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OVERCONVERGENT RELATIVE DE RHAM COHOMOLOGY

OVER THE FARGUES-FONTAINE CURVE

by

Arthur-César Le Bras

Abstract. — We explain how to construct a cohomology theory on the category of separated
quasi-compact smooth rigid spaces over Cp (or more general base fields), taking values in the
category of vector bundles on the Fargues-Fontaine curve, which extends (in a suitable sense)
Hyodo-Kato cohomology when the rigid space has a semi-stable proper formal model over
the ring of integers of a finite extension of Qp, therefore proving a conjecture of Scholze [38].
This cohomology theory factors through the category of rigid analytic motives of Ayoub.
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1. Introduction

Fargues and Fontaine introduced a few years ago the fundamental curve of p-adic Hodge

theory, now simply called the Fargues-Fontaine curve. It turned out to be indeed a funda-

mental geometric object : most of p-adic Hodge theory can be rephrased using the curve,

and recent spectacular work of Fargues and Scholze shows how the curve and several closely

related objects allow to reformulate geometrically the local Langlands correspondence. The

reader is referred to [22] (and references therein) for a nice overview of these recent devel-

opments. Let us here simply briefly recall the definition of the Fargues-Fontaine curve. The

curve has two incarnations : an algebraic one and an adic one (1), which are both useful. We

give the latter definition, which is shorter. Let Cp be the completion of an algebraic closure

of Qp and C♭
p its tilt, a complete algebraically closed field of characteristic p. One starts

with the analytic adic space

Y = Spa(W (OC♭
p
),W (OC♭

p
))\V (p[p♭]),

where p♭ ∈ OC♭
p

has first coordinate p, i.e. is such that (p♭)♯ = p. One can think of the

space Y as the mixed characteristic version of the punctured open unit disk (now “in the

variable p”).

1. There is also a very simple but important description of the diamond associated to the curve, due to

Scholze [39].

http://arxiv.org/abs/1801.00429v2
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The ring of analytic functions on Y is called B ; it is the Fréchet algebra obtained by

completing the algebra

Bb :=

{ ∑

n≫−∞

[xn]p
n, xn ∈ C♭

p, (xn)n bounded

}
= W (OC♭

p
)[1/p, 1/[p♭]]

of “meromorphic functions along the divisors p = 0 and [p♭] = 0” with respect to the norms

‖ · ‖ρ, for all 0 < ρ < 1, defined by

‖
∑

n

[xn]p
n‖ρ = sup

n
|xn|ρ

n.

There is a Frobenius operator ϕ on Y , whose action on functions is given by the formula
∑

n

[xn]p
n 7→

∑

n

[xp
n]p

n.

The action of ϕ on Y is properly discontinuous and one can then define the Fargues-Fontaine

curve X (for the local field Qp) as the quotient :

X := Y/ϕZ.

The set of classical points of X is in bijection with the set of untilts of C♭
p in characteristic

0 (modulo the action of Frobenius) : if x ∈ |X |, the residue field Cx of X at x is an

algebraically closed complete valued extension of Qp, with C♭
x ≃ C♭

p. In particular, there is

a point called ∞ on X , such that C∞ = Cp.

In fact, the exact same construction works if one replaces Cp by any algebraically closed

complete valued extension C of Qp. In this case, one gets adic spaces which will be called

YC♭ and XC♭ and which have exactly the same properties.

It turns out that the Fargues-Fontaine curve X looks like the non-archimedean analog of

the twistor projective line P̃1
R, which is the quotient of the complex projective line by the

antipodal involution :

P̃1
R := P1

C/z ∼ −z̄
−1.

This is a real variety without any real point (exactly like the Fargues-Fontaine curve, whose

residue fields at classical points are all algebraically closed). The analogy between the

curve and P̃1
R has so far no precise mathematical meaning, but there are some interesting

similarities between these two objects. Here are a few examples :

(a) The set of G-torsors over P̃1
R (resp. X) is in bijection with Kottwitz’s set B(G) (as

defined in [27]), for G reductive over R (resp. Qp). In the non-archimedean setting, this

is the main result of [21], see also [1] ; in the archimedean setting, this can be proved for

example using the strategy of [1], as explained to us by Anschütz.

(b) The function field of P̃1
R is conjectured to be (C1) (Lang [28]) ; similarly, Fargues

([21]) conjectures the function field Frac(B[1/t]ϕ=1) of X to be (C1).

(c) The variety P̃1
R is the Brauer-Severi variety of Hamilton’s quaternion algebra over R

; similarly, it was conjectured by Fargues that X should be in some sense the Brauer-Severi

variety of a division algebra C introduced by Colmez in [12].

In this paper, we study another instance of this analogy. It is a nowadays classical result

of Simpson ([40, §2], see also [31, §3.1-3.4]) that the datum of a real pure Hodge structure

can be encoded as a U(1)-equivariant semi-stable vector bundle on P̃1
R. Let Z be a smooth

projective variety over C. The U(1)-equivariant vector bundle attached to the cohomology

of degree i of Z is obtained by modifying the U(1)-equivariant vector bundle

Hi
∞(Z) := Hi

Betti(Z,R)⊗O
P̃1

R
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at the point ∞ ∈ P̃1
R lying above 0 and ∞ (which is fixed by the U(1)-action), using the

Hodge filtration on Hi
Betti(Z,C). Similarly, if Z is proper and smooth over K, a complete

discretely valued extension of Qp with perfect residue field, one can modify the GK-

equivariant vector bundle (obtained by descending to X) Hi
FF(Z) := E(Dpst(H

i
ét(ZC ,Qp)),

where C = ̂̄K, using the Hodge filtration on Dpst ⊗ K. This modification is the GK-

equivariant vector bundle Hi
ét(ZCp ,Qp) ⊗Qp OX

(2). The first construction relies on the

equivalence between filtrations on V and C∗-equivariant lattices in V ⊗C C((t)), if V is a

finite dimensional C-vector space ; the second on the equivalence between filtrations on V

and GK -equivariant lattices in V ⊗K BdR, if V is a finite dimensional K-vector space.

Over the field of complex numbers, the vector bundle Hi
∞(Z) can still be defined more

generally, by the same formula :

Hi
∞(Z) := Hi

Betti(Z,R)⊗O
P̃1

R

,

which makes sense whenever the Betti/de Rham cohomology is finite dimensional. Our goal

in this text is to show that we can also extend the construction of the vector bundle Hi
FF(Z)

outside the proper case, and give a geometric definition of this vector bundle. More precisely,

let K be a complete valued field containing Qp (not assumed to be discretely valued), C the

completion of an algebraic closure of K (for example, K may be a finite extension of Qp, or

Cp) with residue field k, and GK = Gal(C/K) the absolute Galois group of K. We explain

how to construct a cohomology theory

Z 7→ FF(Z),

on the category of smooth quasi-compact rigid spaces (3) defined over K, taking values in the

bounded derived category Db(CohX
C♭
) of coherent sheaves on the Fargues-Fontaine curve

XC♭ , such that if C is the completion of an algebraic closure of W (k)[1/p], Z is a smooth

quasi-compact rigid space of dimension n and i ≥ 0, the coherent sheaf

Hi
FF(Z) := Hi(FF(Z))

is a vector bundle, which vanishes if i < 0 or i > 2n. Under this assumption on C, this

cohomology theory satisfies several properties explained below and thus confirms Conjecture

6.4 of [38] (see also [22, Conj. 1.13]).

