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THE p-COMPLETED CYCLOTOMIC TRACE IN DEGREE 2

JOHANNES ANSCHÜTZ AND ARTHUR-CÉSAR LE BRAS

Abstract. We prove that for a quasi-regular semiperfectoid Zcycl
p -algebra R

(in the sense of Bhatt-Morrow-Scholze), the cyclotomic trace map from the

p-completed K-theory spectrum K(R;Zp) of R to the topological cyclic ho-
mology TC(R;Zp) of R identifies on π2 with a q-deformation of the logarithm.
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1. Introduction

Fix a prime p. The aim of this paper is to concretely identify in degree 2, for a
certain class of p-complete rings R, the p-completed cyclotomic trace

ctr : K(R;Zp)→ TC(R;Zp)

from the p-completed K-theory spectrum K(R;Zp) of R to the topological cyclic
homology TC(R;Zp) of R. Our main result is that on π2 the p-completed cyclotomic
trace is given by a q-logarithm

logq(x) :=

∞∑
n=1

(−1)n−1q−n(n−1)/2 (x− 1)(x− q) · · · (x− qn−1)

[n]q
,

which is a q-deformation of the usual logarithm (where q is a parameter which will
be defined later). Before stating a precise version of the theorem, let us try to put
it in context and to explain what the involved objects are.

During this project, J.A. was partially supported by the ERC 742608, GeoLocLang.
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2 JOHANNES ANSCHÜTZ AND ARTHUR-CÉSAR LE BRAS

1.1. K-theory and topological cyclic homology. We start with K-theory. For
any commutative ring A, Quillen defined in [22] the algebraic K-theory space K(A)
of A as a generalization of the Grothendieck group K0(A) of vector bundles on the
scheme Spec(A). The (connective) K-theory spectrum K(A) of a ring A is obtained
by group completing1 the E∞-monoid of vector bundles on Spec(A) whose addition
is given by the direct sum. In other words, for the full K-theory one mimicks in
a homotopy theoretic context the definition of K0(A) with the set of isomorphism
classes of vector bundles replaced by the groupoid of vector bundles. Algebraic
K-theory behaves like a cohomology theory but has the nice feature, compared
to other cohomology theories, like étale cohomology, that it only depends on the
category of vector bundles on the ring (rather than on the ring itself) and thus
enjoys strong functoriality properties, which makes it a powerful invariant attached
to A.

Unfortunately, the calculation of the homotopy groups

Ki(A) := πi(K(A)), i ≥ 1,

is in general rather untractable. There is for example a natural embedding

A× → π1(K(A)),

which is an isomorphism if A is local, but the higher K-groups are much more
mysterious. One essential difficulty comes from the fact that K-theory, although
it is a Zariski (and even Nisnevich) sheaf of spaces (cf. [28]), does not satisfy étale
descent. One could remedy this by étale sheafification, but one would lose the
good properties of K-theory. This lead people to look for good approximations of
K-theory, at least after profinite completion : by this, we mean invariants, still
depending only on the category of vector bundles on the underlying ring, satisfying
étale descent - and therefore, easier to compute - and close enough to (completed)
K-theory, at least in some range.

The work of Thomason, [27], provides a good illustration of this principle.
Thomason shows that the K(1)-localization of K-theory, with respect to a prime
` invertible in A, satisfies étale descent2 and coincides with `-adically completed
(for short: `-adic) K-theory in high degrees under some extra assumptions, later
removed by Rosenschon-Ostaver, [23], buliding upon the work of Voevodsky-Rost.
When the prime p is not invertible in A, the situation is much more subtle. For
instance, a theorem of Gabber [11] shows that `-adic K-theory is insensitive to re-
placing A by A/I if (A, I) forms an henselian pair ; in particular, the computation
of `-adic K-theory of henselian rings (which form a basis of the Nisnevich topology)
is reduced to the computation of the `-adic K-theory of fields. This is not true
anymore for p-adic K-theory. Nevertheless, the recent work of Clausen-Mathew-
Morrow, [8], expresses this failure in terms of another non-commutative invariant
attached to A, the topological cyclic homology of A, whose definition will be recalled
below. Topological cyclic homology is related to K-theory via the cyclotomic trace,
cf. [6, Section 10.3], [7, Section 5],

ctr : K(A)→ TC(A).

1Cf. [19] for a discussion of homotopy-theoretic group completions and Quillen’s +-

construction.
2In fact, it even coincides with `-adic étale K-theory on connective covers.
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Clausen, Mathew and Morrow prove, extending earlier work of Dundas, Goodwillie
and McCarthy [9] in the nilpotent case3, that the cyclotomic trace induces, for any
ideal I ⊆ A such that the pair (A, I) is henselian, an isomorphism

K(A, I)/n ∼= TC(A, I)/n

from the relative K-theory

K(A, I)/n := fib(K(A)/n→ K(A/I)/n)

to the relative topological cyclic homology

TC(A, I)/n := fib(TC(A)/n→ TC(A/I)/n),

for any integer n. This has the consequence that p-completed TC provides a good
approximation of p-adic K-theory, at least for rings henselian along (p): namely,
it satisfies étale descent (because topological cyclic homology does) and coincides
with p-adic K-theory in high degrees. Under additional hypotheses, one can even
get better results: for instance, Clausen, Mathew and Morrow prove, among other
things, that the cyclotomic trace induces an isomorphism

K(R;Zp) ∼= τ≥0TC(R;Zp)

for all rings R which are henselian along (p) and such that R/p is semiperfect (i.e.,
such that Frobenius is surjective), cf. [8, Corollary 6.9.].

Examples of such rings are the quasi-regular semiperfectoid rings of [4]. A ring R
is called quasi-regular semiperfectoid, if R is p-complete with bounded p∞-torsion4,

the p-completed cotangent complex L̂R/Zp has p-complete Tor-amplitude in [−1, 0]
and there exists a surjective morphism R′ → R with R′ (integral) perfectoid. This
class of rings is interesting as for R quasi-regular semiperfectoid the topological
cyclic homology π∗(TC(R;Zp)) can be computed in more concrete terms.

Let us recall the description of topological cyclic homology π∗(TC(R;Zp)) from
[4], which builds heavily on the foundational work of Nikolaus and Scholze [20]. For
this, we need to spell some definitions. From now on, all spectra will be assumed to
be p-completed. One starts with the (p-completed) topological Hochschild homol-
ogy spectrum THH(R;Zp) of R, which is equipped with a natural T = S1-action
and a T-equivariant map, the cyclotomic Frobenius,

ϕcycl : THH(R;Zp)→ THH(R;Zp)tCp

to the Tate fixed points of the cyclic group Cp ⊆ T. Then one takes the homotopy
fixed points, the negative topological cyclic homology,

TC−(R;Zp) := THH(R;Zp)hT

and the Tate fixed points, the periodic topological cyclic homology,

TP(R;Zp) := THH(R;Zp)tT.

From the cyclotomic Frobenius on THH(R;Zp) one derives a map5

ϕhTcycl : TC−(R;Zp)→ TP(R;Zp).

3This is not a generalization though, since the result of Dundas-Goodwillie-McCarthy applies
also to non-commutative rings and is not restricted to finite coefficients.

4This means that there exists N ≥ 0 such that R[p∞] = R[pN ]. This technical condition is

useful when dealing with derived completions.
5Here one needs [20, Lemma II.4.2.] which implies TP(R;Zp) ∼= (THH(R;Zp)tCp )hT.
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Then the topological cyclic homology TC(R;Zp) of R is defined via the fiber se-
quence

TC(R;Zp)→ TC−(R;Zp)
can−ϕhTcycl−−−−−−→ TP(R;Zp),

where can: TC−(R;Zp)→ TP(R;Zp) is the canonical map from homotopy to Tate
fixed points. The ring

∆̂R := π0(TC−(R;Zp)) ∼= π0(TP(R;Zp)).

is p-complete, p-torsion free6 and the cyclotomic Frobenius ϕhTcycl induces a Frobenius

lift ϕ on ∆̂R (cf. [5, Theorem 11.10]).

Remark 1.1. The prismatic perspective of [5] gives an alternative description of

∆̂R : it is the completion with respect to the Nygaard filtration of the (derived)
prismatic cohomology ∆R of R. In particular, using the theory of δ-rings, one can
give, when R is a p-complete with bounded p∞-torsion quotient of a perfectoid

ring by a regular sequence, a construction of ∆̂R as the Nygaard completion of a
concrete prismatic envelope (cf. [5, Proposition 3.12]).

The choice of a morphism R′ → R with R′ perfectoid yields a distinguished

element ξ̃ (up to a unit) of the ring ∆̂R. Using ξ̃ one defines the Nygaard filtration

N≥i∆̂R := ϕ−1((ξ̃i))

on ∆̂R. The graded rings π∗(TC−(R;Zp)) and π∗(TP(R;Zp)) are then concentrated
in even degrees and

π2i(TC−(R;Zp)) ∼= N≥i∆̂R

π2i(TP(R;Zp)) ∼= ∆̂R

for i ∈ Z (cf. [5, Theorem 11.10]).7 Moreover, on π2i the cyclotomic Frobenius

ϕhTcycl : π2i(TC−(R;Zp))→ π2i(TP(R;Zp))

identifies with the divided Frobenius ϕ

ξ̃i
. Thus from the definition of TC(R;Zp) we

obtain exact sequences

0→ π2i(TC(R;Zp)) ∼= ∆̂
ϕ=ξ̃i

R → N≥i∆̂R

1− ϕ

ξ̃i−−−→ ∆̂R → π2i−1(TC(R;Zp))→ 0.

As mentioned in Remark 1.1, the ring ∆̂R tends to be computable. For example, if

R is perfectoid, then ∆̂R
∼= Ainf(R) is Fontaine’s construction applied to R and if

pR = 0, then ∆̂R is the Nygaard completion of the universal PD-thickening Acrys(R)
of R. Thus, for quasi-regular semiperfectoid rings the target of the cyclotomic trace
is rather explicit.

