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PRISMATIC DIEUDONNÉ THEORY

JOHANNES ANSCHÜTZ AND ARTHUR-CÉSAR LE BRAS

Abstract. We define, for each quasi-syntomic ring R (in the sense of Bhatt-

Morrow-Scholze), a category DMadm(R) of admissible prismatic Dieudonné

crystals over R and a functor from p-divisible groups over R to DMadm(R).
We prove that this functor is an antiequivalence. Our main cohomological tool
is the prismatic formalism recently developed by Bhatt and Scholze.
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1. Introduction

Let p be a prime number. The goal of the present paper is to establish clas-
sification theorems for p-divisible groups over quasi-syntomic rings. This class of
rings is a non-Noetherian generalization of the class of p-complete locally complete
intersection rings and contains also big rings, such as perfectoid rings. Our main
theorem is as follows.

Theorem. Let R be a quasi-syntomic ring. There is a natural functor from the cat-
egory of p-divisible groups over R to the category DMadm(R) of admissible prismatic
Dieudonné crystals over R, which is an antiequivalence.

A more precise version of this statement and a detailed explanation will be given
later in this introduction. For now, let us just say that the category DMadm(R) is
formed by objects of semi-linear algebraic nature.

The problem of classifying p-divisible groups and finite locally free group schemes
by semi-linear algebraic structures has a long history, going back to the work of
Dieudonné on formal groups over characteristic p perfect fields. In characteristic
p, as envisionned by Grothendieck, and later developed by Messing ([44]), Mazur-
Messing ([43]), Berthelot-Breen-Messing ([6], [7]), the formalism of crystalline co-
homology provides a natural way to attach such invariants to p-divisible groups.
This theory goes by the name of crystalline Dieudonné theory and leads to classifi-
cation theorems for p-divisible groups over a characteristic p base in a wide variety
of situations, which we will not try to survey but for which we refer the reader,
for instance, to [37]. In mixed characteristic, the existing results have been more
limited. Fontaine ([23]) obtained complete results when the base is the ring of in-
tegers of a finite totally ramified extension K of the ring of Witt vectors W (k) of a
perfect field k of characteristic p, with ramification index e < p− 1. This ramifica-
tion hypothesis was later removed by Breuil ([16]) for p > 2, who also conjectured
an alternative reformulation of his classification in [15], simpler and likely to hold
even for p = 2, which was proved by Kisin ([30]), for odd p, and extended by Kim
([29]), Lau ([35]) and Liu ([38]) to all p. Zink, and then Lau, gave a classification
of formal p-divisible groups over very general bases using his theory of displays
([54]). More recently, p-divisible groups have been classified over perfectoid rings
([36], [51, Appendix to Lecture XVII]).

The main interest of our approach is that it gives a uniform and geometric con-
struction of the classifying functor on quasi-syntomic rings. This is made possible
by the recent spectacular work of Bhatt-Scholze on prisms and prismatic cohomol-
ogy ([13], [8]). So far, such a cohomological construction of the functor had been
available only in characteristic p, using the crystalline theory. This led in practice
to some restrictions, when trying to study p-divisible groups in mixed characteris-
tic by reduction to characteristic p, of which Breuil-Kisin theory is a prototypical
example : there, no direct definition of the functor was available when p = 2! Re-
placing the crystalline formalism by the prismatic formalism, we give a definition
of the classifying functor very close in spirit to the one used by Berthelot-Breen-
Messing ([6]) and which now makes sense without the limitation to characteristic p.
Over a quasi-syntomic ring R, our functor takes values in the category of admissible
prismatic Dieudonné crystals over R. As the name suggests, prismatic Dieudonné
crystals are prismatic analogues of the classical notion of a Dieudonné crystal on
the crystalline site.
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Before stating precisely the main results of this paper and explaining the tech-
niques involved, let us note that several natural questions are not addressed in this
paper.

(1) It would be interesting to go beyond quasi-syntomic rings. By analogy
with the characteristic p story, one would expect that the prismatic theory
should also shed light on more general rings. In the general case, admissi-
ble prismatic Dieudonné crystals will not be the right objects to work with.
One should instead define analogues of the divided Dieudonné crystals in-
troduced recently by Lau [37] in characteristic p.

(2) Even for quasi-syntomic rings, our classification is explicit for the so called
quasi-regular semiperfectoid rings or for complete regular local rings with
perfect residue field of characteristic p (cf. Section 5.2), as will be explained
below, but quite abstract in general. Classical Dieudonné crystals can be
described as modules over the p-completion of the PD-envelope of a smooth
presentation, together with a Frobenius and a connection satisfying vari-
ous conditions. Is there an analogous concrete description of (admissible)
prismatic Dieudonné crystals?

(3) Finally, it would also be interesting and useful to study deformation theory
(in the spirit of Grothendieck-Messing theory) for the prismatic Dieudonné
functor.

We now discuss in more detail the content of this paper.

1.1. Quasi-syntomic rings. Let us first define the class of rings over which we
study p-divisible groups.

Definition 1.1.1 (cf. Definition 3.3.1). A ring R is quasi-syntomic if R is p-
complete with bounded p∞-torsion and if the cotangent complex LR/Zp

has p-

complete Tor-amplitude in [−1, 0]1. The category of all quasi-syntomic rings is
denoted by QSyn.

Similarly, a map R → R′ of p-complete rings with bounded p∞-torsion is a
quasi-syntomic morphism if R′ is p-completely flat over R and LR′/R ∈ D(R′) has
p-complete Tor-amplitude in [−1, 0].

Remark 1.1.2. This definition is due to Bhatt-Morrow-Scholze [12] and extends
(in the p-complete world) the usual notion of l.c.i. rings and syntomic morphisms
(flat and l.c.i.) to the non-Noetherian, non finite-type setting. The interest of this
definition, apart from being more general, is that it more clearly shows why this
category of rings is relevant : the key property of (quasi-)syntomic rings is that
they have a well-behaved (p-completed) cotangent complex. The work of Avramov
shows that the cotangent complex is very badly behaved for all other rings, at least
in the Noetherian setting: it is left unbounded (cf. [2]).

Example 1.1.3. Any p-complete l.c.i. Noetherian ring is in QSyn. But there are
also big rings in QSyn : for example, any (integral) perfectoid ring is in QSyn (cf.
Example 3.3.3). As a consequence of this, the p-completion of a smooth algebra
over a perfectoid ring is also quasi-syntomic, as well as any bounded p∞-torsion

1This means that the complex M = LR/Zp
⊗L

R R/p ∈ D(R/p) is such that M ⊗L
R N ∈

D[−1,0](R/p) for any R/p-module N .



PRISMATIC DIEUDONNÉ THEORY 5

p-complete ring which can be presented as the quotient of an integral perfectoid
ring by a finite regular sequence. For example, the rings

OCp〈T 〉 ; OCp/p ; Fp[T
1/p∞ ]/(T − 1)

are quasi-syntomic.

The category of quasi-syntomic rings is endowed with a natural topology : the
Grothendieck topology for which covers are given by quasi-syntomic covers, i.e.,
morphisms R→ R′ of p-complete rings which are quasi-syntomic and p-completely
faithfully flat.

An important property of the quasi-syntomic topology is that quasi-regular
semiperfectoid rings form a basis of the topology (cf. Proposition 3.3.7).

Definition 1.1.4 (cf. Definition 3.3.5). A ring R is quasi-regular semiperfectoid if
R ∈ QSyn and there exists a perfectoid ring S mapping surjectively to R.

As an example, any perfectoid ring, or any p-complete bounded p∞-torsion quo-
tient of a perfectoid ring by a finite regular sequence, is quasi-regular semiperfectoid.

1.2. Prisms and prismatic cohomology (after Bhatt-Scholze). Our main
tool for studying p-divisible groups over quasi-syntomic rings is the recent prismatic
theory of Bhatt-Scholze [13], [8]. This theory relies on the seemingly simple notions
of δ-rings and prisms. In what follows, all the rings considered are assumed to be
Z(p)-algebras.

A δ-ring is a commutative ring A, together with a map of sets δ : A→ A, with
δ(0) = 0, δ(1) = 0, and satisfying the following identities :

δ(xy) = xpδ(y)+ypδ(x)+pδ(x)δ(y) ; δ(x+y) = δ(x)+δ(y)+
xp + yp − (x+ y)p

p
,

for all x, y ∈ A. For any δ-ring (A, δ), denote by ϕ the map defined by

ϕ(x) = xp + pδ(x).

The identities satisfied by δ are made to make ϕ a ring endomorphism lifting Frobe-
nius modulo p. Conversely, a p-torsion free ring equipped with a lift of Frobenius
gives rise to a δ-ring. A pair (A, I) formed by a δ-ring A and an ideal I ⊂ A is a
prism if I defines a Cartier divisor on Spec(A), if A is (derived) (p, I)-complete and
if I is pro-Zariski locally generated2 by a distinguished element, i.e., an element d
such that δ(d) is a unit.

Example 1.2.1. (1) For any p-complete p-torsion free δ-ringA, the pair (A, (p))
is a prism.

(2) Say that a prism is perfect if the Frobenius ϕ on the underlying δ-ring
is an isomorphism. Then the category of perfect prisms is equivalent to
the category of (integral) perfectoid rings : in one direction, one maps a
perfectoid ringR to the pair (Ainf(R) :=W (R♭), ker(θ)) (here θ : Ainf(R)→
R is Fontaine’s theta map) ; in the other direction, one maps (A, I) to A/I.
Therefore, one sees that, in the words of the authors of [13], prisms are
some kind of ”deperfection” of perfectoid rings.

The crucial definition for us is the following. We stick to the affine case for
simplicity, but it admits an immediate extension to p-adic formal schemes.

2In practice, the ideal I is always principal.
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Definition 1.2.2. Let R be a p-complete ring. The (absolute) prismatic site (R)∆
of R is the opposite of the category of bounded3 prisms (A, I) together with a
map R → A/I, endowed with the Grothendieck topology for which covers are
morphisms of prisms (A, I)→ (B, J), such that the underlying ring map A→ B is
(p, I)-completely faithfully flat.

Bhatt and Scholze prove that the functor O∆ (resp. O∆) on the prismatic
site valued in (p, I)-complete δ-rings (resp. in p-complete R-algebras), sending
(A, I) ∈ (R)∆ to A (resp. A/I), is a sheaf. The sheaf O∆ (resp. O∆) is called the
prismatic structure sheaf (resp. the reduced prismatic structure sheaf ).

From this, one easily deduces that the presheaves I∆ (resp. N≥1O∆) sending

(A, I) to I (resp. N≥1A := ϕ−1(I)) are also sheaves on (R)∆.

Let R be a p-complete ring. One proves the existence of a morphism of topoi:

v : Shv((R)∆)→ Shv((R)qsyn).

Set :
Opris := v∗O∆ ; N≥1Opris := v∗N

≥1O∆ ; Ipris := v∗I∆.

The sheafOpris is endowed with a Frobenius lift ϕ. Moreover, if R is quasi-syntomic,
the quotient sheaf Opris/N≥1Opris is naturally isomorphic to the structure sheaf O
of (R)qsyn.

1.3. Admissible prismatic Dieudonné crystals and modules. We are now in
position to define the category of objects classifying p-divisible groups.

Definition 1.3.1. Let R be a quasi-syntomic ring. A prismatic Dieudonné crystal
over R is a finite locally free Opris-moduleM together with ϕ-linear morphism

ϕM :M→M

whose linearization ϕ∗M →M has its cokernel is killed by Ipris. It is said to be
admissible if the image of the composition

M
ϕM
−−→M→M/IprisM

is a finite, locally free O-module FM such that the map (Opris/Ipris) ⊗O FM →
M/IprisM induced by ϕM is a monomorphism.

Definition 1.3.2. Let R be a quasi-syntomic ring. We denote by DM(R) the
category of prismatic Dieudonné crystals over R (with morphisms the Opris-linear

morphisms commuting with the Frobenius), and by DMadm(R) its full subcategory
of admissible prismatic Dieudonné crystals.

Remark 1.3.3. In a former version of the paper, we used the notion of filtered
prismatic Dieudonné crystal. A filtered prismatic Dieudonné crystal over a quasi-
syntomic ring R is a collection (M,FilM, ϕM) consisting of a finite locally free
Opris-module M, a Opris-submodule FilM, and a ϕ-linear map ϕM : M → M,
satisfying the following conditions :

(1) ϕM(FilM) ⊂ Ipris.M.
(2) N≥1Opris.M⊂ FilM andM/FilM is a finite locally free O-module.
(3) ϕM(FilM) generates Ipris.M as an Opris-module.

3A prism (A, I) is bounded if A/I has bounded p∞-torsion.
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However, as was pointed out to us by the referee, the category of filtered prismatic
Dieudonné crystals embeds fully faithfully in the category of prismatic Dieudonné
crystals, with essential image given by the admissible objects (this essentially follows
from Proposition 4.1.29 below). Since admissible prismatic Dieudonné crystals are
easier to work with than filtered prismatic Dieudonné crystals, we decided to work
only with the first; hence, the results stayed the same, but their formulation changed
slightly.

For quasi-regular semiperfectoid rings, these abstract objects have a concrete
incarnation. Let R be a quasi-regular semiperfectoid ring. The prismatic site (R)∆
admits a final object (∆R, I).

Example 1.3.4. (1) If R is a perfectoid ring, (∆R, I) = (Ainf(R), ker(θ̃)).
(2) If R is quasi-regular semiperfectoid and pR = 0, (∆R, I) ∼= (Acrys(R), (p)).

Definition 1.3.5. A prismatic Dieudonné module over R is a finite locally free
∆R-module M together with a ϕ-linear morphism

ϕM : M →M

whose linearization ϕ∗M → M has its cokernel is killed by I. It is said to be
admissible if the composition

M
ϕM
−−→M →M/I ·M

is a finite, locally free R ∼= ∆R/N≥1
∆R-module FM such that the map ∆R/I∆R ⊗R

FM →M/IM induced by ϕM is a monomorphism.

Proposition 1.3.6 (Proposition 4.1.13). Let R be a quasi-regular semiperfectoid
ring. The functor of global sections induces an equivalence between the category of
(admissible) prismatic Dieudonné crystals over R and the category of (admissible)
prismatic Dieudonné modules over R.

1.4. Statements of the main results. In all this paragraph, R is a quasi-
syntomic ring.

Theorem 1.4.1 (Theorem 4.6.7). Let G be a p-divisible group over R. The pair
(
M∆(G) = Ext

1(G,Opris), ϕM
∆
(G)

)
,

where the Ext is an Ext-group of abelian sheaves on (R)qsyn and ϕM∆(G) is the

Frobenius induced by the Frobenius of Opris, is an admissible prismatic Dieudonné
crystal over R, often denoted simply byM∆(G).

Remark 1.4.2. The rank of the finite locally free Opris-module M∆(G) is the

height of G, and the quotientM
∆
(G)/ϕ−1

M∆(G)(I
pris.M

∆
(G)) is naturally isomor-

phic to Lie(Ǧ), where Ǧ is the Cartier dual of G.

Remark 1.4.3. When pR = 0, the crystalline comparison theorem for prismatic
cohomology allows us to prove that this construction coincides with the functor
usually considered in crystalline Dieudonné theory, relying on Berthelot-Breen-
Messing’s constructions ([6]).

Theorem 1.4.4 (Theorem 4.6.10). The prismatic Dieudonné functor

M∆ : G 7→ (M∆(G), ϕM
∆
(G))
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induces an antiequivalence between the category BT(R) of p-divisible groups over R

and the category DMadm(R) of admissible prismatic Dieudonné crystals over R.

Remark 1.4.5. Theorem 1.4.1 and Theorem 1.4.4 immediately extend to p-divisible
groups over a quasi-syntomic formal scheme.

Remark 1.4.6. It is easy to write down a formula for a functor attaching to an
admissible prismatic Dieudonné crystal an abelian sheaf on (R)qsyn, which will be
a quasi-inverse of the prismatic Dieudonné functor : see Remark 4.9.6. But such a
formula does not look very useful.

Remark 1.4.7. As a corollary of the theorem and the comparison with the crys-
talline functor, one obtains that the (contravariant) Dieudonné functor from crys-
talline Dieudonné theory is an antiequivalence for quasi-syntomic rings in character-
istic p. For excellent l.c.i. rings, fully faithfulness was proved by de Jong-Messing;
the antiequivalence was proved by Lau for F -finite l.c.i. rings (which are in partic-
ular excellent rings).

Remark 1.4.8. It is not difficult to prove that if R is perfectoid, admissible pris-
matic Dieudonné crystals (or modules) over R are equivalent to minuscule Breuil-
Kisin-Fargues modules for R, in the sense of [11]. Therefore, Theorem 1.4.4 contains
as a special case the results of Lau and Scholze-Weinstein. But the proof of the
theorem actually requires this special case4 as an input.

Remark 1.4.9. In general, the prismatic Dieudonné functor (without the admis-
sibility condition) is not essentially surjective, but we prove it is an antiequivalence
for complete regular (Noetherian) local rings in Proposition 5.2.3, i.e., in this case
the admissibility condition is automatic.

Moreover, we explain in Section 5.2 how to recover Breuil-Kisin’s classification
(as extended by Kim, Lau and Liu to all p) of p-divisible groups over OK , where K
is a discretely valued extension of Qp with perfect residue field, from Theorem 1.4.4.

Remark 1.4.10. Section 5.3 shows how to extract from the admissible prismatic
Dieudonné functor a functor from BT(R) to the category of displays of Zink over
R. Even though the actual argument is slightly involved for technical reasons, the
main result there ultimately comes from the following fact : if R is a quasi-regular
semiperfectoid ring, the natural morphism θ : ∆R → R gives rise by adjunction to a
morphism of δ-rings ∆R → W (R), mapping N≥1

∆R to the image of Verschiebung
on Witt vectors.

Zink’s classification by displays works on very general bases but is restricted (by
design) to formal p-divisible groups or to odd p ; by contrast, our classification is
limited to quasi-syntomic rings but do not make these restrictions.

Remark 1.4.11. As in Kisin’s article [30], it should be possible to deduce from
Theorem 1.4.4 a classification result for finite locally free group schemes. We only
write this down over a perfectoid ring, in which case it was already known for p > 2
by the work of Lau, [36]. This result is used in the recent work of C̆esnavic̆ius and
Scholze [18].

4In fact, as observed in [51], only the case of perfectoid valuation rings with algebraically closed
and spherically complete fraction field is needed.
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1.5. Overview of the proof and plan of the paper. Section 2 and Section 3
contain some useful basic results concerning prisms and prismatic cohomology, with
special emphasis on the case of quasi-syntomic rings. Most of them are extracted
from [12] and [13], but some are not contained in loc. cit. (for instance, the
definition of the q-logarithm, Section 2.2, or the Künneth formula, Section 3.5), or
only briefly discussed there (for instance, the description of truncated Hodge-Tate
cohomology, Section 3.2).

Section 4 is the heart of this paper. We first introduce the category DMadm(R)
of admissible prismatic Dieudonné crystals over a quasi-syntomic ring R and dis-
cuss some of its abstract properties (Section 4.1). We then introduce a candidate

functor from p-divisible groups over R to DMadm(R) (Section 4.2). That it indeed

takes values in the category DMadm(R) is the content of Theorem 1.4.1, which we
do not prove immediately. We first relate this functor to other existing functors,
for characteristic p rings or perfectoid rings (Section 4.3). The next three sections
are devoted to the proof of Theorem 1.4.1. This proof follows a road similar to
the one of [6, Ch. 2, 3]. The basic idea is to reduce many statements to the case
of p-divisible groups attached to abelian schemes, using a theorem of Raynaud en-
suring that a finite locally free group scheme on R can always be realized as the
kernel of an isogeny between two abelian schemes over R, Zariski-locally on R.
For abelian schemes, via the general device, explained in [6, Ch. 2] and recalled
in Section 4.4, for computing Ext-groups in low degrees in a topos, one needs a
good understanding of the prismatic cohomology. It relies on the degeneration of
the conjugate spectral sequence abutting to reduced prismatic cohomology, in the
same way as the description of the crystalline cohomology of abelian schemes is
based on the degeneration of the Hodge-de Rham spectral sequence. We prove it
in Section 4.5 by appealing to the group structure on the abelian scheme. Alterna-
tively, one could use an identification of some truncation of the reduced prismatic
complex with some cotangent complex, in the spirit of Deligne-Illusie (or, more
recently, [11]), proved in Section 3.2.

To prove Theorem 1.4.4, stated as Theorem 4.6.10 below, one first observes that
the functors

R 7→ BT(R) ; R 7→ DMadm(R)

on QSyn are both stacks for the quasi-syntomic topology (for BT, this is done in
the Appendix). Therefore, to prove that the functorM∆ is an antiequivalence, it is
enough to prove it for R quasi-regular semiperfectoid, since these rings form a basis
of the topology, in which case one can simply consider the more concrete functor
M∆ taking values in admissible prismatic Dieudonné modules over R, defined by
taking global sections of M∆. Therefore, one sees that, even if one is ultimately
interested only by Noetherian rings, the structure of the argument forces to consider
large quasi-syntomic rings5.

Assume from now on that R is quasi-regular semiperfectoid. The proof of fully
faithfulness is ultimately reduced to the identification of the syntomic sheaf Zp(1)
(as defined using prismatic cohomology) to the p-adic Tate module of Gm, a re-
sult of Bhatt-Morrow-Scholze recently reproved without K-theory by Bhatt-Lurie
([10, Theorem 7.5.6]). (A former version of this paper attempted to prove fully
faithfulness using the strategy of [50] (following an idea of de Jong-Messing) : one

5In characteristic p, Lau has recently and independently implemented a similar strategy in
[37].
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first proves it for morphisms from Qp/Zp to µp∞ and then reduces to this special
case. This reduction step works fine in many cases of interest – such as charac-
teristic p or p-torsion free quasi-regular semiperfectoid rings – but we encountered
several technical difficulties while trying to push it to the general case.) Once fully
faithfulness is acquired, the proof of essential surjectivity is by reduction to the
perfectoid case. One can actually even reduce to the case of perfectoid valuation
rings with algebraically closed fraction field. In this case, the result is known, and
due - depending whether one is in characteristic p or in mixed characteristic - to
Berthelot and Scholze-Weinstein.

Finally, Section 5 gathers several complements to the main theorems, already
mentioned above : the classification of finite locally free group schemes of p-power
order over a perfectoid ring, Breuil-Kisin’s classification of p-divisible groups over
the ring of integers of a finite extension of Qp, the relation with the theory of
displays and the description of the Tate module of the generic fiber of a p-divisible
group from its prismatic Dieudonné crystal.

1.6. Notations and conventions. In all the text, we fix a prime number p.

• All finite locally free group schemes will be assumed to be commutative.
• If R is a ring, we denote by BT(R) the category of p-divisible groups over
R.
• If A is a ring, I ⊂ A an ideal, and K ∈ D(A) an object of the derived
category of A-modules, K is said to be derived I-complete if for every
f ∈ I, the derived limit of the inverse system

. . .K
f
→ K

f
→ K

vanishes. Equivalently, when I = (f1, . . . , fr) is finitely generated, K is
derived I-complete if the natural map

K → R lim(K ⊗L
A K

•
n)

is an isomorphism in D(A), where for each n ≥ 1, K•
n denotes the Koszul

complex K•(A; f
n
1 , . . . , f

n
r ) (one has H

0(K•
n) = A/(fn1 , . . . , f

n
r ), but beware

that in general K•
n may also have cohomology in negative degrees, unless

(f1, . . . , fr) forms a regular sequence). An A-moduleM is said to be derived
I-complete if K = M [0] ∈ D(A) is derived I-complete. The following
properties are useful in practice :
(1) A complex K ∈ D(A) is derived I-complete if and only if for each

integer i, Hi(K) is derived I-complete (this implies in particular that
the category of derived I-complete A-modules form a weak Serre sub-
category of the category of A-modules).

(2) If I = (f1, . . . , fr) is finitely generated, the inclusion of the full subcat-
egory of derived I-complete complexes in D(A) admits a left adjoint,
sending K ∈ D(A) to its derived I-completion

K̂ = R lim(K ⊗L
A K

•
n).

(3) (Derived Nakayama) If I is finitely generated, a derived I-complete
complex K ∈ D(A) (resp. a derived I-complete A-module M) is zero
if and only if K ⊗L

A A/I = 0 (resp. M/IM = 0).
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(4) If I is finitely generated, an A-module M is (classically) I-adically
complete if and only if it is derived I-complete and I-adically sepa-
rated.

(5) I = (f) is principal and M is an A-module with bounded f∞-torsion
(i.e. such thatM [f∞] =M [fN ] for some N), the derived I-completion
ofM (as a complex) is discrete and coincides with its (classical) I-adic
completion.

A useful reference for derived completions is [52, Tag 091N].
• Let A be a ring, I a finitely generated ideal. A complex K ∈ D(A) is
I-completely flat (resp. I-completely faithfully flat) if K ⊗L

A A/I is concen-
trated in degree 0 and flat (resp. faithfully flat), cf. [12, Definition 4.1]. If

an A-module M is flat, its derived completion M̂ is I-completely flat.
Assume that I is principal, generated by f ∈ A (in the sequel, f will

often be p). Let A → B be a map of derived f -complete rings. If A has
bounded f∞-torsion and A→ B is f -completely flat, then B has bounded
f∞-torsion. Conversely, if B has bounded f∞-torsion and A → B is f -
completely faithfully flat, A has bounded f∞-torsion. Moreover, if A and
B both have bounded f∞-torsion, then A→ B is f -completely (faithfully)
flat if and only if A/fn → B/fn is (faithfully) flat for all n ≥ 1. See [12,
Corollary 4.8]).
• A derived I-complete A-algebra R is I-completely étale (resp. I-completely
smooth) if R⊗L

A A/I is concentrated in degree 0 and étale (resp. smooth).
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2. Generalities on prisms

In this section we review the theory of prisms and collect some additional results.
In particular, we present the definition of the q-logarithm (cf. Section 2.2).

2.1. Prisms and perfectoid rings. We list here some basic definitions and results
from [13], of which we will make constant use in the paper. Let us first recall the
definition of a δ-ringA. In the following all rings will be assumed to be Z(p)-algebras.

Definition 2.1.1. A δ-ring is a pair (A, δ) with A a commutative ring and δ : A→
A a map (of sets) such that for x, y ∈ A the following equalities hold:

δ(0) = δ(1) = 0
δ(xy) = xpδ(y) + ypδ(x) + pδ(x)δ(y)

δ(x + y) = δ(x) + δ(y) + xp+yp−(x+y)p

p .

A morphism of δ-rings f : (A, δ)→ (A′, δ′) is a morphism f : A→ A′ of rings such
that f ◦ δ = δ′ ◦ f .

By design the morphism

ϕ : A→ A, x 7→ xp + pδ(x)

for a δ-ring (A, δ) is a ring homomorphism lifting the Frobenius on A/p. Using ϕ
the second property of δ can be rephrased as

δ(xy) = ϕ(x)δ(y) + ypδ(x) = xpδ(y) + ϕ(y)δ(x)

which looks close to that of a derivation. If A is p-torsion free, then any Frobenius
lift ψ : A→ A defines a δ-structure on A by setting

δ(x) :=
ψ(x) − xp

p
.

Thus, in the p-torsion free case a δ-ring is the same as a ring with a Frobenius lift.

Remark 2.1.2. The category of δ-rings has all limits and colimits and that these
are calculated on the underlying rings6 (cf. [13, Section 1]). In particular, there exist
free δ-rings (by the adjoint functor theorem). Concretely, if A is a δ-ring and X is
a set, then the free δ-ring A{X} on X is a polynomial ring over A with variables
δn(x) for n ≥ 0 and x ∈ X (cf. [13, Lemma 2.11]). Moreover, the Frobenius on
Z(p){X} is faithfully flat (cf. [13, Lemma 2.11]).

Definition 2.1.3. Let (A, δ) be a δ-ring.

(1) An element x ∈ A is called of rank 1 if δ(x) = 0.
(2) An element d ∈ A is called distinguished if δ(d) ∈ A× is a unit.

In particular, ϕ(x) = xp if x ∈ A is of rank 1.
Here is a useful lemma showing how to find rank 1 elements in a p-adically

separated δ-ring.

Lemma 2.1.4. Let A be a δ-ring and let x ∈ A. Then δ(xp
n

) ∈ pnA for all n. In
particular, if A is p-adically separated and y ∈ A admits a pn-th root for all n ≥ 0,
then δ(y) = 0, i.e., y has rank 1.

Proof. Cf. [13, Lemma 2.31]. �

6This does not hold for the category of rings with a Frobenius lift in the presence of p-torsion.
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We can now state the definition of a prism (cf. [13, Definition 3.2]). Recall that
a δ-pair (A, I) is simply a δ-ring A together with an ideal I ⊆ A.

Definition 2.1.5. A δ-pair (A, I) is a prism if I ⊆ A is an invertible ideal such that
A is derived (p, I)-complete, and p ∈ I + ϕ(I)A. A prism (A, I) is called bounded
if A/I has bounded p∞-torsion.

Remark 2.1.6. Some comments about these definitions are in order :

(1) By [13, Lemma 3.1] the condition p ∈ I + ϕ(I)A is equivalent to the fact
that I is pro-Zariski locally on Spec(A) generated by a distinguished ele-
ment. Thus it is usually not much harm to assume that I = (d) is actually
principal7.

(2) If (A, I) → (B, J) is a morphism of prisms, i.e., A → B is a morphism of
δ-rings carrying I to J , then [13, Lemma 3.5] implies that J = IB.

(3) An important example of a prism is provided by

(A, I) = (Zp[[q − 1]], ([p]q))

where

[p]q :=
qp − 1

q − 1
is the q-analog of p. Many other interesting examples will appear below.

(4) The prism (A, I) being bounded implies that A is classically (p, I)-adically
complete (cf. [8, Exercise 3.4]), and thus in particular p-adically separated.

Lemma 2.1.7. Let (A, I) be a prism and let d ∈ I be distinguished. If (p, d) is a
regular sequence in A, then for all r, s ≥ 0, r 6= s the sequences

(p, ϕr(d)), (ϕr(d), ϕs(d))

are regular.

Proof. Note that for the second case, one can always assume min(r, s) = 0, up to
replacing d by ϕmin(r,s)(d). Then the statement is proven in [1, Lemma 3.3] and [1,
Lemma 3.6]. �

Previous work in p-adic Hodge theory used, in one form or another, the theory of
perfectoid spaces. From the prismatic perspective, this is explained as follows. We
recall that a δ-ring A (or prism (A, I)) is called perfect if the Frobenius ϕ : A→ A
is an isomorphism. If A is perfect, then necessarily A ∼= W (R) for some perfect
Fp-algebra R (cf. [13, Corollary 2.30]).

Proposition 2.1.8. The functor

{perfect prisms (A, I)} → {(integral) perfectoid rings R}, (A, I) 7→ A/I.

is an equivalence of categories with inverse R 7→ (Ainf(R), ker(θ̃)), where Ainf(R) :=

W (R♭) and θ̃ = θ ◦ ϕ−1, θ being Fontaine’s theta map.

Proof. Cf. [13, Theorem 3.9]. �

Remark 2.1.9. (1) Of course, one could use θ instead of θ̃. We make this (slightly
strange) choice for coherence with later choices.

(2) The theorem implies in particular that for every perfect prism (A, I), the
ideal I is principal.

7For example, if A is perfect, i.e., the Frobenius ϕ : A → A is bijective, then this condition is
automatic by [13, Lemma 3.7].
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As a corollary, we get the following easy case of almost purity.

Corollary 2.1.10. Let R be a perfectoid ring and let R→ R′ be p-completely étale.
Then R′ is perfectoid. Moreover, if J ⊆ R is an ideal, then the p-completion R′ of
the henselization of R at J is perfectoid.

Proof. We can lift R′ to a (p, ker(θ))-completely étale Ainf(R)-algebra B. By [13,
Lemma 2.18], the δ-structure on Ainf(R) extends uniquely to B. Reducing modulo
p we see that B is a perfect δ-ring as it is (p, ker(θ))-completely étale over Ainf(R).
Using Proposition 2.1.8 R′ ∼= B/ ker(θ)B is therefore perfectoid. The statement
on henselizations follows from this as henselizations are colimits along étale maps
(cf. the proof of [52, Tag 0A02]). (Note that since R has bounded p∞-torsion, the
p-completion of an étale R-algebra is p-completely étale.) �

Moreover, perfectoid rings enjoy the following fundamental property.

Proposition 2.1.11. Let (A, I) be a perfect prism. Then for every prism (B, J)
the map

Hom((A, I), (B, J))→ Hom(A/I,B/J)

is a bijection.

Proof. Cf. [13, Lemma 4.7]. �

2.2. The q-logarithm. Each prism is endowed with its Nygaard filtration (cf. [8,
Definition 11.2]).

Definition 2.2.1. Let (A, I) be a prism. Then we set

N≥iA := ϕ−1(Ii)

for i ≥ 0. The filtration N≥•A is called the Nygaard filtration of (A, I).

