard’s linear logic [19] was hailed as the “logic behind logic" by logi-
cians, and as a means for “controlling the use of resources" by theoretical computer scientists. Samson’s
seminal article [1] showed how to interpret linear logic from a computational perspective. In those
early days, the focus was as much on the classical fragment, where the application was in the concur-
rent setting, as on the intuitionistic setting, where the, “...refinement of the lambda calculus" led to the
linear lambda calculus. Samson showed the classical fragment yields a concurrent process paradigm
with an operational semantics in the style of Berry and Boudol’s chemical abstract machine [9]. His
interpretation of the intuitionistic fragment allowed, “finer control over the order of evaluation and stor-
age allocation, while maintaining the logical content of programs as proofs, interpreting computation
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as cut-elimination". Samson predicted that the result would, "...open up a promising new approach to
the parallel implementation of functional programming languages; and offers the prospect of typed con-
current programming in which correctness is guaranteed by the typing," predictions that have largely
succeeded. Moreover, our work in this paper on our linear/non-linear lambda calculus has also been
heavily influenced by his work on the linear lambda calculus [1].

Samson contrasts the simple, concrete computational interpretation driven by syntax presented in [1]
with Girard’s geometric view of computation [21, 20]. He then expressed the hope that the results in [1]
would lead to connections with Girard’s approach. His later work realized this hope: the Geometry of
Interaction was employed in [3] to give a game semantics solution to the longstanding full abstraction
problem for PCF. In fact, this line of research had a profound effect on our understanding of computation
as taking place between two equal partners: a process run by a user on some device, and “the environ-
ment", understood as what was happening outside the control of the individual user. While we have
avoided the problem of full abstraction in this paper, this is still a very important property that should be
considered as part of future work.

Early work on linear logic focused equally on its classical and its intuitionistic fragments, with each
fragment having a non-linear analog. Over time, the computer science community focused more nar-
rowly on the intuitionistic fragment, for obvious reasons. Benton and Wadler [7] were the first to con-
sider LNL models from a programming language perspective. Several authors followed this with models
of languages featuring both linear and non-linear types within the same language, but it was Selinger
and Valiron [40] who first used LNL models in the context of quantum computing, albeit as a model
for a call-by-value computational linear lambda calculus. That line of research includes the work on the
quantum lambda calculus [41] and it runs up to to [38], which is a direct inspiration for our work.

One result of both logicians and computer scientists working in the same arena was an inevitable
clash of terminology. Among computer scientists working on quantum computing, it is customary to
use “classical" to refer to a computer relying on current technology, and “quantum" to refer to a device
utilizing quantum systems to perform computations. In the logic community, “classical" is reserved
for classical logic, as opposed to, e.g., intuitionistic logic. Likewise, when discussing linear/non-linear
models and the associated lambda calculi, one sometimes hears "intuitionistic" used to refer to notions
that are not linear. The resulting overloading of terminology can easily cause confusion. Our solution is
to reserve “classical" to refer to physical notions from classical physics, and we use "linear" and "non-
linear" to distinguish forms of lambda calculi and, likewise, primitives of programming languages. This
works, of course, because we have virtually no need to refer to classical logic.

The use of domain theory for giving semantics to lambda calculi that feature both linear and non-
linear fragments, and by extension, to programming languages that include both linear and non-linear
features has been mainly in the form of category theory, and in particular, in categories enriched over
directed complete partial orders. Indeed, little use has been made of continuous domains in this setting,
and we doubt that any will emerge because of the eventual need to support monoidal closed categories
that also are invariant under the valuations monad. The major impetus for semantic models has been type
theory, where support for term recursion and recursive types depends heavily on the work of Freyd on
algebraic completeness [18]. We have chosen to focus on (ω-) CPOs – partial orders in which increasing
sequences have least upper bounds – because these allow simpler arguments (as typified, e.g., in [27]).
Nevertheless, Samson has been a leader in the adoption of domain theory and category theory and their
techniques in modeling logics and programming languages, and his Handbook chapter with Jung [4] on
domain theory is a standard reference for the area. Indeed, we used it many times in the preparation of
this paper.
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7 Future Work

To discuss future work, we first need to mention extensions of this work that already have appeared.
First, the papers [29, 30] consider the question of adding type recursion to Proto-Quipper-M (PQM). The
approach is based on [17] on recursive types in FPC, and it presents an extension of FPC, the fixed point
calculus originally due to Plotkin, in which recursive types are introduced to a linear/non-linear lambda
calculus. The new metalanguage is called LNL-FPC, to indicate it is an extension of FPC to include
linear primitives. The results include soundness and computational adequacy at non-linear types. The
metalanguage LNL-FPC represents an extension of the circuit-free fragment of PQM.

A primary issue along this line is to extend the computational adequacy result to also include cir-
cuits. The problem has been the basic structure of models for PQM [38]. It starts with a symmetric
monoidal category M whose morphisms are meant to represent quantum circuits (and perhaps additional
morphisms). The next step is to form a certain categorical completion containing M, which is accom-
plished via an enriched presheaf category such as [Mop,CPO⊥!]. But this presheaf category uses the
Day convolution to define the tensor product, and the resulting tensor product is not order reflecting, a
key hypothesis for the proof of computational adequacy in [29]. Recent work offers some promise for
overcoming this problem. As reported at a recent POPL workshop [26], the first two authors have been
collaborating with a colleague on a new model whose linear category has a tensor product that is order
reflecting. We believe this may lead to a model in which computational adequacy can be shown to hold
for an extension of PQM that includes circuits, and that also supports general recursion.

Going further, recent work by the third author and his colleagues [34] shows that computational
adequacy at all types can be achieved in a model consisting of W*-algebras. Since the model in [26] has
many similar features to the former one, we are hopeful this result can transfer to that setting.

Returning to the work of Abramsky and Coecke on categorical quantum mechanics [2], it is very
important to consider an extension of our language which can accommodate compact closed structure.
This paves the way for new applications of the language with quantum diagrammatic calculi, such as the
ZX-calculus [14]. The work in [26] seems like a good foundation for building up such models.

Finally, the work in [26] has succeeded in many aspects, and we hope that the model can be extended
to also support the execution of quantum circuits, and not just their generation (which is the case for the
present paper). To accomplish that goal, we first need to incorporate state preparation in the model, and
this depends in turn on adding a monad of probability measures / valuations as a computational effect.
Our efforts to accomplish that have led to an interesting new result in the realm of “classical" domain
theory. In [24] the second author and a colleague have devised a new monad of valuations on DCPOs
for which the Fubini Theorem holds. The construction uses Keimel and Lawson’s D-completion of the
simple valuations [25], and relies on showing this family admits a barycenter map for the algebras of the
monad. Our hope is that this monad will show the way for adding state preparation to the model [26].
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