6Indeed, any element killed by p is killed by ϕ, cf. the proof of [5, Lemma 2.28], and thus lies

in all the steps of the Nygaard filtration.
7These identifications depend on the choice of a suitable generator v ∈ π−2(TC−(R;Zp)). If

R is an algebra over Zcycl
p we will clarify our choice in Section 6 carefully.
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1.2. Main results. The results of [8] (together with those of [4]) therefore give
a way of computing higher p-completed K-groups of quasi-regular semiperfectoid
rings. But there is at least one degree (except 0) where one can be more explicit,
without using the cyclotomic trace map: namely, after p-completion of K(R) there
is a canonical morphism

Tp(R
×)→ π2(K(R;Zp))

from the Tate module Tp(R
×) of the units of R, which is an isomorphism in many

cases. The results explained in the previous paragraph show that the cyclotomic
trace identifies π2(K(R;Zp)) with

π2(TC(R;Zp)) ∼= ∆̂
ϕ=ξ̃

R .

What does the composite map

Tp(R
×)→ π2(K(R;Zp))

ctr−−→ π2(TC(R;Zp)) ∼= ∆̂
ϕ=ξ̃

R

look like? The main result of this paper, which we now state, provides a concrete
description of it. Let R be a quasi-regular semiperfectoid ring which admits a
compatible system of morphisms Z[ζpn ]→ R for n ≥ 0. These morphisms give rise
to the elements

ε = (1, ζp, . . .) ∈ R[ = lim←−
x 7→xp

R , q := [ε]θ ∈ ∆̂R

and

ξ̃ :=
qp − 1

q − 1
.

Here

[−]θ : R[ →∆R

is the Teichmüller lift coming from the surjection θ : ∆R → R (see the proof of
Lemma 2.4).

Theorem 1.2 (cf. Theorem 6.7). The composition8

Tp(R
×)→ π2(K(R;Zp))

ctr−−→ π2(TC(R;Zp)) ∼= ∆̂
ϕ=ξ̃

R

is given by the q-logarithm

x 7→ logq([x]θ) :=

∞∑
n=1

(−1)n−1q−n(n−1)/2 ([x]θ − 1)([x]θ − q) . . . ([x]θ − qn−1)

[n]q
.

Here we embed

Tp(R
×) ⊆ R[, (r0 ∈ R×[p], r1, . . .) 7→ (1, r0, r1, . . .).

By

[n]q :=
qn − 1

q − 1

we denote the the q-analog of n ∈ Z.

8Cf. Section 6 for a more precise description of the isomorphism π2(TC(R;Zp)) ∼= ∆̂
ϕ=ξ̃
R . We

note that it depends on the choice of some compatible system ε = (1, ζp, ζp2 , . . .) of primitive

pn-th roots of unity.
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Remark 1.3. A similar result can be found in [12, Lemma 4.2.3.], but only before p-
completion, on π1 and in terms of TR∗, which is not enough to deduce Theorem 1.2
from their result.

As a consequence of [8] and Theorem 1.2, one gets the following result.

Corollary 1.4. Let R be a quasi-regular semiperfectoid Zcycl
p -algebra. The map

logq([−]θ) : Tp(R
×)→ ∆̂

ϕ=ξ̃

R

is a bijection.

This corollary is used in [1], which studies a prismatic version of Dieudonné the-
ory for p-divisible groups, and was our original motivation for proving Theorem 1.2.

Here is a short description of the proof of Theorem 1.2. By testing the universal
case R = Zcycl〈x1/p∞〉/(x−1) one is reduced to the case where (p, ξ̃) form a regular

sequence on ∆̂R, i.e., the prism (∆̂R, ξ̃) is transversal (cf. Definition 3.2). In this
situation, we prove that the reduction map

∆̂
ϕ=ξ̃

R ↪→ N≥1∆̂R/N≥2∆̂R

is injective (cf. Corollary 3.10). Thus it suffices to identify the composition

Tp(R
×)

ctr−−→ ∆̂
ϕ=ξ̃

R → N≥1∆̂R/N≥2∆̂R.

Using the results [4] the quotient N≥1∆̂R/N≥2∆̂R identifies with the p-completed
Hochschild homology π2(HH(R;Zp)) (cf. Section 5) and therefore the above compo-
sition identifies with the p-completed Dennis trace. A straightforward computation
then identifies the p-completed Dennis trace (cf. Section 2), which allows us to
conclude. We expect the results in Section 2 to be known, in some form, to the
experts, but we did not find the results anywhere in the literature.

Let us end this introduction by a remark and a question. One could try to reverse
the perspective from Corollary 1.4 and try to recover a (very) special case of the
result of Clausen-Mathew-Morrow (cf. [8]) regarding the cyclotomic trace map using
the concrete description furnished by Theorem 1.2. If R is of characteristic p, we
have q = 1 and then the q-logarithm becomes the honest logarithm

log([−]θ) : Tp(R
×)→ Acrys(R)ϕ=p.

In [25], it is proven (using the exponential) that the map log([−]) is an isomorphism,
when R is the quotient of a perfect ring modulo a regular sequence. If R is the
quotient of a perfectoid ring by a finite regular sequence and is p-torsion free, it is
not difficult to deduce from Scholze-Weinstein’s result that the map

logq([−]θ) : Tp(R
×)→ ∆̂

ϕ=ξ̃

R

is a bijection when p is odd. Is there a way to prove it directly in general, for any
p and any quasi-regular semiperfectoid ring ?



THE p-COMPLETED CYCLOTOMIC TRACE IN DEGREE 2 7

1.3. Plan of the paper. In Section 2 we concretely identify the p-completed Den-
nis trace on the Tate module of units (cf. Proposition 2.5) in the form we need
it. In Section 3 we prove the crucial injectivity statement, namely Corollary 3.10,
for transversal prisms. In Section 4 we make sense of the q-logarithm. Finally, in
Section 6 we prove our main result Theorem 1.2 and its consequence, Corollary 1.4.

1.4. Acknowledgements. The authors thank Peter Scholze for answering sev-
eral questions and his suggestion to think about Lemma 3.9. Moreover, we thank
Bhargav Bhatt, Akhil Mathew, Andreas Mihatsch, Emmanuele Dotto, Matthew
Morrow for answers and interesting related discussions. Very special thanks go to
Irakli Patchkoria, who helped the authors with all necessary topology and provided
detailed comments on a first draft. The authors thank an anonymous referee for
her/his excellent report, in particular for suggesting the shorter proof of Proposi-
tion 2.5, which we presented here.

The authors would like to thank the University of Bonn and the Institut de
Mathématiques de Jussieu for their hospitality while this work was done.

2. The p-completed Dennis trace in degree 2

Fix some prime p and let A = R/I be the quotient of a (p, I)-complete ring R.
The aim of this section is to concretely describe in degree 2 the composition

Tp(A
×)→ π2(K(A;Zp))

Dtr−−→ π2(HH(A;Zp))→ π2(HH(A/R;Zp)).
Here

K(A;Zp)
denotes the p-completed (connective) K-theory spectrum of A,

HH(A;Zp), resp. HH(A/R;Zp)
the p-completed (derived) Hochschild homology of A as a Z-algebra, resp. as an
R-algebra, and Dtr is the Dennis trace map. Before stating precisely our result, let
us start by some reminders on the objects and the maps involved in the previous
composition.

Let us first recall the construction of the first map Tp(A
×)→ π2(K(A;Zp)). Let

GL(A) = lim−→
r

GLr(A)

be the infinite general linear group over A. There is a canonical inclusion

A× = GL1(A)→ GL(A)

of groups which on classifying spaces induces a map

B(A×)→ B(GL(A)).

Composing with the morphism to Quillen’s +-construction yields a canonical mor-
phism

B(A×)→ BGL(A)→ K(A) := BGL(A)+ ×K0(A)

into the K-theory space K(A) of A. After p-completion of spaces9 we obtain a
canonical morphism

ι : B(A×)∧p → K(A;Zp) := K(A)∧p .

9We use space as a synonym for Kan complex.
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We recall (cf. [18, Theorem 10.3.2]) that the space B(A×)∧p has two non-trivial
homotopy groups which are given by

π1(B(A×)∧p ) ∼= H0(R lim←−
n

(A× ⊗L
Z Z/pn))

and

π2(B(A×)∧p ) ∼= H−1(R lim←−
n

(A× ⊗L
Z Z/pn)) ∼= Tp(A

×).

In degree 2 we thus get a morphism

Tp(A
×) = π2(B(A×)∧p )→ π2(K(A;Zp)),

which is the first constituent of the map

Tp(A
×)→ π2(K(A;Zp))

Dtr−−→ π2(HH(A;Zp))→ π2(HH(A/R;Zp))

we want to describe.

Now we turn to the construction of Hochschild homology and the Dennis trace

Dtr : K(A)→ HH(A).

Let R be a (commutative) ring and A a (commutative) R-algebra. Let

T := S1 ∼= BZ

be the circle group. Then the Hochschild homology spectrum

HH(A/R)

(simply denoted HH(A) when R = Z) is the initial T-equivariant10 E∞−R-algebra
with a non-equivariant map A → HH(A/R) of E∞ − R-algebras, cf. [4, Remark
2.4]. For a comparison with classical definitions, we refer to [15].

The functor A 7→ HH(A/R) extends to all simplicial R-algebras and as such
is left Kan extended (as it commutes with sifted colimits) from the category of
finitely generated polynomial R-algebras. By left Kan extending the (decreasing)
Postnikov filtration τ≥•HH(A/R) on HH(A/R) for A a finitely generated polyno-
mial R-algebra one obtains the T-equivariant HKR-filtration

FilnHKRHH(A/R)

on HH(A/R) for A a general R-algebra. The∞-category of T-equivariant objects in
the derived∞-category D(R) of R is equivalent to the∞-category of R[T]-modules,
where

R[T] = R⊗ Σ∞+ T
is the group algebra of T over R (cf. [15, page 5]). Let

γ ∈ H1(T, R) ∼= HomD(R)(R[1], R[T])

be a generator11. The multiplication by γ induces a differential

d : HHi(A/R)→ HHi+1(A/R)

which makes HH∗(A/R) into a graded commutative dg-algebra over R all of whose
elements of odd degree square to zero (cf. [16, Lemma 2.3]). By the universal

10For an∞-category C the category of T-equivariant objects of C is by definition the∞-category

of functors BT→ C.
11We will mostly assume that γ is obtained by base change from some generator of H1(T,Z).
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property of the de Rham complex Ω∗A/R, the canonical morphism A→ HH0(A/R)

extends therefore to a morphism

αγ : Ω∗A/R → HH∗(A/R).

The Hochschild-Kostant-Rosenberg theorem affirms that αγ is an isomorphism if
R → A is smooth. By left Kan extension, one obtains for arbitrary R → A the
natural description

αγ : ∧i LA/R[i] ∼= griHKRHH(A/R)

of the graded pieces of the HKR-filtration via exterior powers of the cotangent
complex of A over R (cf. [4, Section 2.2]).