This filtration (or rather the first piece of this filtration) will play an important
role in the rest of this text. It already shows up when proving the existence of the
q-logarithm

logq : Zp(1)(B/J)→ B, x 7→ logq([x
1/p]θ̃)

for a prism (A, I) over (Zp[[q − 1]], ([p]q)) from Remark 2.1.6, as we now explain.
Here,

Zp(1) := Tp(µp∞)

is the functor sending a ring R to Tp(R
×) = lim

←−
n

µpn(R) and

[−]θ̃ : lim←−
x 7→xp

A/I → A

is the Teichmüller lift sending a p-power compatible system

x := (x0, x1, . . .) ∈ lim
←−
x 7→xp

A/I

to the limit

[x]θ̃ := lim
−→
n→∞

x̃p
n

n

where x̃n ∈ A is a lift of xn ∈ A/I. By definition,

Zp(1)(A/I) ⊆ lim
←−
x 7→xp

A/I
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is the subset of the inverse limit consisting of sequences that start with a 1. More-
over, on lim

←−
x 7→xp

A/I one can take p-th roots

(−)1/p : lim
←−
x 7→xp

A/I → lim
←−
x 7→xp

A/I, (x0, x1, . . .) 7→ (x1, x2, . . .).

In [1, Lemma 4.10] there is the following lemma on the q-logarithm. For n ∈ Z

we recall that the q-number [n]q is defined as

[n]q :=
qn − 1

q − 1
∈ Zp[[q − 1]].

Lemma 2.2.2. Let (B, J) be a prism over (Zp[[q − 1]], ([p]q)). Then for every
element x ∈ 1 +N≥1B of rank 1, i.e., δ(x) = 0, the series

logq(x) =

∞∑

n=1

(−1)n−1q−n(n−1)/2 (x− 1)(x− q) · · · (x− qn−1)

[n]q

is well-defined and converges in B. Moreover, logq(x) ∈ N
≥1B and, in

B[1/p][[x− 1]]∧(q−1),

one has the relation logq(x) =
q−1
log(q) log(x), where log(x) :=

∞∑
n=1

(−1)n−1 (x−1)n

n .

The defining properties of the q-logarithm are that logq(1) = 0 and that its

q-derivative is
dqx
x (cf. [1, Lemma 4.6]).

One derives easily the existence of the “divided q-logarithm”.

Lemma 2.2.3. Let (B, J) be a bounded prism over (Zp[[q − 1]], ([p]q)) and let

x ∈ Zp(1)(B/J). Then [x1/p]θ̃ ∈ B is of rank 1 and lies in 1 +N≥1B. Thus

logq([x
1/p]θ̃) =

∞∑

n=1

(−1)n−1q−n(n−1)/2 ([x
1/p]θ̃ − 1) . . . ([x1/p]θ̃ − q

n−1)

[n]q

exists in B.

Proof. By Lemma 2.1.4 (which applies to B as B is bounded and thus classically
(p, [p]q)-complete, by [13, Lemma 3.7 (1)]), the element [x1/p]θ̃ is of rank 1 as it

admits arbitrary pn-roots. Moreover, [x1/p]θ̃ ∈ 1 +N≥1B as ϕ([x1/p]θ̃) = [x]θ̃ ≡ 1
modulo J . By Lemma 2.2.2 we can therefore conclude. �
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3. Generalities on prismatic cohomology

3.1. Prismatic site and prismatic cohomology. In this paragraph, we shortly
recall, mostly for the convenience of the reader and to fix notations, some fun-
damental definitions and results, without proofs, from [13]. Fix a bounded prism
(A, I). Let R be a p-complete A/I-algebra.

Definition 3.1.1. The prismatic site of R relative to A, denoted (R/A)∆, is the
category whose objects are given by bounded prisms (B, IB) over (A, I) together
with an A/I-algebra map R→ B/IB, with the obvious morphisms, endowed with
the Grothendieck topology for which covers are given by (p, I)-completely faithfully
flat morphisms of prisms over (A, I).

Remark 3.1.2. In this remark we deal with the set-theoretic issues arising from
Definition 3.1.1. For example, as it stands there does not exist a sheafification
functor for presheaves on (R/A)

∆
. We will implicitly fix a cut-off cardinal κ like

in [49, Lemma 4.1] and assume that all objects appearing in Definition 3.1.1 (or
Definition 3.1.4) have cardinality < κ. The results of this paper will not change
under enlarging κ. For example, the category of prismatic Dieudonné crystals on
(R)∆ will be independent of the choice of κ. Also the prismatic cohomology does

not change (because it can be calculated via a C̆ech-Alexander complex), and thus
the prismatic Dieudonné crystals will be independent of κ (by Section 4.4).

This affine definition admits an immediate extension to p-adic formal schemes
over Spf(A/I), cf [13].

Proposition 3.1.3 ([13], Corollary 3.12). The functor O
∆
(resp. O

∆
) on the pris-

matic site valued in (p, I)-complete δ−A-algebras (resp. in p-complete R-algebras),
sending (B, IB) ∈ (R/A)∆ to B (resp. B/IB), is a sheaf. The sheaf O∆ (resp.

O
∆
) is called the prismatic structure sheaf (resp. the reduced prismatic structure

sheaf).

These constructions have absolute variants, where one does not fix a base prism.
Let R be a p-complete ring.

Definition 3.1.4. The (absolute) prismatic site of R, denoted (R)∆, is the category
whose objects are given by bounded prisms (B, J) together with a ring map R →
B/J , with the obvious morphisms, endowed with the Grothendieck topology for
which covers are given by morphisms of prism (B, J) → (C, JC) which are (p, I)-
completely faithfully flat.

Exactly as before, one defines functors O∆ and O∆, which are sheaves on (R)∆.

We turn to the definition of (derived) prismatic cohomology. Fix a bounded
prism (A, I). The prismatic cohomology of R over A is defined in two steps. One
starts with the case where R is p-completely smooth over A/I.

Definition 3.1.5. Let R be a p-complete p-completely smooth A/I-algebra. The
prismatic complex ∆R/A of R over A is defined to be the cohomology of the sheaf
O∆ on the prismatic site :

∆R/A = RΓ((R/A)∆,O∆).

This is a (p, I)-complete commutative algebra object in D(A) endowed with a semi-
linear map ϕ : ∆R/A → ∆R/A, induced by the Frobenius of O∆.



PRISMATIC DIEUDONNÉ THEORY 17

Similarly, one defines the reduced prismatic complex or Hodge-Tate complex :

∆R/A = RΓ((R/A)
∆
,O

∆
).

This is a p-complete commutative algebra object in D(R).

A fundamental property of prismatic cohomology is the Hodge-Tate comparison
theorem, which relates the Hodge-Tate complex to differential forms. For this, first
recall that for any A/I-module M and integer n, the nth-Breuil-Kisin twist of M
is defined as

M{n} :=M ⊗A/I (I/I
2)⊗n.

The Bockstein maps

βI : H
i(∆R/A){i} → Hi+1(∆R/A){i+ 1}

for each i ≥ 0 make (H∗(∆R/A){∗}, βI) a graded commutative A/I-differential

graded algebra8, which comes with a map η : R→ H0(∆R/A).

Theorem 3.1.6 ([13], Theorem 4.10). The map η extends to a map

η∗R : (Ω
∧p

R/(A/I), d)→ (H∗(∆R/A), βI)

which is an isomorphism.

While proving Theorem 3.1.6, Bhatt and Scholze also relate prismatic and crys-
talline cohomology when the ring R is an Fp-algebra. The precise statement is the
following. Assume that I = (p), i.e. that (A, I) is a crystalline prism. Let J ⊂ A
be a PD-ideal with p ∈ J . Let R be a smooth A/J-algebra and

R(1) = R⊗A/J A/p,

where the map A/J → A/p is the map induced by Frobenius and the fact that J
is a PD-ideal.

Theorem 3.1.7 ([13], Theorem 5.2). Under the previous assumptions, there is a
canonical isomorphism of E∞ −A-algebras

∆R(1)/A ≃ RΓcrys(R/A),

compatible with Frobenius.

Remark 3.1.8. (1) If J = (p), R(1) is just the Frobenius twist of R.
(2) The proof of Theorem 3.1.7 goes through for a syntomic A/J-algebra R.

The important point is that in the proof in [13, Theorem 5.2] in each

simplicial degree the kernel of the morphism B• → R̃ is the inductive limit
of ideals of the form (p, x1, . . . , xr) with (x1, . . . , xr) being p-completely
regular relative to A, which allows to apply [13, Proposition 3.13]. The
statement extends by descent from the quasi-regular semiperfect case to all
quasi-syntomic rings over Fp (cf. Lemma 3.4.2).

Definition 3.1.5 of course makes sense without the hypothesis that R is p-
completely smooth over A/I. But it would not give well behaved objects ; for
instance, the Hodge-Tate comparison would not hold in general9. The formalism

8For p = 2 this assertion is non-trivial and part of the proof of [13, Theorem 4.10].
9Nevertheless, in Section 3.4 we will check that the site-theoretic defined prismatic cohomology

is well-behaved for quasi-regular semiperfectoid rings (as it agrees with the derived prismatic
cohomology), and also for quasi-syntomic rings
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of non-abelian derived functors allows to extend the definition of the prismatic and
Hodge-Tate complexes to all p-complete A/I-algebras in a manner compatible with
the Hodge-Tate comparison theorem.

Definition 3.1.9. The derived prismatic cohomology functor L∆−/A (resp. the

derived Hodge-Tate cohomology functor L∆−/A) is the left Kan extension (cf. [12,

Construction 2.1]) of the functor ∆−/A (resp. ∆−/A) from p-completely smooth
A/I-algebras to (p, I)-complete commutative algebra objects in (the ∞-category)
D(A) (resp. p-complete commutative algebra objects in D(R)), to the category of
p-complete A/I-algebras.

For short, we will just write ∆R/A (resp. ∆R/A) for L∆R/A (resp. L∆R/A) in the
following.

Left Kan extension of the Postnikov (or canonical filtration) filtration leads to
an extension of Hodge-Tate comparison to derived prismatic cohomology.

Proposition 3.1.10. For any p-complete A/I-algebra R, the derived Hodge-Tate
complex ∆R/A comes equipped with a functorial increasing multiplicative exhaus-

tive filtration Filconj∗ in the category of p-complete objects in D(R) and canonical
identifications

grconji (∆R/A) ≃ ∧
iLR/(A/I){−i}[−i]

∧p.

Finally, let us indicate how these affine statements globalize.

Proposition 3.1.11. Let X be a p-adic formal scheme over Spf(A/I), which is lo-
cally the formal spectrum of a p-complete ring with bounded p∞-torsion. There
exists a functorially defined (p, I)-complete commutative algebra object ∆X/A ∈
D(X,A), equipped with a ϕA-linear map ϕX : ∆X/A → ∆X/A, and having the fol-
lowing properties :

• For any affine open U = Spf(R) in X, there is a natural isomorphism of
(p, I)-complete commutative algebra objects in D(A) between RΓ(U,∆X/A)
and ∆R/A, compatible with Frobenius.

• Set ∆X/A = ∆X/A ⊗
L
A A/I ∈ D(X,A/I). Then ∆X/A is naturally an object

of D(X), which comes with a functorial increasing multiplicative exhaustive

filtration Filconj∗ in the category of p-complete objects in D(X) and canonical
identifications

grconji (∆X/A) ≃ ∧
iLX/(A/I){−i}[−i]

∧p.

3.2. Truncated Hodge-Tate cohomology and the cotangent complex. Let
(A, I) be a bounded prism, and let X be a p-adic A/I-formal scheme. The fol-
lowing result also appears in [13, Proposition 4.14]10. We give a similar argument
(suggested to us by Bhatt), with more details than in loc. cit. Since this result
is not strictly necessary for the rest of the paper, the reader can safely skip this
subsection.

Proposition 3.2.1. There is a canonical isomorphism :

αX : LX/Spf(A){−1}[−1]
∧p ∼= Filconj1 (∆X/A),

where the right-hand side is the first piece of the increasing filtration on ∆X/A

introduced in Proposition 3.1.11.

10Recently, Illusie has also obtained related results in characteristic p (private communication).
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Proof. We can assume that X = Spf(R) is affine. Write Ā = A/I. We want to
prove that there is a canonical isomorphism

αR : LR/A{−1}[−1]
∧p ∼= Filconj1 (∆R/A).

First, let us note that by the transitivity triangle for A → Ā → R the cotangent
complex LR/A{−1}[−1]

∧p sits inside a triangle

R ∼= R⊗Ā LĀ/A{−1}[−1]
∧p → LR/A{−1}[−1]

∧p → LR/Ā{−1}[−1]
∧p

and the outer terms are isomorphic to R ∼= grconj0 ∆R/A and

grconj1 ∆R/A
∼= LR/Ā{−1}[−1]

∧p.

To construct the isomorphism αR it suffices to restrict to Ā → R p-completely
smooth first, and then Kan extend. Thus assume from now on that R is p-
completely smooth over Ā.

Let (B, J) ∈ (R/A)∆, i.e., (B, J) is a prism over (A, I) with a morphism ι : R→
B/J . Pulling back the extension of A-algebras

0→ J/J2 → B/J2 → B/J → 0

along ι : R → B/J defines an extension of R by J/J2 ∼= B/J{1} and as such, is
thus classified by a morphism

α′
R : L

∧p

R/A → B/J{1}[1].

Passing to the (homotopy) limit over all (B, J) ∈ (R/A)∆ then defines (after shifting
and twisting) the morphism

αR : LR/A{−1}[−1]
∧p → τ≤1∆R/A.

Concretely, if R = Ā〈x〉, then

L
∧p

R/A
∼= R⊗Ā I/I

2[1]⊕Rdx.

On the summand R ⊗Ā I/I
2[1], the morphism α′

R is simply the base extension of
I/I2 → J/J2 as follows by considering the case Ā = R. On the summand Rdx
the morphism α′

R is (canonically) represented by the J/J2-torsor of preimages of

ι(x) in B/J2 and factors as R
ι
−→ B/J → B/J{1}[1] with the second morphism the

connecting morphism for 0 → B/J{1} → B/J2 → B/J → 0. Thus, after passing
to the limit, we get a diagram

R

�� %%▲
▲▲

▲▲
▲▲

▲▲
▲

∆R/A
// ∆R/A{1}[1]

and on H0 the horizontal morphism induces the Bockstein differential

β : H0(∆R/A)→ H0(∆R/A{1}[1]) = H1(∆R/A){1}.

Thus the image of dx ∈ H0(L
∧p

R/A) under αR is β(ι(x)). Therefore we see that on

H0 the morphism αR induces the identity under the identifications

(Ω1
R/Ā)

∧p ∼= H0(L
∧p

R/A)

and
(Ω1

R/Ā)
∧p ∼= H1(∆R/A){1}
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(the second is the Hodge-Tate comparison). Moreover, the morphism

R⊗Ā I/I
2 ∼= H−1(L

∧p

R/A)
H−1(αR)
−−−−−−→ H−1(∆R/A{1}[1])

is the canonical one obtained by tensoring R → H0(∆R/A) with I/I2. By functo-

riality (and as Ω1
R/A is generated by dr for r ∈ R), we can conclude that for every

p-completely smooth algebra R over A

αR : Hi(L
∧p

R/A)→ Hi(∆R/A{1}[1])

induces the canonical morphism, and thus, that αR is an isomorphism in general.
�

Recall the following proposition, which is a general consequence of the theory of
the cotangent complex.

Proposition 3.2.2. Let S be a ring, I ⊆ S an invertible ideal and X a flat
S := S/I-scheme. Then the class γ ∈ Ext2OX

(LX/Spec(S), I/I
2 ⊗S OX) defined

by LX/Spec(S) is ± the obstruction class for lifting X to a flat S/I2-scheme.

Proof. See [24, III.2.1.2.3] resp. [24, III.2.1.3.3]. �

As before, let (A, I) be a bounded prism.

Corollary 3.2.3. Let X be a p-completely flat p-adic formal scheme over A/I.

The complex Filconj1 ∆X/A splits in D(X) (i.e., is isomorphic in D(X) to a complex
with zero differentials) if and only if X admits a lifting to a p-completely flat formal
scheme over A/I2.

Proof. Indeed, Filconj1 ∆X/A splits if and only if the class in

Ext1OX
(grconj1 ∆X/A, gr

conj
0 ∆X/A) = Ext2OX

(L
∧p

X/Spf(A/I){−1},OX)

defined by Filconj1 (∆X/A) vanishes. Proposition 3.2.1 shows that this class is the same

as the class defined by the p-completed cotangent complex L
∧p

X/Spf(A){−1}. Lifting

X to a p-completely flat formal scheme over A/I2 is the same as lifting X ⊗A/I
A/(I, pn) to a flat scheme over A/(I2, pn) for all n ≥ 1 (here we use that (A, I)
is bounded in order to know that A/I is classically p-complete). One concludes
by applying Proposition 3.2.2, together with the fact that the p-completion of the
cotangent complex does not affect the (derived) reduction modulo pn. �

3.3. Quasi-syntomic rings. We shortly recall some key definitions from [12, Chap-
ter 4].

Definition 3.3.1. A ring R is quasi-syntomic if R is p-complete with bounded
p∞-torsion and if the cotangent complex LR/Zp

has p-complete Tor-amplitude in

[−1, 0]11. The category of all quasi-syntomic rings is denoted by QSyn.
Similarly, a map R → R′ of p-complete rings with bounded p∞-torsion is a

quasi-syntomic morphism (resp. a quasi-syntomic cover) if R′ is p-completely flat
(resp. p-completely faithfully flat) over R and LR′/R ∈ D(R′) has p-complete Tor-
amplitude in [−1, 0].

11This means that the complex M = LR/Zp
⊗L

R R/p ∈ D(R/p) is such that M ⊗L
R N ∈

D[−1,0](R/p) for any R/p-module N .
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For a quasi-syntomic ring R the p-completed cotangent complex (LR/Zp
)∧p will

thus be in D[−1,0] (cf. [12, Lemma 4.6]).

Remark 3.3.2. This definition extends (in the p-complete world) the usual notion
of locally complete intersection ring and syntomic morphism (flat and local complete
intersection) to the non-Noetherian, non finite-type setting, as shown by the next
example.

Example 3.3.3. (1) Any p-complete l.c.i. Noetherian ring is in QSyn (cf. [2,
Theorem 1.2]).

(2) There are also big rings in QSyn. For example, any (integral) perfectoid
ring (i.e., a ring R which is p-complete, such that πp = pu for some π ∈ R
and u ∈ R×, Frobenius is surjective on R/p and ker(θ) is principal.) is in
QSyn (cf. [12, Proposition 4.18]). We give a short explanation : if R is such
a ring, the transitivity triangle for

Zp → Ainf(R)→ R

and the fact that Ainf(R) is relatively perfect over Zp modulo p imply that
after applying −⊗L

R R/p, LR/Zp
and LR/Ainf (R) identify. But

LR/Ainf (R) = ker(θ)/ ker(θ)2[1] = R[1],

as ker(θ) is generated by a non-zero divisor12.
(3) As a consequence of (ii), the p-completion of a smooth algebra over a per-

fectoid ring is also quasi-syntomic, as well as any p-complete bounded p∞-
torsion ring which can be presented as the quotient of an integral perfectoid
ring by a finite regular sequence.

The (opposite of the) category QSyn is endowed with the structure of a site.

Definition 3.3.4. Let QSynopqsyn be the site whose underlying category is the op-
posite category of the category QSyn and endowed with the Grothendieck topology
generated by quasi-syntomic covers.

If R ∈ QSyn we will denote by (R)QSYN (resp. (R)qsyn) the big (resp. the
small) quasi-syntomic site of R, given by all p-complete with bounded p∞-torsionR-
algebras (resp. by all quasi-syntomic R-algebras, i.e. all p-complete with bounded
p∞-torsion R-algebras S such that the structure map R → S is quasi-syntomic)
endowed with the quasi-syntomic topology.

The authors of [12] isolated an interesting class of quasi-syntomic rings.

Definition 3.3.5. A ring R is quasi-regular semiperfectoid if R ∈ QSyn and there
exists a perfectoid ring S mapping surjectively to R.

Example 3.3.6. Any perfectoid ring, or any p-complete bounded p∞-torsion quo-
tient of a perfectoid ring by a finite regular sequence, is quasi-regular semiperfectoid.

The interest of quasi-regular semiperfectoid rings comes from the fact that they
form a basis of the site QSynopqsyn.

Proposition 3.3.7. Let R be quasi-syntomic ring. There exists a quasi-syntomic
cover R → R′, with R′ quasi-regular semiperfectoid. Moreover, all terms of the
C̆ech nerve R

′• are quasi-regular semiperfectoid.

12One also proves that R[p∞] = R[p], which shows that R has bounded p∞-torsion.
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Proof. See [12, Lemma 4.27] and [12, Lemma 4.29]. �

Finally, recall the following result, which is [13, Prop 7.11].

Proposition 3.3.8. Let (A, I) be a bounded prism, and R be a quasi-syntomic A/I-
algebra. There exists a prism (B, IB) ∈ (R/A)∆ such that the map R → B/IB is
p-completely faithfully flat. In particular, if A/I → R is a quasi-syntomic cover,
then (A, I)→ (B, IB) is a faithfully flat map of prisms.

Proof. Since the proof is short, we recall it. Choose a surjection

A/I〈xj , j ∈ J〉 → R,

for some index set J . Set

S = A/I〈x
1/p∞

j 〉⊗̂
L

A/I〈xj,j∈J〉R.

Then R → S is a quasi-syntomic cover and by assumption A/I → R is quasi-
syntomic : hence, the map A/I → S is quasi-syntomic. Moreover the p-completion
of Ω1

S/(A/I) is zero. We deduce that the map A/I → S is such that (LS/(A/I))
∧p

has p-complete Tor-amplitude in degree [−1,−1]. Therefore, by the Hodge-Tate
comparison, the derived prismatic cohomology ∆S/A is concentrated in degree 0

and the map S → ∆S/A is p-completely faithfully flat. One can thus just take
B = ∆S/A. �

As observed in [13], a corollary of Proposition 3.3.8 is André’s lemma.

Theorem 3.3.9 (André’s lemma). Let R be perfectoid ring. Then there exists a
p-completely faithfully flat map R→ S of perfectoid rings such that S is absolutely
integrally closed, i.e., every monic polynomial with coefficients in S has a solution.

Proof. This is [13, Theorem 7.12]. Since the proof is also short, we recall it. Write
R = A/I, for a perfect prism (A, I) (Proposition 2.1.8). The p-complete R-algebra

R̃ obtained by adding roots of all possible monic polynomials over R is a quasi-
syntomic cover, so by Proposition 3.3.8, we can find a prism (B, J) over (A, I) with a

p-completely faithfully flat morphism R̃→ R1 := B/J . Moreover, we can (and do)
assume that (B, J) is a perfect prism. Indeed, as (A, I) is perfect, the underlying
A-algebra of the perfection13 of (B, J) is the (p, I)-completion of a filtered colimit
of (p, I)-completely faithfully flat A-algebras, hence is (p, I)-completely faithfully
flat. Transfinitely iterating the construction R 7→ R1 produces the desired ring
S. �

Let us recall that a functor u : C → D between sites is cocontinuous (cf. [52, Tag
00XI]) if for every object C ∈ C and any covering {Vj → u(C)}j∈J of u(C) inD there
exists a covering {Ci → C}i∈I of C in C such that the family {u(Ci) → u(C)}i∈I
refines the covering {Vj → u(C)}j∈J . For a cocontinuous functor u : C → D the
functor

u−1 : Shv(D)→ Shv(C), F → (F ◦ u)♯

(here ()♯ denotes sheafification) is left-exact (even exact) with right adjoint

G ∈ Shv(C) 7→ (D 7→ lim
←−

{u(C)→D}op

G(C)).

13The perfection of a prism is the (p, I)-derived completion (or classical) of its colimit along
ϕ. See [13].
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Thus, a cocontinuous functor u : C → D induces a morphism of topoi

u : Shv(C)→ Shv(D).

Note that in the definition of a cocontinuous functor the morphisms u(Cj)→ u(C)
are not required to form a covering of C.

Corollary 3.3.10. Let R be a p-complete ring. The functor u : (R)∆ → (R)QSYN,
sending (A, I) to

R→ A/I

is cocontinuous. Consequently, it defines a morphism of topoi, still denoted by u :

u : Shv((R)∆)→ Shv((R)QSYN).

Proof. Immediate from the definition (cf. [52, Tag 00XJ]) and the previous propo-
sition. �

This yields the following important corollary.

Corollary 3.3.11. Let R be a p-complete ring. Let

0→ G1 → G2 → G3 → 0

be a short exact sequence of abelian sheaves on (R)QSYN. Then the sequence

0→ u−1(G1)→ u−1(G2)→ u−1(G3)→ 0

is an exact sequence on (R)∆. This applies for example when G1, G2, G3 are finite
locally free group schemes over R.

Proof. The first assertion is just saying that u−1 is exact, as u is a cocontinuous
functor ([52, Tag 00XL]). The second assertion follows, as any finite locally free
group scheme is syntomic (cf. [16, Proposition 2.2.2]). �

3.4. Prismatic cohomology of quasi-regular semiperfectoid rings. In this
short subsection, we collect a few facts about prismatic cohomology of quasi-regular
semiperfectoid rings for later reference.

For the moment, fix a bounded base prism (A, I) and let R be p-complete A/I-
algebra. There are several cohomologies attached to R :

(1) The derived prismatic cohomology

∆R/A

of R over (A, I) defined in Definition 3.1.9 via left Kan extension of pris-
matic cohomology.

(2) The cohomology

∆
init
R/A := RΓ((R/A)∆,O∆)

of the prismatic site of (R/A)∆ (with its p-completely faithfully flat topol-
ogy).

(3) Finally (and only for technical purposes),

∆
init,unbdd
R/A := RΓ((R/A)∆,unbdd,O∆),

the prismatic cohomology of R with respect to the site (R/A)∆,unbdd of not

necessarily bounded prisms (B, J) over (A, I) together with a morphism
R→ B/J of A/I-algebras. We equip (R/A)∆,unbdd with the chaotic topol-
ogy.
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Assume from now on that (A, I) is a perfect prism and that A/I → R is a

surjection with R quasi-regular semiperfectoid. The prism ∆
init,unbdd
R/A admits then a

more concrete (but in general rather untractable) description. Let K be the kernel
of A→ R. Then

∆
init,unbdd
R/A

∼= A{
K

I
}∧(p,I)

is the prismatic envelope of the δ-pair (A,K) from [8, Lemma V.5.1] as follows from
the universal property of the latter. In particular, the site (R/A)∆,unbdd has a final

object14.

Proposition 3.4.1. Let as above (A, I) be a perfect prism and R quasi-regular
semiperfectoid with a surjection A/I ։ R. Then the canonical morphisms induce
isomorphisms

∆R/A
∼= ∆

init
R/A
∼= ∆

init,unbdd
R/A

as δ-rings.

Proof. This is [13, Proposition 7.10] (the second isomorphism, i.e. the fact that

∆
init,unbb
R/A is bounded, follows from the last assertion of loc. cit.). �

If pR = 0, i.e., R is quasi-regular semiperfect, there is moreover the universal
p-complete PD-thickening

Acrys(R)

of R (cf. [50, Proposition 4.1.3]). The ring Acrys(R) is p-torsion free by [12, Theorem
8.14].

Lemma 3.4.2. Let (A, I), R be as above and assume that pR = 0. Then there is
a canonical ϕ-equivariant isomorphism

∆R/A
∼= Acrys(R).

Proof. As Acrys(R) is p-torsion free (cf. [12, Theorem 8.14]) and carries a canonical
Frobenius lift there we get a natural morphism

∆R/A → Acrys(R).

Conversely, the kernel of the natural morphism (cf. Theorem 3.4.4, which does not
depend on this lemma)

θ : ∆R/A → R

has divided powers (as one checks similarly to [12, Proposition 8.12], using that the
proof of Theorem 3.1.7 goes through in the syntomic case, cf. Remark 3.1.8). This
provides a canonical morphism

Acrys(R)→ ∆R

in the other direction. Similarly, to [12, Theorem 8.14] one checks that both are
inverse to each other. �

14Up to now this discussion did not use that R is quasi-regular, it was sufficient that A/I → R
is surjective.
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Remark 3.4.3. Both rings ∆R/A and Acrys(R) are naturally W (R♭)-algebras, but

the isomorphism of Lemma 3.4.2 restricts to the Frobenius on W (R♭). Concretely,
if R = R♭/x for some non-zero divisor x ∈ R♭, then

∆R/W (R♭)
∼=W (R♭){

x

p
}∧

and (cf. [13, Corollary 2.37])

Acrys(R) ∼=W (R♭){
xp

p
}∧ ∼= ∆R/W (R♭) ⊗W (R♭),ϕW (R♭).

The prismatic cohomology ∆R of a quasi-regular semiperfectoid ring R comes
equipped with its Nygaard filtration, [13, §12], an N-indexed decreasing multiplica-
tive filtration defined for i ≥ 0 by

N≥i(∆R) = {x ∈ ∆R, ϕ(x) ∈ d
i∆R},

d denoting a generator of the ideal I. The graded pieces of the Nygaard filtration
can be described as follows.

Theorem 3.4.4. Let R be a quasi-regular semiperfectoid ring. Then

N≥i(∆R)/N
≥i+1(∆R) ∼= Filconji (∆R){i}

for i ≥ 0. In particular, ∆R/N≥1
∆R
∼= R.

Here Filconj• (∆R) denotes the conjugate filtration on ∆R with graded pieces given

by grconji (∆R) ∼= ΛiL
∧p

R/S [−i], for any choice of perfectoid ring S mapping to R, cf.

3.1.10).

Proof. See [13, Theorem 12.2]. �

3.5. The Künneth formula in prismatic cohomology. The Hodge-Tate com-
parison implies a Künneth formula. Here is the precise statement. Note that for
a bounded prism (A, I) the functor R 7→ ∆R/A is naturally defined on all derived
p-complete simplicial A/I-algebras.

Proposition 3.5.1. Let (A, I) be a bounded prism. Then the functor

R 7→ ∆R/A

from derived p-complete simplicial rings over A/I to derived (p, I)-complete E∞-
algebras over A preserves tensor products, i.e., for all morphism R1 ← R3 → R2

the canonical morphism

∆R1/A⊗̂
L

∆R3/A
∆R2/A → ∆

R1⊗̂
L

R3
R2/A

is an equivalence.

Proof. Using [12, Construction 2.1] (resp. [40, Proposition 5.5.8.15]) the functor
R 7→ ∆R/A, which is the left Kan extension from p-completely smooth algebras to all
derived p-complete simplicial A/I-algebras, commutes with colimits if it preserves
finite coproducts. Clearly, ∆(A/I)/A

∼= A, i.e., ∆−/A preserves the final object.
Moreover, for R,S p-completely smooth over A/I the canonical morphism

∆R/A⊗̂
L

A∆S/A → ∆S⊗̂R/A

is an isomorphism because this may by I-completeness be checked for ∆−/A where
it follows from the Hodge-Tate comparison. �
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Gluing the isomorphism in Proposition 3.5.1 we can derive, using as well the pro-
jection formula and flat base change for quasi-coherent cohomology, the following
statement.

Corollary 3.5.2. If X and Y are quasi-compact quasi-separated p-completely smooth
p-adic formal schemes over Spf(A/I)), then

RΓ(X ×Spf(A/I) Y,∆X×Spf(A/I)Y/A)
∼= RΓ(X,∆X/A)⊗̂

L

ARΓ(Y,∆Y/A).
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4. Prismatic Dieudonné theory for p-divisible groups

This chapter is the heart of this paper. We construct the prismatic Dieudonné
functor over any quasi-syntomic ring and prove that it gives an antiequivalence
between p-divisible groups over R and admissible prismatic Dieudonné crystals over
R. The strategy to do this is to use quasi-syntomic descent to reduce to the case
where R is quasi-regular semiperfectoid, in which case the (admissible) prismatic
Dieudonné crystals over R can be replaced by simpler objects, the (admissible)
prismatic Dieudonné modules.

4.1. Abstract prismatic Dieudonné crystals and modules. Let R be a p-
complete ring. We defined in Corollary 3.3.10 a morphism of topoi :

u : Shv((R)∆)→ Shv((R)QSYN).

We let
ǫ∗ : Shv((R)QSYN)→ Shv((R)qsyn)

be the functor defined by ǫ∗F(R′) = F(R′) for F ∈ Shv((R)QSYN) and R′ ∈
(R)qsyn. It has a left adjoint ǫ♮ : Shv((R)qsyn) → Shv((R)QSYN). We warn the
reader that the restriction functor from the big to the small quasi-syntomic site
does not induce a morphism of sites15, i.e., this left adjoint need not preserve finite
limits (which explains why we denoted it ǫ♮ instead of ǫ−1).

We let
v∗ = ǫ∗ ◦ u∗ : Shv((R)∆)→ Shv((R)qsyn)

and
v♮ = u−1 ◦ ǫ♮ : Shv((R)qsyn)→ Shv((R)∆).

We still have the formula Rv∗ ∼= Rε∗ ◦Ru∗ as ε∗ is exact.