In particular, still under this assumption on C, one gets an isocrystal Hi
isoc(Z) attached

to Z, for all i (see Corollary 5.16 ; there is some caveat).

A few remarks are in order.

Remark 1.1. — Assume that K is a complete discretely valued extension of Qp with

perfect residue field and that Z is smooth and proper. We show that for all i ≥ 0, Hi
FF(Z)

is the GK -equivariant vector bundle on XC♭ attached as in [23, Ch. 10] to the Dpst of the

étale cohomology Hi
ét(ZC ,Qp), using comparison theorems in p-adic Hodge theory.

Remark 1.2. — When the smooth rigid variety Z over K is such that ZC has a smooth

quasi-compact formal model Z over OC , we expect Hi
FF(Z) to be the vector bundle attached

to the isocrystal given by the rigid cohomology of the special fiber of Z. This implies in

particular that this isocrystal is independent of the choice of the formal model. We prove

this statement when Z is proper, which is easy using the results of Bhatt-Morrow-Scholze

[8] (in the proper case, the independence of the isocrystal is already known : when K is a

complete discretely valued extension of Qp with perfect residue field, it is a corollary of a

deep theorem : Fontaine’s Ccrys conjecture ; in general it was recently proved in [8]).

2. The slightly confusing point in this analogy is that it does not match the two trivial vector bundles...
3. All the rigid spaces we consider are assumed to be separated and taut.
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One can also ask a similar question when Z is only assumed to be semi-stable, and answer

it in the proper case, using the recent work of C̆esnavic̆ius-Koshikawa [10].

Note that our construction of Hi
FF(Z) is entirely on the generic fiber and does not involve

any choice of formal model.

This cohomology theory is quite simple to describe : if Z is as before, FF(Z) comes by

the equivalence between (the derived category of) vector bundles on X and finite projective

ϕ-modules over B (which are the same as ϕ-equivariant vector bundles on Y ) from an

“overconvergent version” of the complex RΓ(ZC , LηtRν′∗BZ), (ν
′
∗, ν

′−1) being the morphism

from the pro-étale topos of Z to the étale topos of ZC . There are essentially two things to

prove about these cohomology groups : a "finiteness" and a "torsion-freeness" result. For

both, the key point is to show that this cohomology theory factors through the category of

rigid analytic motives of Ayoub ([3]). This reduces to prove finiteness in the case where Z is

smooth and proper, where several tools are available. This strategy was inspired by Vezzani’s

paper [43], which studies overconvergent de Rham cohomology using the motivic formalism.

This works for any C. If C is the completion of an algebraic closure of W (k)[1/p], we also

get torsion-freeness, using a trick : any quasi-compact motive over C descends to a motive

defined over a discretely valued extension of Qp with perfect residue field (a statement which

is false for smooth quasi-compact rigid spaces !) ; therefore, we can use some p-adic Hodge

theory.

Let us end this introduction by saying that there should exist a more geometric construc-

tion of FF(Z), making the analogy with Betti cohomology more transparent and explaining

the title of this text. Let us start by (trivially !) reformulating the construction of Hi
∞(Z) in

the complex case. It is obtained by descending to P̃1
R the vector bundle Hi

Betti(Z,C)⊗COA1
C
,

which, in the diagram,

Z ×A1
C

p

||②②
②②
②②
②②
②

q

##
●●

●●
●●

●●
●

Z A1
C

is simply

Riq∗(Ω
•
Z×A1

C
/A1

C

).

When Z is moreover projective, the twistor is obtained by descending to P̃1
R the sheaf

Riq∗((Ω
•
Z×A1

C
/A1

C

, zd)),

where z is the coordinate on A1
C (this is Deligne’s reinterpretation of Simpson’s construc-

tion).

Similarly, in the p-adic case, we can look at the diagram of diamonds :

Z⋄ × Spa(Qp)
⋄

p

xxqq
qq
qq
qq
qq
q

q

&&
▼▼

▼▼
▼▼

▼▼
▼▼

▼

Z⋄ Y ⋄

as Y ⋄ = Spa(Cp)
⋄×Spa(Qp)

⋄. There should exist a complex of étale sheaves ”Ω†,•
Z⋄×Spa(Qp)⋄/Y

”

such that the pull-back of Hi
FF(Z) to Y is

Riq∗(”Ω
†,•
Z⋄×Spa(Qp)⋄/Y

”).

In joint work in progress with Alberto Vezzani, we show how to give a meaning to this

hypothetical overconvergent relative de Rham complex (4). Still, the point of the present

4. The relation between the pro-étale cohomology of B and Deligne’s λ-connections was also noticed by

Liu and Zhu, cf, [30, Rem. 3.2].
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paper is that, even if we don’t know what this complex is, Y being Stein, to construct

Hi
FF(Z), it is enough to know what

Rp∗(”Ω
†,•
Z⋄×Spa(Qp)⋄/Y

”)

is : this is precisely (the overconvergent version of) LηtRν′∗BZ .

Plan of the text. Sections 2 and 3 are devoted to some remainders and some fundamental

results about the category of rigid motives, pro-étale period sheaves and the décalage

functors. The key technical statement of this text (showing that our cohomology theory F

factors through the category of motives) is proved in Section 4. We define FF and prove

that its cohomology groups are vector bundles on the Fargues-Fontaine curve when C is the

completion of an algebraic closure of some discretely valued field in Section 5. Finally, we

briefly explain in Section 6 how our constructions are related to other cohomology theories

in some cases : étale, crystalline, syntomic and pro-étale cohomologies.

Conventions and notations. The field K is a complete valued field containing Qp ; C

the completion of an algebraic closure of K, with residue field k (in particular K may very

well be C itself !) ; D is the closed unit disk over Qp and D† its overconvergent analogue.

We fix a compatible system of pn-th roots of unity ε ∈ C♭
p, with ε(0) = 1, ε(1) 6= 1, and let

t = log([ε]) ∈ B be “Fontaine’s 2iπ”. All rigid spaces are assumed to be separated and taut.