In particular, we get after p-completion the following consequence in degree 2,
which will be used to formulate our description of the Dennis trace below.

Lemma 2.1. Let R be a ring and I ⊆ R an ideal. Let A = R/I. Fix a generator
γ of H1(T,Z). There is a natural isomorphism

αγ : (I/I2)∧p
∼= π2(HH(A/R;Zp)).

Here (and in the rest of the paper) we denote by M∧p the derived p-adic comple-
tion of an abelian group M , i.e.,

M∧p := H0(R lim←−
n

M ⊗L
Z Z/pn).

Proof. The first assertion follows from the HKR-filtration on HH(A/R;Zp) de-
scribed above and the fact there is a canonical isomorphism

(I/I2)∧p
∼= H−1((LA/R)∧p )

which is implied by [26, Tag 08RA]. �

The Dennis trace can be defined abstractly, cf. [6, Section 10.2], as the compo-
sition of the unique natural transformation

K → THH

of additive invariants of small stable ∞-categories from K-theory to topological
Hochschild homology, which induces the identity on

Z ∼= π0(K(S))→ π0(THH(S)) ∼= Z,
and the natural transformation12 THH→ HH.

The only thing we will need to use as an input regarding the Dennis trace is the
following explicit description in degree 1. Recall from above that if A is a ring,
each choice of a generator γ of H1(T,Z) gives rise to an isomorphism

αγ : π1(HH(A/Z)) ∼= Ω1
A/Z

as H0(LA/Z) ∼= Ω1
A/Z for any A.

Lemma 2.2. Let A be a commutative ring. There exists a unique bijection

δ1 : {generators of H1(T,Z)} ∼= {±1}
such that

A× ∼= π1(BA×)
Dtr→ π1(HH(A))

αγ∼= Ω1
A/Z, a 7→ δ1(γ)dlog(a)

for any generator γ ∈ H1(T,Z).

12On rings.



10 JOHANNES ANSCHÜTZ AND ARTHUR-CÉSAR LE BRAS

Proof. Let A be any commutative ring. The Hochschild homology HH(A) can be
calculated as the geometric realization

HH(A) := lim−→
∆op

A⊗
L
Z
n+1

,

Note that this representation, which relies on the standard simplicial model of the
circle ∆1/∂∆1, depends implicitly on the choice of a generator γ0 of H1(T,Z), cf.
[15, Theorem 2.3]13. Replacing the derived tensor product by the non-derived one

obtains the classical, non-derived Hochschild homology HHusual(A) of A. As

π1(HH(A)) ∼= π1(HHusual(A))

we may argue using HHusual instead of HH.
Using the above description of the classical Hochschild homology, the Dennis

trace can be described more concretely, cf. [7, Section 5], [17, Chapter 8.4]. It
factors (on homotopy groups) through the integral group homology of GL(A), i.e.,
through H∗(BGL(A),Z), which is by definition (and the Dold-Kan correspondence)
the homotopy of the space Z[BGL(A)] obtained by taking the free simplicial abelian
group on the simplicial BGL(A). As the +-construction

BGL(A)→ BGL(A)+

is an equivalence on integral homology (cf. [29, Chapter IV.Theorem 1.5]) the mor-
phism

Z[BGL(A)] ' Z[BGL(A)+]

is an equivalence of simplicial abelian groups and using the canonical inclusion

BGL(A)+ → Z[BGL(A)+]

we arrive at a canonical morphism

K(A)→ BGL(A)+ → Z[BGL(A)+] ' Z[BGL(A)].

We observe that for r = 1 the morphism BGL1(A) → BGL1(A)+ is an equiv-
alence as GL1(A) = A× is abelian. Thus there is a commutative diagram (up to
homotopy)

BGL1(A) //

��

Z[BGL1(A)]

��

K(A) // Z[BGL(A)]

with each morphism being the canonical one.
The Dennis trace factors as a composition

Dtr : K(A)→ Z[BGL(A)]
Dtr′−−−→ HHusual(A/Z),

where by construction

Dtr′ : Z[BGL(A)]→ HHusual(A)

is given as the colimit of compatible maps14

Dtr′r : Z[BGLr(A)]→ HHusual(A).

13In this reference, γ0 is called γ.
14Here compatible means up to some homotopy. To obtain strict compatibility one has to use

the normalised Hochschild complex, cf. [17, Section 8.4.]
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When r = 1, which is the only case relevant for us, the map Dtr′1 is the linear
extension of the map

BA× → HHusual(A)

which in simplicial degree n is given by

(a1, . . . , an) 7→ 1

a1 . . . an
⊗ a1 ⊗ . . .⊗ an.

Fix a generator γ of H1(T,Z). The choice of γ gives the HKR-isomorphism

αγ : π1(HHusual(A)) ∼= π1(HH(A/Z)) ∼= Ω1
A/Z.

Using the above description of Hochschild homology as a geometric realization, the
isomorphism αγ is given by

π1(HHusual(A)) ∼= Ω1
A/Z, a⊗ b 7→ adb

with inverse adb 7→ a⊗ b, if γ = γ0, and by

π1(HHusual(A)) ∼= Ω1
A/Z, a⊗ b 7→ bda

with inverse bda 7→ a⊗b if γ = −γ0; this can be checked by analyzing compatibility
with differentials and using [15, Theorem 2.3]. In the first case, we set δ1(γ) = 1;
in the second case, we set δ1(γ) = −1. Then on homotopy groups the map Dtr1 is
given by

A× ∼= π1(BA×)→ π1(HH(A))
αγ∼= Ω1

A/Z, a 7→ δ1(γ)dlog(a) := δ1(γ)
da

a
,

as claimed. �

Remark 2.3. Let A be a flat Z-algebra. The description of HH(A) = HHusual(A)
as the geometric realization of the simplicial object

HH(A/Z) := lim−→
∆op

A⊗Z
n+1

shows that HH(A;Zp) is computed by the complex

· · · → (A⊗Z A⊗Z A)∧p → (A⊗Z A)∧p → A∧p .

One can then show that the p-completed Dennis trace (BA×)∧p → HH(A;Zp) sends
an element

(a1, a2, . . .) ∈ Tp(A×) = π2((BA×)∧p )

to the element represented, up to a sign, by the cycle

1⊗ 1⊗ 1 +

∞∑
n=1

pn−1(
1

a2
n

⊗ an ⊗ an +
1

a3
n

⊗ a2
n ⊗ an + . . .+

1

apn
⊗ ap−1

n ⊗ an).

We omit the proof, since we will not use this result.

We can now state and prove the main result of this section. Fix a generator
γ of H1(T,Z). We will describe the image of some element Tp(A

×) under the
composition

Tp(A
×)

Dtr−−→ π2(HH(A;Zp))→ π2(HH(A/R;Zp))
α−1
γ∼= (I/I2)∧p ,

using the notation of Lemma 2.1. Recall first the following standard lemma.
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Lemma 2.4. Let R be a ring, I ⊆ R an ideal and assume that R is (p, I)-adically
complete. Then the canonical map

R[ := lim←−
x 7→xp

R→ A[ := lim←−
x 7→xp

A

with A = R/I is bijective.

Proof. It suffices to construct a well-defined, multiplicative map

[−] : A[ → R

reducing to the first projection modulo I. Let

r := (r0, r1, . . .) ∈ A[

be a p-power compatible system of elements in A with lifts r′i ∈ R of each ri. Then
the limit

lim
n→∞

(r′n)p
n

exists and is independent of the lift. Thus

[r] := lim
n→∞

(r′n)p
n

defines the desired map. �

The morphism
[−] : A[ → R

is the Teichmüller lift for the surjection π : R → R/I. If we want to make its
dependence of the surjection clear, we write [−]π. Let

TpA
× = lim←−

x 7→xp
A×[pn]

be the Tate module of A×. Then we embed TpA
× into A[ as the sequences with

first coordinate 1. For any a ∈ A[ we define

[a] := r0

where r = (r0, r1, . . .) ∈ R[ is the unique element reducing to a. If a = (1, a1, a2, . . .)
lies in TpA

×, then [a] ∈ 1 + I.

Proposition 2.5. Fix a generator γ ∈ H1(T,Z). Let R be a ring and I ⊆ R an
ideal such that R is (p, I)-adically complete. Let A = R/I. Then the composition

Tp(A
×) ∼= π2((BA×)∧p )

Dtr−−→ π2(HH(A/R;Zp)) ∼= (I/I2)∧p

is given by sending a ∈ Tp(A×) to

δ1(γ)([a]− 1),

with δ1(γ) ∈ {±1} is the sign from Lemma 2.2.

Proof. 15 Fix a ∈ Tp(A×). Then there exists, by (p, I)-adic completeness of R, a
unique morphism Z[1/p]→ R× of abelian groups such that

1/pn 7→ [a1/pn ].

By naturality, it therefore suffices to check that for

R := Z[t1/p
∞

] ∼= Z[Z[1/p]]

15The following argument is simpler than our original argument and was suggested by the
referee. We thank her/him for allowing us to include it.
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and

A := R/(t− 1) ∼= Z[Qp/Zp],
then, under the morphism,

TpA
× Dtr−−→ HH2(A;Zp)→ HH2(A/R;Zp) ∼= LA/R[−1] ∼= (t− 1)/(t− 1)2

the element (1, t1/p, t1/p
2

, . . .) ∈ A[ is mapped to the class of δ1(γ)(t − 1). This is
what we will do.

Observe first that the Hochschild homology

HH2(A)

vanishes. Indeed, it is easy to see that LA/Z is concentrated in degree 0. Moreover,

Ω1
A/Z
∼= LA/Z is generated by one element. This implies that

π0(∧nLA/Z) = 0

for n ≥ 2 (cf. the proof of [2, Corollary 3.13]). By the HKR-filtration, we get that
HH2(A) = 0. Passing to p-completions we can conclude that

HH2(A;Zp) ∼= TpHH1(A)
αγ∼= Tp(Ω

1
A/Z),

where the last isomorphism is the HKR-isomorphism (for γ).
There is a commutative diagram

HH2(A;Zp)
∼=

//

∼=
��

HH2(A/R;Zp)

∼=
��

TpΩ
1
A/Z
∼= π1((LA/Z)∧p )

∼=
// π1((LA/R)∧p ) ∼= ((t− 1)/(t− 1)2)∧p .