Definition 4.1.1. Let R be a p-complete ring. We define :

Opris := v∗O∆ ; N≥1Opris := v∗N
≥1O∆ ; Ipris := v∗I∆,

where I∆ ⊆ O∆ denotes the canonical invertible ideal sheaf sending a prism (B, J) ∈
(R)∆ to J . The sheaf Opris is endowed with a Frobenius lift ϕ.

Although these sheaves are defined in general, we will only use them over quasi-
syntomic rings.

Proposition 4.1.2. Let R be quasi-syntomic ring. The quotient sheaf

Opris/N≥1Opris

is isomorphic to the structure sheaf O of (R)qsyn.

Proof. It is enough to produce such an isomorphism functorially on a basis of
(R)qsyn. By Proposition 3.3.7, we can thus assume that R is quasi-regular semiper-
fectoid. In this case, we conclude by Theorem 3.4.4. �

Definition 4.1.3. Let R be a p-complete ring. A prismatic crystal over R is
an O∆-module M on the prismatic site (R)∆ of R such that for all morphisms
(B, J)→ (B′, J ′) in (R)∆ the canonical morphism

M(B, J)⊗B B
′→M(B′, J ′)

is an isomorphism.

15We thank Kazuhiro Ito for drawing our attention to this point.
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Note that a prismatic crystal in finitely generated projective O∆-modules (resp.

in finitely generated projective O∆-modules) is the same thing as a finite locally

free O∆-module (resp. a finite locally free O∆-module). In what follows, we will
essentially consider only this kind of prismatic crystal.

Proposition 4.1.4. Let R be a quasi-syntomic ring. The functors v∗ and v∗(−) :=
O∆⊗v♮Opris v♮(−) induce equivalences between the category of finite locally free O∆-

modules and the category of finite locally free Opris-modules.

Proof. Because v∗(O∆) = O
pris it is clear that for all finite locally freeOpris-modules

M the canonical morphism

M→ v∗(v
∗(M))

is an isomorphism as this can be checked locally on (R)qsyn. Conversely, let N be
a finite locally free O∆-module. We have to show that the counit

v∗v∗(N )→ N

is an isomorphism. For any morphism R → R′ with R′ quasi-syntomic there are
equivalences

(R)∆/hR′ ∼= (R′)∆ , (R)qsyn/R
′ ∼= (R′)qsyn

of slice topoi where hR′(B, J) := HomR(R
′, B/J). By passing to a quasi-syntomic

cover R → R′ we can therefore assume that R is quasi-regular semiperfectoid, in
particular that the site (R)∆ has a final object given by ∆R. By (p, I)-completely
faithfully flat descent of finitely generated projective modules over (p, I)-complete
rings of bounded (p, I)-torsion (cf. Proposition A.3), the category of finite lo-
cally free O∆-modules on (R)∆ is equivalent to finitely generated projective ∆R-

modules16. As the morphism ∆R → R (the “θ”-map) is henselian along its kernel,
cf. Lemma 4.1.28, finite locally free ∆R-modules split on the pullback of an open
cover of Spf(R). Thus, after passing to a quasi-syntomic cover of Spf(R), we may
assume that N is finite free. Then the isomorphism

v∗v∗(N ) ∼= N

is clear. �

Definition 4.1.5. Let R be a quasi-syntomic ring. A prismatic Dieudonné crystal
over R is a finite locally free Opris-moduleM together with ϕ-linear morphism

ϕM :M→M

whose linearization ϕ∗M→M has its cokernel killed by Ipris. We call a prismatic
Dieudonné crystal (M, ϕM) admissible if the image of the composition

M
ϕM
−−→M→M/Ipris · M

is a finite, locally free O-module FM such that the map (Opris/Ipris) ⊗O FM →
M/IprisM induced by ϕM is a monomorphism.

Here,M/Ipris · M is an O ∼= Opris/N≥1Opris-module, cf. 4.1.2, via the compo-

sition Opris ϕ
−→ Opris → Opris/IprisO.

16The non-trivial point is that the global sections of a finite locally free O∆-module are locally

free over ∆R.
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Remark 4.1.6. For a prismatic Dieudonné crystal (M, ϕM) the linearization
ϕ∗M → M of the morphism ϕM : M → M is an isomorphism after inverting
a local generator ξ̃ of Ipris and in particular is injective, since ϕ∗M is ξ̃-torsion
free.

Remark 4.1.7. Let (M, ϕM) be a prismatic Dieudonné crystal. Write FilM =
ϕ−1
M (Ipris.M). Consider the diagram (defining Q,K)

0 // ϕ∗FilM
ϕM //

��

Ipris.M //

��

Q //

α

��

0

0 // ϕ∗M
ϕM //M // K // 0.

As Ipris.K = 0 (by definition of a prismatic Dieudonné crystal) the map α is zero.
The snake lemma implies therefore that there exists a short exact sequence

0→ Q→ ϕ∗M/ϕ∗FilM∼= Opris/Ipris ⊗O FM
β
−→M/IprisM→ K → 0

(where as in Definition 4.1.5 we wrote FM = M/FilM). Hence we see that the
injectivity of β (condition required in the definition of admissibility) is equivalent
to the condition that Q = 0.

Definition 4.1.8. Let R be a quasi-syntomic ring. We denote by DM(R) the cate-
gory of prismatic Dieudonné crystals over R (with Opris-linear morphisms commut-

ing with Frobenius) and by DMadm(R) the full subcategory of admissible objects.

Proposition 4.1.9. The fibered category of (usual or admissible) prismatic Dieudonné
crystals over the category QSyn of quasi-syntomic rings endowed with the quasi-
syntomic topology is a stack.

Proof. This follows from the definition, because by general properties of topoi mod-
ules under Opris and O form a stack for the quasi-syntomic topology on (R)qsyn. �

For quasi-regular semiperfectoid rings, these abstract objects have a more con-
crete incarnation, which we explain now. Let R be a quasi-regular semiperfectoid
ring and let (∆R, I) be the prism associated with R. Note that I is necessarily
principal as there exists a perfectoid ring mapping to R. Recall (Theorem 3.4.4)
that

θ : ∆R/N
≥1∆R ∼= R

is an isomorphism.

Definition 4.1.10. A prismatic Dieudonné module over R is a finite locally free
∆R-module M together with a ϕ-linear morphism

ϕM : M →M

whose linearization ϕ∗M → M has its cokernel killed by I. As in 4.1.5, we call
a prismatic Dieudonné module (M,ϕM ) over R admissible if the image of the
composition

M
ϕM
−−→M →M/I ·M

is a finite, locally free R ∼= ∆R/N≥1
∆R-module FM such that the map ∆R/I∆R ⊗R

FM →M/IM induced by ϕM is a monomorphism.
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Remark 4.1.11. For a prismatic Dieudonné module (M,ϕM ) the linearization
ϕ∗M → M of the morphism ϕM : M → M is an isomorphism after inverting a
generator ξ̃ of I and in particular is injective, since ϕ∗M is ξ̃-torsion free. In 4.1.25
we will prove that these properties imply that the cokernel of ϕ∗M →M is a finite
projective ∆R/I-module.

If R is perfectoid, one has

(∆R, I) = (Ainf(R), (ξ̃)).

A prismatic Dieudonné module is the same thing as a minuscule Breuil-Kisin-
Fargues module ([11]) over Ainf(R) with respect to ξ̃. In fact, the situation for
perfectoid rings is simple, as shown by the following proposition.

Proposition 4.1.12. Let R be a perfectoid ring. Any prismatic Dieudonné module
over R is admissible.

We postpone the proof, it will be given below after Proposition 4.1.29.

Proposition 4.1.13. Let R be a quasi-regular semiperfectoid ring. The functor

(M, ϕM) 7→ (v∗M(∆R, I), v
∗ϕM(∆, I))

of evaluation on the initial prism (∆R, I) induces an equivalence between the category
of (usual or admissible) prismatic Dieudonné crystals over R and the category of
(usual or admissible) prismatic Dieudonné modules over R, with quasi-inverse

(M,ϕM ) 7→ (M ⊗
∆R
Opris, ϕM ⊗ ϕOpris)

Proof. Let us call GR, resp. FR, the first, resp. the second, functor displayed in the
statement of the proposition. Using Proposition 4.1.4 and the equivalence between
finite locally free O∆-modules and finite locally free ∆R-modules, one immediately
gets that FR is an equivalence between the category of prismatic Dieudonné crystals
over R and the category of prismatic Dieudonné modules over R, with quasi-inverse
given by GR. Hence, we only need to check that the admissibility conditions on
both sides agree.

Let (M,ϕM ) be an admissible Dieudonné module over R.

Lemma 4.1.14. Let R → R′ be a quasi-syntomic morphism, with R′ being also
quasi-regular semiperfectoid. Let (M ′, ϕM ′) := (M⊗∆R

∆R′ , ϕM⊗ϕ∆R′
) be the base

change of (M,ϕM ). Then

ϕ−1
M ′ (I∆R′ .M ′) = N≥1∆R′ .M ′ + Im(ϕ−1

M (I.M)⊗∆R
∆R′ →M ′).

The lemma follows from Proposition 4.1.29 (and Remark 4.1.21), which will be
proved below; let us take it for granted and finish the proof. For any quasi-regular
semiperfectoid ring R′ quasi-syntomic over R, note that, using the notations from
the lemma,

Γ(R′, FR(M)) =M ′, Γ(R′, ϕ−1
FR(M)(I

pris.FR(M))) = ϕ−1
M ′(I∆R′ .M ′).

The lemma tells us that in particular

M ′/ϕ−1
M ′(I∆R′ .M ′) ∼= R′ ⊗RM/ϕ−1

M (I.M).

This being true for any quasi-regular semiperfectoid ring R′ quasi-syntomic over R,
we deduce that we have a short exact sequence of sheaves on (R)qsyn

0→ ϕ−1
FR(M)(I

pris.FR(M))→ FR(M)→ O ⊗RM/ϕ−1
M (I.M)→ 0
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By admissibility of (M,ϕM ) the right most term is a finite locally free O-module,
and thus FR(M) is admissible.

Conversely, let (M, ϕM) be an admissible Dieudonné crystal. Consider the exact
sequence of sheaves

0→ ϕ−1
M (Ipris.M)→M→M/ϕ−1

M (Ipris.M)→ 0,

and apply to it the functor Γ(R,−). We get an exact sequence

0→ Γ(R,ϕ−1
M (Ipris.M)) = ϕ−1

GR(M)(I.GR(M))→ GR(M)→ Γ(R,M/ϕ−1
M (Ipris.M)).

SinceM/ϕ−1
M (Ipris.M) is a finite locally freeO-module by admissibility of (M, ϕM),

the right most term is a finite projective R-module, and it therefore suffices to show
that the above sequence is also right-exact. The map

GR(M)→ Γ(R,M/ϕ−1
M (Ipris.M))

factors through

GR(M)/N≥1∆R.GR(M)→ Γ(R,M/ϕ−1
M (Ipris.M))

which is a map of R-modules, and it suffices to show that this map is surjective.
Since the target is a finitely generated R-module and R is p-complete, it suffices
by Nakayama’s lemma to prove surjectivity after base-change along any surjection
R → k, with k a perfect field of characteristic p. After base-change along such a
morphism R→ k, the above map factors through

GR(M)⊗
∆R

∆k → Γ(R,M/ϕ−1
M (Ipris.M))⊗R k.

Since GR(M), resp. M/ϕ−1
M (Ipris.M), is a finite locally free Opris-module, resp. a

finite locally free O-module, this identifies with the map

Gk(Mk)→ Γ(k,Mk/ϕ
−1
Mk

(Ipris.Mk)),

i.e. the same map as the one we originally wanted to prove is surjective, but
now with R replaced by k (we denoted with an index k the restrictions of the
various objects involved to the quasi-syntomic site of k). But since k is perfect,
(Gk(Mk), ϕGk(Mk)) is automatically admissible, by definition of admissibility using
that every k-module is free. Hence, as proved above, we have an exact sequence
(using that Fk ◦Gk ∼= Id)

0→ ϕ−1
Mk

(Ipris.Mk)→Mk → O ⊗R Gk(Mk)/ϕ
−1
Gk(Mk)

(I.Gk(Mk))→ 0,

i.e.

Mk/ϕ
−1
Mk

(Ipris.Mk) ∼= O ⊗R Gk(Mk)/ϕ
−1
Gk(Mk)

(I.Gk(Mk)),

hence

Γ(k,Mk/ϕ
−1
Mk

(Ipris.Mk)) ∼= Gk(Mk)/ϕ
−1
Gk(Mk)

(I.Gk(Mk)).

This shows that the map

Gk(Mk)→ Γ(k,Mk/ϕ
−1
Mk

(Ipris.Mk))

is surjective, as desired. �

Definition 4.1.15. We denote by DM(R) the category of prismatic Dieudonné

modules overR (with morphisms commuting with the Frobenius) and by DMadm(R)
the full subcategory formed by admissible objects.
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Proposition 4.1.13 shows that the possible conflict of notation is not an issue :
for R quasi-regular semiperfectoid, the two categories denoted by DM(R) are nat-
urally equivalent, and similarly for DF(R).

In the rest of this subsection, we will shortly recall the general notions of frame
and window, and then discuss the connection with the definitions above.

Definition 4.1.16. A frame A = (A,Fil A,ϕ, ϕ1) consists of (classically) (p, d)-
adically complete rings A and R = A/Fil A, for some d ∈ A and some ideal Fil A,
a lift of Frobenius ϕ, a ϕ-linear map ϕ1 : Fil A → A (called the divided Frobenius
on A) such that ϕ = ̟ϕ1 on Fil A, with ̟ = ϕ(d).

Let A,A′ be two frames, and let u ∈ A′ be a unit. A u-morphism of frames
α : A → A′ is a morphism of rings α : A → A′ intertwinning ϕ and ϕ′, carrying
Fil A into Fil A′, and satisfying ϕ′

1 ◦ α = uα ◦ ϕ1 and α(̟) = u̟′.

Remark 4.1.17. In many situations (such as those considered in this paper), the
image of ϕ1 will always generate the unit ideal of A.

Here is an important source of examples.

Example 4.1.18. Let (A, I = (d)) be an oriented prism. There are usually two
natural ways of attaching a frame to (A, (d)). One possibility is to consider the
frame

Ad = (A, (d), ϕ, ϕ1),

where ϕ1 is defined by ϕ1(dx) = ϕ(x) (recall that A is d-torsion free). Here,
ϕ = ϕ(d)ϕ1 on FilA = (d). The other possibility works when d is of the form
d = ϕ(d′) for some d′ ∈ A: one can then consider the frame

ANyg = (A,N≥1A,ϕ, ϕ1)

where ϕ1 := ϕ/d on N≥1A (using again that A is d-torsion free). Here, ϕ = dϕ1

on FilA. Note that in the first case, the divided Frobenius is with respect to ϕ(d),
whereas in the second case the divided Frobenius is with respect to d.

Definition 4.1.19. A window M = (M,Fil M,ϕM , ϕM,1) over a frame A consists
of a finite locally free A-module M , an A-submodule Fil M ⊂ M , and ϕ-linear
maps ϕM :M →M and ϕM,1 : Fil M →M , such that :

• Fil A ·M ⊂ Fil M and M/Fil M is a finite locally free R-module.
• If a ∈ Fil A, m ∈M , ϕM,1(am) = ϕ1(a)ϕM (m).
• If m ∈ Fil M , ϕM (m) = ̟ϕM,1(m).
• ϕM,1(Fil M) + ϕM (M) generates M as an A-module.

A morphism of windows is anA-linear map preserving the filtrations and commuting
with ϕM and ϕM,1. The category of windows over A is denoted by Win(A).

Remark 4.1.20. If the surjectivity condition on the image of ϕ1 of Remark 4.1.17
is satisfied, then the third point of the previous definition follows from the sec-
ond and the last one simply says that ϕM,1(Fil M) generates M (indeed, by as-
sumption one can write 1 =

∑r
i=1 aiϕ1(b1) for some ai ∈ A, bi ∈ Fil A, whence

̟ =
∑r

i=1 aiϕ(bi)).

Remark 4.1.21. If α : A→ A′ is a u-morphism of frames as Definition 4.1.16 (for
some unit u ∈ A′), and M , resp. M ′, is a window over A, resp. A′, an α-morphism
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of windows f : M → M ′ is a morphism f : M → M ′ of A-modules, intertwinning
ϕM and ϕM ′ , sending FilM into FilM ′ and satisfying ϕM ′,1◦f = uf ◦ϕM,1 (hence
if A = A′, α = IdA, an α-morphism of windows is just a morphism of windows over
A). There is a base change functor

α∗ : Win(A)→Win(A′)

characterized by the universal property that if M ∈ Win(A), M ′ ∈ Win(A′), ho-
momorphisms in Win(A′) from α∗M to M ′ identify with α-morphisms of windows
from M to M ′. Concretely, if M ∈Win(A), then α∗M = (M ′,Fil M ′, ϕM ′ , ϕM ′,1)
is given by M ′ = A′ ⊗AM , Fil M ′ is the submodule generated by (Fil A′).M ′ and
the image of Fil M , and ϕM ′ , ϕM ′,1 are uniquely determined by the requirement
that M →M ′, m 7→ 1⊗m, is an α-morphism of windows.

Proposition 4.1.22. Let A = (A,FilA,ϕ, ϕ1) be a frame, such that any finite pro-
jective A/Fil A-module lifts to a finite projective A-module. Let (M,FilM,ϕM , ϕM,1)
be a window over A. Then there exist finite projective A-modules L, T such that
M = L⊕T and Fil M = L⊕Fil A.T . Moreover, given L, T there exists a bijection
between ϕ-semilinear isomorphisms (i.e. ϕ-semilinear maps which become isomor-
phisms after linearization) Ψ: L⊕T → L⊕T and A-window structures on the pair
(L⊕ T, L⊕ Fil A.T ).

Proof. This is a combination of [33, Remark 2.4] and [33, Lemma 2.5]. Let us give
some details, and set S := A/Fil A. The module S⊗AM decomposes, asM/FilM is
finite projective, into a direct sum S⊗AM ∼=M/FilM⊕Q for some finite projective
S-module Q. Let L, T be finite projective A-modules such that L is a lift of Q and
T a lift ofM/FilM . We can then lift the decomposition S⊗AM to a decomposition
M = L⊕ T by projectivity. The property Fil M = L⊕ Fil AT follows. Given ϕM
we define Ψ(l+ t) := ϕM,1(l)+ϕM (t) for l ∈ L, t ∈ T onM = L⊕T , and conversely
given Ψ we set ϕM (l+ t) := ̟Ψ(l)+Ψ(t) and ϕM,1(l+ at) := Ψ(l)+ϕ1(a)Ψ(t) for
l ∈ L, t ∈ T, a ∈ Fil A. �

Lemma 4.1.23. Let A = (A,FilA,ϕ, ϕ1) as in Proposition 4.1.22 such that ̟ is a
non-zero divisor and FilA = ϕ−1(̟A). Then if (M,Fil M,ϕM , ϕM,1) is a window
over A, we have

Fil M = ϕ−1
M (̟M)

(note that one always has an inclusion Fil M ⊂ ϕ−1
M (̟M)). Moreover, ϕM : M →

M induces an injection M/FilM →M/̟M , and the latter extends to an injection
A/̟ ⊗A/FilAM/FilM →M/I of a locally direct summand.

Proof. Let

M = L⊕ T

be a normal decomposition of M as in 4.1.22, and

Ψ = (ϕM,1)|L + (ϕM )|T ,

so that Fil M = L⊕Fil A.T . Let x = l+ t ∈M such that ϕM (x) ∈ ̟M . We have

ϕM (x) = ̟Ψ(l) + Ψ(t)

so the condition is equivalent to requiring that Ψ(t) ∈ ̟.M . For simplicity we
assume that L, T are free A-modules in the following. The general case follows by
localization. Fix a basis t1, . . . , tr of T and a basis l1, . . . , ls of L, as A-modules.
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Since Ψ is a ϕ-linear isomorphism, the family (Ψ(t1), . . . ,Ψ(tr),Ψ(l1), . . . ,Ψ(ls)) is
a basis of M , and so the reduction of the family (Ψ(t1), . . . ,Ψ(tr)) modulo ̟ is
linearly independent. Write t =

∑r
i=1 aiti, with ai ∈ A for all i = 1, . . . , r. By

assumption, we have that

Ψ(t) =

r∑

i=1

ϕ(ai)Ψ(ti) ∈ ̟.M

and therefore we must have ϕ(ai) ∈ ̟A for all i = 1, . . . , r, i.e. ai ∈ Fil A for all
i = 1, . . . , r, by the condition on Fil A. Hence t ∈ Fil A.T and thus x ∈ Fil M , as
desired. For the last statements note that the map ϕM : M/FilM ∼= T/FilA.T →
M/̟ identifies with the map induced by Ψ. As ϕM (ti) = Ψ(ti), i = 1, . . . , r, are
linearly independent (over A/̟) this map extends to an inclusion

A/̟ ⊗A/FilAM/FilM →M/̟

of a direct summand. This finishes the proof. �

Let us now see what the categories of windows look like for the frames attached
to prisms discussed in Example 4.1.18.

Definition 4.1.24. Let (A, I = (d)) be a prism. A Breuil-Kisin module (M,ϕM )
over (A, I), or just A if I is understood, is a finite free A-module M together with
an isomorphism

ϕM : ϕ∗M [
1

I
] ∼=M [

1

I
].

If ϕM (ϕ∗M) ⊆M with cokernel killed by I, then (M,ϕM ) is called minuscule.
We denote by BK(A) the category of Breuil-Kisin modules over A and by

BKmin(A) ⊆ BK(A) its full subcategory of minuscule ones.

Remark 4.1.25. If (M,ϕM ) is a minuscule Breuil-Kisin module over (A, I), the
cokernel N of ϕM (ϕ∗M) ⊆ M is a finite projective A/I-module. Indeed N is
pseudocoherent as an A-module (having a 2-term resolution by finite projective A-
modules), hence as an A/I-module. Moreover, if k is the residue field of Spec(A/I)
at any closed point, then the derived tensor

k̄ ⊗LA/I N =W (k̄)⊗LA N

is a perfect complex of W (k̄)-modules, hence bounded. It follows that the complex
k⊗LA/IN is also bounded, so that N has a finite resolution by finite projective A/I-

modules ([52, Tag 068W]). Since N has projective dimension ≤ 1 as an A-module,
it is necessarily projective as an A/I-module. We thank the referee for poiting out
this argument to us.

Proposition 4.1.26. Let (A, (d)) is an oriented prism. The functor

(M,FilM,ϕM , ϕM,1) 7→ (FilM,d.ϕM,1)

induces an equivalence between the category of windows over the frame Ad of Ex-
ample 4.1.18 and the category BKmin(A).

Proof. See [17, Lemma 2.1.16] (taking Remark 4.1.25 into account). �

Before turning to the second example introduced in Example 4.1.18, let us recall
some facts about henselian pairs. Let A be a ring and let I ⊆ A be an ideal. We
recall that the pair (A, I) is henselian if I is contained in the Jacobson radical of
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A and if for any monic polynomial f ∈ A[T ] and each factoriztion f = g0h0 with
g0, h0 ∈ A/I[T ] monic and generating the unit ideal, there exists a factorization
f = gh with g, h monic and g0 = g, h0 = h (cf. [52, Tag 09XE]).

If I is locally nilpotent17 or A is I-adically complete, then the pair (A, I) is
henselian (cf. [52, Tag 0ALI], [52, Tag 0ALJ]).

For us the following well-known property of henselian pairs will be important
(cf. [19, Lemma 4.20]).

Lemma 4.1.27. Let (A, I) be an henselian pair. The base change M 7→M⊗AA/I
induces a bijection on isomorphism classes of finite projective modules over A, resp.
A/I.

Proof. If M,N are finite projective A-modules, then any isomorphism M/IM ∼=
N/IN can be lifted to a morphism M → N by projectivity of M . As I ⊆ A lies
in the Jacobson radical of A this lifted homomorphism is then automatically an
isomorphism. Moreover, any finite projective A/I-module can be lifted to a finite
projective A-module by [52, Tag 0D4A]. �

Now, we provide the proof that ∆R is henselian along N≥1
∆R = ker(θ : ∆R → R).

We learned the argument from [37, Remark 5.2].

Lemma 4.1.28. The pair (∆R, ker(θ)) is henselian.

Proof. Because ∆R is (p, ξ)-adically complete it suffices to prove that the pair

(∆R/(p, ξ), (p, ker(θ))/(p, ξ))

is henselian (cf. [52, Tag 0DYD]). We know ker(θ) = N≥1
∆R. Hence, for every

element x ∈ ker(θ), xp ∈ (p, ξ̃). As locally nilpotent ideals are henselian the claim
follows. �

Proposition 4.1.29. Let R be a quasi-regular semiperfectoid ring. Fix a generator
ξ̃ = ϕ(ξ) of the ideal I of the prism (∆R, I), giving rise to a frame ∆R,Nyg of

Example 4.1.18 (with d = ξ̃). The forgetful functor

Win(∆R,Nyg)→ DM(R), (M,Fil M,ϕM , ϕM,1) 7→ (M,ϕM )

is fully faithful, with essential image the subcategory DMadm(R).

Proof. Thanks to Lemma 4.1.28, we can apply Lemma 4.1.23 to the frame ∆R,Nyg.
This yields fully faithfulness, and that for a window (M,FilM,ϕM , ϕM,1) the image
of

M
ϕM
−−→M →M/I ·M

identifies with M/Fil M . By Lemma 4.1.23 we can deduce admissibility. Assume
conversely that (M,ϕM ) is an admissible prismatic Dieudonné module. Then the
datum (M,ϕ−1

M (I · M), ϕM ,
1
ξ̃
ϕM ) is a window over ∆R,Nyg. Indeed, the condi-

tion that ϕM,1(FilM) generates M follows from the definition of admissibility and
Remark 4.1.7. This finishes the proof. �

17That is, every element in I is nilpotent.
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Remark 4.1.30. Assume that R is quasi-regular semiperfect, i.e. R is quasi-
regular semiperfectoid and pR = 0. Let (M,ϕM ) be a prismatic Dieudonné module
over R. Let N ⊂ M/N≥1

∆RM be a locally free R-module which is a direct sum-
mand, and define Fil M to be the inverse image of N in M . Then the collection
(M,Fil M,ϕM , 1/pϕM ) is a window over ∆R,Nyg = Acrys(R)

Nyg
if and only if N

is an “admissible” filtration in the sense of Grothendieck on the Dieudonné mod-
ule (M,ϕM , VM ), where VM = ϕ−1

M .p (which makes sense by the assumption that
(M,ϕM ) is a prismatic Dieudonné module). For a proof of this, see [17, Lemma
2.5.1]).

We can now prove Proposition 4.1.12.

Proof of Proposition 4.1.12. We know by Proposition 4.1.29 that the functor

(M,ϕM ) 7→ (M,ϕ−1
M (ξ̃.M), ϕM ,

1

ξ̃
ϕM )

is an equivalence between DMadm(R) and Win(∆R,Nyg). Since R is perfectoid,

N≥1
∆R = (ξ), and so

∆R,Nyg = ∆R,ξ

By Proposition 4.1.26, the functor

(N,Fil N,ϕN ) 7→ (Fil N,
ξ

ξ̃
ϕN )

induces an equivalence between Win(∆R,ξ) and BKmin(Ainf(R)) (the category of
minuscule Breuil-Kisin modules over Ainf(R)). The latter category is, however,
obviously equivalent to DM(R′), with R′ = Ainf(R)/ξ. As ϕ is bijective on ∆R, base
change along ϕ is also an equivalence between DM(R′) and DM(R). Composing
these equivalences, we obtain an equivalence

DMadm(R)→ DM(R)

But this composite functor is nothing but the identity functor. �

Finally, we record some statements which are later used to prove essential sur-
jectivity for the prismatic Dieudonné functor.

For a ring A with an endomorphism ϕ : A → A we denote by ϕ −ModunitA the
category of “unit” ϕ-modules over A, i.e., the category of pairs (M,ϕM ) with M a
finite projective A-module and ϕM : ϕ∗M ∼=M an isomorphism.

Lemma 4.1.31. Let A → B be a surjection of bounded prisms with kernel J ⊆
A. Assume that the Frobenius ϕ of A is topologically nilpotent (for the (p, I)-adic
topology) on J and that (A, J) is henselian. Then the functor

ϕ−ModunitA → ϕ−ModunitB , (M,ϕM ) 7→ (M ⊗A B,ϕM ⊗A B)

is an equivalence.

Proof. To prove fully faithfulness it suffices to show (by passing to internal hom’s)
that for every ϕ-module (M,ϕM ) over A the map

MϕM=1 → (M/JM)ϕM=1
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is bijective. Let m ∈ MϕM=1 ∩ JM and write m =
n∑
i=1

aimi with ai ∈ J and

mi ∈M . Then

m = ϕjM (m) =

n∑

i=1

ϕj(ai)ϕ
j
M (mi)

where the ϕj(ai) converge to 0 if j → ∞ by our assumption on ϕ. Thus m =

ϕjM (m) → 0 if j → ∞ and therefore m = 0, which proves injectivity. Conversely,
let m ∈M and assume that ϕM (m) ≡ m modulo JM . Write

z := ϕM (m)−m ∈ JM.

As above the sequence ϕjM (z) converges to 0 if j →∞. Set

m̃ := m+
∞∑

j=0

ϕjM (z).

Then m̃ ≡ m modulo JM and ϕM (m̃) = m̃. Thus we showed that

MϕM=1 ∼= (M/JM)ϕM=1

and the functor ϕ −ModunitA → ϕ −ModunitB is fully faithful and we are left with

essential surjectivity. For this let (N,ϕN ) ∈ ϕ − ModunitB . By assumption A is
henselian along J and thus we can write N ∼= M ⊗A B for some finite projective
A-module M . Using projectiviy of ϕ∗M over A we can lift ϕN : ϕ∗N → N to some
homomorphism ϕM : ϕ∗M →M . As J lies in the radical of A the homomorphism
ϕM will automatically be an isomorphism as ϕN is. Thus, we have lifted (N,ϕN )
to (M,ϕM ), which finishes the proof. �

The following statement is similar to [33, Lemma 2.12] or [30, Appendix A.4].
It will use the “Nygaard frame” associated to an oriented prisms, which was

discussed in 4.1.18.

Lemma 4.1.32. Let (A, (ξ̃))→ (B, (ξ̃)) be a surjection of oriented bounded prisms

with kernel J contained in N≥1A, and assume that ξ̃ = ϕ(ξ) for some ξ ∈ A and

that (A, ξ̃) bounded. Assume that ϕ1 is (pointwise) topologically nilpotent on J and
that (A, J) is henselian. Then the base change functor induces an equivalence :

Win(ANyg) ≃Win((B,N≥1A/J,A/N≥1A,ϕ, ϕ1)).

We note that ϕ1(J) ⊆ J as B is ξ̃-torsion free and ϕ(j) = ξ̃ϕ1(j) in A. Thus the
condition that ϕ1 is topologically nilpotent on J makes sense. Moreover, ϕ1(J) ⊆ J
implies that (B,N≥1A/J,A/N≥1A,ϕ, ϕ1) is indeed a well-defined frame.

Proof. In this proof, we will use the following convenient notation: if σ : S → S is
a ring endomorphism and f : M → N is a σ-linear map between two S-modules,
we will denote by f ♯ : σ∗M → N its linearization. We will also abbreviate ANyg as

A and (B,N≥1A/J,A/N≥1A,ϕ, ϕ1) as B.
By the existence of normal decompositions (cf. Proposition 4.1.22: we can ap-

ply it since the proof of Lemma 4.1.28 shows that A is henselian along N≥1A and
this implies that finite projective B/im(N≥1A)-modules can be lifted to finite lo-
cally free B-modules – even to finite projective A-modules) and the fact that A is
henselian along J the base change functor

Win(A)→Win(B)
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is essentially surjective. Let M,N be two windows over A. We want to prove that

HomA(M,N) ∼= HomB(M/J,N/J)

whereM/J,N/J denote the base change ofM,N to B. The idea of proof is similar
to Lemma 4.1.31 (and [33, Theorem 3.2]). Let

β : M → JN

be an arbitrary homomorphism of A-modules. Then the A-module homomorphism

U(β) : M → JN, m 7→ ϕ♯N,1(Id⊗ β)(ϕ
♯
M,1)

−1(m)

is well-defined. Indeed, ϕ♯M : ϕ∗M → M is injective with cokernel killed by ξ̃
(which follows from the fact that ϕM,1(FilM) generates M and that M,ϕ∗(M) are

ξ̃-torsion free) and thus on ξ̃M there exists a partial inverse (ϕ♯M )−1 : ξ̃M → ϕ∗M

of ϕ♯M . Moreover, as β has image in JN the composition ϕ♯N (Id⊗ β) has image in

ξ̃N . The module M is finitely generated: choose generators x1, . . . , xr. For each
n ≥ 1, and each x ∈M , we can write

((ϕn−1)∗(ϕ♯M,1)
−1 ◦ · · · ◦ ϕ∗(ϕ♯M,1)

−1 ◦ (ϕ♯M,1)
−1(x) =

r∑

i=1

bi,n(x)⊗ xi ∈ (ϕn)∗M,

with bi,n(x) ∈ A. Hence, we get

Un(β)(x) = (((ϕN,1)
♯ ◦ ϕ∗(ϕN,1)

♯ ◦ · · · ◦ (ϕn−1)∗(ϕN,1)
♯)◦(ϕn)∗β)

(
r∑

i=1

bi,n(x)⊗ xi

)

whence

Un(β)(x) =

r∑

i=1

ϕn(bi,n(x))ϕ
n
N,1(β(xi)).