Acknowledgments. The idea of this paper originated from a conversation with Peter

Scholze in Bonn in February 2017. I would like to thank him heartily for this, as well as

for his numerous very helpful suggestions and comments. Some of the key cohomological

computations of this text were started when redacting Chapter 2 of [29] as part of my

PhD thesis and I thank Laurent Fargues for everything he taught me about period sheaves

and the Fargues-Fontaine curve. Special thanks go to Alberto Vezzani for his interest and

the time he took to answer my many naive questions about motives. I am indebted to

Wieslawa Nizioł who pointed out a gap in a first version of this text. Finally, I would also

like to thank Kȩstutis C̆esnavic̆ius and Teruhisa Koshikawa for interesting conversations and

Eugen Hellmann for an invitation to talk about this work.

2. Motives of (overconvergent) rigid analytic varieties

For what follows, the main reference is [43]. We take Λ = Qp as a coefficient ring ; it will

be implicit in the notation. In all this section, let F be a characteristic 0 complete valued

field with a non archimedean valuation of rank 1 and residue characteristic p. We recall

the definition of the category of rigid motives (and overconvergent rigid motives), which can

be thought of as the Verdier quotient of the derived category of étale sheaves of Qp-vector

spaces on the category of smooth rigid varieties over F , obtained by requiring that all the

projections maps (Z×DF )[i]→ Z[i] are invertible, for Z any rigid smooth space over F and

i ∈ Z, and we state two results which will be useful later on (Theorem 2.5 and Proposition

2.6 below).

Let RigF (resp. AffF ) be the category of rigid spaces over F (resp. affinoid rigid spaces

over F ), and let Rig†F (resp. Aff†
F ) be the category of overconvergent rigid spaces over F

(resp. overconvergent affinoid rigid spaces), in the sense of Große-Klönne [24]. The natural

functor Rig†F → RigF , Z 7→ Ẑ is denoted by ℓ. Let RigSmF be the subcategory of smooth

rigid analytic varieties over F and RigSm†
F be the subcategory of smooth overconvergent

rigid varieties over F (an overconvergent rigid space Z is said to be smooth if the associated

rigid space Ẑ is).
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If Z is affinoid over F , a presentation of an overconvergent structure on Z is by definition

a pro-affinoid variety lim
←−

Zh, where Z and Zh, for all h ≥ 1, are rational subspaces of Z1 with

Z ⋐ Zh ⋐ Z1 (for all h > 1) and such that this system is coinitial among rational subspaces

of Z1 strictly containing Z. A morphism of presentations is a morphism of pro-objects.

Proposition 2.1. — If Z = Spa(R̂, R̂◦) is affinoid over F , and lim
←−

Zh is a presentation

of an overconvergent structure on Z, then R := lim
−→
O(Zh) is dense in R̂ and the functor

lim
←−

Zh 7→ Spa†(R) induces an equivalence between the category of presentations of overcon-

vergent structures on affinoid spaces and the category Aff†
F .

Proof. — See [43, Prop. A.22].

In what follows, "presheaf" always means "presheaf of Qp-vector spaces". If Z ∈ RigSmF

(resp. RigSm†
F ), we will denote by Qp(Z) the presheaf Z ′ 7→ QpHomRigSmF

(Z ′, Z) on

RigSmF (resp. Z ′ 7→ QpHomRigSm†
F
(Z ′, Z) on RigSm†

F ).

Definition 2.2. — Let Sét be the class of maps F → F ′ in the category of complexes of

presheaves over RigSmF or RigSm†
F inducing isomorphims on the étale sheaves attached

to the cohomology presheaves of these complexes. Let SD (resp. SD†) be the set of all

maps Qp(DF × Z)[i] → Qp(Z)[i] (resp. maps Qp(D
†
F × Z)[i] → Qp(Z)[i]), as Z varies in

RigSmF (resp. RigSm†
F ) and i ∈ Z. Let Sét,D (resp. Sét,D†) be the union of the two classes.

The homotopy category of the left Bousfield localization of the projective model category

on the category of presheaves on RigSmF (resp. RigSm†
F ) with respect to the class Sét,D

(resp. Sét,D†) will be denoted RigMotF (resp. RigMot†F ) : it is the category of rigid analytic

motives over F (resp. the category of overconvergent rigid analytic motives over F ).

If Z ∈ RigSmF , we will again denote by Qp(Z) the associated motive in RigMotF .

These two categories are actually equivalent ([43, Th. 4.23]) :

Theorem 2.3. — The functors (Lℓ∗, Rℓ∗) induce quasi-inverse equivalences of triangulated

monoidal categories :

RigMotF ≃ RigMot†F .

Definition 2.4. — Let RigMotcomp
F be the full triangulated subcategory of RigMotF

formed by compact objects (those objects C such that the functor HomRigMotF (C, ·)

commutes with small sums).

We will make a crucial use of the following two results.

Theorem 2.5. — The subcategory RigMotcomp
F coincides with the saturated triangulated

subcategory of RigMotF generated by the motives Qp(Z)[d], where Z runs among proper

smooth rigid varieties (5) and d runs in Z.

Proof. — See [3, Th. 2.5.35].

Proposition 2.6. — Assume that C is the completion of an algebraic closure of W (k)[1/p].

The natural functors induce equivalences :

RigMotcomp
C ≃ 2− lim

−→
RigMotcomp

F ,

where F runs among finite extensions of W (k)[1/p].

Proof. — See [44, Lem. 5.21, Lem. 5.23].

5. Even : analytifications of smooth projective varieties, but this statement will be enough for us.
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Remark 2.7. — The analogous statement at the level of quasi-compact smooth rigid spaces

is completely false. This shows the interest of working with motives.

Let us briefly give the rough idea behind the proof of this statement. Let Z be a quasi-

compact smooth rigid space over C. One can easily find a finite cover of Z by affinoid

spaces which descend to a finite extension F of W (k)[1/p] (using, for example, Elkik’s

approximation theorem [18]). Then one can approximate the gluing isomorphisms over C

by morphisms defined over F (up to enlarging F ) ; by Lemma 2.8 below, these morphisms

are homotopic to the original ones and thus define the same morphisms in the category of

motives. Therefore, the motives of the models over F of our affinoids "glue" to a motive

over F .

We used the following simple

Lemma 2.8. — Let A be an affinoid algebra, with its norm ‖ · ‖, and f : A → A an

automorphism satisfying ‖f − Id‖ < p−1/(p−1). There exists a morphism H : A → A〈T 〉

such that ι0 ◦H = Id and ι1 ◦H = f , ι0 (resp. ι1) being the evaluation at 0 (resp. 1).

Proof. — (D’après [41].) Let

D = log(f) =
∑

n

(−1)n
(Id− f)n+1

n+ 1
.

This is a derivation of A which satisfies ‖D‖ < p−1/(p−1). It suffices to set, for a ∈ A :

H(a) =
∑

n

Dn(a)

n!
T n

to get the sought-after homotopy.

Notation. From now on, we will simply write RigMot (resp. RigMot†) for the category

RigMotC (resp. RigMot†C).