Using Lemma 2.2 the element

(1, t1/p, t1/p
2

, . . .) ∈ TpA×

is mapped to the element

δ1(γ)(0, d log(t1/p), d log(t1/p
2

), . . .) ∈ Tp(Ω1
A/Z).

The effect of the bottom row can be calculated using the exact triangle

LR/Z ⊗L
R A→ LA/Z

β−→ LA/R

and applying p-completions. More precisely, rotating plus the isomorphisms

LR/Z ∼= Ω1
R/Z, LA/R

∼= (t− 1)/(t− 1)2[1]

yield the exact triangle

(t− 1)/(t− 1)2 d−→ Ω1
R/Z ⊗R A→ Ω1

A/R → (t− 1)/(t− 1)2[1]

where the first morphism is the differential. Now apply (derived) p-completion to
this exact triangle, the resulting connecting morphism

Tp(Ω
1
A/Z)→ (t− 1)/(t− 1)2

sends to (0, d log(t1/p), d log(t1/p
2

), . . .) to t− 1 as t− 1 ≡ t−1
t mod (t− 1)2 and

d(t− 1)

t
= d log(t) = pnd log(t1/p

n

)
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for all n ≥ 016. Thus,

β((0, d log(t1/p), d log(t1/p
2

), . . .) = t− 1

as claimed. �

We recall the following lemma. For a perfect ring S we denote its ring of Witt
vectors by W (S).

Lemma 2.6. Let S be a perfect ring and let A be an W (S)-algebra. Then the
canonical morphism

HH(A;Zp)→ HH(A/W (S);Zp)
is an equivalence.

Proof. By the HKR-filtration, it suffices to see that the canonical morphism

LA/Z → LA/W (S)

of cotangent complexes is a p-adic equivalence, i.e., an equivalence after −⊗L
Z Z/p.

Computing the right hand side by polynomial algebras over W (S) we see that it
suffices to consider the case that A is p-torsion free. Then by base change

LA/Z ⊗L
Z Z/p ∼= L(A/p)/Fp

resp.
LA/W (S) ⊗L

Z Z/p ∼= L(A/p)/S

and the claim follows from the transitivity triangle

A/p⊗L
S LS/Fp → L(A/p)/Fp → L(A/p)/S

using that S is perfect which implies that the cotangent complex LS/Fp of S over
Fp vanishes. �

3. Transversal prisms

In this section we want to prove the crucial injectivity statement (Corollary 3.10)
mentioned in the introduction. Let us recall the following definition from [5].

Definition 3.1. A δ-ring is a pair (A, δ), where A is a commutative ring, δ : A→ A
a map of sets, with δ(0) = 0, δ(1) = 0, and

δ(x+ y) = δ(x) + δ(y) +
xp + yp − (x+ y)p

p
; δ(xy) = xpδ(y) + ypδ(x) + pδ(x)δ(y),

for all x, y ∈ A.
A prism (A, I) is a δ-ring A with an ideal I defining a Cartier divisor on Spec(A),

such that A is derived (p, I)-adically complete and p ∈ (I, ϕ(I)).

Here, the map
ϕ : A→ A, x 7→ ϕ(x) := xp + pδ(x)

denotes the lift of Frobenius induced from δ-structure on A. We will make the
(usually harmless) assumption that I = (ξ̃) is generated by some distinguished

element ξ̃ ∈ A, i.e., ξ̃ is a non-zero divisor and δ(ξ̃) is a unit.

Definition 3.2. We call a prism transversal if (p, ξ̃) is a regular sequence on A.

16If 0 → M → N → Q → 0 is a short exact sequence of abelian groups, then the boundary
map TpQ→ M∧p has the following description: take x := (qi)i≥0 ∈ TpQ and lift each qi to some

ni ∈ N . Then pini ∈M and the limit lim←− p
ini ∈M∧p exists and is the image of x.
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Let us fix a transversal prism (A, I). In particular, A is p-torsion free. Moreover,

A is classically (p, I)-adically complete. Indeed, (p, ξ̃) being a regular sequence
implies that

A⊗L
Z[x,y] Z[x, y]/(xn, yn) ∼= A/(pn, ξ̃n)

and therefore

A ∼= R lim←−
n

(A⊗L
Z[x,y] Z[x, y]/(xn, yn) ∼= R lim←−

n

(A/(pn, ξ̃n)) ∼= lim←−
n

A/(pn, ξ̃n)

using Mittag-Leffler for the last isomorphism.
We set

Ir := Iϕ(I) . . . ϕr−1(I)

for r ≥ 1 (where ϕ0(I) := I). Then Ir = (ξ̃r) with

ξ̃r := ξ̃ϕ(ξ̃) · · ·ϕr−1(ξ̃).

Lemma 3.3. For all r ≥ 1 the element

ϕr(ξ̃)

is a non-zero divisor and (ϕr(ξ̃), p) is again a regular sequence. In particular, the

elements ξ̃r, r ≥ 1, are non-zero divisors.

Proof. The regularity of the sequence (p, ϕr(ξ̃)), or equivalently of (p, ξ̃p
r

), follows

from the one of (p, ξ̃). The regularity of (ϕ(ξ̃p
r

), p) follows from this and the fact
that in any ring R with a regular sequence (r, s) such that R is r-adically complete
the sequence (s, r) is again regular17. �

Lemma 3.4. The ring A is complete for the topology induced by the ideals Ir, i.e.,

A ∼= lim←−
r

A/Ir.

Proof. Each A/Ir is p-torsion free by Lemma 3.3. Therefore both sides are p-
complete and p-torsion free. Hence, it suffices to check the statement modulo p
(note that by p-torsion free of each A/Ir modding out p commutes with the inverse

limit). But modulo p the topology defined by the ideals Ir is just the ξ̃-adic topology

and A/p is ξ̃-adically complete. �

Lemma 3.5. For r ≥ 1 there is a congruence

ϕr(ξ̃) ≡ pu modulo (ξ̃)

with u ∈ A× some unit.

Proof. For r = 1 this follows from

ϕ(ξ̃) = ξ̃p + pδ(ξ)

because by definition of distinguishedness the element δ(ξ) ∈ A× is a unit. For
r ≥ 2 we compute

ϕr(ξ̃) = ϕr−1(ξ̃p + pδ(ξ̃)) = ϕr−1(ξ̃)p + pϕr−1(δ(ξ̃)).

17Passing to the inverse limit of the injections R/rn
s−→ R/rn implies that s ∈ R is a non-zero

divisor. Thus, (r, s) is regular and s is regular, which implies that (s, r) is regular.
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By induction we may write ϕr−1(ξ̃) = pu + aξ̃ with u ∈ A× some unit and thus

modulo ξ̃ we calculate

ϕr(ξ̃) ≡ (pu)p + pϕ(δ(ξ̃)) = p(ϕ(δ(ξ̃)) + pp−1up)

with ϕ(δ(ξ̃)) + pp−1up ∈ A× some unit. �

Lemma 3.6. For all r ≥ 1 the sequences (ϕr(ξ̃), ξ̃) and (ξ̃, ϕr(ξ̃)) are again regular.

Moreover, Ir =
r−1⋂
i=0

ϕi(I) for all r ≥ 1.

Proof. We can write ϕ(ξ̃) = pδ(ξ̃) + ξ̃p, where δ(ξ̃) ∈ A× is a unit. By Lemma 3.5

we get ϕr(ξ̃) ≡ pu modulo (ξ̃) with u ∈ A× a unit. As (ξ̃, p) is a regular sequence

we conclude (using [26, Tag 07DW] and Lemma 3.3) that (ϕr(ξ̃), ξ̃) is a regular
sequence. To prove the last statement we proceed by induction on r. First note the
following general observation: If R is some ring and (f, g) a regular sequence in R,
then (f) ∩ (g) = (fg). In fact, if r = sg ∈ (f) ∩ (g), then sg ≡ 0 modulo f , hence

s ≡ 0 modulo f as desired. Thus, it suffices to prove that (ξ̃r, ϕ
r(ξ̃)) is a regular

sequence for r ≥ 1 (recall that ξ̃r = ξ̃ϕ(ξ̃) · · ·ϕr−1(ξ̃)). By induction the morphism

A/(ξ̃r)→
r−1∏
i=0

A/(ϕi(ξ̃))

is injective. Hence, it suffices to show that for each i = 0, . . . , r − 1 the element
ϕr(ξ̃) maps to a non-zero divisor in A/(ϕi(ξ̃)). But this follows from Lemma 3.5

which implies ϕr(ξ̃) ≡ pu modulo ϕi(ξ̃) for some unit u ∈ A×. �

We can draw the following corollary.

Lemma 3.7. Define ρ : A→
∏
r≥0

A/ϕr(I), x 7→ (x mod ϕr(I)). Then ρ is injective.

Proof. This follows from Lemma 3.4 and Lemma 3.6 as the kernel of ρ is given by
∞⋂
r=1

ϕr(I) =
∞⋂
r=1

Ir = 0. �

We now define the Nygaard filtration of the prism (A, I) (cf. [5, Definition 11.1]).

Definition 3.8. Define

N≥nA := {x ∈ A | ϕ(x) ∈ InA},

the n-th filtration step of the Nygaard filtration.

By definition the Frobenius on A induces a morphism

ϕ : N≥1A→ I.

Note that we do not divide the Frobenius by ξ̃. Moreover, we define

σ :
∏
i≥0

A/ϕi(I)→
∏
i≥0

A/ϕi(I), (x0, x1, . . .) 7→ (0, ϕ(x0), ϕ(x1), . . .).
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Here we use that if a ≡ b mod ϕi(I), then ϕ(a) ≡ ϕ(b) mod ϕi+1(I) to get that σ
is well-defined. Then the diagram

(1) N≥1A
ρ
//

ϕ

��

∏
i≥0

A/ϕi(I)

σ

��

I
ρ
//
∏
i≥0

A/ϕi(I)

commutes where ρ is the homomorphism from Lemma 3.7.

Lemma 3.9. The reduction map

Aϕ=ξ̃ → A/I, x 7→ x mod (ξ̃)

is injective.

Proof. Let x ∈ Aϕ=ξ̃ ∩ I. We want to prove that x = 0. Clearly, x ∈ N≥1A. By
Lemma 3.7 it suffices to prove that

x ≡ 0 mod ϕi(I)

for all i ≥ 0. Write

ρ(x) = (x0, x1, . . .)

By the commutativity of the square (Equation (1)) we get

ρ(ϕ(x)) = σ(ρ(x)) = (0, ϕ(x0), ϕ(x1), . . .).