Write for each i = 1, . . . , r,

β(xi) =

sr∑

k=1

ji,kyi,k,

with ji,k ∈ J , yi,k ∈ N . We have, for each i = 1, . . . , r,

ϕnN,1(β(xi)) = ϕnN,1

(
sr∑

k=1

ji,kyi,k

)
=

sr∑

k=1

ϕn1 (ji,k)ϕ
n
N (yi,k).

By our assumption, ϕ1 on J is pointwise topologically nilpotent, and so in particular
for eachm0 ≥ 0, we can findm ≥ 0 such that ϕm1 (ji,k) ∈ (p, ξ̃)m0 , for all i = 1, . . . , r,
j = 1, . . . , sr. The above equalities show that for all n ≥ m and for all x ∈M ,

Un(β)(x) ∈ (p, ξ̃)m0N.

Hence, we deduce from the above that for every β : M → JN the sequence

β, U(β), U(U(β)), . . . , Un(β), . . .

converges to 0 (because A is (p, ξ̃)-adically complete as (A, ξ̃) is bounded). Now
let α : M → N be a homomorphism of windows such that α ≡ 0 modulo J . Then
Un(α) = α for all n because α ◦ϕM = ϕN ◦α, which implies α = 0 as the sequence
Un(α) converges to 0 as we saw above. Conversely, assume that α : M → N is an
A-module homomorphism, such that α modulo J is an homomorphism of windows
over B. Then α maps FilM to FilN because this can be checked modulo J . Note
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that (ϕ♯M )−1(ξ̃.M) = ϕ∗(FilM) as follows from Lemma 4.1.23. Hence U(α) sends
M to N . Set

β := U(α)− α : M → N.

Then β(M) ⊆ JN by the assumption on α. Therefore the homomorphism

α̃ : M → N, m 7→ α(m) +

∞∑

n=0

Un(β)(m)

is well-defined. Moreover, α ≡ α̃ modulo J and α̃ is a homomorphism of windows
over A. �

From the proof of the last lemma, one can also extract the following statement.

Lemma 4.1.33. Let R → R′ be a morphism of quasi-regular semiperfectoid rings
such that J = ker(∆R → ∆R′) is contained in N≥1

∆R, stable by ϕ1 and such that ϕ1

is topologically nilpotent on J (for some, or equivalently any, choice of a generator
of the ideal I defining the prism structure of ∆R). Then the base change functors

DM(R)→ DM(R′) ; DMadm(R)→ DMadm(R′)

are faithful.

Proof. It is enough to prove that the first functor is faithful. For this, one uses the
exact same argument used in the proof of Lemma 4.1.32. �

Remark 4.1.34. More generally, if one has a 1-morphism of frames A → A′,
whose kernel J is contained in Fil A, stable by ϕ1, and such that ϕ1 is topologically
nilpotent on J , the same proof shows that the base change functor

Win(A)→Win(A′)

is faithful.

4.2. Definition of the prismatic Dieudonné functor. In this subsection we
define the prismatic Dieudonné crystals of p-divisible groups over quasi-syntomic
rings and prove some formal properties of them. More difficult properties, like
the crystal property or local freeness, will be proved later (cf. Section 4.6) after
discussing the case of abelian schemes first (cf. Section 4.5).

Let R ∈ QSyn be a quasi-syntomic ring and let (R)∆ be its absolute prismatic
site. We recall from Proposition 4.1.4 that the category of finite locally free crystals
on (R)∆ is equivalent to the category of finite locally freeOpris-modules on the small
quasi-syntomic site (R)qsyn of R endowed with the quasi-syntomic topology.

Recall as well that there is an exact sequence

0→ N≥1Opris → Opris → O → 0

where O is the structure sheaf S ∈ (R)qsyn 7→ S on (R)qsyn (cf. Proposition 4.1.2).

Definition 4.2.1. Let G be a p-divisible group over R. We define18

M∆(G) := Ext
1
(R)qsyn

(G,Opris)

and ϕM
∆
(G) as the endomorphism of M∆(G) induced from the endomorphism ϕ

on Opris. We call (M
∆
(G), ϕM

∆
(G)) the prismatic Dieudonné crystal of G.

18For an alternative perspective on this definition, using classifying stacks, see the work of
Mondal [45].
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We will check later that (M∆(G), ϕM
∆
(G)) is indeed a(n admissible) prismatic

Dieudonné crystal.

Remark 4.2.2. Let us note that

Hom(G,Q) = 0

for any derived p-adically complete quasi-syntomic sheaf Q. Indeed, the finite lo-
cally free group schemes G[pn] are syntomic over R for n ≥ 0 (as follows e.g. from
[44, II.(3.2.6)]) (hence multiplication by p on G is surjective in the syntomic topol-
ogy). This implies that the derived p-completion of G on the big quasi-syntomic
site over R is given by TpG placed in degree −1. As there are no morphisms from
D≤−1 to D≥0, and Q is assumed to be derived p-adically complete, the statement
follows.

In particular, we can apply this to Q = Opris and deduce that

Hom(G,Opris) = 0

and thus also

Hom(G,N≥1Opris) = 0.

Remark 4.2.3. Beware that the prismatic Dieudonné crystal of a p-divisible group
is a sheaf on the quasi-syntomic site, not on the prismatic site. In particular, it is
not a crystal on the prismatic site of R, but rather the push-forward along v of a
crystal on the prismatic site (as will be proved later). We hope that this choice of
terminology does not create too much confusion ; from the mathematical point of
view, it is justified by Proposition 4.1.4.

Fix a p-divisible group G over R. We check some easy properties ofM∆(G).
In [6], the crystalline Dieudonné crystal of a p-divisible group is defined via the

sheaf of local extensions on the crystalline site. There is a similar description of
the prismatic Dieudonné crystal.

Lemma 4.2.4. There is a canonical isomorphism

M∆(G)
∼= v∗(Ext

1
(R)

∆
(u−1(G),O∆)).

Proof. First, we claim that there is a canonical isomorphism

Ext1(R)QSYN
(G, u∗O∆)

∼= u∗(Ext
1
(R)∆

(u−1(G),O∆)).

By adjunction, there is a canonical isomorphism

RHom(R)QSYN
(G,Ru∗(O∆))

∼= Ru∗(RHom(R)
∆
(u−1G,O∆)).

It thus suffices to see that Ext1(R)QSYN
(G, u∗O∆), resp. u∗(Ext

1
(R)

∆
(u−1(G),O∆)),

are the first cohomology sheaves on both sides. The sheaves

Hom(G,R1u∗(O∆)),Hom(u−1(G),O∆)

are 0: for the first this follows as G is p-divisible and the target derived p-complete,
cf. Remark 4.2.2 and for the second the same argument as in Remark 4.2.2 can be
applied since the multiplication by p map on u−1(G) is surjective and the prismatic
topos is replete. This implies the claim.

To finish, the proof of the proposition, it therefore remains to show that we have

ǫ∗Ext
1
(R)QSYN

(G, u∗O∆)
∼=M∆(G).
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We will in fact give an argument, inspired by [3], which works with Ext1 replaced
by Exti, for any i ≥ 0. The Breen-Deligne resolution C(G) of G, seen either as a
sheaf on the big or on the small quasi-syntomic site (cf. [48, Appendix to Lecture
IV], see also Section 4.4 below for a partial explicit resolution, sufficient for our
purposes), give, for each i ≥ 0, spectral sequences

Exti−j(R)QSYN
(Cj(G), u∗O∆) =⇒ Ext

i
(R)QSYN

(G, u∗O∆),

and

Exti−j(R)qsyn
(Cj(G), v∗O∆) =⇒ Ext

i
(R)qsyn

(G, v∗O∆),

Since for each j, Cj(G) is a finite direct sum of terms of the form Z[Gn], n ≥ 1, it
suffices to show that for each k ≥ 0, j ≥ 1,

ǫ∗Ext
k
(R)QSYN

(Z[Gj ], u∗O∆
) ∼= Extk(R)qsyn

(Z[Gj ], v∗O∆
).

Since fn : Gn → Spf(R) is quasi-syntomic, it induces a morphism of topoi fn,qsyn :
Gnqsyn → (R)qsyn, identifying G

n
qsyn with the slice topos (R)qsyn/G

n. Hence,

Extk(R)qsyn
(Z[Gj ], v∗O∆)

∼= Rkfn,qsyn,∗f
∗
n,qsynǫ∗u∗O∆.

Analogously, if fn,QSYN : GnQSYN → (R)QSYN denotes the morphism of topoi in-
duced by fn, we have

Extk(R)QSYN
(Z[Gj ], u∗O∆)

∼= Rkfn,QSYN,∗f
∗
n,QSYNu∗O∆.

The sheaf Rkfn,qsyn,∗f
∗
n,qsynǫ∗u∗O∆

is the sheaf attached to the presheaf sending
X ∈ (R)qsyn to

Hk(f∗
n,qsynX, f

∗
n,qsynǫ∗u∗O∆)

while the sheaf ǫ∗R
kfn,QSYN,∗f

∗
n,QSYNu∗O∆ is the sheaf attached to the presheaf

sending X ∈ (R)qsyn to

Hk(f∗
n,QSYNX, f

∗
n,QSYNu∗O∆)

Both f∗
n,qsynX and f∗

n,QSYNX are represented by X ×Spf(R)G
n ∈ Gnqsyn, and there-

fore Hk(f∗
n,qsynX, f

∗
n,qsynǫ∗u∗O∆), resp. H

k(f∗
n,QSYNX, f

∗
n,QSYNu∗O∆), agrees with

Hk
qsyn(X ×Spf(R) G

n, ǫ∗u∗O∆), resp. with H
k
QSYN(X ×Spf(R) G

n, u∗O∆). But these
last two cohomology groups agree, since on both sites, quasi-regular semiperfectoid
rings form a basis on which the cohomology in positives degrees of u∗O∆ vanishes.
Whence our claim, and the end of the proof. �

Using the p-adic Tate module TpG of G, i.e., the inverse limit

lim
←−
n

G[pn]

of sheaves on (R)qsyn, one can give a more explicit description of the prismatic
Dieudonné crystalM

∆
(G).

Lemma 4.2.5. Define the universal cover G̃ := lim
←−
p

G of G. Then the sequences

0→ TpG→ G̃→ G→ 0

0→ u−1TpG→ u−1G̃→ u−1G→ 0

of sheaves on (R)qsyn resp. (R)∆ are exact for the quasi-syntomic topology.
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Proof. Exactness of the second follows from exactness of the first and exactness
of u−1 (cf. Corollary 3.3.11). Each G[pn] is syntomic over R. This implies that

G̃→ G is a quasi-syntomic cover, which implies exactness of the first sequence. �

The following lemma will be useful when describing the prismatic Dieudonné
crystals of Qp/Zp and µp∞ and when proving fully faithfulness of the prismatic
Dieudonné functor.

Lemma 4.2.6. There are canonical isomorphisms

M
∆
(G) ∼= Hom(R)qsyn(TpG,O

pris) ∼= v∗Hom(R)
∆
(u−1(TpG),O∆

).

Proof. This follows from Lemma 4.2.5 and the fact that

RHom(R)
∆
(u−1(G̃),O

∆
) = 0 ; RHom(R)qsyn(G̃,O

pris) = 0

as O∆,O
pris are derived p-complete sheaves and G̃ is a Qp-vector space. �

Remark 4.2.7. The universal vector extension E(G) of G can be seen as an ex-
tension of sheaves on (R)qsyn :

0→ ωǦ → E(G)→ G→ 0.

It is defined as in [44] (this makes sense since R is p-complete), or equivalently as
the push-out of the universal cover exact sequence

0→ TpG→ G̃→ G→ 0

along the Hodge-Tate map

HT : TpG→ ωǦ,

which sends f ∈ TpG = HomR(Qp/Zp, G), viewed by Cartier duality as an element

of HomR(Ǧ, µp∞), to f∗dT/T , dT/T being the canonical generator of ωµp∞
. Is

there a way to use Lemma 4.2.6 to relate the prismatic Dieudonné module to the
dual of the Lie algebra of E(G)?

Assume now that R is quasi-regular semiperfectoid. Then, by Proposition 4.1.4,
the category of finite locally free crystals on (R)

∆
is equivalent to the category

of finite projective ∆R-modules by evaluating a crystal on the initial prism ∆R.
Similarly, finite locally free Opris-modules on (R)qsyn are equivalent to finite pro-
jective ∆R by evaluating a finite locally free Opris-module M on R. This allows
the following simplification of the definition of the prismatic Dieudonné crystal of
a p-divisible group G over R.

Definition 4.2.8. Let R be quasi-regular semiperfectoid and let G be a p-divisible
group over R. Define

M∆(G) := Ext1(R)qsyn(G,O
pris) ∼= Ext1(R)

∆
(u−1(G),O∆)

and ϕM
∆
(G) as the endomorphism induced by ϕ on Opris. We call

(M∆(G), ϕM∆(G))

the prismatic Dieudonné module of G.
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We will see later that M∆(G) is indeed a(n admissible) prismatic Dieudonné
module in the sense of Definition 4.1.10. Moreover, M∆(G) is the evaluation of
the prismatic Dieudonné crystal M∆(G) as follows from the local-global spectral
sequence

Eij2 = Hi(Spf(R), Extj(R)qsyn
(G,Opris))⇒ Exti+j(R)qsyn

(G,Opris)

by the vanishing of the sheaf Hom(R)qsyn(G,O
pris). Thus under the equivalence

from Proposition 4.1.13 the prismatic Dieudonné crystal M∆(G) corresponds to
the prismatic Dieudonné module M∆(G).

4.3. Comparison with former constructions. In this section we prove a com-
parison of the prismatic Dieudonné functorM∆ with former constructions, in two
special cases :

(1) For quasi-syntomic rings such that pR = 0, we relateM∆ to the crystalline
Dieudonné functor of Berthelot-Breen-Messing [6].

(2) For perfectoid rings, we relate the prismatic Dieudonné functor to the func-
tor introduced by Scholze-Weinstein in [51, Appendix to Lecture XVII].

The intersection of these two cases is the case of perfect rings, which was histori-
cally the first to be studied. The situation for perfect fields is briefly discussed at
the end of this section.

We start with the case of quasi-syntomic rings R with pR = 0. We want to
compare the prismatic Dieudonné functor to the crystalline Dieudonné functor

G 7→ Ext1(R/Zp)crys,pr
(icrys∗ (G),Ocrys)

of [6]. Here (R/Zp)crys,pr is the (big) crystalline site of R over Zp, Ocrys is the
crystalline structure sheaf, pr denotes the p-th root topology of [37, Definition 7.2]
and

icrys : Shv(R)pr → Shv(R/Zp)crys,pr

defined as in [37, Lemma 8.1], where the left-hand side denotes the category of all
schemes over R endowed with the pr topology. As in [37, Section 8] we define

Ocrys := ucrys∗ (Ocrys)

as the pushforward of the crystalline structure sheaf Ocrys along the morphism

ucrys : Shv(R/Zp)crys,pr → Shv(R)pr

of topoi. Note that by definition icrys∗ = (ucrys)−1, so we can rewrite the crystalline
Dieudonné functor as

G 7→ Ext1(R/Zp)crys,pr
((ucrys)−1(G),Ocrys)

Let J crys ⊆ Ocrys be the pushforward of the crystalline ideal sheaf Jcrys ⊆ Ocrys.
The following lemma is the basic input in the comparison of the prismatic and

crystalline Dieudonné functor.

Lemma 4.3.1. Let R′ be a quasi-syntomic Fp-algebra. Then there is a canonical
isomorphism

Opris(R′)→ Ocrys(R′)

identifying N≥1Opris(R′) with J crys(R′).
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Proof. Using the sheaf property for the pr-topology we may assume that R′ is
semiperfect. Then R′ is even quasi-regular semiperfect as it is quasi-syntomic.
Hence,

Opris(R′) = ∆R′ ∼= Acrys(R
′) = Ocrys(R′)

by Lemma 3.4.2. Moreover, the isomorphism in Lemma 3.4.2 identifiesN≥1Opris(R′)
with J crys. �

Let (R)qsyn,pr be the category of quasi-syntomic R-algebras equipped with the
pr-topology, and let

vcrys∗ : Shv(R/Zp)crys,pr → Shv(R)qsyn,pr

obtained by composing ucrys∗ with restriction (the same caveat as in the beginning
of Section 4.1 applies here). Lemma 4.3.1 implies that the sheaves Opris and Ocrys

on (R)qsyn,pr are isomorphic. We note that the categories of finite locally free
Ocrys-modules on (R)pr and finite locally free Ocrys

|(R)qsyn,pr
-modules on (R)qsyn,pr are

equivalent because for R quasi-regular semiperfect both categories identify with fi-
nite locally free Acrys(R)-modules. These remarks give a meaning to the comparison
contained in the next two results.

Theorem 4.3.2. Let R be a quasi-syntomic ring with pR = 0 and G a p-divisible
group over R. Then there is a canonical Frobenius equivariant isomorphism

M∆(G)
∼= vcrys∗ (Ext1(R/Zp)crys,pr

((ucrys)−1(G),Ocrys))

from the prismatic Dieudonné crystal of G (cf. Definition 4.2.1) to the push-forward
of the crystalline Dieudonné crystal of G. In particular, if R is quasi-regular
semiperfect, M∆(G) is isomorphic to the evaluation M crys(G) on Acrys(R) of the
crystalline Dieudonné crystal, compatibly with the Frobenius.

Of course, the isomorphism is linear over the isomorphism Opris ∼= Ocrys from
Lemma 4.3.1.

Proof. By definition
M∆(G) = Ext

1
(R)qsyn

(G,Opris).

But
Ext1(R)qsyn

(G,Opris) ∼= Ext1(R)qsyn,pr
(G,Opris).

Indeed, by the spectral sequence constructed in Section 4.4 below it suffices to
see that the Opris-cohomology for the quasi-syntomic and pr-topologies agree. But
quasi-regular semiperfectoid rings form a basis for both topologies and on such the
higher cohomology of Opris vanishes in both topologies. Thus by Lemma 4.3.1 it
suffices to see

vcrys∗ (Ext1(R/Zp)crys,pr
((ucrys)−1(G),Ocrys)) ∼= Ext

1
(R)qsyn,pr

(G,Ocrys).

As ucrys is a morphism of topoi , we get

RHom(R)QSYN,pr
(G,Rucrys∗ (Ocrys)) ∼= Rucrys∗ (RHom(R/Zp)crys,pr((u

crys)−1(G),Ocrys)).

Here we use that we are dealing with the pr-topology: we don’t know if this state-
ment is true for the quasi-syntomic topology, but it holds the syntomic topology as
the arguments of [6, Proposition 1.1.5] apply because syntomic morphisms can be
lifted locally along PD-thickenings, cf. [52, Tag 0070]. As in 4.2.4 it suffices to see
that

ǫ∗(Hom(G,R1ucrys∗ (Ocrys))), Hom((ucrys)−1(G),Ocrys)
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vanish (here ǫ∗ is the (exact) pushforward to the small quasi-syntomic site). The
sheaf R1ucrys∗ (Ocrys) for the pr-topology on (R)QSYN,pr vanishes on every R-algebra
S, which is quasi-syntomic, because it vanishes on quasi-regular semiperfects (cf.
[12, Section 8]) and each quasi-syntomic Fp-algebra admits a pr-cover by some
quasi-regular semiperfect ring. Write

Hom(G,R1ucrys∗ (Ocrys)) = lim
←−
n

Hom(G[pn], R1ucrys∗ (Ocrys)).

The set Hom(R)QSYN,pr
(G[pn], R1ucrys∗ (Ocrys)) embeds into the sections ofR1ucrys∗ (Ocrys)

over G[pn], but these sections vanish because G[pn] is syntomic over R. Applying
the same reasoning to all quasi-syntomic R-algebras proves the desired vanishing
of the first Hom. For the second Hom note that Ocrys, (u

crys)−1(G) are actually
sheaves for the syntomic topology on the site (R/Zp)crys and the local Hom does
not depend on the topology. Multiplication by pn on (ucrys)−1(G) is surjective for
the syntomic topology for every n ≥ 0 ([6, Proposition 1.1.7]) . This implies that

Hom((ucrys)−1(G),Ocrys) ∼= lim
←−
n

Hom((ucrys)−1(G),Ocrys/p
n) = 0

using that Ocrys is p-adically complete (being p-adically separated would be suffi-
cient for this argument). Lemma 4.3.1 implies then moreover compatibility with
Frobenius. �

In general, i.e., when p is not necessarily zero in R, one can still relate the
prismatic Dieudonné crystal of a p-divisible group to the crystalline Dieudonné
crystal, as follows. Let R be a p-complete ring and let D be a p-complete p-torsion
free δ-ring with a surjection D → R whose kernel has divided powers.19 As the
kernel of D → R has divided powers, the Frobenius on D induces a morphism
R→ D/p. With this morphism the prism (D, (p)) defines an object of the absolute
prismatic site (R)∆ of R. Via Lemma 4.2.4 it thus makes sense to evaluate the
prismatic Dieudonné module of a p-divisible group over R, more precisely v∗ of it,
on (D, (p)).

Lemma 4.3.3. For every p-divisible group G over R there is a natural Frobenius
equivariant isomorphism

v∗(M∆(G))(D, (p))
∼= D(G)(D).

Here D(G)(D) denotes the evaluation of the (contravariant, crystalline) Dieudonné
crystal of G on the PD-thickening D → R.

Proof. Let C be the category of schemes over R, which are p-completely syntomic
over R. For each scheme H ∈ C there is a canonical isomorphism in the∞-category
D(Z)

ηH : RΓ((H(1)/D)∆,O∆)
∼= RΓ((H/D)crys,Ocrys)

by the crystalline comparison for syntomic morphisms (cf. Remark 3.1.8), where
H(1) := H ×Spec(R) Spec(D/p)

20. We can write both sides as

H 7→ RΓ((H(1)/D)∆,O∆)
∼= RHom(R)

∆
(Z[u−1(H)],O∆)

19We don’t require pnR = 0 for some n ≥ 0.
20Note that RΓ((H/D)crys ,Ocrys) = RΓ(((H/p)/D)crys ,Ocrys). This follows from the com-

putation of crystalline cohomology by a C̆ech-Alexander complex and the following fact : if A is a
Z/pn-algebra (for some n > 0), P a free Zp-algebra surjecting onto A, the divided power envelopes

of P/pm → A and P/pm → A/p agree for any m ≥ n : see [5, Theorem I.2.8.2].
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resp.

H 7→ RΓ((H/D)crys,Ocrys) ∼= RHom(R)crys(Z[(u
crys)−1(H)],Ocrys),

making it clear that both functors are actually restrictions to C of RHom-functors

F (−) := RHom(R)∆
(−,O∆), G(−) := RHom(R)crys(−,Ocrys)

on the category of sheaves of abelian groups ShvZ((R)∆) resp. ShvZ((R)crys) on
(R)∆, resp. (R)crys along the functors

H 7→ ιpris(H) := Z[u−1(H)] ∈ ShvZ((R)∆)

resp.

H 7→ ιcrys(H) := Z[ucrys−1(H)] ∈ ShvZ((R)crys).

Assume now that H is a finite locally free group scheme over R, in particular
H is syntomic over R. Applying F (−), G(−) to the Breen-Deligne resolution, cf.
Theorem 4.4.1, of u−1(H), ucrys−1(H) (seen via Dold-Kan as simplicial objects in
Shv((R)∆), resp. Shv((R)crys)) yield two cosimplicial objects K•

1 ,K
•
2 : ∆ → D(Z)

(here ∆ is the simplex category) with limits

RHom(R)∆
(u−1(H),O∆)

and

RHom(R)
∆
((ucrys)−1(H),Ocrys).

We claim that the natural isomorphism η extends to a natural isomorphism
K•

1
∼= K•

2 . Intuitively, this is clear as the morphisms in the Breen-Deligne res-
olution are sums of maps induced by morphisms between schemes. We thank
Yonatan Harpaz and Fabian Hebestreit for their help with the following rigor-
ous ∞-categorical argument. It suffices to argue for the left Kan extensions of
F ◦ ιpris, G ◦ ιcrys : C → D(Z)op from C to the category of all schemes over R
(this ensures the existence of fiber products in C commuting with coproducts).
Hence, we abuse notation and denote by C the category of all schemes over R.
Let D be any category with action by the symmetric monodial (via tensor prod-
uct) category FreeZ of finite, free Z-modules, such that the action commutes
with finite coproducts in each variable, e.g., D = D(Z)op. In other words, D
is required to be a module under FreeZ in the symmetric monoidal ∞-category
Cat∞(Kfin) from [39, Corollary 4.8.1.4] with Kfin the class of finite sets. Now
each functor ϕ : C → D preserving finite coproducts resp. each natural transforma-
tion between such functors extends to a functor ϕab : Cab := FreeZ ⊗Kfin

C → D
resp. a natural transformation between such functors with − ⊗Kfin

− the tensor
product in Cat∞(Kfin) by FreeZ-linearity of D. The category Cab can now be cal-
culated as follows: Consider the category Fun(Cop,D≥0(Z)) of functors, and its

full subcategory Fun×(Cop,D≥0(Z)) of product-preserving functors. The inclusion

Fun×(Cop,D≥0(Z)) → Fun(Cop,D≥0(Z)) admits a left adjoint L, given by sheafi-
fication on C with respect to the Grothendieck topology in which coverings are
finite collections {Xi → X}i∈I , such that

∐
i∈I

Xi → X is an isomorphism. Now,

Cab is the smallest full subcategory of Fun×(Cop,D≥0(Z)) containing all objects
L(Z[HomC(−, X)]) with X ∈ C. Note that Cab is a 1-category because sheafifica-
tion for this Grothendieck topology preserves set-valued presheaves. In fact, we
only need that functors ϕ : C → D preserving coproducts extend to Cab when the
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latter is defined by the above concrete description. To see this note if S denotes
the ∞-category of spaces, i.e., Kan complexes, that

Fun×(FreeopZ ,S) ∼= D≥0(Z)

by [41, Example 1.2.9]. Each functor ϕ : C → D yields a functor

Fun(Cop,D≥0(Z))→ Fun(Dop,D≥0(Z)).

Now Fun(Dop,D≥0(Z)) embeds into

Fun(Dop ×FreeopZ ,S)

(with essential image those functors commuting with products in the second factor),
and the FreeZ-action FreeZ×D → D furnishes a functor from this to the category
Fun(Dop,S), which contains D by the Yoneda lemma. Restricting further along
the inclusion Cab → Fun(Cop,D≥0(Z)) then yields a functor

Cab → Fun(Dop,S)

with image in D as ϕ preserves finite coproducts. This yields the desired extension,
and similarly we see that natural transformations extend. Given these considera-
tions, and in particular the description of Cab, it follows by unraveling the construc-
tion that in our situation the simplicial objects given by the images under F resp.
G of the Breen-Deligne resolutions of u−1(H) resp. ucrys−1(H) are the images of a
simplicial object in Cab under the extensions of F ◦ ιpris, G ◦ ιcrys. This shows that
η extends as desired.

Passing to the limits and taking cohomology in degree 1 we can deduce that

M∆(H)(D, (p)) := Ext1(u−1(H),O∆)

resp. D(H)(D) are canonically isomorphic. Hence, we obtain the desired natural
isomorphism for finite flat group schemes. The proof of Proposition 4.6.5 below21

shows that writing
G = lim

−→
n

G[pn]

and passing to the limit yields a canonical isomorphism

M∆(G)(D, (p))
∼= D(G)(D)

for G a p-divisible group over R. �

Remark 4.3.4. The relation between the prismatic and the crystalline Dieudonné
functors will mostly be used over a characteristic p perfect field in the rest of this
text, and it could be interesting to find a more direct proof of it in this special case,
as explained at the end of this section. But it will also be used for comparison with
the Scholze-Weinstein functor in the next paragraph and in Section 5.2.

We turn to perfectoid rings. The following statement is a special case of a
theorem of Fargues ([22], [51]). Let C be a complete algebraically closed extension
of Qp. We abbreviate

Ainf = Ainf(OC) , Acrys := Acrys(OC/p).

We also fix a compatible system ε of p-th roots of unity, and let ξ̃ = [p]q, where

q = [ε]− 1. We identify the initial prism of (OC)∆ with (Ainf , (ξ̃)).

21Which the reader can check to be independent of the present lemma.
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Proposition 4.3.5. A prismatic Dieudonné module (M,ϕM ) over OC (i.e., a
minuscule Breuil-Kisin-Fargues module) is uniquely determined up to isomorphism
by the triple

(TM ,Mcrys, αM ),

where TM is the finite free Zp-module

TM =M [
1

ξ̃
]ϕM=1,

Mcrys =M ⊗Ainf
Acrys

is a ϕ-module over Acrys and αM : TM ⊗Zp Bcrys ≃ Mcrys ⊗Acrys Bcrys is the ϕ-

equivariant isomorphism coming from the natural map M [ 1
ξ̃
]ϕM=1 →M [ 1

ξ̃
].

Let R be a perfectoid ring. In [51, Theorem 17.5.2], Scholze-Weinstein construct
a covariant functor MSW from p-divisible groups over R to prismatic Dieudonné
modules over R inducing an equivalence between the two categories. It has the
following properties characterizing it uniquely, which will be used in the next proof.

• When R is perfect,MSW =Mcrys(−) is the (covariant) crystalline Dieudonné
functor dual to M crys.
• If R = OC , with C a complete algebraically closed extension of Qp,

MSW (−)⊗Ainf
Acrys

∼=Mcrys(−⊗OC OC/p)

([51, Proposition 14.8.3]). In particular, if G = X [p∞], for some formal
abelian scheme X over OC , the functor MSW sends G to the prismatic
Dieudonné module over OC dual to H1

Ainf
(X): this follows from the def-

inition of MSW (G) ([51, §12.1]), [51, Proposition 14.8.3] and the above
proposition.
• In general, for any perfectoid ring R, if G is a p-divisible group over R,

MSW (G) ⊂Mcrys(G⊗R R/p)

is the largest submodule mapping into M(G ⊗R V ) ⊂ Mcrys(G ⊗R V ) for
all maps R → V where V is an integral perfectoid valuation ring with
algebraically closed fraction field.

Proposition 4.3.6. Let R be a perfectoid ring. The functor G 7→ M∆(G) from

BT(R) to DM(R) coincides with the (naive)22 dual of the functor MSW of [51,
Appendix to Lecture XVII].

Proof. If R is perfect and G a p-divisible group over R, then we get a natural
isomorphism

αR,G : M∆(G)
∼=MSW (G)∗

because both sides identify with the (contravariant) crystalline Dieudonné module,
cf. 4.3.2. Moreover, αR,− is compatible with base change along morphisms of perfect
rings. Now assume that R = OC , where C is a perfectoid algebraically closed field
over Qp. In this case, assume first that G = X [p∞], for some formal abelian scheme
X overOC , with rigid generic fiber Xrig. As recalled above, the functorMSW sends
G to the prismatic Dieudonné module over OC dual to H1

Ainf
(X). In particular, in

this case, MSW (G) is isomorphic to the (naive) dual to M∆(G), by Corollary 4.5.7

22I.e., (−)∗ = HomAinf (R)(−, Ainf(R)).



PRISMATIC DIEUDONNÉ THEORY 49

and the comparison theorem [13, Theorem 17.2]23. Moreover, this identification is
functorial for morphisms of p-divisible groups of abelian schemes (and not simply
for morphisms of abelian schemes) : indeed, let X,X ′ be two abelian schemes over
OC , and G = X [p∞], H = X ′[p∞], with a morphism f : G → H . We want to see
that the diagram

MSW (G)
∼= //

MSW (f)

��

M∆(G)
∗

M
∆
(f)∗

��

MSW (H)
∼= // M∆(H)∗

commutes. This can be checked after base change to Acrys. Then, using Lemma 4.3.3,
the terms on the top line (resp. on the bottom line) are identified with the covari-
ant crystalline Dieudonné module of G (resp. H), and the horizontal isomorphisms
induce the identity, by construction.

Let now G be a general p-divisible group over OC . There exists a formal abelian
scheme X over OC , such that X [p∞] = G × Ǧ (cf. [51, Proposition 14.8.4]). Let
e : X [p∞]→ X [p∞] be the idempotent with kernel G. Then

M∆(G)
∗ = ker(M∆(e)

∗ : M∆(X [p∞])∗ →M∆(X [p∞])∗)

and
MSW(G) = ker(MSW(e) : MSW(X [p∞])→MSW(X [p∞])).