3. Pro-étale period sheaves and décalage functors

In this section, we recall or prove some results about period sheaves and décalage functors,

which will be used in the next section.

Definition 3.1. — Let f : Z ′ → Z be a morphism of analytic adic spaces over C. The

morphism f is said to be affinoid pro-étale if Z ′ = Spa(S, S+), Z = Spa(R,R+) are affinoid

and if Z ′ = lim
←−

Zi → Z can be written as cofiltrant projective limit of étale morphisms

Zi → Z, with Zi = Spa(Si, S
+
i ) affinoid. The morphism is said to be pro-étale if it is

affinoid pro-étale locally on source and target.

Let Z be an analytic adic space over C. The (small) pro-étale site of Z is the Grothendieck

topology on the category of f : Z ′ → Z pro-étale, with Z ′ perfectoid over C, for which a

family of morphisms {fi : Z ′
i → Z ′, i ∈ I} is a covering if each fi is pro-étale and if or

each quasi-compact open U ⊂ Z ′, there exist a finite subset J ⊂ I and for each i ∈ J a

quasi-compact open Ui ⊂ Z ′
i, such that U = ∪i∈Jfi(Ui).

Let Z be a rigid space over C. There is no morphism of sites Zproét → Zét
(6), but there

is still a morphism (ν′∗, ν
′−1) form the pro-étale topos of Z to the étale topos of Z.

Definition 3.2. — Let Z be a rigid space over C. We define the following pro-étale sheaves

on Z.

– The completed integral structure sheaf Ô+
Z = lim

←−r
O+

Z /p
r and its tilted analogue Ô+

Z♭ =

lim
←−ϕ

O+
Z /p.

6. There is such a morphism if one uses instead the old pro-étale site of [35] but the definition of the

pro-étale site we take is different.
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– The sheaf Ainf = W (Ô+
Z♭). One has a morphism of sheaves θ : Ainf → Ô

+
Z , which

extends to θ : Ainf [1/p]→ ÔZ .

– The sheaf B+
dR = lim

←−k
Ainf [1/p]/(ker(θ))

k. It is endowed with a filtration defined by

FiliB+
dR = ker(θ)i.

– Let t be a generator of Fil1B+
dR (such an element exists locally for the pro-étale topol-

ogy, is unique up to a unit and is not a zero divisor). Let BdR = B
+
dR[1/t] and

FiliBdR =
∑

j∈Z t−jFili+j
B
+
dR.

Definition 3.3. — Let Z be an adic space over C. Let I = [a, b] ⊂]0, 1[ be a compact

subinterval, with a, b ∈ pQ. If α, β ∈ OC♭ are such that |α| = a, |β| = b, one defines :

AI = lim
←−
n

(Ainf [[α]/p, p/[β]])/p
n ; BI = AI [1/p].

Let :

B = lim
←−

I⊂]0,1[

BI .

The pro-étale cohomology of these period sheaves can be simply described in the proper

case.

Proposition 3.4. — Let Z be a smooth proper rigid space over C. Let

M ∈ {B+
dR,BdR,BI ,B,BI [1/t],B[1/t]},

and accordingly

M ∈ {B+
dR, BdR, BI , B,BI [1/t], B[1/t]}.

One has a quasi-isomorphism

RΓét(Z,Qp)⊗Qp M ≃ RΓproét(Z,M).

Moreover, the cohomology groups Hi
ét(Z,Qp) are finite dimensional Qp-vector spaces, for

all i ≥ 0.

Proof. — As Z is proper, thus quasi-compact, it is enough to prove the statement when

M ∈ {B+
dR,BI ,B}. Using Lemma 3.5 below, the statement for M = B is easily deduced from

the statement for BI , for all compact subintervals I ⊂]0, 1[. The sheaf BI is obtained by

p-adically completing Ainf [[α]/p, p/[β]], for α, β as in Definition 3.3, and inverting p. So it

is enough to prove that for any x ∈ OC♭ , 0 < |x| < 1, and any m > 0,

RΓét(Z,Zp/p
m)⊗Zp Ainf/([x]) ≃

a RΓproét(Z,Ainf/(p
m, [x])).

This is a corollary of the proof of [35, Th. 8.4]. The case M = B
+
dR is also treated in [35,

Th. 8.4]. Finaly, the last statement is [37, Th. 3.1].

Lemma 3.5. — Let Z be a smooth proper rigid space over C. For any i > 0, one has

Rilim
←−
I

BI = 0,

when I runs among compact subintervals of ]0, 1[, with extremities in pQ.

Proof. — We apply [35, Lem. 3.18], by taking as a basis the set of all affinoid perfectoid

spaces pro-étale over Z. Condition (ii) of loc. cit. follows by acyclicity of BI on affinoid

perfectoid spaces. Condition (i) comes from the fact that for any U ∈ Zproét affinoid per-

fectoid, and any I ⊂ J , the morphism BJ (U) → BI(U) is continuous morphism of Banach

spaces with dense image.
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In general, if Z is a smooth quasi-compact space, these cohomology groups do not have

good finiteness properties. Two issues are to be overcome. The first one is classical : as

for de Rham cohomology, one needs to make everything overconverge. But this is still not

enough : for example, the “overconvergent pro-étale cohomology” of B+
dR on the closed unit

disk over C would be isomorphic to C〈T 〉†, viewed as a B+
dR-module via Fontaine’s map

θ : B+
dR → C. This B+

dR-module has torsion and is not of finite type ! Bhatt, Morrow and

Scholze [8] understood how to modify these period sheaves to remedy this problem, using

a simple but magical operation discovered by Deligne and already used by Berthelot and

Ogus. We will briefly recall its definition and some of its properties.

Let A be a ring and f ∈ A, which is not a zero divisor.

Definition 3.6. — If K• is a complex of A-modules such that Ki is f -torsion torsion free

for all i, one defines a new complex ηfK
• by

(ηfK
•)j = {x ∈ f jKj, dx ∈ f j+1Kj+1}.

The functor ηf sends quasi-isomorphisms to quasi-isomorphisms ; its extension (7) to the

derived category is called Lηf .

The functor Lηf kills f -torsion in cohomology. It of course does nothing when f is

invertible in A.

The action of the décalage functor on some Koszul complexes is simple to describe. This is

actually an important point, as many proofs rely on a local study where pro-étale cohomology

groups can be written as Koszul complexes.

Definition 3.7. — Let M be an abelian group and h1, . . . , hd be commuting endomor-

phisms of M . Let KM (h1, . . . , hd) be the Koszul complex :

M →
⊕

1≤i≤d

M →
⊕

1≤i1<i2≤d

M → · · · →
⊕

1≤i1<···<ik≤d

M → . . .

where the differential on M in position i1 < · · · < ik to M in position j1 < . . . , < jk+1 is

non zero only if {i1, . . . , ik} ⊂ {j1, . . . , jk+1} and equals (−1)m−1hm in this case, m being

the unique index between 1 and k + 1 such that jm /∈ {i1, . . . , ik}.