As ϕ(x) = ξ̃x and therefore ρ(ϕ(x)) = ξ̃ρ(x) we thus get

(ξ̃x0, ξ̃x1, . . .) = (0, ϕ(x0), ϕ(x1), . . .).

We assumed that x ∈ I, thus x0 = 0 ∈ A/I. Now we use that ξ̃ is a non-zero
divisor modulo ϕi(I) (cf. Lemma 3.6) for i > 0. Hence, if xi = 0, then

0 = ϕ(xi) = ξ̃xi+1 ∈ A/ϕi+1(I)

implies xi+1 = 0. Beginning with x0 = 0 this shows that xi = 0 for all i ≥ 0, which
implies our claim. �

The same proof shows that also the reduction map

Aϕ=ξ̃n → A/I

is injective for n ≥ 1.
The following corollary is crucially used in Theorem 6.7.

Corollary 3.10. The reduction map

Aϕ=ξ̃ → N≥1A/N≥2A

is injective.

Proof. Let x ∈ Aϕ=ξ̃ ∩N≥2A. Then

ξ̃x = ϕ(x) = ξ̃2y

for some y ∈ A. As ξ̃ is a non-zero divisor in A we get x ∈ I = (ξ̃). But then x = 0
by Lemma 3.9. �
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Similarly, for each n ≥ 0 the morphism

(2) Aϕ=ξ̃n → N≥iA/N≥i+1A

is injective. Let R be a quasi-regular semiperfectoid ring (cf. [4, Definition 4.19])
which is p-torsion free. In this case,

A := ∆̂R

is transversal and (Equation (2)) implies that for i ≥ 0

π2i(TC(R))→ π2i(THH(R))

is injective (cf. [4, Theorem 1.12]). We ignore if there exists a direct topological
proof. Note that the p-torsion freeness is necessary. Indeed, by [4, Remark 7.20]
π2i(TC(R)) is always p-torsion free.

4. The q-logarithm

In this section we recall the definition of the q-logarithm and prove some proper-
ties of it. Several statements in q-mathematics that we use are probably standard;
cf. e.g. [24] for more on q-mathematics. Recall that the q-analog of the integer
n ∈ Z is defined to be

[n]q :=
qn − 1

q − 1
∈ Z[q±1].

If n ≥ 1, then we can rewrite

[n]q = 1 + q + . . .+ qn−1

and then the q-number actually lies in Z[q]. For n ≥ 0 we moreover get the relation

(3) [−n]q =
q−n − 1

q − 1
= q−n

1− qn

q − 1
= −q−n[n]q.

The q-numbers satisfy some basic relations, for example

(4) [n+ k]q = qk[n]q + [k]q

for n, k ∈ Z, or

[m]q =
(qn)k − 1

qn − 1

qn − 1

q − 1
=

(qn)k − 1

qn − 1
[n]q,

if n|m. As further examples of q-analogs let us define the q-factorial for n ≥ 1 as

[n]q! := [1]q · [2]q · . . . · [n]q ∈ Z[q]

(with the convention that [0]q! := 1) and, for 0 ≤ k ≤ n, the q-binomial coefficient
as (

n

k

)
q

:=
[n]q!

[k]q![n− k]q!
.

Lemma 4.1. 1) For 0 ≤ k ≤ n the q-binomial
(
n
k

)
q
∈ Z[q].

2) For 1 ≤ k ≤ n the analog(
n

k

)
q

= qk
(
n− 1

k

)
q

+

(
n− 1

k − 1

)
q

of Pascal’s identity holds.
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Proof. 1) follows from 2) using induction and the easy case
(
n
0

)
q

= 1. Then 2) can

be proved as follows: Let 1 ≤ k ≤ n, then

qk
(
n−1
k

)
q

+
(
n−1
k−1

)
q

=
[n−1]q !

[k−1]q ![n−1−k]q !
( qk

[k]q
+ 1

[n−k]q
)

=
[n−1]q !

[k−1]q ![n−1−k]q !
(
qk[n−k]q+[k]q

[k]q [n−k]q

=
[n−1]q !

[k−1]q ![n−1−k]q !
[n]q

[k]q [n−k]q

=
(
n
k

)
q

using the addition rule (Equation (4)). �

Let us define a generalized q-Pochhammer symbol by

(x, y; q)n := (x+ y)(x+ yq) . . . (x+ yqn−1) ∈ Z[q±1, x, y]

for n ≥ 1 (setting x = 1 and y := −a recovers the known q-Pochhammer symbol

(a; q)n = (1− a)(1− aq) . . . (1− aqn−1) = (1,−a; q)n).

Moreover we make the convention

(x, y; q)0 := 1.

In the q-world the generalized q-Pochhammer symbol replaces the polynomial

(x+ y)n.

For example one can show (using Lemma 4.1) the following q-binomial formula

(5) (x, y; q)n =

n∑
k=0

qk(k−1)/2

(
n

k

)
q

xn−kyk.

Let us now come to q-derivations. We recall that the q-derivative ∇qf of some
polynomial f ∈ Z[q±1][x±1] is defined by

∇qf(x) :=
f(qx)− f(x)

qx− x
∈ Z[q±1][x±1].

Thus for example, if f(x) = xn, n ∈ Z, then we can calculate

∇q(xn) =
qnxn − qx
qx− x

=
qn − 1

q − 1
xn−1 = [n]qx

n−1.

The q-derivative satisfies an analog of the Leibniz rule, namely

∇q(f(x)g(x)) = ∇q(f(x))g(qx) + f(x)∇q(g(x)).

Similarly to the classical rule

∇x((x+ y)n) = n∇x((x+ y)n−1)

we obtain the following relation for the generalized q-Pochhammer symbol.

Lemma 4.2. Let ∇q := ∇q,x denote the q-derivative with respect to x. Then the
formula

∇q((x, y; q)n) = [n]q(x, y; q)n−1

holds in Z[q±1][x±1, y±1].
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Proof. We proceed by induction on n. Let n = 1. Then (x, y; q)n = x+ y and

∇q((x+ y)) = 1.

Now let n ≥ 2. We calculate using induction

∇q((x, y; q)n) = ∇q((x, y; q)n−1(x+ yqn−1))
= (x, y, q)n−1∇q(x+ yqn−1) + (qx+ qn−1y)∇q((x, y; q)n−1)
= (x, y; q)n−1 · 1 + q(x+ qn−2y)[n− 1]q(x, y; q)n−2

= (1 + q[n− 1]q)(x, y; q)n−1

= [n]q(x, y; q)n−1

where we used the q-Leibniz rule and (Equation (4)). �

Similarly as the polynomials

1, x− 1,
(x− 1)2

2!
, . . . ,

(x− 1)n

n!
, . . .

are useful for developing some function into a Taylor series around x = 1 (because
the derivative of one polynomial is the previous one) the q-polynomials

1, (x,−1; q)1,
(x,−1; q)2

[2]q!
, . . . ,

(x,−1; q)n
[n]q!

, . . .

are useful for developing a q-polynomial into some “q-Taylor series” around x = 1.
However, for this to make sense we have to pass to suitable completions and localize
at {[n]q}n≥1. Let us be more precise about this. The (q − 1, x − 1)-completion
Z[[q − 1, x− 1]] of Z[q, x] contains expressions of the form

∞∑
n=0

an(x,−1; q)n

with an ∈ Z[[q − 1]] because

(x,−1; q)n = (x− 1)(x− 1 + 1− q) . . . (x− 1 + (1− q)1− qn−1

1− q
) ∈ (q − 1, x− 1)n.

Finally, the next calculations will take place in the ring18

Q[[q − 1, x− 1]] ∼= Z[[q − 1, x− 1]][1/[n]q|n ≥ 1]∧(q−1,x−1)

because
(x,−1; q)n

[n]q!
∈ (q − 1, x− 1)Q[[q−1,x−1]].

The ring Q[[q − 1, x− 1]] admits a surjection to

Q[[q − 1, x− 1]]→ Q[[x− 1]]

with kernel generated by q − 1. Similarly, there is a morphism

ev1 : Q[[q − 1, x− 1]]→ Q[[q − 1]]

with kernel generated by x−1. Finally, the q-derivative∇q extends to a q-derivation
on Q[[q− 1, x− 1]] and it induces the usual derivative after modding out q− 1. We
denote by ∇nq the n-fold decomposition of ∇q and by

f(x)|x=1 := ev1(f(x))

18Note that inverting [n]q for n ≥ 0 and then q−1-adically completing is the same as inverting

n for n ≥ 0 and then q − 1-adically completing.
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the evaluation at x = 1 of an element f ∈ Q[[q − 1, x− 1]].

Lemma 4.3. Let f(x) ∈ Q[[q − 1, x− 1]]. If ∇nq (f(x))|x=1 = 0 for all n ≥ 0, then
f(x) = 0.

Proof. As ∇q reduces to the usual derivative modulo q − 1, we see that f must be
divisible by q− 1, i.e., we can write f(x) = (q− 1)g(x) with g(x) ∈ Q[[q− 1, x− 1]].
But then∇nq (g(x))x=1 = 0 for all n ≥ 0 and we can conclude as before that q−1|g(x)
which in the end implies

f(x) ∈
∞⋂
k=1

(q − 1)k = {0}

because Q[[q − 1, x− 1]] is (q − 1)-adically separated. �

Now we can state the q-Taylor expansion around x = 1 for elements in Q[[q −
1, x− 1]].

Proposition 4.4. For any f(x) ∈ Q[[q − 1, x− 1]] there is the Taylor expansion

f(x) =

∞∑
n=0

∇nq (f(x))|x=1
(x,−1; q)n

[n]q!
.

Proof. Because

∇q(
(x,−1; q)n

[n]q!
) =

(x,−1; q)n−1

[n− 1]q!

we can directly calculate that both sides have equal higher derivatives at x = 1.
Thus they agree by Lemma 4.3. �

Using this we can in Lemma 4.6 motivate the following formula for the q-
logarithm.

Definition 4.5. We define the q-logarithm as

logq(x) :=

∞∑
n=1

(−1)n−1q−n(n−1)/2 (x,−1; q)n
[n]q

∈ Q[[q − 1, x− 1]].

Note that the element logq(x) is contained in a much smaller subring of Q[[q −
1, x − 1]], it suffices to adjoin the elements (x,−1;q)n

[n]q
for n ≥ 0 to Z[q±1, x±1] and

(x− 1)-adically complete.
In the ring Q[[q − 1, x− 1]] the element x is invertible, as

1

x
=

1

1− (1− x)
= 1 + (1− x) + (1− x)2 + . . . .