By the functoriality explained above we can conclude the proof when R = OC , i.e.,
we have constructed an isomorphism αR,G ∼= M

∆
(G) ∼= MSW (G)∗ in this case,

which is natural in G and compatible with base change along morphisms of such
R’s. If k denotes the residue field of OC , then by construction the base change of
αR,G along ∆R → ∆k is αk,G⊗Rk.

Now assume that R is a general perfectoid ring. By [36, Remark 8.8] we can
write

R ∼= R1 ×S2 S1

with R1 p-torsion free perfectoid, S1, S2 perfect and R1 → S2, S1 → S2 surjective.
As in [36, Lemma 9.2] the category DM(R) of prismatic Dieudonné modules for R
is naturally equivalent to the 2-limit

DM(R1)×DM(S2) DM(S1).

Thus it suffices to construct a natural isomorphism M∆(G)
∼= MSW (G)∗ for any

p-divisible group over a perfectoid ring R, which is either perfect or p-torsion free,
and show that it is compatible with base change in R. If R is perfect, then we
are already done. Let us assume that R is p-torsion free. Then the ring R/p is
quasi-regular semiperfect, and ∆R/p

∼= Acrys(R/p) by 3.4.2. By 4.3.2, 4.6.524 and

the construction of MSW (G)∗ we have a natural isomorphism

αG⊗RR/p : M∆(G)⊗∆R
Acrys(R/p) ∼=MSW (G)∗ ⊗∆R

Acrys(R/p)

because both sides identify with the (contravariant) crystalline Dieudonné module
of G ⊗R R/p. By 4.6.5 M∆(G) is a finite, locally free ∆R-module. Thus M∆(G)
identifies with a ∆R-submodule of M∆(G) ⊗∆R

Acrys(R/p) because the morphism

23Note that we chose ξ̃ as a generator of the ideal of the prism, so the Frobenius twist in the
statement of loc. cit. disappears.

24The proof of 4.6.5 does not use the comparison with [51].
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∆R → Acrys(R/p) is injective. We claim that αG⊗RR/p maps (injectively) M∆(G)

intoMSW (G)∗. By the very construction ofMSW (G)∗ we have to check that for any
perfectoid valuation ring V with algebraically closed fraction field and morphism
R→ V the moduleM∆(G) maps toMSW (GV )

∗ ⊆Mcrys(GV ) with GV := G⊗RV .
If V is perfect, this follows by 4.3.2. If V is of mixed characteristic we can write V as
the fiber product V ′ ×κ S of a perfect valuation ring S with a mixed-characteristic
valuation ring V ′ of rank 1 over the residue field κ of V ′, and write

MSW (GV ) ∼=MSW (GV ′)×MSW (Gκ) M
SW (GS).

We already checked the statement for V ′, κ, S, and thus we have finished the con-
struction of a natural injective morphism

αR,G : M∆(G)→MSW (G)∗

for a general perfectoid ring R. Assume R→ R′ is a morphism of perfectoid rings,
then we know that αR,G ⊗∆R

∆R′ = αR′,GR′ if R,R′ are perfect. If R is p-torsion

free and R′ perfect, we can draw the same conclusion as then ∆R → ∆R′ factors over
Acrys(R/p) and αR,G ⊗∆R

Acrys(R/p) is the identification coming from Dieudonné

theory. As MSW (G)∗ is a finite free ∆R-module (by [51, Theorem 17.5.2]), we can
check that it is an isomorphism after base change along all morphisms ∆R → ∆k for
R→ k a morphism from R to a perfect field k. But this case was already handled.
This finishes the proof. �

We obtain the following corollary, which we will need in Section 4.9.

Corollary 4.3.7. Let R be a perfectoid ring. The prismatic Dieudonné functor
M∆ takes values in DMadm(R) ∼= DM(R) and induces an antiequivalence between

BT(R) and DMadm(R) ∼= DM(R).

Proof. This follows immediately from the last proposition and [51, Theorem 17.5.2].
Note that the argument of loc. cit. shows that one only needs to prove the equiva-
lence when R is the ring of integers of a perfectoid algebraically closed field, where
it is due to Berthelot [4, Theorem 3.4.1] and Scholze-Weinstein [50, Theorem 5.2.1]
(in this case, one can even assume that the fraction field of R is spherically com-
plete, and the result is then an easy consequence of results of Fargues : see [50,
§5.2]). �

Remark 4.3.8. Let R be a perfectoid ring. The functor M∆ is exact (see below
Proposition 4.6.8) and has an exact quasi-inverse (we will provide an argument for
this later in Section 5.1 in the case of finite locally free group schemes, which applies
verbatim for p-divisible groups).

Let us conclude this section by discussing the case of perfect fields. For a perfect
field k, Fontaine [23] was the first to give a uniform definition of a functor from
p-divisible groups to (prismatic) Dieudonné modules over k. Let us recall it first, as
formulated in [7, §4.1]. If A is a commutative ring, the set CW(A) of Witt covectors
with values in A is the set of all family (a−i)i∈N of elements of A such that there
exist integers r, s ≥ 0 such that the ideal Jr generated by the a−i, i ≥ r, satisfies
Jsr = 0. One still denotes by CW the sheaf on the big fpqc site25 of k associated to
the presheaf of Witt covectors. This is an abelian sheaf of W (k)-modules, endowed

25We could as well use any other topology finer than the Zariski topology.
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with a Frobenius operator which is semi-linear with respect to the Frobenius on
W (k). Fontaines defines :

M cl(G) := Hom(k)fpqc
(G,CW).

As a corollary of Theorem 4.3.2 and results of Berthelot-Breen-Messing, one gets

Proposition 4.3.9. Let k be a perfect field, and let G be a p-divisible group over
R. One has a canonical W (k)-linear Frobenius-equivariant isomorphism

M∆(G)
∼=M cl(G).

Proof. By construction, the isomorphism of Theorem 4.3.2 is linear over the iso-
morphism ∆k ≃ Acrys(k), which is given by the Frobenius σ of W (k), i.e., it can be
seen as a Frobenius-equivariant W (k)-linear isomorphism :

M
∆
(G) ∼= (σ−1)∗M crys(G).

Composing it with σ−1-pullback of the inverse of theW (k)-linear Frobenius-equivariant
isomorphism of [7, Theorem 4.2.14], we get the desired isomorphism. �

It would be interesting to get a more direct proof of this corollary. In character-
istic p, the prismatic Dieudonné crystal of a p-divisible group admits a description
which looks similar to Fontaine’s definition.

Definition 4.3.10. Let R be a a quasi-syntomic ring with pR = 0. We define the
sheaf Q on (R)∆ as the quotient :

0→ O∆ → O∆[1/p]→ Q→ 0.

The morphism O∆ → O∆[1/p] is injective since any prism in (R)∆ is p-torsion
free.

Proposition 4.3.11. Let R be a quasi-syntomic ring with pR = 0, and let G be a
p-divisible group over R. The connecting map of the canonical exact sequence

0→ O∆ → O∆[1/p]→ Q→ 0

induces an isomorphism :

Hom(R)qsyn(G, v∗Q) = v∗Hom(R)∆
(u−1G,Q) ∼=M∆(G).

Proof. First assume that G is a finite locally free group scheme. Then the statement
is clear, as

RHom(R)
∆
(u−1(G),O

∆
[1/p]) = 0,

because u−1(G) is killed by some power of p, whereas on O∆[1/p] multiplication by
p is invertible. The result for p-divisible groups is deduced by a limit argument. �

This naturally leads to the following question.

Question 4.3.12. When R = k is a perfect field, what is the relation between the
sheaf v∗Q and the sheaf CW of Witt covectors?
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4.4. Calculating Ext-groups in topoi. In this section we recall the method of
calculating Ext-groups in a topos as presented by Berthelot, Breen, Messing (cf. [6,
2.1.5]26. Let X be a topos and let G,H ∈ X be two abelian groups, i.e., two abelian
group objects.

The following theorem is attributed to Deligne in [6]. A proof can be found in
[48, Appendix to Lecture IV, Theorem 4.10].

Theorem 4.4.1. Let G ∈ X be an abelian group. Then there exists a natural
functorial (in G) resolution

C(G)• := (. . .→ Z[X2]→ Z[X1]→ Z[X0]) ≃ G

where each Xi ∈ X is a finite disjoint unions of products of copies G.

Proof. See [6, 2.1.5] or [48, Appendix to Lecture IV, Theorem 4.10] �

Lemma 4.4.2. Let X ∈ X be any object and let F ∈ Ab(X) be an abelian group.
Then

RΓ(X,F) ∼= RHomAb(X)(Z[X ],F),

where Z[X ] denotes the free abelian group on X.

Proof. This follows by deriving the isomorphism F(X) ∼= HomAb(X)(Z[X ],F). �

These two results show that the Ext-groups

ExtiAb(X)(G,H)

can, in principle, be calculated in terms of the cohomology groups

Hi(G× . . .×G,H)

for various products G× . . .×G. Unfortunately, the construction of the resolution
in Theorem 4.4.1 is rather involved. However, the first terms, which are sufficient
for our applications, can be made explicit27. For example, the first terms can be
chosen to be

C(G)0 := Z[G]
C(G)1 := Z[G2]

C(G)2 := Z[G3]⊕ Z[G2]

with explicit differentials (cf. [6, (2.1.5.2.)]). The stupid filtration of the complex
C(G)• yields a spectral sequence

Ei,j1 = ExtjAb(X)(C(G)i,F)⇒ Exti+jAb(X)(C(G)•,F)
∼= Exti+jAb(X)(G,F)

and the terms

ExtiAb(X)(C(G)j ,F)

26For simplicity we omit the case of the local Ext-sheaves, which is entirely similar.
27By this, we mean that one can construct a functorial (in G) resolution having these terms

in the beginning.
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can be calculated using the cohomology. For later use let us make the first terms
of the first page of this spectral sequence explicit:

. . .

,,❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩ . . .

--❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩ . . . . . .

H2(G,F)
d1 //

,,❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨ H2(G×G,F)
d2 //

,,❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩
H2(G×G,F)⊕H2(G×G×G,F) // . . .

H1(G,F)
d1 //

,,❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨ H1(G×G,F)
d2 //

,,❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩
H1(G×G,F)⊕H1(G×G×G,F) // . . .

H0(G,F)
d1 // H0(G×G,F)

d2 // H0(G×G,F)⊕H0(G×G×G,F) // . . .

For an element (x1, . . . , xn) ∈ Gn let us denote by [x1, . . . , xn] ∈ Z[Gn] the cor-
responding element in the group ring Z[Gn]. The morphisms d1 and d2 are then
induced by

Z[G2]→ Z[G], [x, y] 7→ −[x] + [x+ y]− [y]

for d1 and

Z[G2]→ Z[G2], [x, y] 7→ [x, y]− [y, x]
Z[G3]→ Z[G2], [x, y, z] 7→ −[y, z] + [x+ y, z]− [x, y + z] + [x, y]

for d2 (cf. [6, (2.1.5.2.)]).

4.5. Prismatic Dieudonné crystals of abelian schemes. In this section we
describe the prismatic cohomology of the p-adic completion of abelian schemes and
deduce from this the construction of the prismatic Dieudonné crystal

M
∆
(X [p∞]) = (M

∆
(X [p∞]), ϕM

∆
(X[p∞])).

of the p-divisible group X [p∞] of the p-adic completion of an abelian scheme X
over a quasi-syntomic ring R. Admissibility of this prismatic Dieudonné crystal
will be proved in the next section, in fact for any p-divisible group.

Let (A, I) be a bounded prism. Write Ā = A/I. Let X → Spf(Ā) be the p-adic
completion of an abelian scheme over Spec(Ā).

We first prove degeneracy of the conjugate spectral sequence (cf. Proposition 3.1.10)
for X . The proof is an adaptation of the argument in [6, Proposition 2.5.2], which
proves degeneration of the Hodge-de Rham spectral sequence.

Recall the following statement.

Proposition 4.5.1. For all k ≥ 0 (resp. for all i, j ≥ 0), the Ā-module Hk(X,Ω•
X/Ā

)

(resp. Hi(X,Ωj
X/Ā

)) is finite locally free, and its formation commutes with base

change.
Moreover, the algebra H∗(X,Ω•

X/Ā
) is alternating and the canonical algebra mor-

phism

∧∗H1(X,Ω•
X/Ā)→ H∗(X,Ω•

X/Ā)

defined by the multiplicative structure of H∗(X,Ω•
X/Ā

), is an isomorphism.

Proof. This is [6, Proposition 2.5.2. (i)-(ii)]. �
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Proposition 4.5.2. The conjugate spectral sequence

Eij2 = Hi(X,Ωj
X/Ā

){−j} ⇒ Hi+j(X,∆X/A)

degenerates and each term as well as the abutment commutes with base change in
the bounded prism (A, I). Moreover,

H∗(X,∆X/A) ∼= Λ∗H1(X,∆X/A)

is an exterior Ā-algebra on H1(X,∆X/A).

Proof. If p 6= 2, we can use a simple argument using the multiplication by n ∈ Z

on X . If n ∈ Z, then the multiplication by n on X induces on Hi(X,Ωj
X/Ā

){−j}

multiplication by ni+j . As the differentials of the spectral sequence are natural in
X this implies that they vanish on each Er-page, r ≥ 0 (this uses p 6= 2). This
proves that Hi(X,∆X/A) is a finite locally free Ā-module for each i ≥ 0. By the
Hodge-Tate comparison the complex

∆X/A

satisfies base change in (A, I), i.e., for a morphism (A, I)→ (A′, I ′) of prisms with
induced morphism g : X ′ := X ×Spf(Ā) Spf(A

′/I ′)→ X the canonical morphism

Lg∗∆X/A → ∆X′/A′

is an isomorphism. From this we can deduce that each Hi(X,∆X/A), i ≥ 0, sat-

isfies base change in (A, I). To show that H∗(X,∆X/A) is an exterior algebra on

H1(X,∆X/A), we need first to see that each element in H1(X,∆X/A) squares to
zero. For this we can argue as in the proof [6, Proposition 2.5.2.(ii)]. Then we
obtain a canonical morphism

β : ∧∗ H1(X,∆X/A)→ H∗(X,∆X/A).

We can use Lemma 4.5.3 and compatibility with base change to reduce to the case
that Ā is an algebraically closed field of characteristic p. In particular, the Frobenius
on A is bijective in this case, I = (p) and the twists (−){j} are isomorphic to the
identity. We may check that β is an isomorphism after pullback along ϕĀ. Then

ϕ∗
ĀH

k(X,∆X/A) ∼= Hk(X(1), (ϕX/Ā)∗(Ω
•
X/Ā))

∼= Hk(X,Ω•
X/Ā)

where we used in the second isomorphism that the relative Frobenius

ϕX/Ā : X → X(1) := X ×Spec(Ā),ϕĀ
Spec(Ā)

is finite. This reduces the assertion to de Rham cohomology, which is the content
of Proposition 4.5.1. This finishes the proof.

Alternatively (including the case p = 2), we could have argued like in [6, Theorem
2.5.2.(i)] to reduce, by descending induction, to the claim that H1(X,∆X/A) is

locally free of rank 2n, where n is the relative dimension of X over Spf(Ā), and
commutes with base change in (A, I). From Proposition 3.2.1 it follows that

H1(X,∆X/A) ∼= H1(X, τ≤1∆X/A) ∼= H0(X,LX/A[−1]).

As LX/A is a perfect complex with amplitude in [−1, 0] this implies compatibility

of H1(X,∆X/A) with base change in (A, I) if all the higher cohomology groups

Hj(X,LX/A[−1]) are locally free. As X admits a lift to A (see e.g. [47, Theorem

2.2.1]), Corollary 3.2.3 shows that LX/A ∼= OX [1]⊕ Ω1
X/Ā

. Another application of
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Proposition 4.5.1 implies therefore that H1(X,∆X/A) is locally free of dimension

2n and commutes with base change in (A, I) as all the Ā-modules Hj(X,OX) and
Hj(X,Ω1

X/Ā
) are locally free for j ≥ 0. �

Lemma 4.5.3. Let S be a ring and let g : M → N be a morphism of S-modules
with M finitely generated and N finite projective. If

g ⊗S k(x) : M ⊗S k(x)→ N ⊗S k(x)

is an isomorphism for all closed points x ∈ Spec(S), then g is an isomorphism.

Proof. Let Q be the cokernel of g. Then Q is finitely generated and Q⊗S k(x) = 0
for all closed points x ∈ Spec(S). By Nakayama’s lemma, this implies that Q = 0,
i.e., g is surjective. As N is projective, this implies M ∼= N ⊕K for K the kernel
of g. As M is finitely generated, K is finitely generated. Moreover for all closed
points x ∈ Spec(S)

K ⊗S k(x) = 0

and thus another application of Nakayama’s lemma implies that K = 0. �

We recall that for a p-complete ring R there is the natural morphism of topoi

u : Shv(R)∆ → Shv(R)QSYN.

Using the previous computations, we can first describe extension groups modulo
I.

Theorem 4.5.4. Let R be a p-complete ring and let f : X → Spf(R) be the p-adic
completion of an abelian scheme over Spec(R). Then

(1) Exti(R)
∆
(u−1(X),O∆) = 0 for i = 0, 2.

(2) Ext1(R)
∆
(u−1(X),O

∆
) is a prismatic crystal over R. Moreover,

Ext1(R)
∆
(u−1(X),O∆)

∼= R1f∆,∗(O∆)

for f∆ : Shv(X)∆ → Shv(R)∆ the morphism induced by f on topoi and

Ext1(R)
∆
(u−1(X),O∆) is locally free of rank 2dim(X) over O∆.

The proof is entirely similar to the one of [6, Théorème 2.5.6].

Proof. Let (B, J) ∈ (R)∆. We use the spectral sequence from Section 4.4 to calcu-
late for i ∈ {0, 1, 2} the groups

Exti(u−1(X)|(B,J),O∆
)

on the localised site (R)∆/(B, J)
28. Set Y := X ×Spf(Ā) Spf(B/J). As by Hodge-

Tate comparison

H0((Y/B)
∆
,O

∆
) ∼=H0(Y,∆Y/B) ∼= B/J

for any n the first row E∗,0
1 of the spectral sequence is seen to be independent of

X and exact in the case that X = 0 is trivial (the spectral sequence for X = 0 is
concentrated in the first row and converges to 0), hence always exact. In general
we see that Hom(u−1(X)|(B,J),O∆

) = 0 and Ext1(u−1(X)|(B,J),O∆
) is isomorphic

to the kernel of

H1(Y,∆Y/B)
d1−→ H1(Y × Y ,∆Y×Y /B)

28Which will be implicitly the subscript of all Ext-groups appearing in this proof.
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and d1 = pr∗1 +pr∗2−µ
∗ for pri the two projections and µ the multiplication. From

the Künneth formula (cf. Corollary 3.5.2) and Proposition 4.5.2 it follows that

H1(Y × Y ,∆Y×Y /B) ∼= H1(Y,∆Y/B)⊕H
1(Y,∆Y/B).

This implies µ∗ = pr∗1 + pr∗2, i.e., d1 = 0 and

Ext1(u−1(X)|(B,J),O∆)
∼= H1(Y,∆Y/B).

In particular, this group is compatible with base change in (B, J) and locally free
of rank 2dim(X) (by Proposition 4.5.2). Moreover, the morphism d2 is injective on
H1(Y × Y,∆Y/B) as follows from the Künneth theorem and the concrete formula
for d2. Finally, from Corollary 4.5.8 and Lemma 4.5.5 one can deduce that

Hi(Y,∆Y/B)
d1−→ Hi(Y,∆Y/B)

is injective for all i ≥ 2. These statements (together with the mentioned exactness
of the first row) imply

Ext2(u−1(X)|(B,J),O∆) = 0.

This finishes the proof by passing to the local Ext-groups, i.e., by letting (B, J)
vary. �

In the proof we used the following lemma on primitive elements in exterior
algebras.

Lemma 4.5.5. Let S be a ring and let M be a projective S-module. Then

{x ∈ Λ(M) | µ∗(x) = 1⊗ x+ x⊗ 1} = Λ1M,

where µ∗ : Λ(M) → Λ(M +M) ∼= Λ(M) ⊗S Λ(M) is the natural comultiplication
on Λ(M) coming from the diagonal M →M ⊕M .

Proof. This follows easily by decomposing Λ(M)⊗S Λ(M) into its bigraded pieces
Λi(M)⊗S Λj(M). �

Now we calculate the full extension groups, up to degree 2.

Theorem 4.5.6. Let R be a p-complete ring and let f : X → Spf(R) be the p-adic
completion of an abelian scheme over Spec(R). Then

(1) Exti(R)∆
(u−1(X),O∆) = 0 for i = 0, 2.

(2) Ext1(R)
∆
(u−1(X),O∆) is a prismatic crystal over R. Moreover,

Ext1(R)
∆
(u−1(X),O

∆
) ∼= R1f

∆,∗(O∆
),

for f∆ : Shv(X)∆ → Shv(R)∆ the induced morphism on topoi and the pris-

matic crystal Ext1(R)
∆
(u−1(X),O∆) is locally free of rank 2dim(X) over

O∆.

Proof. Let (B, J) ∈ (R)∆. As the statements are local for the faithfully flat topology

we may assume that J = (ξ̃) is principal. From the exact sequence

0→ O∆/ξ̃
n ξ̃
−→ O∆/ξ̃

n+1 → O∆/ξ̃ = O∆ → 0

of sheaves on (R)∆/(B, J) and Theorem 4.5.4 we can inductively conclude that

Exti(u−1(X)|(B,J),O∆/(ξ̃
n)) = 0
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for i ∈ {0, 2} and any n ≥ 0. This implies that

0→ Ext1(u−1(X)|(B,J),O∆/(ξ̃
n))

ξ̃
−→ Ext1(u−1(X)|(B,J),O∆/(ξ̃

n+1))

→ Ext1(u−1(X)|(B,J),O∆
)→ 0

is exact and that for 0 ≤ i ≤ 2,

Exti(u−1(X)|(B,J),O∆)
∼= lim
←−
n

Exti(u−1(X)|(B,J),O∆/(ξ̃
n)),

and that it is zero for i ∈ {0, 2} or a locally free B-module of rank 2dim(X) if
i = 1. Using the spectral sequence from Section 4.4, we get as in the proof of
Theorem 4.5.4 for each n ≥ 1 a map

Ext1(u−1(X)|(B,J),O∆
/(ξ̃n))→ H1(X ×Spf(R) Spf(B/J),∆X/A/(ξ̃

n)).

By induction on n, we deduce from Theorem 4.5.4 that this map is an isomor-
phism for all n. Passing to the inverse limit over all n ≥ 1 and using the above
identification, we deduce an isomorphism

Ext1(u−1(X)|(B,J),O∆)
∼= H1(X ×Spf(R) Spf(B/J),∆X/A).

This finishes the proof by passing to local Ext-groups. �

Corollary 4.5.7. Let R be a p-complete ring. Let X be the p-completion of an
abelian scheme over R. The Opris-module

M∆(X [p∞]) = Ext1(R)qsyn
(X [p∞],Opris)

is a finite locally free Opris-module of rank 2 dim(X), given by R1f∆,∗O∆.

Proof. By Lemma 4.2.4,

M∆(X [p∞]) = v∗(Ext
1
(R)∆

(u−1G,O∆)).

Hence the corollary results from Theorem 4.5.6 and Proposition 4.1.4. �

Although we will not use it, let us record the full description of the prismatic
cohomology of X .

Corollary 4.5.8. With the notation from Corollary 4.5.7, the prismatic cohomol-
ogy

R∗f∆,∗O∆

is a finite locally free crystal on (R)
∆

and an exterior algebra on the locally free
crystal

R1f
∆,∗(O∆

)

of dimension 2dim(X).

Proof. Let (B, J) ∈ (R)∆ and let Y := X×Spf(R) Spf(B/J). It suffices to prove the
analog statements for H∗(Y,∆Y/B). From (the proof of) Theorem 4.5.6 we see that

H1(Y,∆Y/B)→ H1(Y,∆Y/B)

is surjective and that H∗(Y,∆Y/B) is an exterior algebra on H1(Y,∆Y/B). Since

H1(Y,∆Y/B) is projective, we can lift the identity H1(Y,∆Y/B) → H1(Y,∆Y/B) to
a map

H1(Y,∆Y/B)[−1]→ ∆Y/B .
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Using multiplication in H∗(Y,∆Y/B) and that H∗(Y,∆Y/B) is an exterior algebra,
we see that for each i ≥ 0 the morphism

Hi(Y,∆Y/B)→ Hi(Y,∆Y/B)

is surjective. This implies that each B-module Hi(Y,∆Y/B) is J-torsion free,
and then that it is a finite, locally free B-module as modulo J it identifies with
Hi(Y,∆Y/B). The same argument as in [6, Proposition 2.5.2.(ii)]) implies then that

each element in H1(Y,∆Y/B) squares to zero. We obtain a morphism

ΛiH1(Y,∆Y/B)[−i]→ RΓ(Y,∆Y/B)

inducing an isomorphism on Hi after passing to ⊗L
BB/J . Altogether, we obtain a

morphism

Λ∗(H1(Y,∆Y/B))[−∗]→ RΓ(Y,∆Y/B)

of complexes which is an isomorphism after applying ⊗L
BB/J . By derived J-adic

completeness it is therefore an isomorphism, which implies the statements. �

4.6. The prismatic Dieudonné crystal of a p-divisible group. In this section,
we establish the basic properties of the prismatic Dieudonné functor for p-divisible
groups. The idea, due to Berthelot-Breen-Messing, is to make systematic use of the
following theorem of Raynaud, to reduce to statements about (p-divisible groups
of) abelian schemes proved in the last section.

Theorem 4.6.1. Let S be a scheme, and let G be a finite locally free group scheme
over S. There exists Zariski-locally on S, a (projective) abelian scheme A and a
closed immersion G →֒ A of group schemes over S.

Proof. See [6, Theorem 3.1.1]. �

Proposition 4.6.2. Let R be a p-complete ring, and let G be a finite locally free
group scheme over R. The sheaf Ext1(R)

∆
(u−1G,O∆) is a prismatic crystal of locally

finitely presented O∆-modules.

Proof. By Theorem 4.6.1, one can choose locally on R an exact sequence of group
schemes

0→ G→ X → X ′ → 0,

where X and X ′ are abelian schemes over R. Whence, by Theorem 4.5.6 (1), an
exact sequence

Ext1(R)
∆
(u−1X ′,O∆)→ Ext

1
(R)

∆
(u−1X,O∆)→ Ext

1
(R)

∆
(u−1G,O∆)→ 0.

This proves the proposition, by Theorem 4.5.6 (2). �

Let n ≥ 1. Recall ([25, Definition 1.1]) that an a finite locally free group scheme
G over a scheme S is called a truncated Barsotti-Tate group of level n if it is killed
by pn and flat over Z/pn, and, when n = 1, if it also satisfies that the sequence

G0
F
→ ϕS0,∗G0

V
→ G0

is exact, where G0 denotes the base change of G to S0 = V (p) ⊂ S. The rank
of G[p] is of the form ph, for an integer h locally constant on S called the height
of G. In the sequel, we will make use of the following basic facts on truncated
Barsotti-Tate groups (cf. [25, 1.3 (e), 1.3 (f), 1.6]):



PRISMATIC DIEUDONNÉ THEORY 59

(1) If G is a p-divisible group over S (of height h), G[pn] is a truncated Barsotti-
Tate group of level n over S (of height h) for all n ≥ 1.

(2) If G is a truncated Barsotti-Tate group of level n and height h, then so is
the Cartier dual G∗ of G.

(3) If 0 → G1 → G2 → G3 → 0 is an exact sequence finite locally free group
schemes of order pn over S, and if two of them are truncated Barsotti-Tate
groups of level n, then so is the third one.

Remark 4.6.3. Let G be a finite locally free group scheme killed by pn over a
scheme S such that pnOS = 0, and let ℓG be its coLie complex. Set :

ωG = H0(ℓG) , nG = H−1(ℓG) , tG = H0(ℓ̌G) ; νG = H1(ℓ̌G).

Grothendieck’s duality formula identifies ℓ̌G with the truncation τ≤1RHom(G∗,Ga),
and this gives rise to a canonical morphism :

φG : νG → tG.

Then G is a BTn if and only if tG, tG∗ are locally free and the canonical morphisms
φG and φG∗ are isomorphisms (cf. [25, Corollary 2.2.5]). In this situation, ωG is
finite locally free of rank called the dimension dim(G) of G, and νG∗ is finite locally
free of rank h− dim(G), if h is the height of G.

Proposition 4.6.4. Let R be a quasi-syntomic ring, and let G be a truncated
Barsotti-Tate group over R of level n. The sheaf Ext1(R)

∆
(u−1G,O

∆
) is a prismatic

crystal of finite locally free O
∆
/pn-modules.

Proof. Fix once and for all an embedding of G into an abelian scheme X ′ of dimen-
sion g over R. By Theorem 4.6.1, this can be done Zariski-locally on Spf(R), and
the reader can check that the different steps of the proof are all local statements on
Spf(R). Let X be the cokernel of the embedding G→ X ′ ; this an abelian scheme,
and one has an exact sequence

0→ G→ X ′ → X → 0

of group schemes over R.
We first prove that for any (B, J) ∈ (R)∆, the B-module

Ext1(R)
∆
(u−1G,O

∆
)(B,J)

is locally generated by h sections, where h is the height of G. By the crystal
property of Ext1(R)

∆
(u−1G,O∆) (cf. Proposition 4.6.2), for any morphism of prisms

(B, J)→ (W (k), (p)), where k is a characteristic p perfect field,

Ext1(R)∆
(u−1G,O∆)(B,J) ⊗B W (k) = Ext1(R)∆

(u−1Gk,O∆)(W (k),(p)).

By Nakayama’s lemma, (p, J)-completeness of B and the finite presentation
proved in Proposition 4.6.2, it suffices to prove that for any morphism B → k
vanishing on J , k characteristic p perfect field,

Ext1(R)
∆
(u−1G,O∆)(B,J) ⊗B k

is generated by h elements. Such a morphism B → k extends to a morphism of
prisms (B, J) → (W (k), (p)), so it suffices by the above to prove our claim when
R = k is a perfect field and (B, J) = (W (k), (p)). First, observe that

Ext1(k)
∆
(u−1G,O

∆
)(W (k),(p)) ⊗ k = Ext1(k)

∆
(u−1G,O

∆
)(W (k),(p)).
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This is easily seen, using that Ext2(k)
∆
(u−1X,O∆) and Ext2(k)

∆
(u−1X,O∆) both

vanish (Theorem 4.5.4 and Theorem 4.5.6).
As a corollary of Proposition 4.5.2 (together with the standard relation between

H1(X,O) and Lie(X∗), cf [6, §5.1.1]) and Theorem 4.5.4, one has a short exact
sequence

0→ u∗Lie(X∗)→ Ext1(R)
∆
(u−1X,O∆)→ u∗ωX → 0,

and similarly for X ′. Also, note that we have exact sequences29 :

u∗Lie(X∗)→ u∗Lie(X
′∗)→ u∗νG∗ → 0

(where νG∗ = Ext1(G,Ga)) and

u∗ωX → u∗ωX′ → u∗ωG → 0.

The map Ext1(k)
∆
(u−1X ′,O∆)→ Ext

1
(k)

∆
(u−1X,O∆) is compatible with the natural

maps u∗Lie(X∗)→ u∗Lie(X
′∗) and u∗ωX′ → u∗ωX , through the identifications of

Theorem 4.5.4. The long exact sequence of Ext gives a surjection :

Ext1(k)
∆
(u−1X ′,O

∆
)→ Ext1(k)

∆
(u−1X,O

∆
)→ Ext1(k)

∆
(u−1G,O

∆
)→ 0,

since, as we have seen in Theorem 4.5.4, Ext2(k)
∆
(u−1X ′,O∆) = 0. By the above

remark, we even have a commutative diagram :

0 //

��

0

��

// 0

��
u∗Lie(X∗) //

��

u∗Lie(X
′∗)

��

// u∗νG∗ //

��

0

Ext1(k)
∆
(u−1X,O∆)

//

��

Ext1(k)
∆
(u−1X ′,O∆)

��

// Ext1(k)
∆
(u−1G,O∆)

//

��

0

u∗ωX //

��

u∗ωX′

��

// u∗ωG

��

// 0

0 // 0 // 0

where all rows and the first two columns are exact. This proves that the map

Ext1(k)∆(u
−1G,O∆)→ u∗ωG

is surjective and an easy diagram chase prove that in fact the sequence

u∗νG∗ → Ext1(k)∆(u
−1G,O∆)→ u∗ωG → 0

is exact. As G is a truncated Barsotti-Tate group, the sheaf ωG is a locally free sheaf
of rank d = dimG and νG∗ is a locally free sheaf of rank h − d (cf. Remark 4.6.3,
which applies whatever the level of G is, since p = 0 on k). Hence the sequence stays
exact after evaluation on (W (k), (p)) and Ext1(k)∆

(u−1G,O∆)(W (k),(p)) is generated

by h sections. This proves the claim.