Proposition 3.8. — Let A be a ring, g1, . . . , gn ∈ A and f ∈ A which are not zero divisors.

Let M• be a complex of f -torsion-free A-modules.

(i) If f divides all the gi,

ηf (M
• ⊗A KA(g1, . . . , gn)) = ηfM

• ⊗A KA(g1/f, . . . , gn/f).

(ii) If there exists i such that gi divides f , ηf (M
• ⊗A KA(g1, . . . , gn)) is acyclic.

Proof. — See [8, Lem. 7.9].

One can actually define décalage functors in greater generality.

Definition 3.9. — Let δ : Z → N be a non decreasing function. If K• is a complex of

f -torsion free A-modules, let ηδ,fK
• be the complex defined by

(ηδ,fK
•)i = {x ∈ f δ(i)Ki, dx ∈ f δ(i+1)Ki+1}.

The functor ηδ,f preserves quasi-isomorphisms ([7, Prop. 8.19]) and extends to a functor

Lηδ,f on the derived category of A-modules.

Another useful fact is the following

7. Here one uses the fact that any complex of A-modules is quasi-isomorphic to a complex of f -torsion

free A-modules.
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Lemma 3.10. — Let A be a ring, f ∈ A a non zero divisor, and K• a bounded complex of

A-modules, such that Kj is f -torsion free for all j. Let, for i ≥ 0, δi be the function defined

by

δi(j) = max(0, j − i).

Note that K•
δ0,f

= ηfK
• and that K•

δi,f
= K• for any i big enough. Then one has, for all

i ≥ 0, a triangle in D(A)

K•
δi,f −→ K•

δi+1,f −→ τ≥i+1(K•/f)
+1
−→ .

These definitions and results extend to a more general framework ([8, §6.1]) : if (T,OT )

is a ringed topos, f ∈ OT generates an invertible ideal and K• is a complex of OT -modules

without f -torsion, one can define ηδ,fK
•, for any non decreasing δ, as before and one can

show that ηδ,f extends to the derived category D(OT ) of OT -modules.

In particular, let Z be a rigid space over C and M and M be as in Proposition 3.4.

Specializing to the case where T is the topos of étale sheaves of M -modules on Z, OT = M

and f = t, one obtains a complex LηtRν′∗M in the derived category of étale sheaves of

M -modules on Z.

Proposition 3.11. — For any smooth affinoid rigid space Z over C, and

M ∈ {B+
dR,BdR,BI ,BI [1/t]},

the natural map

LηtRΓproét(Z,M)→ RΓét(Z,LηtRν′∗M)

is a quasi-isomorphism.

Proof. — The statement is of course empty when M ∈ {BdR,BI [1/t]}, as t in invertible and

the complexes are bounded. We can thus assume that M ∈ {B+
dR,BI}, I being such that

the annulus of radius I contains at least one zero of t, in which case M/t is isomorphic to

a finite number of copies of Ô. Using Lemma 3.10, applied both to LηtRΓproét(Z,M) and

LηtRν′∗M, we see that it is enough to show that for all i ≥ 0 :

Hj
ét(Z, τ

≥iRν′∗Ô) ≃ Hj
proét(Z, Ô)

if j ≥ i and that

Hj
ét(Z, τ

≥iRν′∗Ô) = 0

if j < i (we used the fact that M/t is a finite product of copies of Ô). To do so, we use the

spectral sequence

Hj−k
ét (Z,Hk(τ≥iRν′∗Ô)) =⇒ Hj

ét(Z, τ
≥iRν′∗Ô)

and Scholze’s computation ([37, Prop. 3.23] :

Hk(τ≥iRν′∗Ô) =

{
0 if k < i

Hk(Rν′∗Ô) = Ωk if k ≥ i.

Similarly, we have a spectral sequence

Hj−k
ét (Z,Ωk) =⇒ Hj

proét(Z, Ô).

The differences between the abutments of these two spectral sequences could thus a priori

come from the terms Hj−k(Z,Ωk), for k < i. But then as j ≥ i we have j − k > 0 and Z

being affinoid, these terms are zero.

Proposition 3.12. — Let Z be a semi-stable quasi-compact formal scheme over OC , with

generic fiber Z, and (ν∗, ν
−1) be the morphism from the pro-étale topos of Z to the étale
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topos of Z. Let I be a compact interval contained in ]p−1, 1[ and AI be the sheaf defined in

Definition 3.3. The natural map (8)

(
RΓét(Z, LηµRν∗Ainf)⊗̂Ainf

AI

)
[1/p]→ RΓét(Z,LηµRν′∗BI) ≃ RΓét(Z,LηtRν′∗BI)

is an isomorphism (the last isomorphism comes from the fact that t and µ are equal up to a

unit in AI), the completed tensor product on the left being for the p-adic topology.

Proof. — One can reduce to the case where Z = Spf(R), with R small as in [10] : there

exists an étale map

� : Spf(R)→ Spf(OC〈T0, . . . , Tr, T
±1
r+1, . . . T

±1
d 〉/(T0 . . . Tr − pq)),

for some d ≥ 0, some 0 ≤ r ≤ d and some q ∈ Q>0. Let R∞ be the completed tensor

product of R with

OC〈T
1/p∞

0 , . . . , T 1/p∞

r , T
±1/p∞

r+1 , . . . T
±1/p∞

d 〉/(T
1/p∞

0 . . . T 1/p∞

r − [(p1/p
∞

)q])

over OC〈T0, . . . , Tr, T
±1
r+1, . . . T

±1
d 〉/(T0 . . . Tr − pq). As � is étale, one can lift R to a (p, µ)-

adically complete Ainf -algebra Ainf(R) formally étale over

Ainf〈X0, . . . , Xr, X
±1
r+1, . . . X

±1
d 〉/(X0 . . . Xr − [(p1/p

∞

)q]).

Let AI(R) = Ainf(R)⊗̂Ainf
AI . As W (m♭) is invertible on both sides, we can replace pro-étale

cohomology groups by continuous cohomology groups. Then there are two steps :

Step 1. One can decompose Ainf(Z) = Ainf(R
♭
∞) as

Ainf(R
♭
∞) = Ainf(R)⊕N∞,

where N∞ = Ainf(R
♭
∞)nonint. One has

AI(R
♭
∞)nonint = N∞⊗̂Ainf

AI ,

the completion being p-adic. Assume that for all i,

Hi
cont(Z

d
p, N∞⊗̂Ainf

AI) ≃ Hi
cont(Z

d
p, N∞)⊗̂Ainf

AI .