The q-derivative of the q-logarithm is 1/x, similarly to the usual logarithm.

Lemma 4.6. The q-logarithm logq(x) is the unique f(x) ∈ Q[[q−1, x−1]] satisfying

f(1) = 0 and ∇q(f(x)) = 1
x . Moreover,

logq(x) =
q − 1

log(q)
log(x)

as elements in Q[[q − 1, x− 1]].
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Proof. That logq(x) has q-derivative 1/x can be checked using Proposition 4.4 after
writing 1/x in its q-Taylor expansion. Moreover, logq(1) = 0. For the converse pick
f as in the statement. By Proposition 4.4 we can write

f(x) =

∞∑
n=0

∇nq (f(x))|x=1
(x,−1; q)n

[n]q!
.

and thus we have to determine

an := ∇nq (f(x))|x=1

for n ≥ 0. By assumption we must have a0 = f(1) = 0. Moreover, for n ≥ 1

an = ∇nq (f(x))|x=1 = ∇n−1
q (x−1)|x=1 = [−n+ 1]q . . . [−1]q.

Using [−k]q = −q−k[k]q for k ∈ Z the last expression simplifies to

[−n+ 1]q . . . [−1]q = (−1)n−1q−n(n−1)/2[n− 1]q!.

Thus we can conclude

f(x) =

∞∑
n=1

(−1)n−1q−n(n−1)/2 (x,−1; q)n
[n]q

= logq(x).

For the last statement note that

f(x) :=
q − 1

log(q)
log(x)

exists in Q[[q − 1, x − 1]] (because n ∈ R×q for all n ≥ 1) and satisfies f(1) = 0.
Moreover,

∇q(f(x)) =
f(qx)− f(x)

qx− x
=

q − 1

log(q)

log(q) + log(x)− log(x)

(q − 1)x
=

1

x

which implies f(x) = logq(x) by the proven uniqueness of the q-logarithm. �

We now turn to prisms again. Define

ξ̃ := [p]q = 1 + q + . . .+ qp−1

and
ξ̃r = ξ̃ϕ(ξ̃) . . . ϕr−1(ξ̃)

for r ≥ 1. Here, ϕ is the Frobenius lift on Z[q±1] satisfying ϕ(q) = qp. Then ξ̃ is a

distinguished element in the prism Zp[[q− 1]]. The ξ̃r are again q-numbers, namely

ξ̃r = [pr]q.

Let us recall the following situation from crystalline cohomology. Assume that
A is a p-complete ring with an ideal J ⊆ A equipped with divided powers

γn : J → J, n ≥ 1.

In this situation the logarithm

log(x) :=

∞∑
n=1

(−1)n−1(n− 1)!γn(x− 1)

converges in A for every element x ∈ 1 + J . We now want to prove an analogous
statement for the q-logarithm. Recall that for a prism (A, I) we defined the Nygaard
filtration

N≥nA := {x ∈ A | ϕ(x) ∈ In}, n ≥ 0
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in Definition 3.8. From now on, we assume that the prism (A, I) lives over (Zp[[q−
1]], (ξ̃)). The expression

γn,q(x− y) :=
(x− y)(x− qy) · · · (x− qn−1y)

[n]q!
∈ Zp[[q − 1]][x, y][1/[m]q| m ≥ 0]

is called the n-th q-divided power of x− y (cf. [21, Rem. 1.4])19. We will study the
divisibility of

(x− y)(x− qy) · · · (x− qn−1y)

by
ξ̃, ϕ(ξ̃), . . . .

The following statement is clear.

Lemma 4.7. For r ≥ 1 the polynomial (in q)

ϕr−1(ξ̃) =
qp
r − 1

qpr−1 − 1

is the minimal polynomial of a pr-th root of unity ζpr , i.e., the morphism

Z[q]/(ϕr−1(ξ̃))→ Z[ζpr ], q 7→ ζpr

is injective.

Thus reducing modulo ϕr−1(ξ̃) is the same as setting q = ζpr . Moreover, in
Z[ζpr ] there is the equality

zp
r

− 1 =

pr−1∏
i=0

(z − ζipr ).

Setting z = x
y one thus arrives at the congruence

(6) xp
r

− yp
r

≡ (x− y)(x− qy) · · · (x− qp
r−1y) mod ϕr−1(ξ̃),

which will be useful.

Lemma 4.8. Let n ≥ 1 and for r ≥ 1 write n = arp
r + br with ar, br ≥ 0 and

br < pr. Then in Zp[[q − 1]]

[n]q! = u

∞∏
r≥1

ϕr−1(ξ̃)ar

for some unit u ∈ Zp[[q − 1]]×.

Proof. We may prove the statement by induction on n. Thus let us assume that it
is true for m = n−1 and for r ≥ 1 write m = crp

r+dr with cr, dr ≥ 0 and dr < pr.
If n is prime to p, then [n]q is a unit in Zp[[q − 1]] and it suffices to see that the
righthand side is equal (up to some unit in Zp[[q − 1]]) to

∞∏
r≥1

ϕr−1(ξ̃)cr .

But n prime to p implies that br > 0 for all r ≥ 1. Thus cr = ar and dr = br − 1,
which implies that both products are equal. Now assume that p divides n and write

19This terminology is, however, quite bad. The q-divided power depends on the pair (x, y) and
not simply their difference x− y.
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n = psn′ with n′ prime to p. Moreover, write m = n−1 = crp
r+dr as above. Then

we can conclude ar = cr for r > s while cr = ar − 1 for 1 ≤ r ≤ s (as dr = pr − 1
for such r). Altogether we therefore arrive at

[n]q! = [n]q[n− 1]q!

= u′[n]q
∞∏
r≥1

ϕr−1(ξ̃)cr

= u′v
∞∏
r≥1

ϕr−1(ξ̃)ar

,

u′ ∈ Zp[[q − 1]]×, where we used that

[n]q = v[ps]q = vϕs−1(ξ̃) . . . ξ̃

for some unit v ∈ Zp[[q − 1]]. �

Proposition 4.9. Let (A, I) be a prism over (Zp[[q − 1]], (ξ̃)) and let x, y ∈ A be

elements of rank 1 such that ϕ(x− y) = xp − yp ∈ ξ̃A. Then for all n ≥ 1 the ring
A contains a q-divided power

γn,q(x− y) =
(x− y)(x− qy) · · · (x− qn−1y)

[n]q!

of x − y20. Moreover, γn,q lies in fact in the n-th step N≥nA of the Nygaard
filtration of A.

Proof. Replacing A, x, y by the universal case we may assume that A is flat over
Zp[[q−1]]. In particular, this implies that ξ̃, ϕ(ξ̃), . . . are pairwise regular sequences
(cf. Lemma 3.6). Fix n ≥ 1. For r ≥ 1 we write n as

n = arp
r + br

with ar, br ≥ 0 and 0 ≤ br < pr. We claim that for each r ≥ 0

ϕr−1(ξ̃)ar

divides
(x− y)(x− qy) · · · (x− qn−1y).

This implies the proposition, namely by Lemma 4.8 we have

[n]q! = u
∏
r≥1

ϕr−1(ξ̃)ar

for some unit u ∈ A× while furthermore the morphism

A/([n]q!)→
∏
r≥1

A/(ϕr−1(ξ̃))ar

is injective by the proof of Lemma 3.6. Thus fix r ≥ 1. To prove our claim we may
replace n by n− br as

(x− y)(x− qy) · · · (x− qn−br−1y)

divides
(x− y)(x− qy) · · · (x− qn−1y).

20By this we mean that there exists an element, called γn,q(x−y), such that [n]q !γn,q(x−y) =

(x − y)(x − qy) · · · (x − qn−1y). The element γn,q(x − y) need not be unique, but it is if A is
[n]q-torsion free for any n ≥ 0. Note that even in this torsion free case γn,q(x − y) depends on

the pair (x, y) and not merely on the difference x− y.
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Thus let us assume that n = arp
r. We claim that each of the following ar many

elements (note that their product is (x− y) · · · (x− qn−1y))

(x− y)(x− qy) · · · (x− qpr−1y),
(x− qpry)(x− qpr+1y) · · · (x− q2pr−1y),

...
(x− q(ar−1)pry)(x− q(ar−1)pr+1y) · · · (x− qarpr−1y),

is divisible by ϕr−1(ξ̃). For this recall the congruence (Equation (6))

xp
r

− yp
r

≡ (x− y)(x− qy) · · · (x− qp
r−1y) mod ϕr−1(ξ̃).

Replacing in this congruence y by qp
r

y, . . . , q(ar−1)pry shows that each of the above
ar elements is congruent modulo ϕr−1(ξ̃) to an element of the form

xp
r

− qkyp
r

with k ≥ 0 divisible by pr. But we have

xp
r

− qkyp
r

= (xp
r

− yp
r

) + yp
r

(1− qk)

and we claim that under our assumptions both summands are divisible by ϕr−1(ξ̃).
For the first summand we use that x, y are of rank 1 to write

xp
r

− yp
r

= ϕr−1(xp − yp) = ϕr−1(ξ̃)ϕr−1(
xp − yp

ξ̃
)

which makes sense as we assumed that

xp − yp ∈ ξ̃A.

For the second summand we note that

1− qk =
1− qk

1− qpr
ϕr−1(ξ̃)(1− qp

r−1

)

with all factors in Zp[[q − 1]] as pr divides k. It remains to prove that

γn,q(x− y) =
(x− y)(x− qy) · · · (x− qn−1y)

[n]q!

lies in N≥nA. But

ϕ(γn,q) =
(xp − yp)(xp − qpyp) · · · (xp − qp(n−1)yp)

ϕ([n]q!)

and as we saw above ξ̃ divides each of the n factors

(xp − yp), (xp − qpyp), · · · , (xp − qp(n−1)yp).

But ξ̃ and ϕ([n]q!) form a regular sequence by Lemma 3.6 which implies that

(xp − yp)(xp − qpyp) · · · (xp − qp(n−1)yp)

is divisible by ξ̃nϕ([n]q) as was to be proven. This finishes the proof of the propo-
sition. �
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As the proof shows there exists unique choice of a q-divided power

γn,q(x− y)

which is functorial in the triple (A, x, y) (with x, y ∈ A satisfying the assumptions in
Proposition 4.9). From now on we will always assume that these q-divided powers
are chosen.