29Recall ([6, §5.1.1]) that if X is an abelian scheme, Lie(X∗) ∼= Ext1(X,Ga).
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Back to the proof of the proposition, we know, as a direct consequence of Theo-
rem 4.5.6 that

Ext1(R)
∆
(u−1X ′[pn],O∆) = Ext

1
(R)

∆
(u−1X ′,O∆)/p

n

is crystal of locally free O∆/p
n-modules of rank 2g. Consider the exact sequence

0→ G→ X ′[pn]→ H → 0,

where H is a Barsotti-Tate group of height 2g− h, induced by the embedding of G
in X ′. This gives an exact sequence

Ext1(R)∆
(u−1H,O∆)→ Ext

1
(R)∆

(u−1X ′[pn],O∆)→ Ext
1
(R)∆

(u−1G,O∆)→ 0.

Indeed, right-exactness follows from 4.5.6, which implies that already

Ext1(R)
∆
(u−1X ′,O∆)→ Ext

1
(R)

∆
(u−1G,O∆)

is surjective. Locally on (R)∆, the middle term is free of rank 2g over O∆/p
n, while

the left (resp. right) term is generated by 2g − h (resp. h) sections. Therefore,
Ext1(R)

∆
(u−1H,O∆) and Ext

1
(R)

∆
(u−1G,O∆) are free over O∆/p

n of rank 2g−h and

h. �

Proposition 4.6.5. Let R be a p-complete ring, and let G be a p-divisible group
over R. The sheaf

Ext1(R)
∆
(u−1G,O

∆
)

is a prismatic crystal of finite locally free O∆-modules of rank the height of G.
In particular, if R is a quasi-syntomic ring and G is a p-divisible group over R,

the Opris-module M∆(G) is a finite locally free Opris-module of rank the height of
G.

Proof. Let G be a p-divisible group over R. Since G = colim G[pn], we have a short
exact sequence :

0→ R1lim
n
Hom(R)

∆
(u−1G[pn],O∆)→ Ext

1
(R)∆

(u−1G,O∆)

→ lim
n
Ext1(R)

∆
(u−1G[pn],O∆)→ R2lim

n
Hom(R)

∆
(u−1G[pn],O∆).

The last term vanishes as the prismatic topos is replete. We have to show that the
first term vanishes, or even stronger, that for each (B, J) ∈ (R)∆ the morphism

Ext1(R)
∆
/(B,J)(u

−1(G),O
∆
)→ lim

n
Ext1(R)

∆
/(B,J)(u

−1(G[pn]),O
∆
)

is bijective. Set

M := Ext1(R)∆/(B,J)
(u−1(G),O∆)

and

Mn := Ext1(R)
∆
/(B,J)(u

−1(G[pn]),O∆)

for n ≥ 0. For n,m ≥ 0 the sequence

Mm
pn

−→Mn+m →Mn → 0

is right exact (this follows by locally embedding G[pm+n] and using Theorem 4.5.6).
Thus, the canonical morphism

Mn+m ⊗B/pn+p B/pn →Mn
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is an isomorphism for n,m ≥ 0. As allMn are finite locally free over B/pn (of rank
the height of G) the B-module N := lim

←−
n

Mn is finite locally free over B (of rank

the height of G) by [52, Tag 0D4B]. By the same reference

N/pn ∼=Mn.

The canonical morphism M → N is surjective (by a similar R1 lim
←−
n

sequence as

above). In particular, we can conclude that M →Mn is surjective for each n ≥ 0.
The long exact sequence for 0 → u−1(G[pn]) → u−1G → u−1G → 0 and the
surjectivity of M → Mn imply that M/pn ∼= Mn and Ext2(R)

∆
/(B,J)(u

−1(G),O∆)

has no pn-torsion. This p-torsion freeness of Ext2 in turn implies that

M/pn ∼= Ext1(R)∆/(B,J)
(u−1(G),O∆/p

n).

Our aim is to prove that M ∼= N or equivalently that M is classically p-complete,
i.e., M ∼= lim

←−
n

M/pn. As all prisms in (R)∆ are by definition bounded, and thus

classically p-complete,

O∆
∼= lim
←−
n

O∆/p
n ∼= R lim

←−
n

O∆/p
n.

We can therefore calculate M = Ext1(R)
∆
/(B,J)(u

−1G,O∆) by an exact sequence

0→ R1 lim
←−
n

Hom(R)
∆
/(B,J)(u

−1G,O∆/p
n)→M → lim

←−
n

M/pn → 0.

In this sequence the R1 lim
←−
n

-term vanishes as each Hom(R)∆/(B,J)
(u−1G,O∆/p

n) is

zero because G is p-divisible. The isomorphisms

M ∼= lim
←−
n

M/pn ∼= lim
←−
n

Mn

imply thatM∆(G) is a crystal, because they show that, even stronger,

Ext1(R)
∆
/(B,J)(u

−1G,O
∆
)

commutes with base change in (B, J). This finishes the proof of the first sentence
of the proposition.

The second sentence is an immediate corollary of the first one, together with
Proposition 4.1.4 and Lemma 4.2.4. �

We can now summarize our discussion and prove the main result of this section.
We need a last lemma.

Lemma 4.6.6. Let (C, J) be an henselian pair and let G be a p-divisible group
over C/J . Then there exists a p-divisible group G over C such that

G⊗C C/J ∼= G.

Proof. Set h as the height of G. Let BThn be the Artin stack (over Spec(Z)) of
n-truncated Barsotti-Tate groups of height h. Then for any n ≥ 1 the morphism

BThn → BThn−1

is a smooth morphism between smooth Artin stacks (cf. [32, Section 2] resp. [25,
Thm 4.4]). By [21, Theorem, page 568] (which extends to the non-noetherian case
by passing to the limit) any section D → C/J of some smooth C-algebra D extends
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to a section D → C. These statements imply that inductively, we can lift G[pn] to
a truncated p-divisible group Hn over C. Then finally

G := lim
−→
n

Hn

yields the desired lift over G. �

Theorem 4.6.7. Let R be a quasi-syntomic ring, and let G be a p-divisible group
over R. The pair (M

∆
(G), ϕM

∆
(G)) of Definition 4.2.1 is an admissible prismatic

Dieudonné crystal over R.

Proof. Let G be a p-divisible group over R. By Proposition 4.6.5, we already know
that M∆(G) is a finite locally free Opris-module, endowed with the semilinear
endomorphism ϕMG . We need to see that it this gives an admissible prismatic
Dieudonné crystal over R. The construction being functorial in R, it suffices by
Proposition 4.1.9 to deal with the case where R is quasi-regular semiperfectoid.
Choose a perfectoid ring S mapping surjectively onto R; by Corollary 2.1.10, we
can assume that S is henselian along ker(S → R). Lemma 4.6.6 (applied to (C, J) =
(S, ker(S → R)) and G = G) shows that G is the base change of a p-divisible group
H over S. Hence, (M∆(G), ϕM

∆
(G)) is the base change of (M∆(H), ϕM

∆
(H)),

which we know to be an admissible Dieudonné crystal since S is perfectoid, cf.
Corollary 4.3.7. �

We now state two useful properties of the prismatic Dieudonné functor : its
exactness and its compatibility with Cartier duality.

Proposition 4.6.8. Let R be a quasi-syntomic ring. The functor

M∆ : BT(R)→ DM(R), G 7→ M∆(G)

is exact.

Proof. Let
0→ G′ → G→ G′′ → 0

be a short exact sequence of p-divisible groups over R, which we see as an exact
sequence of abelian sheaves on (R)qsyn. Applying RHom(R)qsyn(−,O

pris) to it, we
get a long exact sequence :

Hom(R)qsyn(G
′,Opris)→M∆(G

′′)→M∆(G)→M∆(G
′)→ Ext2(R)qsyn

(G′′,Opris).

The first term vanishes as G′ is p-divisible and Opris derived p-complete. Let us
prove surjectivity ofM∆(G)→M∆(G

′). For n ≥ 1 consider the exact sequences

0→ G′[pn]→ G[pn]→ Hn → 0.

Then G′′ = lim
−→
n

Hn with injective transition maps Hn → Hn+1 (as G[pn] ⊆ G′ =

G′[pn] for all n ≥ 1). As in the proof of Proposition 4.6.5 we can conclude that

M
∆
(G[pn])→M

∆
(G′[pn]), M

∆
(Hn+1)→M∆

(Hn)

are surjective. Passing to the limit of the exact sequences

M
∆
(Hn)→M∆

(G[pn])→M
∆
(G′[pn])→ 0

implies therefore that
M∆(G)→M∆(G

′)

is surjective, as desired. �
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Let R be a quasi-syntomic ring and let G be a p-divisible group over R with
Cartier dual Ǧ. Passing to the limit for the Cartier duality on finite flat group
schemes yields isomorphisms

Tp(Ǧ) ∼= HomR(TpG, Tpµp∞) ∼= HomR(G,µp∞)

of sheaves on (R)qsyn. We first construct a canonical morphism

ΦG :M∆(G)
∨ ⊗Opris M∆(µp∞)→M∆(Ǧ),

whereM∆(G)
∨ denotes the Opris-linear dual ofM∆(G). Recall that

M∆(Ǧ) ∼= Hom(TpǦ,O
pris)

by Lemma 4.2.6. Thus we can define ΦG by setting

ΦG(δ ⊗ l)(α) := (δ ◦M∆(α))(l) ∈ O
pris

where

δ ∈ M∆(G)
∨, l ∈M∆(µp∞), α ∈ Hom(G,µp∞) ∼= TpǦ.

Clearly, the morphism ΦG is natural in G and commutes with base change in R.

Proposition 4.6.9. Let R be a quasi-syntomic ring. For every p-divisible group G
over R, the map

ΦG :M∆(G)
∨ ⊗Opris M∆(µp∞)→M∆(Ǧ)

constructed above is an isomorphism.

Proposition 4.7.3 implies, via quasi-syntomic descent, thatM∆(G)
∨⊗OprisM∆(µp∞)

is naturally a prismatic Dieudonné crystal when equipped with the Frobenius

1⊗ δ⊗ l ∈ Opris⊗ϕ,Opris (M∆(G)
∨⊗OprisM∆(µp∞)) 7→ ϕ∗δ ◦ϕ−1

M
∆
(G)⊗ϕµp∞

(1⊗ l)

(using the identification ϕ∗Opris ∼= Opris and the inverse ϕ−1
M

∆
(G) : M∆(G) →

1/Iprisϕ∗M∆(G) of the linearized Frobenius on M∆(G)). With this choice of
Frobenius one checks that ΦG is a morphism of prismatic Dieudonné crystals, i.e.,
compatible with the Frobenius.

Proof. Both sides are locally free Opris-modules of the same rank (cf. Proposi-
tion 4.6.5). Hence it suffices to see that ΦG is surjective, which can be checked
after base change R → k to perfect fields k of characteristic p. Thus, assume that
R = k. By Theorem 4.3.2 the prismatic Dieudonné functor over k is isomorphic to
the crystalline one. Let

Φcl
G :M∆(G)

∨ ⊗Opris M∆(µp∞)→M∆(Ǧ)

be the natural isomorphism coming from classical duality for the crystalline Dieudonné
functor over perfect fields (cf. for example [23, Proposition III 5.1.iii)]). Let

Ψ(−) :M∆(−)
∨ ⊗Opris M∆(µp∞)→M∆((−)

∗)

be any natural transformation (of functors on p-divisible groups over quasi-syntomic
rings over k). Then for any morphism γ : G→ H of p-divisible groups, there is an
equality

(1) ΨG(δ ⊗ l)(α ◦ γ) = ΨH(δ ◦M∆(γ)⊗ l)(α)

where δ ∈ M∆(G), l ∈ M∆(µp∞), α ∈ Hom(H,µp∞). We want to show that

ΦG = uΦcl
G for all p-divisible groups G and some unit u ∈ Opris (independent of
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G). Thus pick δ ∈ M∆(G)
∨, l ∈ M∆(µp∞) and α ∈ Hom(G,µp∞). Applying

(Equation (1)) to γ = α : G→ µp∞ implies

ΨG(δ ⊗ l)(α) = Ψµp∞
(δ ◦M∆(α) ⊗ l)(Idµp∞

)

for any natural transformation Ψ(−) as above. In particular, Ψ (and thus Φ(−) and

Φcl
(−) as examples) are determined by their behavior on G = µp∞ . For µp∞ both

induce an isomorphism

M∆(µp∞)∨ ⊗Opris M∆(µp∞) ∼= Hom(Tp(µp∞),Opris) ∼= Opris.

Namely, Φµp∞
is given by the natural evaluation, which is an isomorphism as

M∆(µp∞) is free over rank 1 (by the crystalline comparison, cf. Theorem 4.3.2).

That Φcl
µp∞

is an isomorphism follows from classical Dieudonné theory (cf. [23,

Proposition 5.1.iii)]). Hence, Φµp∞
and Φcl

µp∞
differ by some unit u ∈ Opris30. This

implies ΦG = uΦcl
G for all G by naturality. By [23, Proposition 5.1.iii)] we can

conclude. �

The main result of this text is the following theorem, whose proof will spread
out over the next sections.

Theorem 4.6.10. Let R be a quasi-syntomic ring. The prismatic Dieudonné func-
tor :

M∆ : BT(R)→ DMadm(R)

is an antiequivalence between the category of p-divisible groups over R and the
category of admissible prismatic Dieudonné crystals over R.

Proof. By Proposition 3.3.7 and the fact that both BT and DMadm are stacks on
QSyn for the quasi-syntomic topology (see Proposition A.2 and Proposition 4.1.9),
we can assume that moreover R is quasi-regular semiperfectoid. Then the theorem
is a consequence of Theorem 4.8.1 and Theorem 4.9.5, to be proved below. �

4.7. The prismatic Dieudonné modules of Qp/Zp and µp∞ . In this subsec-
tion, we calculate the prismatic Dieudonné crystals of Qp/Zp and µp∞ to explicitly
work out some examples for prismatic Dieudonné crystals. We deduce as well a
description for all étale and multiplicative p-divisible groups. For the analogous re-
sults for the crystalline Dieudonné functor see [7, 2.2]. Let us fix a quasi-syntomic
ring R. Recall that for a p-divisible group G over R the prismatic Dieudonné crystal
M∆(G) is defined (cf. Definition 4.2.1) as the sheaf

M
∆
(G) := Ext1(R)qsyn

(G,Opris) = v∗Ext
1
(R)

∆
(u−1(G),O

∆
)

on the absolute prismatic site (R)∆ of R and that

M∆(G)
∼= Hom(R)qsyn(TpG,O

pris) = v∗Hom(R)∆
(u−1(TpG),O∆),

by Lemma 4.2.6.

Lemma 4.7.1. The Opris-module M∆(Qp/Zp) is freely generated by the isomor-

phism class of the extension of Opris by Qp/Zp obtained as the push-out of the short
exact sequence

0→ Zp → Qp → Qp/Zp → 0

30Of course, one expects u = ±1, but as this finer statement is not necessary for us, we avoided
the calculation verifying this.
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on (R)qsyn along the canonical morphism Zp → Opris. More generally,

M
∆
(G) ∼= Hom(R)qsyn(Tp(G),Zp)⊗Zp O

pris.

if G is an étale p-divisible group.

Proof. This follows directly from the isomorphism

M∆(G)
∼= Hom(R)qsyn(TpG,O

pris)

and the fact that for an étale p-divisible group TpG is a local system of finite free
Zp-modules on (R)qsyn

31. �

Let us now describe the prismatic Dieudonné crystalM∆(µp∞) of µp∞ on (R)qsyn.

Definition 4.7.2. Let O∆{−1} be the sheaf

O∆{−1} = Hom(Zp)∆
(u−1(Zp(1)),O∆)

on the absolute prismatic site of Zp, with Zp(1) := Tpµp∞ .

Note that, if Ĝm denotes, the p-adic completion of the multiplicative group
scheme Gm, we also have

O∆{−1}
∼= Ext1(Zp)∆

(u−1µp∞ ,O∆)
∼= Ext1(Zp)∆

(Ĝm,O∆)

as Ĝm/µp∞ is uniquely p-divisible and O∆ p-complete. Also, as recalled above, we
have a natural isomorphism

M∆(µp∞) ∼= v∗O∆{−1}|(R)
∆

.

We can describe the sheaf O∆{−1} in restriction to prisms (B, J) which live over
the “cyclotomic” base prism

(A, I) := (Zp[[q − 1]], ([p]q))

from Section 2.2. We point out that Mondal [46] was able to recently get rid of this
restriction, using Bhatt-Lurie’s syntomic Chern classes [10].

The reason is that for such prisms we can use the q-logarithm from Section 2.2

logq : u
−1(Zp(1))→ O∆

which defines a canonical element, which we call ℓq ∈ O∆{−1}(A, I).

Proposition 4.7.3. The O∆-linear map

O∆ → O∆{−1},

sending 1 to ℓq, of sheaves on the category of all prisms living over (A, I) = (Zp[[q−
1]], ([p]q)), is an isomorphism. Moreover, the Frobenius on O∆{−1} sends ℓq to
[p]qℓq.

Proof. Let (B, J) be a prism over (A, I). It suffices to show that the morphism

B → Ext1(u−1(Ĝm)|(B,J),O∆),

(where we mean Ext1 in the category of abelian sheaves on the site of prisms
over (B, J)) given by the q-logarithm is an isomorphism. By Proposition 4.6.5 the
formation of this map is compatible with base change in (B, J). From the proof

31Here, we did some abuse of notation and denoted by Zp the sheaf S 7→ Homcts(π0(S),Zp)

on (R)qsyn, which is usually called Zp.
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of loc. cit. we also know that Ext1(u−1(Ĝm)|(B,J),O∆) is a finite, locally free B-
module of rank 1. Therefore, it suffices to show surjectivity. To show surjectivity
one may pass to the case that (B, J) = (W (k), (p)) for k an algebraically closed
field of characteristic p. Then the comparison with the crystalline Dieudonné crystal
(cf. Theorem 4.3.2) reduces to an analogous statement for the usual logarithm as
for q = 1 the q-logarithm becomes the logarithm. Let R be a general ring of
characteristic p and let R′ → R be a surjection of schemes with a PD-structure
{γn}n≥0 on K := ker(R′ → R) and assume p nilpotent in R′. Then there is the
canonical morphism

log : Zp(1)(R)→ R′, x 7→ log([x])

where [−] : lim
x 7→xp

R→ R′ is the Teichmüller lift and log the crystalline logarithm

log: 1 +K → R′, y 7→
∞∑

n=1

(−1)n−1(n− 1)!γn(y − 1)

(which makes sense as [x] ∈ 1+K). But it is known that the logarithm generates the
crystalline Dieudonné crystal of µp∞ (cf. [7, 2.2.3.Corollaire]). Finally the action of
Frobenius on ℓq can be calculated using Lemma 2.2.2:

ϕHom(u−1(Zp(1)),O∆)(ℓq)(x) =
qp − 1

log(q)
log(xp) =

qp − 1

q − 1
ℓq(x) = [p]qℓq(x)

for x ∈ Zp(1).
�

Remark 4.7.4. Note that, when pR = 0, the identification between the pris-
matic and crystalline Dieudonné modules from Theorem 4.3.2 is linear over the
isomorphism ∆R

∼= Acrys(R) from Lemma 3.4.2. This explains why the map

x 7→ logq([x
1/p]θ̃) is sent to x 7→ log([x]) (and not something like x 7→ log([x1/p]),

which would not make sense as [x1/p] − 1 need not have divided powers), cf. the
remark after Lemma 3.4.2.

Assume now that R is an A/I = Z[ζp]-algebra.

Corollary 4.7.5. Let G be a multiplicative p-divisible group over R. Then there
is a canonical isomorphism

u−1(Hom(G,µp∞))⊗Zp O∆
∼= Ext1(R)∆

(u−1G,O∆)|(R/A)
∆

induced by sending f : G→ µp∞ to the evaluation of the morphism induced by f :

Ext1(R)∆
(u−1µp∞ ,O∆)|(R/A)

∆
→ Ext1(R)∆

(u−1G,O∆)|(R/A)
∆

on ℓq.

Proof. The morphism (and the claim that it is an isomorphism) commutes with
étale localisation on R. In particular, we may assume that G ∼= µdp∞ . Then the
claim follows from Proposition 4.7.3 and additivity of the right hand side. �

As a corollary of these computations, we can concretely describe the action of
the prismatic Dieudonné functor on morphisms Qp/Zp → µp∞ . Set

Zcycl
p := (lim

−→
n

Zp[ζpn ])
∧
p .

As usual we get the elements ε = (1, ζp, . . .), q := [ε] ∈ Ainf(Z
cycl
p ) and ξ̃ := qp−1

q−1 .
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Lemma 4.7.6. Let R be a quasi-regular semiperfectoid ring over Zcycl
p . Then the

morphism

Zp(1)(R) ∼= HomR(Qp/Zp, µp∞)
M∆(−)
−−−−→ HomDM(R)(M∆(µp∞)),M∆(Qp/Zp))

∼= ∆
ϕ=ξ̃
R

is given the map which sends x ∈ Zp(1)(R) to logq([x
1/p]θ̃) ∈ ∆

ϕ=ξ̃
R .

Proof. First note, that

HomDM(R)(M∆(µp∞)),M∆(Qp/Zp))
∼= ∆

ϕ=ξ̃
R

by evaluating a homomorphism M∆(µp∞) → M∆(Qp/Zp)
∼= ∆R on ℓq. The iden-

tification of M∆(−) on a homomorphism f : Qp/Zp → µp∞ follows easily from the
natural isomorphism

M∆(G)
∼= Hom(R)∆

(u−1(Tp(G)),O∆)

for a p-divisible group G over R and Proposition 4.7.3, Lemma 4.7.1. �

Remark 4.7.7. This description together with [10, Theorem 7.5.6] imply fully
faithfulness of the prismatic Dieudonné functor in the special case of morphisms
from Qp/Zp to µp∞ . We will give in the next section a proof of fully faithfulness,
still relying on the same input from [10].

4.8. Fully faithfulness. The main result of this subsection is the following.

Theorem 4.8.1. If R is a quasi-regular semiperfectoid ring, the prismatic Dieudonné
functor over R is fully faithful for p-divisible groups.

The proof we offer was kindly suggested to us by Akhil Mathew. Recall that the
prismatic Dieudonné functor is given, according to Lemma 4.2.6, by the formula

(2) M
∆
(G) = Hom(R)qsyn(TpG,O

pris)

for any p-divisible group G over the quasi-regular semiperfectoid ring R. We also
set

N≥1M∆(G) := Hom(R)qsyn(TpG,N
≥1Opris).

From now on, we fix a quasi-regular semiperfectoid ring R, and a generator ξ̃ of
the prismatic ideal in ∆R. For simplicity we assume that R lives over the cyclotomic
prism and that ξ̃ = [p]q, cf. 4.7.3. By descent this assumption is harmless.

Proposition 4.8.2. If G is a p-divisible group over R, there is a natural (in R
and G) identification of quasi-syntomic sheaves

TpǦ ∼= ker(N≥1M∆(G)
ϕ/ξ̃−1
−→ M∆(G)).

Proof. We have, cf. [10, Theorem 7.5.6]32, an isomorphism of quasi-syntomic
sheaves

TpGm ∼= ker(N≥1Opris ϕ/ξ̃−1
−→ Opris).

To conclude, it suffices to apply the functor Hom(R)qsyn(TpG,−) to both sides and

to note that TpǦ = Hom(R)qsyn(TpG, TpGm). �

32See also [12, Proposition 7.17] for a proof using algebraic K-theory.
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Now we start the proof of Theorem 4.8.1. Let us denote by ShR the category of
abelian sheaves on (R)qsyn (so that HomShR

(−,−) = Hom(R)qsyn(−,−)) and by DR
the category of Opris[F ]-modules, which contains as a full subcategory the category
of (admissible) prismatic Dieudonné crystals. The functor

R : Shop
R → DR, F 7→ Hom(R)qsyn(F ,O

pris)

admits the left adjoint

L : DR → ShopR , M 7→ HomOpris[F ](M,Opris).

Indeed, if F ∈ ShR is any abelian sheaf andM∈ DR, then

HomOpris[F ](M,Hom(R)qsyn(F ,O
pris)) ∼= Hom(R)qsyn(F ,HomDR(M,Opris))

because both sides identify with bilinear maps ω : M × F → Opris, which are
Opris[F ]-linear in the first component.

Note that by the above displayed formula (2), if G is a p-divisible group over R,

M∆(G) = R(TpG).

Hence, to prove the theorem, we are reduced to proving the following proposition.

Proposition 4.8.3. The functor R is fully faithful on the subcategory of ShopR
spanned by the Tate modules of p-divisible groups over R.

Proof. Given a sheaf F ∈ ShopR which is the Tate module of a p-divisible group, we
have a natural counit map in ShopR

LRF → F

and we will show that it is an isomorphism. Switching back from ShopR to ShR, this
counit is the biduality map

F(−)→ HomOpris[F ](Hom(R)qsyn(F(−),O
pris),Opris).

The formation of this map is compatible with base change in the quasi-regular
semiperfectoid ring R. We claim that this map is an isomorphism whenever F is
the Tate module of a p-divisible group G over R. Applying Proposition 4.8.2 to Ǧ,
we get a natural (in F and R) identification

F = TpG ∼=
(
N≥1M

∆
(Ǧ)
)ϕM

∆
(Ǧ)=ξ̃ =

(
M

∆
(Ǧ)
)ϕM

∆
(Ǧ)=ξ̃

(for the last equality, note that if f ∈ Hom(R)qsyn(TpG,O
pris) satisfies ϕ(f) = ξ̃f ,

then for any section s of TpG, f(s) ∈ N
≥1Opris, i.e. f ∈ Hom(R)qsyn(TpG,N

≥1Opris)).
Proposition 4.6.9 and the remark following it for the identification of Frobenius al-
low us to rewrite this as a natural (in F and R) identification

F ∼= HomOpris[F ](M∆(G),O
pris) = L(M∆(G)) = LRF

as we can identify (M∆(µp∞), ϕM
∆
(µp∞ )) = (Opris, ξ̃ϕOpris) by Proposition 4.7.3.

However, this natural isomorphismmay not a priori coincide with above counit map.
But, composing the latter with the inverse of this isomorphism, we obtain a natural
endomorphism of F , i.e., an endomorphism of any p-divisible group G over any
quasi-regular semiperfectoid ring R, natural in G and R. Any such endomorphism
acts on the p-divisible group Qp/Zp by multiplication by some scalar (in Zp), at
least on each connected component of R. It also does act by multiplication by the
same scalar (depending on a connected component of Spec(R)) on any p-divisible
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group G: indeed, this can be checked on the Tate module and since Tp(G) =
Hom(R)qsyn(Qp/Zp, G) this follows there by naturality.

Hence, to conclude the proof of fully faithfulness, it suffices to show that these
scalars are units. This can be checked for one specific p-divisible group G and we
can take G = Qp/Zp, for which the claim is immediate. Indeed, F = Zp in this
case and F → LR(F) ∼= HomOpris[F ](O

pris,Opris) sends 1 ∈ Zp to the identity of

Opris, which generates HomOpris[F ](O
pris,Opris) by [13, Remark 9.3]. �

Remark 4.8.4. In fact, as was also pointed out by Akhil Mathew and the referee,
the results used in this section can be strenghtened. Indeed, [10, Theorem 7.5.6]
already quoted above even gives a short exact sequence

0→ TpGm → N
≥1Opris ϕ/ξ̃−1

−→ Opris → 0.

Applying RHom(R)qsyn(TpG,−) to it, we get an exact sequence of sheaves

0→ TpǦ→ N
≥1M∆(Ǧ)

ϕ/ξ̃−1
−→ M∆(Ǧ)→ Ext1(R)qsyn

(TpG, TpGm).

But Ext1(R)qsyn
(TpG, TpGm) = Ext1(R)qsyn

(G,µp∞) = 0 (cf. [53, Theorem 1] together

with the fact that the set of splittings of such an extension is a torsor under Ǧ which
is syntomic). Hence we get a short exact sequence and, after taking cohomology,
an isomorphism

RΓ((R)qsyn, TpǦ) ∼= fib

(
N≥1M∆(Ǧ)

ϕ/ξ̃−1
−→ M∆(Ǧ)

)
.

4.9. Essential surjectivity. Let R be quasi-regular semiperfectoid and let as be-
fore

M∆(−) : BT(R)→ DMadm(R), G 7→ (M∆(G), ϕM∆
(G))

be the prismatic Dieudonné functor with values in the category of admissible pris-
matic Dieudonné modules DMadm(R) (cf. Section 4.2 and Theorem 4.6.7).

Let us fix a perfect prism (A, I), a generator ξ̃ ∈ I and a surjection Ā =A/I ։ R.

Let ξ := ϕ−1(ξ̃). In this section, we will make repeated use of Proposition 4.1.29,
which tells us that admissible prismatic Dieudonné modules over R (or any other
quasi-regular semiperfectoid ring living over Ā) are the same as windows over the

frame ∆R,Nyg (associated to ξ̃).

By Corollary 2.1.10 we may assume that Ā is henselian along ker(Ā→ R).
Let us first assume that ker(Ā → R) is generated by some elements aj , j ∈ J ,

that admit compatible systems (aj , a
1/p
j , a

1/p2

j , . . .) of pn-roots. Define

S :=
(
Ā〈X

1/p∞

j | j ∈ J〉/(Xj)
)∧p

and S → R, X
1/pn

j 7→ a
1/pn

j .

Lemma 4.9.1. The base change functor DMadm(S) → DMadm(R) on admissible
prismatic Dieudonné modules is essentially surjective.

Proof. Using Proposition 4.1.22, it suffices to see that ∆S → ∆R is surjective and
henselian along its kernel (cf. Lemma 4.1.31). The surjectivity follows from the
Hodge-Tate comparison as LS/Ā → LR/Ā is surjective by our assumption that
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the aj , j ∈ J , generate ker(Ā → R). First note that the pair (S, ker(S → R)) is

henselian because the X
1/pn

j are nilpotent in S and we assumed that Ā is henselian

along ker(Ā → R). By Lemma 4.1.28, to show that ∆S is henselian along K :=
ker(∆S → ∆R) it suffices to see S ∼= ∆S/ ker(θS) is henselian along K := (K +
ker(θ))/ ker(θ) (cf. [52, Tag 0DYD])). But K ⊆ S is contained in ker(S → R).
Another application of [52, Tag 0DYD] therefore implies that S is henselian along
K because (S, ker(S → R)) is henselian. This finishes the proof. �

Note that the ring

S =
(
Ā〈X

1/p∞

j | j ∈ J〉/(Xj | j ∈ J)
)∧p

admits a surjection from the perfectoid ring

S̃ := Ā[[X
1/p∞

j | j ∈ J ]] :=

(
lim
−→

n,J′⊂J finite

Ā[[X
1/pn

j | j ∈ J ′]]

)∧p

by sending X
1/pn

j 7→ X
1/pn

j .

Lemma 4.9.2. The natural functor

DMadm(S̃)→ DMadm(S)

is essentially surjective.

Proof. The ring S̃ is henselian along (Xj | j ∈ J). The prism ∆S̃ is the (p, I)-adic
completion of

lim
−→

n,J′⊂J finite

A[[X
1/pn

j | j ∈ J ′]]

Call a δ-pair (B,K) over (A, I) a good pair if it satisfies the following conditions:

• B is (p, I)-completely flat over A and K is (p, I)-complete.
• There exists a universal map (B,K)→ (C, IC) of δ-pairs to a prism (C, IC)
over (A, I). Moreover, (C, IC) is flat over (A, I), and its formation com-
mutes with (p, I)-completely flat base change on B.

For each n ≥ 1 and J ′ ⊂ J finite, the δ-pair(
A[[X

1/pn

j | j ∈ J ′]]∧(p,I) , (I,Xj , j ∈ J)
∧(p,I)

)

over (A, I) is a good pair, by [13, Proposition 3.13]. Since good pairs are stable
under filtered colimits in the category of all δ-pairs (B,K) over (A, I) with B and
K (p, I)-complete, we deduce that the pair

(
∆S̃ , (I,Xj, j ∈ J)

)

is a good pair, too. Therefore, by definition of a good pair and Proposition 3.4.1,
we have

∆S ∼= ∆S̃{
Xj

ξ̃
| j ∈ J}∧(p,ξ̃) .

Define
B := ∆S̃/(Xj | j ∈ J)

∧(p,ξ̃) .

Then B is p-torsion free and ξ̃-torsion free and thus defines a prism. Moreover,
canonically S ∼= B/ξ̃. By the universal property of ∆S there exists therefore a
canonical morphism

α : ∆S → B.
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Concretely, the morphism α sends Xj 7→ 0. Using a variant of Lemma 4.1.28 we see

that ∆S is henselian along ker(α). By Lemma 4.9.3, ϕ(ker(α)) ⊆ ξ̃∆S and ϕ/ξ̃ is
topologically nilpotent on ker(α). Thus by Lemma 4.1.32 the categories of windows
over ∆S and B are equivalent. Therefore it suffices to see that windows over B can
be lifted to windows over ∆S̃ . After choosing a normal decomposition, this follows
as the functor

ϕ−Modunit
∆S̃
→ ϕ−ModunitB

is essentially surjective, which is true as ∆S̃ is henselian along the kernel of ∆S̃ ։ B
(cf. the end of the proof of Lemma 4.1.31). This finishes the proof. �

To finish the proof of Lemma 4.9.1 we have to prove the following lemmas.