As we know that µ kills Hi
cont(Z

d
p, N∞) ([8] in the smooth case, [10, Prop. 3.25] in the

semi-stable case), µ kills the right hand side and thus also the left hand side. To prove the

above isomorphism, one proceeds as in [10] :

Lemma 3.13. — Let A be a ring endowed with the f -adic topology for some f ∈ A, A′

an A-module complete for the f -adic topology. Consider the following condition (∗) on an

A-module L : we require that for each j, n the map

TorAj (L,A
′/fn′

)→ TorAj (L,A
′/fn)

vanishes for some n′ > n. Then if K• is a bounded complex of A-modules, if each Ki and

Hi(K•) satisfy (∗), then for every i,

Hi(K•⊗̂AA
′) = Hi(K•)⊗̂AA

′,

where the completion is f -adic.

Proof. — See [10, Lem. 3.30].

8. Let λ be the morphism from the étale site of Z to the étale site of Z. The map of the proposition is

induced by the map

LηµRν∗Ainf = LηµRλ∗Rν′
∗
Ainf → Rλ∗LηµRν′

∗
Ainf → Rλ∗LηµRν′

∗
AI .
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One can then redo the proof of [10, §3.28], working with the ring AI instead of the

ring A
(m)
cris used in loc. cit.. Indeed, the only properties of A

(m)
cris used in [10] to make the

argument work is that the system of ideals (pnA
(m)
cris )n≥0 and ({x ∈ A

(m)
cris , µx ∈ pnA

(m)
cris })n≥0

are intertwined, to get the key statement (3.26.3) (used to check Point (iii) of their Lemma

3.30). Here the same is true for AI : indeed pk/µ is in AI for k big enough, so the two

topologies are the same.

Step 2. It thus only remains to show that the map

LηµRΓcont(Z
d
p, Ainf(R))⊗̂Ainf

AI → LηµRΓcont(Z
d
p, AI(R))

is an isomorphism, but this is easy since we know that both sides identify with q-de Rham

complexes.

Remark 3.14. — Let Z = Spf(R), with R small. If I is as in the proposition, we have that

RΓét(Z,LηtRν′∗BI) ≃ Ω•
BI (R)/BI

.

As ϕ(t) = pt, the Frobenius induces an isomorphism between ϕ∗RΓ(Z,LηtRν′∗BI) and

RΓ(Z,LηtRν′∗Bϕ(I)) and so one deduces from the above proof that for any compact interval

I ⊂]0, 1[,

RΓét(Z,LηtRν′∗BI) ≃ Ω•
BI (R)/BI

.

4. Motives attached to period sheaves

The next proposition is the key ingredient for the main result of this section, Proposition

4.5.

Proposition 4.1. — Let Z = Spa(R,R◦) be a smooth affinoid rigid space over C, with an

étale map

� : Z → Td = Spa(C〈T±1
1 , . . . , T±1

d 〉,OC〈T
±1
1 , . . . , T±1

d 〉)

which factorizes as a composite of rational embeddings and finite étale maps. For all n ≥ 1,

let Dn = Spa(Qp〈p
1/nT 〉) be the closed disk of radius p1/n. Let M,M be as in Proposition

3.4. The projection maps Z ×Dn → Z induce an isomorphism :

RΓét(Z,LηtRν′∗M) ≃ lim
−→
n

RΓét(Z ×Dn,C , LηtRν′∗M).

Proof. — Everything being quasi-compact, it suffices to prove the statement when M ∈

{BI ,B,B
+
dR}. The choice of the chart � determines a perfectoid pro-étale algebra R→ R∞,

i.e. a pro-étale perfectoid cover Z∞ = Spa(R∞, R◦
∞)→ Z. The pro-étale cohomology of M

can be computed as the cohomology of the Koszul complex

K•
M(Z∞) = KM(Z∞)(γ1 − 1, . . . , γd − 1),

γ1, . . . , γd being generators of Zd
p.

We will start by proving the following result.

Lemma 4.2. — Let M ∈ {BI ,B
+
dR/t

r} (r ≥ 1). One has:

RΓét(Z ×DC , LηtRν′∗M) ≃ LηtK
•
M(Z∞)⊗̂QpΩ

•(D),

the completed tensor product being a completed tensor product of complexes of Tate Qp-

algebras.

Proof. — By Proposition 3.11, we can first replaceRΓét(Z×DC , LηtRν′∗M) by LηtRΓproét(Z×

DC ,M).

Let D̃ = Spa(Qp〈T
1/p∞

〉) be the perfectoid unit disk. The morphism D̃C → DC is not

pro-étale, but it is quasi-pro-étale, that is pro-étale locally for the pro-étale topology, which
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will be enough. The cohomology of M on Z∞ ×C D̃C is trivial. Hence we can compute the

pro-étale cohomology of M on Z ×C DC as the Cech cohomology of the covering

Z∞ ×C D̃C → Z ×D.

Let ev be the evaluation map at T = 0. For all k ≥ 1, the fiber product k-times

D̃
(k)
C = D̃C ×DC · · · ×DC D̃C is affinoid perfectoid, with affinoid algebra (Ak, A

+
k ), where

Ak = A+
k [1/p] and A+

k is the ring formed by the elements f ∈ C0(Zk−1
p ,OC〈T

1/p∞

〉) such

that ev ◦ f ∈ C0(Zk−1
p ,OC) is a constant function : for a proof of this assertion, see [29,

Lem. 2.3.28]. Therefore, Ô+
X♭(D̃

(k)
C ×C Z

(k)
∞ ) is the ring formed by functions f ∈ C0(Zk−1

p ×

Z
d(k−1)
p , R

(k),♭,+
∞ 〈T 1/p∞〉), such that for any x ∈ Z

d(k−1)
p , ev ◦ f(·, x) ∈ C0(Zk−1

p , R
(k),♭,+
∞ ) is

a constant function.

Thus the k-th term of the Cech complex we consider M(D̃
(k)
C ×C Z

(k)
∞ ) is the ring formed

by the elements

f ∈ C0(Zk−1
p × Zd(k−1)

p ,M(Z(k)
∞ )〈X1/p∞

〉)

(9), with X = [T ♭], such that for all x ∈ Z
d(k−1)
p , ev′ ◦ f(·, x) ∈ C0(Zk−1

p ,M(Z
(k)
∞ )) is a

constant function, ev′ being the evaluation at X = 0. One has an exact sequence :

0→ C0(Zk−1
p × Zd(k−1)

p ,Ker(ev′))→ M(D̃
(k)
C ×C Z(k)

∞ )→ C0(Zd(k−1)
p ,M(Z(k)

∞ ))→ 0,

the second arrow being f 7→ ev′ ◦ f .

Let’s look at the subcomplex of the Cech complex whose k-th term is given by

C0(Zk−1
p × Zd(k−1)

p ,Ker(ev′)).

It is just the standard complex of continuous cochains for the group Zd+1
p acting on Ker(ev′)

; it is isomorphic to the Koszul complex KKer(ev′)(γ0 − 1, . . . , γd − 1). Let

Ker(ev′)int = XM(Z∞)〈X〉.