Moreover, we get the following lemma concerning the convergence of the q-
logarithm.

Lemma 4.10. Let (A, I) be a prism over (Zp[[q−1]], (ξ̃)). Then for every element
x ∈ 1 +N≥1A of rank 1 the series

logq(x) =

∞∑
n=1

(−1)n−1q−n(n−1)/2[n− 1]q!γn,q(x− 1)

is well-defined and converges in A. Moreover, logq(x) ∈ N≥1A and

logq(x) ≡ x− 1 mod N≥2A

and
logq(xy) = logq(x) + logq(y)

for any x, y ∈ 1 +N≥1A of rank 1.

Proof. By our assumption on x we get ϕ(x − 1) ∈ ξ̃A and thus we may apply
Proposition 4.9 to x = x and y = 1. Thus the (canonical choice of) q-divided
powers

γn,q(x− 1) =
(x− 1)(x− q) · · · (x− qn−1)

[n]q!

in A are well-defined. Moreover, as

logq(x) =

∞∑
n=1

(−1)n−1q−n(n−1)/2[n− 1]q!γn,q(x− 1)

and the elements [n − 1]q! tend to zero in A for the (p, I)-adic topology we can

conclude that the series logq(x) converges because A is ξ̃-adically complete. The

claim concerning the Nygaard filtrations follows directly from γn,q(x−1) ∈ N≥nA,
which was proven in Proposition 4.9. That logq is a homomorphism can be seen in
the universal case in which A is flat over Zp[[q−1]] (by [5, Proposition 3.13]). Then
the formula logq(xy) = logq(x)+logq(y) can be checked after base change to Qp[[q−
1]] where it follows from Lemma 4.6 as the usual logarithm is a homomorphism. �

5. Prismatic cohomology and topological cyclic homology

This section is devoted to the relation of the prismatic cohomology developed
by Bhatt and Scholze [5] with topological cyclic homology (as described by Bhatt,
Morrow and Scholze [4]) following [5, Section 11.5.].

Let R be a quasi-regular semiperfectoid ring (cf. [4, Definition 4.19.]), and let S
be any perfectoid ring with a map S → R.

Proposition 5.1. The category of prisms (A, I) with a map R → A/I admits an

initial object (∆init
R , I), which is a bounded prism. Moreover, ∆init

R identifies with
the derived prismatic cohomology ∆R/Ainf (S), for any choice of S as before.

Proof. See [5, Proposition 7.2, Proposition 7.10] or [1, Proposition 3.4.2]. �
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In the following, we simply write ∆R = ∆init
R = ∆R/Ainf (S).

Theorem 5.2. Let R be a quasi-regular semiperfectoid ring. There is a functorial

(in R) δ-ring structure on ∆̂
top

R := π0(TC−(R;Zp)) refining the cyclotomic Frobe-

nius. The induced map ∆R = ∆init
R → ∆̂

top

R identifies ∆̂
top

R with the completion
with respect to the Nygaard filtration (Definition 3.8) of ∆R, and is compatible with
the Nygaard filtration on both sides.

Proof. See [5, Theorem 11.10]. �

The Nygaard filtration on ∆̂
top

R is defined as the double-speed abutment filtration
for the (degenerating) homotopy fixed point spectral sequence

Eij2 := Hi(T, π−j(THH(R;Zp)))⇒ π−i−j(TC−(R;Zp))
for the T = S1-action on THH(R;Zp). If η ∈ H2(T,Z) is a generator, then multipli-

cation by any lift v ∈ π−2(TC−(R;Zp)) of the image of η in H2(T, π0(THH(R;Zp)))
induces isomorphisms

π2i(TC−(R;Zp))) ∼= N≥i∆̂
top

R

for i ∈ Z.

Remark 5.3. We will only use the fact that ∆̂R is a prism in this paper (as we will
apply the results of Section 3 to π0(TC−(R;Zp))) and that the topological Nygaard
filtration, defined via the homotopy fixed point spectral sequence, agrees with the
Nygaard filtration from Definition 3.8, but the way one proves this is by showing

the stronger statement that ∆̂
top

R is the Nygaard completion of ∆R. We ignore if

there is a more direct way to produce the δ-structure on ∆̂R (cf. [5, Remark 1.14.]).

6. The p-completed cyclotomic trace in degree 2

Now we are settled to prove our main theorem on the identification of the p-
completed cyclotomic trace. Recall that for any ring A the cyclotomic trace

ctr : K(A)→ TC(A)

from the algebraic K-theory of A to its topological cyclic homology is a natural
morphism21 refining the Dennis trace Dtr : K(A)→ HH(A) introduced in Section 2,
cf. [6, Section 10.3], [7, Section 5]. Let us carefully fix some notation. For the whole
section we fix a generator γ ∈ H1(T,Z), but note that the formulas in Theorem 6.7
will be independent of this choice. Set Zcycl

p as the p-completion of Zp[µp∞ ] and
choose some p-power compatible system of p-power roots of unity

ε := (1, ζp, ζp2 , . . .) ∈ (Zcycl
p )[

with ζp 6= 1. This choice determines several elements as we will now discuss. Set

q := [ε]θ ∈ Ainf(Zcycl
p ) := W ((Zcycl

p )[) ∼= π0(TC−(Zcycl
p ;Zp)),

µ := q − 1,

ξ̃ := [p]q =
qp − 1

q − 1
= 1 + q + . . .+ qp−1.

21When upgraded to a natural transformation of functors on small stable ∞-categories the
cyclotomic trace is uniquely determined by these properties, cf. [6, Section 10.3.].
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and
ξ = ϕ−1(ξ̃).

Note that the ring Ainf(Zcycl
p ) is the (p, q − 1)-adic completion of Zp[q1/p∞ ]. We

now construct elements
u ∈ π2(TC−(Zcycl

p ;Zp)),

v ∈ π−2(TC−(Zcycl
p ;Zp))

such that uv = ξ ∈ π0(TC−(Zcycl
p ;Zp))22. The elements u, v will be uniquely

determined by ε. Let

ctr : Tp(Zcycl
p )× → π2(TC(Zcycl

p ;Zp))
be the cyclotomic trace in degree 2. We denote by the same symbol the composition

ctr : Tp(Zcycl
p )× → π2(TC−(Zcycl

p ;Zp))

with the canonical morphism TC(−;Zp)→ TC−(−;Zp). Let

can: TC−(−;Zp)→ TP(−;Zp)
be the canonical morphism (from homotopy to Tate fixed points).

Lemma 6.1. The element

can(ctr(ε)) ∈ π2(TP(Zcycl
p ;Zp))

is divisible by µ.

A similar statement (in terms of TF) is proven in [13, Proposition 2.4.2] (cf. [14,
Definition 4.1]) using the explicit description of the cyclotomic trace in degree 1 via
TR from [12, Lemma 4.2.3.].

Proof. Fix a generator
σ′ ∈ π2(TP(Zcycl

p ;Zp)).
It suffices to show that can ◦ ctr(ε) maps to 0 under the composition

π2(TP(Zcycl
p ;Zp))

σ′−1

−−−→ π0(TP(Zcycl
p ;Zp)) ∼= Ainf(Zcycl

p )→W (Zcycl
p )

because the kernel ofAinf(Zcycl
p )→W (Zcycl

p ) is generated by µ (cf. [3, Lemma 3.23]).

It therefore suffices to prove the statement for OC for C/Qcycl
p an algebraically

closed, complete non-archimedean extension. Over OC we can (after changing σ′)
find

u′ ∈ π2(TC−(OC ;Zp)),
v′ ∈ π−2(TC−(OC ;Zp))

such that

u′v′ = ξ =
µ

ϕ−1(µ)
,

can(v′) = σ′
−1

and the cyclotomic Frobenius maps u′ to σ′, cf. [4, Proposition 6.2., Proposition
6.3.]. Then multiplication by v′ induces an isomorphism

π2(TC(OC ;Zp)) ∼= Ainf(OC)ϕ=ξ̃.

22We need a finer statement than [4, Proposition 6.2 and Proposition 6.3] which asserts the

existence of some u, v as above with uv = aξ for some unspecified unit a ∈ Ainf(Zcycl
p )×.
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By [10, Proposition 6.2.10.]

(Ainf(OC)[1/p])ϕ=ξ̃

is 1-dimensional over Qp and thus generated by µ (as µ 6= 0 and ϕ(µ) = ξ̃µ). But
µ is not divisible by p in Ainf(OC) as it maps to a unit in W (C). This proves that

Ainf(OC)ϕ=ξ̃ = Zpµ, which implies the claim. �

Let us define

σ :=
ctr(ε)

µ
∈ π2(TP(Zcycl

p ;Zp))

and

u := ξσ ∈ π2(TC−(Zcycl
p )).

More precisely, the element u is defined via can(u) = ξσ (note that ξσ lies indeed
in the image of

can: π2(TC−(Zcycl
p ;Zp))→ π2(TP(Zcycl

p ;Zp))

as the abutment filtration for the Tate fixed point spectral sequence on π2(TP(Zcycl
p ;Zp))

is the ξ-adic filtration).

Lemma 6.2. The element u defined above lifts the class of

δ1(γ)ξ ∈ π2(THH(Zcycl
p ;Zp)) ∼= π2(HH(Zcycl

p ;Zp))
αγ∼= (ξ)/(ξ2).

Proof. By definition

can(u) =
ξ

µ
ctr(ε) ∈ π2(TP(Zcycl

p ;Zp)).

Now
ξ

µ
=

1

ϕ−1(µ)

and (ξ)/(ξ2) is ϕ−1(µ)-torsion free as a module over Ainf(Zcycl
p ) (because

θ(ϕ−1(µ)) = ζp − 1 6= 0 ∈ Zcycl
p ).

Moreover, the cyclotomic trace lifts the Dennis trace in Hochschild homology.
Thus by Proposition 2.5,

αγ(Dtr(ε)) ≡ δ1(γ)([ε]− 1) ∈ (ξ)/(ξ2)

and therefore

u ≡ δ1(γ)
[ε]− 1

ϕ−1(µ)
= δ1(γ)ξ ∈ (ξ)/(ξ2)

as desired. �

In particular, we see that the element

σ ∈ π2(TP(Zcycl
p ;Zp))

is a generator. Set

v := σ−1 ∈ π−2(TC−(Zcycl
p ;Zp))

can∼= π2(TP(Zcycl
p ;Zp)).