Lemma 4.9.3. With the notations from the proof of Lemma 4.9.2 we get ϕ(ker(α)) ⊆
ξ̃∆S and ϕ1 := ϕ/ξ̃ is topologically nilpotent on ker(α).

Proof. Set K := ker(α). Then K is the closure in the (p, ξ̃)-adic topology of the

∆S-submodule generated by δn(Xj/ξ̃) for j ∈ J and n ≥ 0. By Lemma 4.9.4 below
the module K equals the closure of the ideal generated by

zj,n :=
Xpn

j

ϕn(ξ̃)ϕn−1(ξ̃)p · · · ξ̃pn

for j ∈ J and n ≥ 0. Let us show that ϕ(K) ⊆ ξ̃∆S . Clearly,

(3) ϕ(zj,n) = ξ̃p
n+1

zj,n+1.

AsN≥1
∆S is closed in ∆S (being the kernel of the continuous surjection ∆S → S),

we can conclude K ⊆ N≥1
∆S . Next, let us check that ϕ1 is topologically nilpotent

on K. Fix l ≥ 1. We claim that for every m ≥ 1 such that pm > l and any k ∈ K
we have

ϕm1 (k) ∈ ξ̃lK.

This implies as desired that ϕ1 is topologically nilpotent on K. As ξ̃lK is closed
and ϕm1 continuous (for the (p, ξ̃)-adic topology on K) it is enough to assume that
k = zj,n for some j ∈ J, n ≥ 1, because the zj,n generate a dense submodule in K33.
Using (Equation (3)) we can calculate

ϕm1 (zj,n) = ϕm−1
1 (ξ̃p

n+1−1zj,n+1) = . . . = aξ̃p
n+m−1zj,n+m ∈ ξ̃

pn+m−1K

for some a ∈ ∆S . But ξ̃p
n+m−1K ⊆ ξ̃lK because pn+m − 1 ≥ l. This finishes the

proof. �

Lemma 4.9.4. Let (A, I) be a bounded prism and let d ∈ A be distinguished. Let
furthermore x ∈ A be an element of rank 1. Then for n ≥ 0 there exist natural (in
A, x) elements

zn ∈ A{
x

d
}∧(p,d)

such that ϕn(d)ϕn−1(d)p · · · dp
n

· zn = xp
n

. Moreover, for all n ≥ 0, δn(xd ) lies in
the subring A[z0, . . . , zn] of A{

x
d}

∧(p,d) generated by z0, . . . , zn.

33Dense for the (p, ξ̃)-adic topology.
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Note that the last part of the lemma implies that the resulting morphism

A[y1, y2, . . .]/(x− dy1, y
p
1 − ϕ(d)y2, y

p
2 − ϕ

2(d)y3, . . .)→ A{
x

d
}∧(p,d) , yn 7→ zn

is surjective after (p, d)-completion. We expect that this surjection is actually an
isomorphism.

Proof. We can argue in the universal case A = Zp[x]{d,
1
δ(d)}

∧(p,d) where δ(x) = 0,

thus we may assume that A is transversal, i.e., that (p, d) is a regular sequence in A,
and that (x, d) is a regular sequence. This implies that for all r ≥ 1 the sequence
(ϕr(d), ϕr−1(d)) is regular as well (cf. Lemma 2.1.7). We first claim that for all
n ≥ 0 the element

zn :=
xp

n

ϕn(d)ϕn−1(d)p · · · dpn

lies in A{xd}. If n = 0, then zn = x
d ∈ A{

x
d}. For n ≥ 0 we can calculate

ϕ(zn) =
xp

n+1

ϕn+1(d) · · ·ϕ(d)pn

because ϕ(x) = xp. The numerator xp
n+1

is divisible by dp
n+1

in A{xd}. We claim

that (dp
n+1

, ϕn+1(d) · · ·ϕ(d)p
n

) is a regular sequence in A{xd}
∧(p,d) . Granting this

we can conclude that dp
n+1

divides xpn+1

ϕn+1(d)···ϕ(d)pn
, i.e., that zn+1 ∈ A{xd}

∧
(p,d).

Write s = ϕn+1(d) · · ·ϕ(d)p
n

. To prove that (dp
n+1

, s) is a regular sequence in
A{xd}

∧(p,d) , it suffices to show the same for (d, s). One proves by induction on m
that for allm ≥ 1, ϕm(d) is congruent to pum modulo d for a unit um. In particular,
one concludes that s is congruent to upk modulo d, for k ≥ 1 and u a unit. Hence
to prove that (d, s) is a regular sequence in A{xd}

∧(p,d) , it suffices to show that (d, p)
is a regular sequence in A{xd}

∧(p,d) . But this follows from transversality of A and
the fact that A→ A{xd}

∧(p,d) is (p, d)-completely flat.
Next, we show that for all n ≥ 0, δn(xd ) lies in the subring A[z0, . . . , zn] of

A{xd}
∧(p,d) generated by z0, . . . , zn. This claim follows from the assertion that

δ(zn) ∈ A[z0, . . . , zn+1] using induction and how δ acts on sums and products. For
n = 0 we can calculate

δ(z0) = δ(
x

d
) =

1

p
(ϕ(

x

d
)−

xp

dp
) =

1

p
(dp − ϕ(d))z1 = δ(d)z1 ∈ A{

x

d
}.

Similarly, we see

δ(zn) =
1

p
(dp

n+1

− ϕn+1(d))zn+1

where the term 1
p (d

pn+1

− ϕn+1(d)) lies in A. This finishes the proof. �

We can derive essential surjectivity.

Theorem 4.9.5. Let R be a quasi-regular semiperfectoid ring. Then the prismatic
Dieudonné functor

M∆(−) : BT(R)→ DMadm(R)

from the category of p-divisible groups over R to the category of admissible prismatic
Dieudonné crystals over R is essentially surjective.
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Proof. To prove the theorem, we may pass to a quasi-syntomic cover R′ of R:
indeed, let M ∈ DMadm(R) such that its base change along the map R → R′ is
of the form M∆(G

′), for some p-divisible group G′ over R. The descent datum for
M

∆
(G′) expressing that it comes from an admissible prismatic Dieudonné module

over R (namely, M) gives rise to a descent datum for G′, since fully faithfulness
over R′⊗̂RR

′ is already proved (cf. Theorem 4.8.1). This descent datum is effective,
by p-completely faithfully flat descent for p-divisible groups (cf. Proposition A.2),
so there exists a p-divisible group G over R, with M∆(G) =M .

Therefore, by Theorem 3.3.9, we may and do assume that R ∼= Ā/(aj | j ∈ J)
for Ā = A/I a perfectoid ring and aj ∈ R admitting compatible systems of pn-roots
of unity. Using Lemma 4.9.1 we may even assume that

R ∼= Ā〈X
1/p∞

j | j ∈ J〉/(Xj).

In this case we can invoke Lemma 4.9.2 and reduce to the case that R is perfectoid.
Then we can cite Corollary 4.3.7 to conclude that M∆(−) is essentially surjective.

�

This concludes the proof of the main Theorem 4.6.10.

Remark 4.9.6. Let R be quasi-syntomic ring. The arguments used in Section 4.8
show that the functor G from DMadm(R) to the category of abelian sheaves of

(R)qsyn, sendingM ∈ DMadm(R) to

(M∨)ϕ=1 ⊗Zp Qp/Zp,

whereM∨ denotes the Opris-linear dual ofM, defines a quasi-inverse of the pris-
matic Dieudonné functor.

It seems difficult to prove directly that G takes values in the category of (quasi-
syntomic sheaves attached to) p-divisible groups. In the case of étale p-divisible
groups Theorem 4.6.10 yields an equivalence of Zp-local systems on R and finite
locally free Opris-modules (resp. ∆R-modules if R is quasi-regular semiperfectoid)
M together with an isomorphism ϕM : ϕ∗(M) ∼= M. This is a generalization
of Katz’ correspondence between Zp-local systems on the spectrum Spec(k) of a
perfect field k and ϕ-modules over W (k) (cf. [27, Proposition 4.1.1]. We thank
Benôıt Stroh for pointing this out to us.
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5. Complements

5.1. Prismatic Dieudonné theory for finite locally free group schemes.
Let R be a perfectoid ring. We fix a generator ξ of ker(θ) and let ξ̃ = ϕ(ξ).

Definition 5.1.1. A torsion prismatic Dieudonné module over R is a triple

(M,ϕM , ψM ),

where M is a finitely presented Ainf(R)-module of projective dimension ≤ 1 which
is annihilated by a power of p and where ϕM : M → M and ψM : M → M are
respectively ϕ-linear and ϕ−1-linear, and satisfy

ϕM ◦ ψM = ξ̃, ψM ◦ ϕM = ξ.

The category of torsion prismatic Dieudonné modules overR is denoted by DMtors(R).
It is an exact category.

The base change of torsion prismatic Dieudonné modules behaves well.

Lemma 5.1.2. Let R→ R′ be a morphism of perfectoid rings andM ∈ DMtors(R).
Then M⊗Ainf(R)Ainf(R

′) is concentrated in degree 0. In particular, the base change
functor DMtors(R)→ DMtors(R

′) is exact.

Proof. Let

0→M1
f
−→M2 →M → 0

be a resolution of M by finite locally free Ainf(R)-modules. As M is killed by pn

for some n ≥ 0, there exists g : M2 → M1 such that f ◦ g = pn. Then pn = g ◦ f
(using that f is injective). The base change M1 ⊗Ainf(R) Ainf(R

′) is p-torsion free
as Ainf(R

′) is. This implies that the base change of f to Ainf(R
′) remains injective,

which finishes the proof. �

Before stating the main result, let us introduce a notation, which will be in use
only in this section.

Notation 5.1.3. If S is a p-complete ring, let BS (resp. CS) denote the category
whose objects are O∆-modules on (S)∆ (resp. O∆-modules on (S)∆ endowed with
a ϕ-linear Frobenius), and whose morphisms are O∆-linear morphisms (resp. O∆-
linear morphisms commuting with Frobenius).

Theorem 5.1.4. There is a natural exact34 antiequivalence

H 7→ (M∆(H), ϕM
∆
(H), ψM

∆
(H))

between the exact category of finite locally free group schemes of p-power order on
R and the exact category DMtors(R) of torsion prismatic Dieudonné modules over
R, such that the Ainf(R)-module M∆(H) is given by the formula

M∆(H) = Ext1(R)
∆
(u−1H,O∆)

and such that ϕM
∆
(H) is the map induced by the Frobenius of O∆.

Remark 5.1.5. A similar statement can be found in [36, Theorem 10.12]. Apart
from the change of terminology, the only difference with the result in loc. cit. is that
we remove the assumption that p ≥ 3 and provide a formula for the underlying Ainf -
module of the torsion minuscule Breuil-Kisin-Fargues module attached to a finite
locally free group scheme of p-power order.

34This includes the non-formal assertion that the inverse equivalence is exact, too.
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The proof of Theorem 5.1.4 will make use of the following lemma.

Lemma 5.1.6. Let (A, I) be a bounded prism, such that A is p-torsion free and let
S be a p-completely syntomic A/I-algebra35. Then

H0(S,∆S/A)

is p-torsion free.

Proof. As S is a p-completely syntomic A/I-algebra the derived prismatic coho-
mology ∆S/A agrees with the cohomology RΓ((S/A)∆,O∆) of the prismatic site of
S over A (this follows by descent from the quasi-regular semiperfectoid case and
Proposition 3.4.1). By [13, Proposition 3.13] and the assumption that S is a p-

completely syntomic A/I-algebra, one can calculate ∆S/A by some C̆ech-Alexander
complex whose first term is p-complete and p-completely flat over A. Therefore it
suffices to see that each p-complete p-completely flat A-algebra B has no p-torsion.
As A is p-torsion free, A, and thus B, is p-completely flat over Zp. But any p-
completely flat p-complete module over Zp is topologically free and thus p-torsion
free. �

Proof of Theorem 5.1.4. The construction of the antiequivalence is exactly similar
to the one of [36, Theorem 10.12], replacing Theorem 9.8 in loc. cit. by Corol-
lary 4.3.7, so we do not give it and refer the reader to [36]. The simple principle is
that Zariski-locally on Spec(R), any finite locally free group scheme of p-power order
is the kernel of an isogeny of p-divisible groups (and even an isogeny of p-divisible
groups associated to abelian schemes, cf. Theorem 4.6.1); similarly, Zariski-locally
on Spec(R), any torsion prismatic Dieudonné module is the cokernel of an isogeny
of prismatic Dieudonné modules ([36, Lemma 10.10]).

Let us now prove that

M∆(H) = Ext1(R)
∆
(u−1H,O∆)

and that the functor M∆(−) preserves exactness for a short exact sequence

0→ H ′ → H → H ′′ → 0

of finite locally free group schemes of p-power order over R. Note that this implies
by Mittag-Leffler exactness of

0→M∆(H
′′)→M∆(H)→M∆(H

′)→ 0

if H ′, H,H ′′ are finite locally free group schemes of p-power order or p-divisible
groups.

By construction of the antiequivalence, it suffices to check that if H is the kernel
of an isogeny X → X ′, with X,X ′ are abelian schemes over R, the natural map

M∆(X [p∞]) = Ext1(R)
∆
(u−1X,O∆)→ Ext1(R)

∆
(u−1H,O∆)

is surjective. But the cokernel of this map embeds in Ext2(R)∆
(u−1X ′,O∆), which

is zero by Theorem 4.5.6.
For exactness, start with a short exact sequence of finite locally free group

schemes of p-power order on R

0→ H ′ → H → H ′′ → 0,

35A morphism R → R′ between p-complete rings of bounded p∞-torsion is p-completely syn-
tomic if R′/p ∼= R′ ⊗L

R R/p and R/p → R′/p is syntomic in the sense of [52, Tag 00SL].
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which we see as an exact sequence of abelian sheaves on (R)qsyn. The surjectivity
of the map

M∆(H)→M∆(H
′)

can be checked locally and so we can assume that H , and so also H ′, embeds in an
abelian scheme X . But we know that the map

M∆(X [p∞])→M∆(H
′)

is already surjective, again because Ext2(R)
∆
(u−1X/H ′,O∆) = 0. Thus, the same

holds for the map

M∆(H)→M∆(H
′).

To prove injectivity of the map

M∆(H
′′)→M∆(H),

it suffices by the long exact sequence for RHom(R)∆
(−,O∆) to prove that

Hom(R)
∆
(u−1H ′,O∆) = 0.

Let us prove that Hom(R)
∆
(u−1H ′,O∆) is p-torsion free. This is enough : indeed,

we know it is also killed by a power of p, because u−1H ′ is. As

Hom(R)
∆
(u−1H ′,O∆) ⊂ H

0(u−1H ′,O∆) = H0(H ′,∆H′/Ainf
),

it suffices to prove that the latter is p-torsion free. This is the content of Lemma 5.1.6
when applied to the p-completely syntomic R-scheme H ′.

Let

G : DMtors → {finite locally free group schemes of p-power order over R}

be an inverse functor to M∆(−). We claim that G is exact. Let

0→M1 →M2 →M3 → 0

be an exact sequence in DMtors(R). For any morphism R→ R′ the base change of
it along Ainf(R) → Ainf(R

′) will stay exact by Lemma 5.1.2. By [20, Proposition
1.1] and compatibility of G with base change in R we can therefore assume that R
is a perfect field of characteristic p. In this case the category of finite locally free
group schemes of p-power order and the category DMtors are abelian and thus any
equivalence between them is automatically exact. �

Remark 5.1.7. Let R be quasi-syntomic ring. Although the same trick allows
in principle to deduce from Theorem 4.6.10 a classification result for finite locally
free group schemes of p-power order over R, it seems more subtle to obtain a nice
description of the target category, i.e. of the objects which can locally on R be
written as the cokernel of an isogeny of admissible prismatic Dieudonné crystals on
R. At least the arguments given above should go through whenever the forgetful
functor

DF(R)→ DM(R)

is an equivalence, like in the case of perfectoid rings or in the Breuil-Kisin case to
be discussed in the next section (where the classification of finite flat group schemes
is already known, and was proved by Kisin following the same technique, cf. [30,
Section 2.3]).
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5.2. Comparison over OK . In this section, we want to extract from Theorem 4.6.10
a concrete classification of p-divisible groups over complete regular local rings with
perfect residue field of characteristic p. This will in particular recover Breuil-Kisin’s
classification ([15], [30]), as extended to all p by Kim [29], Lau [35] and Liu [38],
over OK , for a complete discretely valued extension of Qp with perfect residue field.

Proposition 5.2.1. Let R be a complete Noetherian local ring with perfect residue
field of characteristic p. If R is regular, there exists a quasi-syntomic perfectoid
cover R∞ of R.

Proof. The existence of a faithfully flat cover R → R∞, with R∞ perfectoid, is
explained in [9, Theorem 4.7]. Assume first that pR = 0 or that R is unramified36.
R is either flat over Zp or pR = 0. In the first case set Λ := Zp and in the
second Λ := Fp. By [52, Tag 07GB] the morphism Λ → R is a filtered colimit
of smooth ring maps and thus LR/Λ has p-complete Tor-amplitude in degree 0.
The triangle attached to the composite Λ → R → R∞ shows that LR∞/R has
p-complete Tor-amplitude in degree −1. Therefore the map R → R∞ is indeed a
quasi-syntomic cover. Finally, when R is ramified of mixed characteristic, one sees
from the explicit construction of [9, Ex. 3.8 (5)] that R→ R∞ is the p-completion
of a colimit of syntomic morphisms (obtained by extracting pth-roots), hence is
quasi-syntomic. �

Remark 5.2.2. In the converse direction, the main result of [9] asserts that a
Noetherian ring with p in its Jacobson radical which admits a faithfully flat map
to a perfectoid ring has to be regular (this is a generalization of a theorem of Kunz
[31] in positive characteristic).

Proposition 5.2.3. Let R be a complete regular local ring with perfect residue field
of characteristic p. Any prismatic Dieudonné crystal over R is admissible.

Proof. Let (M, ϕM) ∈ DM(R). Let R∞ be a perfectoid quasi-syntomic cover of
R, as in Proposition 5.2.1. LetM∞ ∈ DM(R∞) be the base change ofM, which
we see as a prismatic Dieudonné module M∞ over R∞, via the equivalence of
Proposition 4.1.13. We know (Proposition 4.1.12) that M∞ is admissible. Since

the natural functor DMadm → DM is (tautologically) fully faithful, M∞ descends
to an admissible prismatic Dieudonné crystal over R, which must identify with
(M, ϕM). �

Recall the following definition, which already appeared in Proposition 4.1.26
before.

Definition 5.2.4. Let (A, I = (d)) be a prism. A Breuil-Kisin module (M,ϕM )
over (A, I), or just A if I is understood, is a finite free A-module M together with
an isomorphism

ϕM : ϕ∗M [
1

I
] ∼=M [

1

I
].

If ϕM (ϕ∗M) ⊆M with cokernel killed by I, then (M,ϕM ) is called minuscule.
We denote by BK(A) the category of Breuil-Kisin modules over A and by

BKmin(A) ⊆ BK(A) its full subcategory of minuscule ones.

36The case R unramified is explained in [9, Ex. 3.8 (4)], too.
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If R is a complete regular local ring with perfect residue field k of characteristic
p, it can be written as

R =W (k)[[u1, . . . , ud]]/(E),

where d = dimR and E is a power series with constant term of p-value one (cf. [42,
Theorem 29.7, Theorem 29.8 (ii)]). Let (A, I) be the prism

(A, I) = (W (k)[[u1, . . . , ud]], (E)),

where the δ-ring structure on A is the usual one onW (k) and is such that δ(ui) = 0,
for i = 1, . . . , d. For simplicity, we assume d = 1 in the following. We hope that
the general case works similarly.

Theorem 5.2.5. Let R be a complete regular local ring with perfect residue field
of characteristic p. The functor

BT(R)→ BKmin(A) ; G 7→ v∗M∆(G)((A, I)) = Ext
1
(R)

∆
(u−1G,O∆)(A,I)

is an equivalence of categories.

The case where pR = 0 follows from Theorem 4.3.2, the classical fact that a
Dieudonné crystal over R is the same thing as a minuscule Breuil-Kisin module
over A (with respect to p) together with an integrable topologically quasi-nilpotent
connection making Frobenius horizontal and [17, Proposition 2.7.3], which proves
that for this particular ring A, the connection is necessarily unique. Hence in the
following, we will always assume that R is p-torsion free. In this case, the pair
(p,E) is transversal.

Remark 5.2.6. When R = OK , with K a complete discretely valued extension of
Qp with perfect residue field, A is usually denoted by S (a notation which seems
to originate from [15]). We will see below that the antiequivalence of the theorem
coincides in this case with the one studied by Kisin for p odd and Kim, Lau and
Liu when p = 2.

We will describe prismatic Dieudonné crystals over OK via descent using the
following lemma.

Lemma 5.2.7. The natural map from the sheaf represented by (A, I) to the final
object of Shv((R)∆) is an epimorphism for the p-completely faithfully flat topology.

Proof. Indeed, let (B, J) ∈ (R)∆. Let A∞ be the perfection of A; the map R =
A/I → R∞ = A∞/IA∞ is a quasi-syntomic cover. By base change, the map

B/J → B/J⊗̂RR∞

is therefore a quasi-syntomic cover as well. By Proposition 3.3.8 there exists a prism
(C, JC) which is p-completely faithfully flat over (B, J) such that there exists a
morphism of B/J-algebras B/J⊗̂RR∞ → C/J . Since R∞ is perfectoid, it implies
that (C, JC) lives over (A∞, IA∞) (cf. Proposition 2.1.11), and a fortiori over (A, I),
as desired. �

Proof of Theorem 5.2.5. By Theorem 4.6.10 and Proposition 5.2.3, we know that
the prismatic Dieudonné functor

M∆ : BT(R)→ DM(R)

is an antiequivalence. Therefore, it suffices to prove that the functor

M→ v∗M((A, I))
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from prismatic Dieudonné crystals DM(R) to minuscule Breuil-Kisin modules BKmin(A)
is an equivalence. Let B be the absolute product of A with itself in (R)∆. One has
(cf. [13, Proposition 3.13])

B =
(
W (k)[[u]]⊗W (k) W (k)[[v]]

)
{
u− v

E(u)
}
∧(p,E(u))

δ

where we wrote E(u) for E ⊗ 137. By Lemma 5.2.7 below and Proposition 4.1.9, a
prismatic Dieudonné crystalM overR is the same thing as a minuscule Breuil-Kisin
module N over A, together with a descent datum, i.e., an isomorphism

N ⊗A,p1 B
∼= N ⊗A,p2 B

(where p1, p2 : A → B are the two natural maps), satisfying the usual cocycle
condition.

We claim that any N ∈ BKmin(A) is equipped with a unique descent datum.
Indeed, let f : B → A be the map extending the multiplication map

f0 : B0 := A⊗̂W (k)A→ A

and, for i = 1, 2, set Ei := pi(E) ∈ B0, with pi : A → B0 the two inclusions. Let
M0 be a minuscule Breuil-Kisin module over B0 with respect to the element E1 and
N0 a minuscule Breuil-Kisin module with respect to E2. Let MA = M0 ⊗B0,f0 A,
NA = N0 ⊗B0,f0 A be their base changes along f0. Let α0 : M0 → N0 be any
B0-linear map such that αA := f∗

0α0 : MA → NA is a morphism of Breuil-Kisin
modules over A. Consider the composition

U0(α0) :=
1

E1
ϕN0 ◦ ϕ

∗α0 ◦ ϕ
−1
M0

(E1(−)) : M0 →
1

E1
N0

as in the proof of Lemma 4.1.32. Then the morphism U0(α0) − α0 maps M0 to
1
E1
KN0 where K = ker(f0) as αA is a morphism of minuscule Breuil-Kisin modules

over A. By construction of B we have K ⊆ E1J , if J = ker(f). In particular, if α
denotes the base change of α0 to B, then

U(α)− α

mapsM0⊗B0 B to J(N0⊗B0 B), where U(α) is the base change of U0(α0). Thanks
to Lemma 5.2.8 below, we can use the same arguments in the proof of 4.1.32 to see
that there exists an isomorphism α : M0⊗B0B

∼= N0⊗B0B of Breuil-Kisin modules
over B with f∗α = αA. Indeed, if β0 := U0(α0) − α0 with f∗

0α0 = αA, then the
series

∞∑

n=0

Un0 (β0)

converges after base change to B, since β sends M0 ⊗B0 B to J.(N0 ⊗B0 B). In
other words, the map induced by f

δM0,N0 : HomBKmin(B)(M0 ⊗B0 B,N0 ⊗B0 B)→ HomBKmin(A)(MA, NA)

is a surjection. We claim that δM0,N0 is also injective. Indeed, assume that
α : M0 ⊗B0 B → N0 ⊗B0 B is a morphism of minuscule Breuil-Kisin modules over

37If similarly, E(v) = 1⊗E, then E(u)/E(v) is a unit in B by [13, Lemma 2.24] because E(u)

divides E(v) in B. Namely, E(v) = E(u)(E(v)−E(u)
E(u)

+ 1) in B and u− v divides E(u)− E(v).
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B reducing to 0 after base change to A. Define

U(α) : M0 ⊗B0 B → J.(N0 ⊗B0 B), m 7→
1

E1
ϕN0⊗B0B

◦ ϕ∗α ◦ ϕ−1
M0⊗B0B

(E1.m)

Then, since α is a morphism of minuscule Breuil-Kisin modules,

Un(α) = α

for all n ≥ 1. But as ϕ1 := ϕ
E1

is topologically nilpotent on J , we see that Un(α)
converges to 0 for n → ∞ by the same exact same argument as in the proof of
Lemma 4.1.32.

Recall that we started with N ∈ BKmin(A) and want to produce a descent datum
on N . To apply the above discussion, we set M0 := N ⊗A,p1 B0, N0 := N ⊗A,p2 B0,
and let ϕM0 , ϕN0 be the respective base changes of ϕN . Since the compositions
f ◦ p1, f ◦ p2 are the identity map, MA, NA are isomorphic to N . Let

αN : M0 → N0

corresponding via the bijection δM0,N0 to the identity map from MA = N to NA =
N . If N ′ ∈ BKmin(A) is another minuscule Breuil-Kisin module over A, and g ∈
HomBKmin(A)(N,N

′). We claim that

αN ′ ◦ g1 = g2 ◦ αN

where g1, resp g2, is the base change of g along p1, resp. p2. Indeed, this can be
rewritten as an equality

αN ′ ◦ g1 ◦ α
−1
N = g2 ∈ HomBKmin(B)(N0 ⊗B0 B,N

′
0 ⊗B0 B)

(using for N ′ notations analogous at the ones we used for N), which, by the con-
siderations above, can be checked after base change along f : B → A, where it
becomes obvious (since αN , resp. αN ′ , reduces to the identity of N , resp. N ′,
and since f ◦ p1 = f ◦ p2 is the identity). This shows that the formation of αN is
functorial in N . As each descent datum on N reduces to the identity on N after
base change along f the descent datum on N is unique, if it exists, since δM0,N0 is
injective.

To conclude, it therefore remains to prove that αN is a descent datum, i.e. that
it satisfies the cocycle condition. Let

C

be the prism representing the triple absolute product of (A, (E)) in (R)
∆
. We have

to see that

(4) p∗1,2αN ◦ p
∗
2,3αN = p∗1,3αN ,

where the pi,j : B → C are induced by the respective projections. Let us note that
fiber products in (R)∆ are calculated by (completed) tensor products and that

X ×X ×X ∼= (X ×X)×X (X ×X)

for any object X in a category C admitting fiber products. This implies that

C ∼= B⊗̂AB.

Let C0 = B ⊗A B be the uncompleted tensor product. Note that p∗i,jαN , for each
1 ≤ i < j ≤ 3, is already defined over C0. The kernel L of the natural morphism
C0 → A is generated by

J ⊗A B, B ⊗A J.
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In particular, ϕ1 := ϕ
E1⊗1 stabilizes L, and ϕ1 is elementwise topologically nilpotent

on it. Therefore, arguing as above, we see that any morphism of minuscule Breuil-
Kisin modules over C0 which vanishes after base change along C0 → A, must vanish
after base change to C. After reduction to A, (4) becomes

IdN ◦ IdN = IdN

by construction of αN . This finishes the proof. �

The proof of Theorem 5.2.5 relied on the following technical lemma.

Lemma 5.2.8. With the notation from the proof of Theorem 5.2.5 the ideal J ⊆ B
is contained in N≥1B, stable by ϕ1 := ϕ

E(u) and ϕ1 is topologically nilpotent on J ,

with respect to the (p,E)-adic topology.

Proof. Write E := E(u). The ideal J is generated (up to completion) by the
δ-translates of

z := (u − v)/E,

so to check that J ⊂ N≥1B, it is enough to prove that δn(z) ∈ N≥1B for all n. We
prove by induction on n that for all k ≥ 1, ϕk(δn(z)) is divisible by E. For n = 0,
one has, for any k ≥ 1,

ϕk(z) =
upk − vpk

ϕk(E)
=

(u− v)(upk−1 + upk−2v + · · ·+ uvpk−2 + vpk)

ϕk(E)
.

Since (E,ϕk(E)) is regular (as (p,E) is transversal because B is (p,E)-completely
faithfully flat over W (k)[[u]] by [13, Proposition 3.13]) and u − v is divisible by E
in B, we deduce that E divides ϕk(z). Let now n ≥ 0 and assume the result is
known for δn(z). We have, for k ≥ 0,

pϕk(δn+1(z)) = ϕk(pδn+1(z)) = ϕk(ϕ(δn(z))−δn(z)p) = ϕk+1(δn(z))−ϕk(δn(z))p,

so the statement for δn+1(z) follows by induction hypothesis, and the fact that p
and E are transversal. This concludes the proof that J ⊂ N≥1B.

Let x ∈ J . We have

E.f(ϕ1(x)) = f(ϕ(x)) = ϕ(f(x)) = 0.

Since E is a non-zero divisor in A, we must have f(ϕ1(x)) = 0 and therefore
ϕ1(x) ∈ J , i.e., ϕ1 stabilizes J .

It remains to prove that the divided Frobenius is topologically nilpotent on J ,
endowed with the (p,E)-adic topology. Let

A′ = A

{
ϕ(E)

p

}∧p

,

which by [13, Lemma 2.35] identifies with the (p-completed) divided power envelope
DA((E))∧p of A in (E). Let ι : A→ A′ be the natural inclusion. The composition

α : A
ϕ
−→ A

ι
→ A′

defines a morphism of prisms (A, (E))→ (A′, (p)). Let

B′ := DA⊗̂W (k)A
(J ′)∧p ,
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where J ′ is the kernel of the map A⊗̂W (k)A→ R. The ideal J ′ is generated by E

and u− v, which form a regular sequence in A⊗̂W (k)A/p, and therefore

B′ ∼= (A⊗̂W (k)A)

{
ϕ(E), ϕ(u − v)

p

}∧p

δ

∼= (A⊗̂W (k)A)

{
p, ϕ(u− v)

ϕ(E)

}∧ϕ(E)

δ

∼= Dϕ∗

A⊗̂W (k)A
B((E))∧p .

(In the second isomorphism we used again [13, Lemma 2.24], and in the first and
last [13, Lemma 2.37].) In particular, the map α induces a map:

αB : B → B′

because B ∼= A⊗̂W (k)A{
u−v
E }

∧(p,E) . It sends J ⊆ B to the kernel K ⊂ B′ of

the map B′ → A′ (which extends the multiplication on µ : A⊗̂W (k)A → A), and
commutes with the divided Frobenius (because B′ is p- and thus ϕ(E)-torsion free).
We thus have a diagram:

J

��

K

��

A⊗̂W (k)A //

µ

$$❍
❍
❍
❍
❍
❍
❍
❍
❍

ϕ

++❞ ❜ ❴ ❭ ❩

B

αB

&&r
♦
♠
❥
❣ ❞ ❴ ❩ ❲ ❚

◗
❖
▲

��

A⊗̂W (k)A //

ι◦µ

$$■
■
■
■
■
■
■
■
■

B′

��

A

α

**❤ ❣ ❢ ❞ ❜ ❴ ❭ ❩ ❳ ❲ ❱
A′

The ideal K ⊆ B′ is generated (up to completion) by (u− v) and the δ-translates
of

ϕ(u − v)

p
= unit ·

ϕ(u− v)

ϕ(E)
.

As the kernel J of B → A is stable by ϕ1, this implies that K = JB′ is stable by
ϕ1, and thus in particular contained in N≥1B′.

Observe also that

pB′ ∩B = (p,E).B

To see this, one needs to show that the map induced by αB

B/(p,E)→ B′/p

is injective, i.e., by faithful flatness of ϕ : A→ A that the natural map

B/(p, ϕ(E)) = B/(p,Ep)→ B′/p = DB((E))/p

is injective. But since B is p-torsion free,

B′/p = B/(p,Ep)[X0, X1, . . . ]/(X
p
0 , X

p
1 , . . . )

∧p

and the above map is simply the natural inclusion map. Hence, it suffices to
prove topological nilpotence of ϕ1 = ”ϕ/ϕ(E)” on K with respect to the p-adic
topology38. We do it in two steps.