Then the Koszul complex of Ker(ev′) decomposes as the sum of

KKer(ev′)int(γ0 − 1, γ1 − 1, . . . , γd − 1)

and of the completed direct sum

⊕̂
a∈N[1/p]\N

KKer(ev′)int(γ0[ε]
a − 1, γ1 − 1, . . . , γd − 1).

We can then argue exactly as in the proof of [8, Lem. 9.6] to prove that multiplication by

t on this completed direct sum is homotopic to zero (here we use the fact that t and [ε]− 1

differ by a unit, by hypothesis on I), and therefore killed by Lηt. Consequently, the only

remaining term is :

LηtKKer(ev′)int(γ0 − 1, γ1 − 1, . . . , γd − 1) = Lηt

(
KXM〈X〉(γ0 − 1)⊗̂MK•

M(Z∞)

)
,

where the completed tensor product makes sense as a completed tensor product of Qp-Tate

algebras. Note that γ0 − 1 and multiplication by t commute as endomorphisms of M〈X〉

and that the latter divides the former. We can thus copy the argument of [8, Lem. 7.9] to

get an isomorphism

Lηt
(
KXM〈X〉(γ0 − 1)⊗̂MK•

)
≃ KXM〈X〉

(
γ0 − 1

t

)
⊗̂MLηtK

•
M(Z∞).

By [8, Lem. 12.3], this complex is also quasi-isomorphic to :

KXM〈X〉

(
X

d

dX

)
⊗̂MLηtK

•
M(Z∞),

9. When M = B
+
dR, B+

dR(Z
(k)
∞ )〈X1/p∞ 〉 = lim

←−r
(B+

dR(Z
(k)
∞ )/tr)〈X1/p∞ 〉.
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which identifies to the subcomplex
(
X ·Qp〈X〉

d
−→ Qp〈X〉 · dX

)
⊗̂QpLηtK

•
M(Z∞)

of Ω•(D)⊗̂QpLηtK
•
M(Z∞).

All in all, we get a quasi-isomorphism :

RΓét(Z ×DC , LηtRν′∗M) ≃ LηtK
•
M(Z∞)⊗̂QpΩ

•(D),

as wanted.

Now we prove Proposition 4.1, using Lemma 4.2. Let M = BI or M = B
+
dR/t

r, r ≥ 1.

Choose n ≥ 1. The i-th term of the complex LηtK
•
M(Z∞)⊗̂QpΩ

•(Dn) is :

(
LηtK

•
M(Z∞)⊗̂QpΩ

•(Dn)
)i

=
(
(LηtK

•
M(Z∞))

i⊗̂QpO(Dn)
)
⊕
(
(LηtK

•
M(Z∞))

i−1⊗̂QpΩ
1(Dn)

)
.

Any element x in it can thus be written as
∑

k≥0

Dk(x)T
k +

∑

k≥0

Lk(x)T
kdT,

with Dk(x) ∈ (LηtK
•
M(Z∞))

i, Lk(x) ∈ (LηtK
•
M(Z∞))

i−1 and p−k/nDk(x), p
−k/nLk(x) → 0

when k → +∞. In particular, for any such x, the series

∑

k≥0

Lk(x)

k + 1
T k+1

converges to an element L(x) ∈ (LηtK
•
M(Z∞)⊗̂QpΩ

•(Dn+1))
i, and this defines a morphism L

of the complex LηtK
•
M(Z∞)⊗̂QpΩ

•(Dn) into LηtK
•
M(Z∞)⊗̂QpΩ

•(Dn+1). Taking the inductive

limit over n we get a morphism of the complex

lim
−→
n

(
LηtK

•
M(Z∞)⊗̂QpΩ

•(Dn)
)

into itself, again denoted L. One easily checks the identity :

d ◦ L+ L ◦ d = Id−D0,

which proves that the map D0 is a homotopy inverse to the natural map

LηtK
•
M(Z∞) → lim

−→
n

(
LηtK

•
M(Z∞)⊗̂QpΩ

•(Dn)
)
.

This concludes the proof of Proposition 4.1 when M = BI or B
+
dR/t

r. Let’s now treat the

case M = B.

Lemma 4.3. — The natural map

LηtRν′∗B→ R lim
←−
I

LηtRν′∗BI

is an isomorphism.

Proof. — We use Lemma 3.10. This reduces us to prove that the map

Rν′∗B→ R lim
←−
I

Rν′∗BI

is an isomorphism, which follows from Lemma 3.5.

As derived projective limits commute with RΓ and with derived completed tensor prod-

ucts, we have

lim
−→
n

RΓét(Z ×Dn,C , LηtRν′∗B) = lim
−→
n

Rlim
←−
I

RΓét(Z ×Dn,C , LηtRν′∗BI)

= lim
−→
n

Rlim
←−
I

(
LηtK

•
BI(Z∞)⊗̂QpΩ

•(Dn)
)
,
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the last equality by Lemma 4.2. As the two limits involved are on different factors of the

completed tensor product, they commute and so :

lim
−→
n

RΓét(Z ×Dn,C , LηtRν′∗B) = Rlim
←−
I

lim
−→
n

(
LηtK

•
BI(Z∞)⊗̂QpΩ

•(Dn)
)

= Rlim
←−
I

lim
−→
n

RΓét(Z ×Dn,C , LηtRν′∗BI),

again by applying Lemma 4.2. Similarly,

RΓét(Z,LηtRν′∗B) = R lim
←−
I

RΓét(Z,LηtRν′∗BI).

Therefore, Proposition 4.1 for M = B follows from Proposition 4.1 for M = BI that we just

proved.

The exact same argument works to deduce Proposition 4.1 for M = B
+
dR from Proposition

4.1 for M = B
+
dR/t

r (in this case the analog of Lemma 4.3 can also be deduced from [8, Lem.

6.20]).

Let

M ∈ {B+
dR,BdR,BI ,B,BI [1/t],B[1/t]}

(I ⊂]0, 1[ is a compact interval). We fix once and for all an injective resolution I•
M

of the

pro-étale sheaf M viewed as an element of the pro-étale topos of the category RigMot.

Definition 4.4. — Let FM be the complex of étale sheaves on the category of overconver-

gent affinoid spaces over C, such that for Z overconvergent affinoid, FM,Z corresponds to

the inverse system

lim
−→
h

ηtν
′
∗I

•
M,Zh

,

where lim
←−

Zh is a presentation of the overconvergent structure Z on Ẑ, through the equiva-

lence of Proposition 2.1.

Proposition 4.5. — The complex of étale sheaves FM is D
†
C-local.

Proof. — Let lim
←−

Dh be the standard overconvergent presentation of the dagger structure

D† on D by closed disks Dh of radius p1/h. Let Z be quasi-compact smooth rigid space

over C. We need to check that for all i, the natural map

Hi(Z,FM,Z)→ Hi(Z ×D
†
C ,FM,Z×D

†
C
),

We can assume that Z is small and endowed with an overconvergent presentation lim
←−

Zh.