Then

uv = ξ.
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Recall that for any morphism of rings R → A the negative cyclic homology is
defined to be

HC−(A/R) := HH(A/R)hT

where (−)hT := lim←−
BT

(−), cf. [15] for a comparison with the classical definition in [17,

Definition 5.1.3]. The homotopy fixed point spectral sequence

Hi(BT, π−j(HH(A/R))⇒ π−i−j(HC−(A/R))

endows π∗(HC−(A/R)) with a (multiplicative) decreasing filtration which we denote
by

N≥•HC−(A/R).

We note that each generator γ ∈ H1(T,Z) defines canonically a generator ηγ ∈
H2(BT,Z). We will do the abuse of notation and denote by γ ∈ H1(T, R) the
image of γ ∈ H1(T,Z); similarly, for ηγ .

Proposition 6.3. Let γ ∈ H1(T,Z) be a generator and assume A = R/(f) for
some non-zero divisor f ∈ R. Then

(1) HH∗(A/R) is concentrated in even degrees and the homotopy fixed point
spectral sequence

Hi(BT, π−j(HH(A/R))⇒ π−i−j(HC−(A/R))

degenerates.
(2) There exists a unique element δ2 ∈ {±1}, independent of the choice of γ,

such that the morphism

(f)/(f)2 αγ−−→ π2(HH(A/R))
η̃γ−→ π0(HC−(A/R))/N≥2HC−(A/R)

sends the class of f to δ2f · 1π0(HC−(A/R))/N≥2HC−(A/R). Here the first iso-
morphism is the one of Lemma 2.1. The second morphism is the multipli-
cation by some lift η̃γ ∈ π−2(HC−(A/R)) of ηγ ∈ H2(BT, π0(HH(A/R))23.

Proof. The first claim follows from the HKR-filtration as the exterior powers

∧iLA/R[i]

are concentrated in even degrees for all i ≥ 0. For the second claim we can reduce
by naturality to the universal case R = Z[x], f = x in which case it is well-known
that the elements

η̃γ(αγ(f)), f · 1π0(HC−(A/R))/N≥2HC−(A/R)

are generators of the free A-module N≥1π0(HC−(A/R)/N≥2π0(HC−(A/R))) of
rank 1. This implies the existence of δ2 as A ∼= Z. As the composition η̃γ ◦ αγ is
independent of the choice of γ ∈ H1(T,Z) (because both αγ and η̃γ will be changed
by a sign), the proof is finished. �

Remark 6.4. We expect that δ2 = 1, but did not make the explicit computation,
since we will not need it.

We need the following relation of v to ηγ .

23As we mod out by N≥2 and the spectral sequence degenerates, the second morphism does
not depend on the choice of a lift.
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Lemma 6.5. Let ηγ , v ∈ H2(T, π0(HH(Zcycl
p ;Zp))) be the images of ηγ ∈ H2(T,Z)

resp. v ∈ π−2(TC−(Zcycl
p ;Zp)) under the canonical morphisms

H2(T,Z)→ H2(T, π0(HH(Zcycl
p ;Zp)))

resp.
π−2(TC−(Zcycl

p ;Zp))→ H2(T, π0(HH(Zcycl
p ;Zp))).

Then
v = δ2δ1(γ)ηγ .

Proof. By Lemma 6.2 we know that the image of u in

π2(HH(Zcycl
p ;Zp))

αγ∼= (ξ)/(ξ2)

is
αγ(δ1(γ)ξ).

As ηγ , v ∈ H2(T, π0(HH(Zcycl
p ;Zp))) there exists some unit r ∈ Zcycl

p such that

rηγ = v. We can calculate in π0(HC−(Zcycl
p ;Zp))/N≥2π0(HC−(Zcycl

p ;Zp))

ξ = uv = vαγ(δ1(γ)ξ)
= rηγαγ(δ1(γ)ξ)

= rδ2δ1(γ)ξ

using Proposition 6.3. Thus, r = δ2δ1(γ). �

One has the following (important) additional property (which, up to changing
ξ by some unit, is implied by the conjunction of [4, Proposition 6.2., Proposition
6.3.]).

Lemma 6.6. The cyclotomic Frobenius

ϕhT : π2(TC−(Zcycl
p ;Zp))→ π2(TP(Zcycl

p ;Zp))
sends u to σ.

Proof. The cyclotomic Frobenius ϕhT is linear over the Frobenius on Ainf . Thus we
can calculate (note ξ

µ = 1
ϕ−1(µ) )

ϕhT(u) = ϕ(
ξ

µ
)ϕhT(ctr(ε)) =

1

µ
ϕhT(ctr(ε)).

But
ϕhT(ctr(ε)) = can(ctr(ε))

as the cyclotomic trace has image in π2(TC(Zcycl
p ;Zp)). This implies that

ϕhT(u) =
ctr(ε)

µ
= σ

as desired. �

By Lemma 6.6 one can conclude that there is a commutative diagram, whose
vertical arrows are isomorphisms,

π2(TC(R;Zp)) //

βε
��

π2(TC−(R;Zp))
ϕhT−can

//

v

��

π2(TP(R;Zp))

σ−1

��

∆̂
ϕ=ξ̃

R
// N≥1∆̂R

ϕ

ξ̃
−1

// ∆̂R
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for any quasi-regular semiperfectoid Zcycl
p -algebra R. We remind the reader that

the induced isomorphism

βε : π2(TC(R;Zp)) ∼= ∆̂
ϕ=ξ̃

R

depends only on ε, not on γ.
For a quasi-regular semiperfectoid ring R we denote by

[−]θ̃ : R[ = lim←−
x 7→xp

R→∆R

the Teichmüller lift. More precisely, the canonical morphism R → ∆R induces a

morphism ι : R[ → ∆
[

R and [−]θ̃ is the composition of ι with the Teichmüller lift
for the surjection

∆R →∆R.

We set24

[−]θ := [(−)1/p]θ̃.

We will consider the p-adic Tate module

TpR
× = lim←−

n≥0

R×[pn]

of R× as being embedded into R[ as the elements with first coordinate equal to 1.
We are ready to state and prove our main theorem.

Theorem 6.7. Let R be a quasi-regular semiperfectoid Zcycl
p -algebra. Then the

composition

TpR
× → π2(K(R;Zp))

ctr−−→ π2(TC(R;Zp))
βε∼= ∆̂

ϕ=ξ̃

R

is given by sending x ∈ Tp(R×) to

logq([x]θ) =

∞∑
n=1

(−1)n−1q−n(n−1)/2 ([x]θ − 1)([x]θ − q) · · · ([x]θ − qn−1)

[n]q
.

Proof. Replacing R by the universal case Zcycl
p 〈x1/p∞〉/(x−1) we may assume that

R is p-torsion free and (thus) that (∆̂R, (ξ̃)) is transversal (by Lemma 3.3 it suffices

to see that (p, ξ) is a regular sequence which follows as ∆̂R/ξ ∼= ̂LΩR/Zcycl
p

, by [4,

Theorem 7.2.(5)], is p-torsion free).
Let us define

ctr2 : TpR
× → π2(K(R;Zp))

ctr−−→ π2(TC(R;Zp)).
By Theorem 5.2 the canonical morphism

ι : ∆R → π0(TC−(R;Zp))

is compatible with the Nygaard filtrations and identifies π0(TC−(R;Zp)) with the

Nygaard completion ∆̂R of ∆R. By Corollary 3.10 the morphism

∆ϕ=ξ̃
R ↪→ N≥1∆R/N≥2∆R

∼= N≥1∆̂R/N≥2∆̂R

is injective. Hence it suffices to show that the two morphisms logq([−]θ) and βε◦ctr

agree modulo N≥2∆̂R. Multiplication by the element v ∈ π−2(TC−(Zcycl
p ;Zp))

24This agrees with the definition of [−]θ made in the introduction.
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constructed after Lemma 6.2 and the HKR-isomorphism (which depends on γ)
induce an isomorphism

J/J2
αγ∼= π2(THH(R;Zp))

v∼= N≥1∆̂R/N≥2∆̂R

where J is the kernel of the surjection

θ : W (R[)→ R.

By Proposition 6.3 and Lemma 6.5 this isomorphism sends the class of j ∈ J to

δ2
2δ1(γ) · j · 1

∆̂R/N≥2∆̂R

= δ1(γ) · j · 1
∆̂R/N≥2∆̂R

.

for the canonical W (R[)-algebra structure on

∆̂R/N≥2∆̂R
∼= π0(TC−(R;Zp))/N≥2π0(TC−(R;Zp))

∼= π0(HC−(R/W (R[)))/N≥2π0(HC−(R/W (R[)))

(which lifts the morphism θ). Let x ∈ TpR×. By Lemma 4.10

logq([x]θ) ≡ [x]θ − 1 mod N≥2∆̂R.

On the other hand, as the cyclotomic trace reduces to the Dennis trace Dtr, we can
calculate using Proposition 2.5 and Lemma 6.5

βε(ctr(x)) ≡ vDtr(x)

= vδ1(γ)([x]θ − 1) = δ1(γ)2([x]θ − 1) · 1
∆̂R/N≥2∆̂R

mod N≥2∆̂R

= ([x]θ − 1) mod N≥2∆̂R

Thus we can conclude

logq([x]θ) = βε ◦ ctr(x)

as desired. �

Corollary 6.8. Let R be a quasi-regular semiperfectoid Zcycl
p -algebra. The map

logq([−]θ) : Tp(R
×)→ ∆̂

ϕ=ξ̃

R

is a bijection.

Proof. Since both sides satisfy quasi-syntomic descent25, one can assume, as in [4,
Proposition 7.17], that R is w-local and such that R× is divisible. In this case, the
map

Tp(R
×)→ π2(K(R;Zp))

is a bijection. Moreover, [8, Corollary 6.9] shows that

ctr : π2(K(R;Zp))→ π2(TC(R;Zp))

is also bijective. As by Theorem 6.7, the composite of these two maps is the map
logq([−]θ̃), this proves the corollary. �

25For Tp(−)× this follows from p-completely faithfully flat descent on p-complete rings with

bounded p∞-torsion, cf. [1, Appendix], for ∆̂
ϕ=ξ̃
R this is is proven in [4].
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Remark 6.9. As explained at the end of the introduction, one can give a direct
and more elementary proof of Corollary 6.8 when R is the quotient of a perfect
ring by a finite regular sequence ([25]) or when R is a p-torsion free quotient of a
perfectoid ring by a finite regular sequence and p is odd. But we do not know how
to prove it directly in general.
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