38Let us clarify what we mean by the various ϕ1’s, whenever they are defined. On A we set
ϕ1 = ϕ/E which is the restriction of ϕ1 = ϕ/ϕ(E) along α. In B′ the element ϕ(E)/p is a unit
and thus ϕ1 = p

ϕ(E)
ϕ
p
, i.e., both possible definition of the divided Frobenius differ by a unit.
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Note first that ϕ is topologically nilpotent on K. More precisely, using that K
is stable by ϕ1, one easily sees by induction that ϕk(z) is divisible by pk, for all
z ∈ K and k ≥ 1 (with ϕk(z)/pk ∈ K, because A′ is p-torsion free). The equality

ϕ1(xy) = ϕ(x)ϕ1(y)

for x, y ∈ K, implies by induction that for any n ≥ 1 :

ϕn1 (xy) = ϕn(x)ϕn1 (y).

This shows that the second divided power ideal K [2] is stable by ϕ1 (since K is
stable by ϕ,ϕ1) and, by what we just said, that the left hand side is divisible by pn

in K. In fact, one can do better. Let m ≥ 1 and x ∈ K. In the previous equality,
take y = xm−1. Seeing it in B′[1/p] (recall that B′ is p-torsion free), one can divide
both sides by m!. It reads :

ϕn1 (γm(x)) =
ϕn(x)

m!
ϕn1 (x

m−1).

The left hand side always makes sense in K since K has divided powers, and for n
big enough, the right hand side as well since ϕn(x) tends p-adically to 0 and thus is
divisible by m! for n big enough. Letting n go to infinity, we see that the left hand
side goes to 0 in K. These considerations prove that ϕ1 is topologically nilpotent
(with respect to the p-adic topology) on K [2], as it is topologically nilpotent on K2

and all divided powers γm(x), m ≥ 2, for x ∈ K.
Let e be the degree of the polynomial E. Since K [2] is stable by ϕ1, ϕ1

defines a semi-linear endomorphism of the quotient K/K [2]. Let us now prove
that ϕpe1 (K/K [2]) ⊂ p.K/K [2]. We know that the A′-module K/K [2] is isomor-
phic to (Ω1

A)
∧p ⊗A A′ (where the map A → A′ is the natural inclusion ι). It

is a free A′-module of rank generated by du and via this identification, one has
ϕ1(du) = up−1du. But the image of upe in A′ is divisible by p since p divides Ep in
A′ and E is an Eisenstein polynomial. Therefore p (even pp−1) divides ϕpe1 (du⊗ 1)

in K/K [2].
Finally, let us check that these two steps imply the desired topological nilpotence.

Let x ∈ K, x̄ its class in K/K [2]. Fix an integer n ≥ 1. By the second step, we
have

ϕpne1 (x̄) ∈ pnK/K [2],

i.e., there exists y ∈ K [2] such that

ϕpne1 (x) ∈ y + pnK.

By the first step, there exists m ≥ 1 such that ϕm1 (y) ∈ pnK, and so

ϕpne+m1 (x) ∈ pnK,

as desired. �

Remark 5.2.9. We have seen above that prismatic Dieudonné crystals over OK
are the same as minuscule Breuil-Kisin modules. One cannot expect the same kind
of result to hold for non-minuscule finite locally free F -crystals on the absolute
prismatic site of OK : one really needs to remember the (unexplicit) descent datum
to reconstruct the F -crystal. In fact, Bhatt and Scholze, [14], have recently proved
the remarkable result that finite locally free F -crystals on the absolute prismatic site
ofOK are the same as GalK-stable lattices in crystalline representations of GalK . In
the minuscule case, i.e. for prismatic Dieudonné crystals, combined with the result
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above and the considerations below, this recovers the known equivalence between
p-divisible groups of OK and GalK-stable lattices in crystalline representations of
GalK with Hodge-Tate weights in {0, 1}.

Finally, let K be a complete, discretely valued extension of Qp, let OK ⊆ K be
its ring of integers and assume the residue field k of OK is perfect. We will show
that the equivalence of Theorem 5.2.5 coincides with the equivalence established
by Kisin (cf. [30, Theorem 0.4]). Set

S :=W (k)[[u]]

with Frobenius lift ϕ : W (k)[[u]] → W (k)[[u]] sending u 7→ up. Fix a uniformizer
π ∈ OK and define the morphism

θ̃ : S→ OK , u 7→ π.

Then the kernel ker(θ̃) = (E) is generated by an Eisenstein polynomial E ∈
W (k)[u]. Let S be the p-completed divided power envelope of the ideal (E) ⊆ S,
i.e.,

S = S{
ϕ(E)

p
}∧p

in the category of δ-rings. Note that the composition

ψK : S
ϕ
−→ S→ S

induces to a morphism (S, (E)) → (S, (p)) of prisms. Via the composition OK ∼=

S/(E)
ψK
−−→ S/(p) we consider (S, (p)) as an object of the (absolute) prismatic site

(OK)∆. The antiequivalence

MKis(−) : BT(OK) ∼= BKmin(OK)

of Kisin has the characteristic property (cf. [30, Theorem (2.2.7)]) that for a p-
divisible group G over OK there is a canonical Frobenius equivariant isomorphism

MKis(G) ⊗S,ψ S ∼= D(G)(S)

where the right hand side denotes the evaluation of the crystalline Dieudonné crystal
of G on the PD-thickening S → OK (which sends all divided powers of E to zero).

Let G be a p-divisible group over OK with absolute prismatic Dieudonné crystal
M∆(G). We use Lemma 4.2.4 and Proposition 4.1.4 and consider M∆(G) as a
crystal on the absolute prismatic site (OK)∆.

Lemma 5.2.10. There is a natural Frobenius-equivariant isomorphism

αK :M∆(G)(S, (p))
≃
−→ D(G)(S).

Here D(G)(S) denotes the evaluation of the Dieudonné crystal of G at the PD-
thickening S → OK .

Proof. This follows from Lemma 4.3.3. �

We want to show that the natural isomorphism αK restricts to an isomorphism
M∆(G)((S, (E)) ∼= MKis(G). In other words, we want to prove the existence of
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the dotted morphisms in the diagram

M
∆
(G)((S, (E))

++❤ ❝ ❴ ❬ ❱

_�

��

MKis(G)
kk ❤❝❴❬❱ _�

��

M∆(G)(S, (p))
∼

D(G)(S).

Let C be the completion of an algebraic closure of K and let OC ⊆ C be its ring
of integers. Set Ainf := Ainf(OC), Acrys := Acrys(OC).

We can extend the morphism OK → OC to a morphism of prisms39

f : (S, (E))→ (Ainf , (ξ))

by sending u 7→ [π♭] = [(π, π1/p, . . .)] (after choosing a compatible system of p-power
roots π1/pn ∈ OC of π). Let

ψC : Ainf
ϕ
−→ Ainf → Acrys.

Then analogous ψC induces a morphism (Ainf , (ξ))→ (Acrys, (p)) of prisms.
By faithful flatness of S→ Ainf (cf. [11, Lemma 4.30]40) it suffices to prove the

existence of the dotted arrows after base change to Ainf :

(5) M∆(G)((S, (E)) ⊗S,f Ainf

,,❡ ❜ ❴ ❭ ❨

_�

��

MKis(G) ⊗S,f Ainf
ll ❡❜❴❭❨ _�

��

M∆(G)(S, (p)) ⊗S,f Ainf
∼

D(G)(S)⊗S,f Ainf .

By flat base change of PD-envelopes (cf. [52, Tag 07HD]) we get

S⊗̂SAinf
∼= Acrys

and thus D(G)(S)⊗S Ainf
∼= D(GOC

)(Acrys).
Similar to Lemma 5.2.10 there is a canonical isomorphism

αC :M∆(G)((Acrys, (p)) ∼= D(GOC )(Acrys)

by Lemma 4.3.3 and thus the lower horizontal isomorphism in (Equation (5)) iden-
tifies with αC . By the crystal property ofM∆(G) the left vertical injection

M∆(G)((S, (E))) ⊗S,f Ainf →֒ M∆(GOC )(S, (p))⊗S,f Ainf .

identifies with the inclusion

M∆(G)((Ainf , (ξ))) →֒ M∆(GOC )(Acrys, (p))

along the morphisms of prism ψC : (Ainf , (ξ)) → (Acrys, (p)). By Proposition 4.3.6
there is a canonical isomorphism

β : ϕ∗
Ainf
M∆(G)((Ainf , (ξ))) =M∆(G)((Ainf , (ξ̃))) ∼=MSW(GOC )

∗

39Note that we take ξ, not ξ̃.
40But note that our map f differs from the one of [11], which is ϕ ◦ f .
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to the dual of the functor constructed by Scholze-Weinstein. By [51, Theorem
14.4.3] MSW(G)∗ ⊗Ainf

Acrys
∼= D(GOC/p)(Acrys) and moreover the diagram

ϕ∗
Ainf
M∆(G)((Ainf , (ξ)))

β
//

��

MSW(GOC )
∗

��

M
∆
(G)((Acrys, (p)))

≃ // D(G)(Acrys) ∼=MSW(GOC )
∗ ⊗Ainf

Acrys

commutes by construction of β, cf. Proposition 4.3.6 and its proof. Hence, it suffices
to prove that there exists an isomorphism

γ : MKis(G) ⊗S,g Ainf →MSW(GOC )
∗

where g = ϕ ◦ f is a morphism of prisms

g : (S, (E))→ (Ainf , (ξ̃)),

such that the diagram

MKis(G) ⊗S,g Ainf

��

γ
// MSW(GOC )

∗

��

D(GOC )(Acrys, (p))
≃ // MSW(GOC )

∗ ⊗Ainf
Acrys

commutes.
Let T be the dual of the p-adic Tate module TpG of G. Then T is a lattice in

a crystalline representation of Gal(K/K) (where K ⊆ C is the algebraic closure of
K) andMKis(G) ∼=M(T ) whereM(−) is Kisin’s functor from lattices in crystalline
representations to Breuil-Kisin modules. By [11, Proposition 4.34] M(T )⊗S,g Ainf

corresponds under Fargues’ equivalence (cf. [51, Theorem 14.1.1]) to the pair (T,Ξ)

with Ξ ⊆ T⊗ZpBdR the B+
dR-lattice generated byDdR(TQp) = (T⊗ZpBdR)

Gal(K/K).
But this pair is exactly the one associated to GOC by Scholze-Weinstein.

Thus in the end our discussion implies the following proposition.

Proposition 5.2.11. The two functors

G 7→MKis(G)
G 7→ M∆(G)(S, (E))

from p-divisible groups over OK to minuscule Breuil-Kisin modules are naturally
isomorphic.

5.3. Admissible prismatic Dieudonné crystals and displays. The work of
Zink provides a classification of connected p-divisible groups over p-adically com-
plete rings (cf. [54]). In this section, we want to relate it to the classification
obtained (for quasi-syntomic rings) in Theorem 4.9.5.

Definition 5.3.1. Let R be a p-complete ring. A display over R is a window (cf.
Section 4.1 and [37, Example 5.4]) over the frame

W (O) = (W (O), I(O) := ker(W (O)→ O), F, F1),

in the topos of sheaves on the p-completely faithfully flat site of R, where F is
the Witt vector Frobenius and F1 : I(O) → W (O) the inverse of the bijective
Verschiebung morphism V .

The category of displays over R is denoted by Disp(R).
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Remark 5.3.2. We have phrased the definition of a display in a manner parallel
to the definition of a prismatic Dieudonné crystal. In this form it is however unnec-
essarily abstract. The category of displays satisfies faithfully flat descent : see [54,
Theorem 37]. Since displays over a p-complete ring R (with bounded p∞-torsion)
are equivalent to compatible systems of displays over R/pn for all n ≥ 1, we see
that displays even satisfy p-completely faithfully flat descent (cf. [12, Corollary
4.8]). Hence the category of displays over R in the sense of Definition 5.3.1 is
the same as the usual category of displays over R (i.e., windows over the frame
(W (R), I(R), F, F1)).

Proposition 5.3.3. Let R be a quasi-regular semiperfectoid ring. Assume that
pR = 0 or that R is p-torsion free. The natural morphism from Theorem 3.4.4

∆R → R

(given by moding out N≥1
∆R) lifts to a u-morphism of frames (in the general sense

of Definition 4.1.16)
f : ∆R,Nyg →W (R),

where ∆R,Nyg is the frame associated to (∆R, I) and ξ̃, as in Example 4.1.18, and

u ∈ W (R) is a unit such that p = uf(ξ̃).

Proof. By adjunction (cf. [26, Theoreme 4]), the morphism ∆R → R gives rise to a
morphism of δ-rings :

f : ∆R →W (R),

lifting the morphism to R, i.e., sending N≥1
∆R to I(R). In particular, f(ξ) ∈ I(R),

and thus
f(ξ̃) = ϕ(f(ξ)) = pϕ1(f(ξ))

and so p divides f(ξ̃). By [13, Lemma 2.24], we deduce that (p) = (f(ξ̃)), and thus

there exists a unit u ∈ W (R) such that p = uf(ξ̃). It is then easy to conclude
when W (R) is p-torsion free since the commutation (up to a unit) of f with the
divided Frobenius can be proved after multiplying by p. In the case where pR = 0
one argues as in [36, Lemma 7.4]. �

It would be nice to prove that for any R quasi-regular semiperfectoid, the mor-
phism of the proposition always defines a morphism of frames. Although we did
not succeed in doing so, the next proposition shows that one can circumvent this
difficulty.

Proposition 5.3.4. Let R be a quasi-syntomic ring. If G is a p-divisible group
over R, set

ZR(G) =M∆(G)⊗Opris W (O)

with Frobenius FZR(G) = ϕM
∆
(G)⊗F , and let Fil ZR(G) be the submodule of ZR(G)

generated by I(O).ZR(G) and the image of ϕ−1
M∆(G)(I

pris.M
∆
(G)). There exists a

unique way to extend the functor

G 7→ (ZR(G),Fil ZR(G), FZR(G))

to a functor

ZR : BT(R)→ Disp(R), G 7→ ZR(G) = (ZR(G),Fil ZR(G), FZR(G), FZR(G),1)

natural in R which moreover coincides (through Proposition 4.1.29) with the compo-
sition of the prismatic Dieudonné functor with the functor induced by the morphism
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of frames of Proposition 5.3.3 when R is quasi-regular semiperfectoid and pR = 0
or R is p-torsion free.

Proof. The requirement of the proposition already says what

(ZR(G),Fil ZR(G), FZR(G))

must be. Therefore, the only issue is to define the divided Frobenius FZR(G),1.
Assume first that R is quasi-regular semiperfectoid and p-torsion free. If it ex-

ists, FZR(G),1 is necessarily unique, since W (R) is p-torsion free; thus we only need
to show its existence. For this, we define ZR as the composition of the prismatic
Dieudonné functor with the functor induced by the morphism of frames of Propo-
sition 5.3.3. By quasi-syntomic descent (Remark 5.3.2), one gets a functor ZR for
any p-torsion free quasi-syntomic ring R. For such rings R, the functor ZR is nec-
essarily unique by p-torsion freeness ofW (R). In particular, it commutes with base
change in R.

To obtain the functor ZR in general, we use smoothness of the stack of p-divisible
groups, following an idea of Lau, [34, Proposition 2.1]. Let X = Spec(A) →
BT × Spec(Zp) be an ind-smooth presentation of the stack of p-divisible groups as

in loc. cit. Then Spec(B) = X ×BT X is affine. The p-adic completions Â and B̂
are both p-torsion free (cf. [34, Lemma 1.6]).

Let R be a quasi-syntomic ring and G be a p-divisible group over R. It gives rise
to a map α : Spec(R)→ BT × Spec(Zp). Let

Spec(S) = Spec(R)×BT ×Spec(Zp) Spec(A),

and

Spec(T ) = Spec(S)×Spec(A) Spec(B).

Let Ŝ and T̂ be their p-adic completions. The rings Â and B̂ are quasi-syntomic.
By base change the rings Ŝ and T̂ are also quasi-syntomic. The base change

(ZŜ(GŜ),Fil ZŜ(GŜ), FZŜ(GŜ)
)

of the triple (ZR(G),Fil ZR(G), FZR(G)) along R → Ŝ is also the base change of
the triple

(ZÂ(HÂ),Fil ZÂ(HÂ), FZÂ(HÂ))

along α ⊗ Â of the universal p-divisible group H over A. The divided Frobenius
FZÂ(HÂ),1 on ZÂ(HÂ) (coming from the first part of the proof) therefore induces

an operator FZŜ(GŜ),1
on ZŜ(GŜ). This operator FZŜ(GŜ),1 is compatible with the

descent datum for the base change along the two natural maps Ŝ → T̂ , since the
functor ZB̂ exists and is unique. By descent (Remark 5.3.2), this defines a display
structure ZR(G) on the triple (ZR(G),Fil ZR(G), FZR(G)).

This display structure is uniquely determined by the requirement that it is com-
patible with the maps R → Ŝ, Ŝ → Â. In particular, it has to coincide with the
composition of the prismatic Dieudonné functor with the functor induced by the
morphism of frames of Proposition 5.3.3 also when R is quasi-regular semiperfectoid
and killed by p. �

The functor of Proposition 5.3.4 is not an antiequivalence when p = 2. Never-
theless, one has the following positive result, reproving the main result of [54], [32]
in the special case of quasi-syntomic rings.
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Proposition 5.3.5. Let R be a quasi-syntomic ring, flat over Z/pn (for some
n > 0) or Zp. The functor ZR restricts to an antiequivalence

BTf (R) ∼= Dispnilp(R)

between the category of formal p-divisible groups over R and the category of F -
nilpotent displays over R.

Recall that a display is said to be F -nilpotent if its Frobenius is nilpotent modulo
p.

Proof. Assume first that R is quasi-regular semiperfect. The functor ZR is the
composite of the prismatic Dieudonné functor, which is an antiequivalence by The-
orem 4.6.10, and of the functor induced by the morphism of frames

(∆R ∼= Acrys(R),N
≥1

∆R, ϕ, ϕ1)→ (W (R), I(R), F, F1).

The morphism ∆R →W (R) is surjective (indeed, the composition ∆R♭
∼=W (R♭)→

W (R) is surjective, since R♭ → R is, and factors through the map ∆R → W (R)).
We claim that the divided Frobenius is topologically nilpotent on its kernel. It
suffices to show the same for the surjection Acrys(R)→W (R) coming from the PD-

thickeningW (R)→ R. We recall that Acrys(R) is obtained fromW (R♭) by passing

to the PD-envelope for the ideal ker(W (R♭)→ R). This kernel is (topologically)
generated by the elements V m([x]) for m ≥ 0 and x ∈ I := ker(R♭ → R). If m ≥ 1,
then V m([x]) ∈ W (R♭) already has divided powers. As Acrys(R) is p-torsion free (by
quasi-regularity of R), we can conclude that Acrys(R) is (topologically) generated

(as a module over W (R♭)) by the divided powers [x](n) of [x] for x ∈ I (i.e.,
the divided powers of Vm([x]) for m ≥ 1 are not necessary). We note that for
x ∈ I each divided power [x](n) ∈ Acrys(R) lies in the kernel of Acrys(R) → W (R)

because [x] ∈ W (R♭) maps to 0 ∈ W (R). Hence, we can conclude that the kernel
of Acrys(R) → W (R) is (topologically) generated by V m([x]), [x](n) for x ∈ I and

n,m ≥ 1. Now Vm([x]) = pm[x1/p
m

] and thus ϕm1 (V m([x])) = [x]. Hence, it suffices
to show that ϕ1 is topologically nilpotent on the elements [x](n), n ≥ 1, x ∈ I. For
such an element, one has

ϕ1([x]
(n)) =

(np)!

n!p
[x](np).

Iterating, one sees that ϕ1 is topologically nilpotent on the kernel (with respect to
the p-adic topology). By Remark 4.1.34, the functor

DMadm(R) ∼= Win(∆R,Nyg)→ Disp(R)

is an equivalence. It is easily seen that it restricts to an antiequivalence between
formal p-divisible groups and F -nilpotent displays.

By quasi-syntomic descent, this yields the statement of the proposition when R
is quasi-syntomic with pR = 0. In general, R/p is quasi-syntomic ([12, Lemma 4.16
(2)]) and one can consider the following commutative diagram :

BT(R)
ZR //

��

Disp(R)

��

BT(R/p)
ZR/p

// Disp(R/p).
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Grothendieck-Messing theory for F -nilpotent displays (cf. [54, Theorem 48]) cou-
pled with Grothendieck-Messing theory for p-divisible groups (cf. [44, V (1.6)] and
[54, Corollary 97]) show that this diagram is 2-cartesian. Since ZR/p is an antiequiv-
alence, ZR also is one. �

5.4. Étale comparison for p-divisible groups. Let R be a quasi-syntomic ring
and let G be a p-divisible group over R. In this section we show how the (dual
of the) Tate module of the generic fiber of R, seen as a diamond ([49, Definition
11.1]), can be recovered from the prismatic Dieudonné crystalM∆(G) of G.

Let
Opris

be the prismatic sheaf on (R)qsyn and

I := Ipris ⊆ Opris

the natural invertible Opris-module (cf. Definition 4.1.1). Fix n ≥ 0. Note that the
Frobenius

ϕ : Opris → Opris

induces a morphism, again called Frobenius,

ϕ : Opris/pn[1/I]→ Opris/pn[1/I]

as ϕ(I) ⊆ (p, I) although I is not stable under ϕ.
We let

(R)v

be the v-site of all maps Spf(S) → Spf(R) with S a perfectoid ring over R. By
definition the coverings in (R)v are v-covers Spf(S′) → Spf(S) (cf. [13, Section
8.1]). Let

(R)qsyn,qrsp

be the site of all maps Spf(S)→ Spf(R) with S quasi-regular semiperfectoid (covers
given by quasisyntomic covers). The perfectoidization functor

S 7→ Sperfd

from [13, Definition 8.2] induces a morphism of sites

α : (R)v → (R)qsyn,qrsp

sending Spf(S) to Spf(Sperfd). Indeed, by [13, Proposition 8.10] and the fact that
quasi-syntomic covers are v-covers the conditions of [52, Tag 00WV] are satisfied.
Moreover, we have the “inclusion of the generic fiber”

j : Spa(R[1/p], R)⋄v → (R)v

induced by sending Spf(S) to Spa(S[1/p], S)41. Here Spa(R[1/p], R)⋄v is the v-site
of the diamond associated with Spa(R[1/p], R) (cf. [49, Section 15.1], [49, Definition
14.1.iii)]).

The sites (R)v, (Spa(R[1/p], R))v carry tilted structure sheaves O♭(R)v
, O♭ send-

ing S ∈ (R)v to S♭ resp. Spa(S, S+) ∈ (Spa(R[1/p], R))v to S♭. We let W (O♭(R)v
)

resp. W (O♭) be the associated Witt vector sheaves. It is easy to see that for every
n ≥ 1 there are natural morphism Opris/pn → α∗(Wn(O♭(R)v

)), Opris/pn[1/I] →

(α ◦ j)∗(Wn(O♭)).

41We use the notation Spa(S[1/p], S) when S is not necessarily integrally closed in S[1/p].
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Lemma 5.4.1. The above morphisms induces natural isomorphisms

α∗(Z/p
n) ∼= (Opris/pn)ϕ=1

and

(α ◦ j)∗(Z/p
n) ∼= (Opris/pn[1/I])ϕ=1

of sheaves on (R)qsyn,qrsp after passing to ϕ-fixed points.

Here (−)ϕ=1 denotes the (non-derived) invariants of ϕ on the sheafOpris/pn[1/I],
and we use that Wn(O♭(R)v

) ∼= Z/pn, Wn(O♭) ∼= Z/pn as will be explained in the

proof.

Proof. We only prove the second statement. The first is similar (but easier). Let
S be a quasi-regular semiperfectoid R-algebra. Then

(Opris/pn[1/I])ϕ=1(S) ∼= (lim
−→
ϕ

Opris/pn[1/I])ϕ=1(S) ∼= (lim
−→
ϕ

Opris(S)/pn[1/I])ϕ=1.

The first isomorphism follows from commuting Frobenius fixed points the filtered
colimit over N along ϕ and the second as lim

−→
ϕ

Opris is p-torsion free (cf. [13, Proof of

Lemma 2.28]) and S is quasi-regular semiperfectoid (which implies that the sheaf
lim
−→
ϕ

Opris has no higher cohomology over S). Then [13, Lemma 9.2] implies that

(lim
−→
ϕ

Opris(S)/pn[1/I])ϕ=1 ∼= (Ainf(Sperfd)/p
n[1/I])ϕ=1.

By [13, Lemma 9.3], the equivalence of underlying topological spaces under tilting
of perfectoid spaces, [51, Theorem 7.1.1], and [28, Proposition 3.2.7] the right-hand
side becomes

Wn((Sperfd[1/p])
♭)ϕ=1 ∼= Homcts(π0(Spa(Sperfd[1/p], Sperfd)),Z/p

n),

which agrees with

(α ◦ j)∗(Z/p
n)(S).

This finishes the proof. �

We can derive the following description of the Tate module of the generic fiber.

Proposition 5.4.2. Let G be a p-divisible group over R with prismatic Dieudonné
crystalM

∆
(G) and let n ≥ 0. Then

j∗α∗(M
∆
(G)/pn[1/I]ϕ=1)

is canonically isomorphic to HomZ/pn(G[p
n]η,Z/p

n) where G[pn]η denotes the sheaf
Spa(S[1/p], S) 7→ G[pn](S[1/p]) on Spa(R[1/p], R)⋄v.

Proof. SetM :=M∆(G). By Lemma 4.2.6

M∼= Hom(R)qsyn,qrsp(TpG,O
pris).

From the proof of Proposition 4.6.5 we can conclude that

Hom(R)qsyn,qrsp(TpG,O
pris)/pn ∼= Hom(R)qsyn,qrsp(TpG,O

pris/pn)

∼= Hom(R)qsyn,qrsp(G[p
n],Opris/pn).

It follows that

M/pn[1/I] ∼= Hom(R)qsyn,qrsp(G[p
n],Opris/pn[1/I])
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as using Section 4.4 the functor Hom(R)qsyn,qrsp(G[p
n],−) commutes with filtered

colimits. Finally,

M/pn[1/I]ϕ=1 ∼= Hom(R)qsyn,qrsp(G[p
n],Opris/pn[1/I]ϕ=1).

By Lemma 5.4.1
Opris/pn[1/I]ϕ=1 ∼= (α ◦ j)∗(Z/p

n)

and thus

M/pn[1/I]ϕ=1 ∼= Hom(R)qsyn,qrsp(G[p
n], (α ◦ j)∗(Z/p

n))

∼= (α ◦ j)∗(HomZ/pn((α ◦ j)
∗G[pn],Z/pn))).

The definitions of α and j imply that for any sheaf F on (R)qsyn,qrsp the non-
sheafified pullback (α ◦ j)−1F is the presheaf Spa(S, S+) 7→ F(Spf(S+)). In par-
ticular, we see that

(α ◦ j)∗ ◦ (α ◦ j)∗
is naturally isomorphic to the identity. We obtain thus

(α ◦ j)∗M/pn[1/I]ϕ=1 ∼= HomZ/pn((α ◦ j)
∗G[pn],Z/pn).

and can now conclude by Lemma 5.4.3. �

Lemma 5.4.3. With the notations from Proposition 5.4.2,

(α ◦ j)∗G[pn] ∼= G[pn]η.

Proof. By right exactness of (α ◦ j)∗, it suffices to show

(α ◦ j)∗TpG ∼= TpGη.

Moreover, we may assume that R is perfectoid by passing to slice topoi. Let S be
the R-algebra representing TpG on p-complete rings. Thus S is the p-completion
of lim
−→
m

Sm where Sm represents G[pm]. Then S is quasi-regular semiperfectoid. By

definition (α ◦ j)∗TpG is represented by the perfectoid space

Spa(Sperfd[1/p], S
+
perfd)

over Spa(R[1/p], R) where S+
perfd is the integral closure of Sperfd in Sperfd[1/p].

Let Spa(T, T+) be an affinoid perfectoid space over Spa(R[1/p], R), in particular
we assume that T+ is integrally closed in T = T+[1/p]. Then any morphism
Sperfd[1/p]→ T sends S+

perfd → T+ because S is a p-completed direct limit of finite

R-algebras and T+ is perfectoid and integrally closed in T . Thus

Hom(R[1/p],R)((Sperfd[1/p], S
+
perfd), (T, T

+)) ∼= HomR(S
+
perfd, T

+)

∼= HomR(S, T
+)

∼= HomR(lim−→
m

Sm, T
+)

∼= HomR(lim−→
m

Sm, T ) = TpG(T )

where Sm represents G[pm] (thus S is the p-adic completion of lim
−→
m

Sm)). In the last

isomorphism we used again that all Sm are finite over R and thus any morphism
Sm → T of R-algebras factors over T+. �
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Appendix A. Descent for p-completely faithfully flat morphisms

In this appendix we want to record some descent statements that are used in the
main body of this text.

Lemma A.1. Let R be derived p-complete ring with bounded p∞-torsion. Then
the natural functor

{ finite projective R−modules} → 2− lim
←−
n

{ finite projective R/pn −modules}

is an equivalence. In particular, the fibered category R 7→ { finite projective R −
modules} is a stack for the p-completely faithfully flat topology on the category of
derived p-complete rings with bounded p∞-torsion.

Proof. As R is classically p-complete the first statement follows from [52, Tag
0D4B]. If R → R′ is a p-completely faithfully flat morphism between p-complete
rings of bounded p∞-torsion, then R/pn → R′/pn is faithfully flat for all n ≥
0 (flatness follows from [12, Lemma 4.7.(2)] and surjectivity of Spec(R′/pn) →
Spec(R/pn) is implied by the case n = 1). Thus, classical descent of finite projec-
tive modules holds for this morphism. Passing to the ((2)-)inverse limit implies the
last statement. �

Proposition A.2. The fibered categories of p-divisible groups and finite locally
free group schemes over p-complete rings with bounded p∞-torsion are stacks for
the p-completely faithfully flat topology.

Proof. It suffices to show the statement for finite locally free group schemes as p-
divisible groups are canonically a colimit of such. From A.1 we know that finite
locally free modules form a stack for the p-completely faithfully flat topology on
p-complete rings with bounded p∞-torsion. As base change commutes with fiber
products, this implies that finite locally free group schemes form a stack, too. �

Recall that a morphism
(A, I)→ (B, J)

of prisms is called faithfully flat if it is (p, I)-completely flat.

Proposition A.3. The fibered category

(A, I) 7→ { finite projective A−modules}

on the category of bounded prisms is a stack for the faithfully flat topology.

Proof. If (A, I) is a prism, then A is classically I-complete and thus finite projective
A-modules are equivalent to compatible systems of finite projective A/In-modules,
i.e.,

{ finite projective A−modules} ∼= 2− lim
←−
n

{ finite projective A/In −modules}

(cf. [52, Tag 0D4B]). As the 2-limit of stacks is again a stack it suffices to show that
for any n ≥ 0 the fibered category

(A, I) 7→ { finite projective A/In −modules}

is a stack on bounded prisms. If (A, I) → (B, J) is a faithfully flat morphim of
prisms, then

A/In → B/Jn
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is a p-completely faithfully flat morphism of rings with bounded p∞-torsion. Thus
the proposition follows from A.1. �

Example A.4. We give an example of a ring R which is classically (p, f)-complete
where f ∈ R is a non-zero divisor, such that R/f has bounded p∞-torsion, but R
has unbounded p∞-torsion. Set

R := Z[f, xi,j | i ≥ 0, 0 ≤ j ≤ i]∧(p,f)/J

with J generated by the elements

pxi,j − fxi,j+1

(where xi,i+1 := 0). Then f is a non-zero divisor in R and all p∞-torsion in

R/f ∼= Z[xi,j ]/(pxi,j)

is killed by p. But
pixi,0 = pifxi,1 = . . . = f ixi,i 6= 0

while pi+1xi,0 = f ipxi,i = 0. This shows that R has unbounded p∞-torsion. As f
is a non-zero divisor in R the (p, f)∞-torsion in R is zero.
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[15] Christophe Breuil. Schémas en groupes et corps de normes, 13 pages, 1998.
[16] Christophe Breuil. Groupes p-divisibles, groupes finis et modules filtrés. Annals of

Mathematics-Second Series, 152(2):489–550, 2000.
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[37] Eike Lau. Divided Dieudonné crystals. arXiv e-prints, page arXiv:1811.09439, November

2018.
[38] Tong Liu. The correspondence between Barsotti-Tate groups and Kisin modules when p = 2.
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[45] Shubhodip Mondal. Dieudonné theory via cohomology of classifying stacks. In Forum of

Mathematics, Sigma, volume 9. Cambridge University Press, 2021.
[46] Shubhodip Mondal. A computation of prismatic Dieudonné module. preprint, 2022.
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