We have to prove that the map

lim
−→
h

Hi(Zh, LηtRν′∗MZh
)→ lim
−→
h

lim
−→
h′

Hi(Zh ×Dh′,C , LηtRν′∗MZh×Dh′,C
)

is an isomorphism. It suffices to prove it before taking the direct limit over h. But this is

precisely what Proposition 4.1 tells us.

Let Fmot
M

be the motive of FM viewed as a complex of presheaves. As the localization

over Sét of the category of complex of presheaves on AffSm† is equivalent to the localization

over Sét of the category of complex of presheaves on RigSm†, Fmot
M

can and will be seen as

an object in RigMot. Proposition 4.5 implies that for any smooth affinoid dagger variety Z,

HomRigMot†(Z,F
mot
M

) = lim
−→
h

RΓét(Zh, LηtRν′∗M),(1)

for any presentation lim
←−

Zh of the dagger structure Z on Ẑ.
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Definition 4.6. — Let C ∈ RigMot. We define, for M as before and i ≥ 0,

RΓ(C,M)† := HomRigMot†(Rℓ∗C,F
mot
M

).

To simplify the notation, if Z ∈ RigSm, RΓ(Qp(Z),M)† will simply be denoted by

RΓ(Z,M)†.

Remark 4.7. — Any complex of presheaves on the category RigSm† defines a motive. But

if one doesn’t know that it is a complex of étale sheaves and that the étale hypercohomology

of the complex on D
†
C is trivial, it is hard to describe the functor represented by this motive

in terms of the original complex, as in (1). In particular, it would be impossible to prove the

following proposition, which shows that the above definition is reasonable : it is an extension

to all smooth quasi-compact rigid spaces (and even to motives) of the usual cohomology of

the complex LηtRν′∗M on smooth proper varieties.

Proposition 4.8. — If Z is a smooth proper rigid variety over C,

RΓ(Z,M)† ≃ RΓét(Z,LηtRν′∗M).

Proof. — Indeed, one has

RΓ(Z,M)† = RHomRigMot†(Rℓ∗Z,FM) = RHomRigMot†(Z
†,FM)

by Theorem 2.3 (or rather its proof, which tells us that the motive Rℓ∗Z is isomorphic to

the motive Z†, for any choice of a dagger structure Z† on Z). Hence we have to show that :

RHomRigMot†(Z
†,FM) = RΓét(Z,LηtRν′∗M).

To show this, note that as Z is proper, we can fin two finite affinoid coverings U = (Ui)i∈I

and V = (Vi)i∈I , such that for all i ∈ I, Ui ⋐ Vi. We can assume that the covering U comes

from a covering U † = (U †
i )i∈I of Z†. We have a Cech spectral sequence

Ep,q
1 (U) :=

⊕

|J|=p+1

Hq
ét(UJ , LηtRν′∗M) =⇒ Hp+q

ét (Z,LηtRν′∗M),

and similarly for the covering V . For each i, we can choose a presentation lim
←−

Ui,h of the

dagger structure U †
i on Ui such that Ui,h ⋐ Vi for all h. We have maps of spectral sequences

Ep,q
1 (Uh)→ Ep,q

1 (Uh+1)→ Ep,q
1 (U) for all h, which induce isomorphisms on the abutments.

But

lim
−→
h

Ep,q
1 (Uh) =⇒ HomRigMot†(Z

†,Fmot
M ),

because by (1),

lim
−→
h

Ep,q
1 (Uh) =

⊕

|J|=p+1

HomRigMot†(U
†
J ,F

mot
M

).

Whence the desired isomorphism.

5. Construction of the cohomology theory FF

In all this section, we will define the cohomology theory FF with values in Db(CohX
C♭
)

(Definition 5.3) and show that its cohomology groups are vector bundles when C is the

completion of an algebraic closure of W (k)[1/p] (Theorem 5.15). We fix once and for all a

smooth quasi-compact rigid space Z over K (10) of dimension n.

Let us recall that the algebra B is a Fréchet-Stein algebra. A coherent sheaf on XC♭ is

thus the same thing as a family (MI)I of finite type BI -modules, for any compact interval

I = [a, b] with rational ends and a ≤ b/p, endowed with an isomorphism

ϕ∗MI ⊗B[a/p,b/p]
B[a,b/p] ≃MI ⊗BI B[a,b/p],

10. As the notation may be confusing, let us recall and insist on the fact that K is not, unless explicitly

mentioned, assumed to be discretely valued ; for example, we can take K = C.
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and such that there are isomorphisms MI′ ⊗BI′
BI ≃ MI whenever I ⊂ I ′, satisfying the

obvious cocycle condition. To such a coherent sheaf (MI)I , one associates the ϕ-module

over B

Γ(MI)I) = lim
←−
I

MI .

This global sections functor induces an equivalence between the category of coherent sheaves

on YC♭ and its image, which is by definition the category of coadmissible ϕ-modules over B.

This category is abelian and stable by extensions.

Proposition 5.1. — Let i ≥ 0. The ϕ-module Hi(ZC ,B)
† over B is a coadmissible ϕ-

module over B.

Proof. — Set, for any compact interval I, MI = Hi(ZC ,BI)
†. We claim that the family

(MI)I defines a coherent sheaf on XC♭ and that :

Hi(ZC ,B)
† = lim
←−
I

MI .

To check that it defines a coherent sheaf, we can reduce to the case where Z is proper smooth,

by Theorem 2.5, as all the objects involved factor through the category of motives. Again,

we apply Lemma 3.10 and the fact that BI/t is isomorphic to a finite number of copies of Ô

indexed by the zeroes of t in the annulus of radius I. As ϕ(t) = pt and p is invertible, the

only non trivial thing to check is that the family (NI)I , with NI = Hi
proét(ZC ,BI) defines a

coherent sheaf on XC♭ . This is a direct consequence of Proposition 3.4. (Another argument

for the finiteness of Hi
proét(ZC ,B), which does not rely on Faltings’ comparison result, is

given in [26, Th. 8.1] : this roughly amounts to do a “Cartan-Serre argument” directly for

B, in the spirit of the one of [35] for the constant sheaf Qp.)

Finally, by Lemma 4.3, we have a short exact sequence

0→ R1lim
←−
I

Hi−1(ZC ,BI)
† → Hi(ZC ,B)

† → lim
←−
I

Hi(ZC ,BI)
† → 0.

But we have just seen that Hi−1(ZC ,BI′)† ⊗BI′
BI ≃ Hi−1(ZC ,BI)

† whenever I ⊂ I ′.

Therefore the derived inverse limit on the left vanishes, and thus we indeed have

Hi(ZC ,B)
† = lim
←−
I

MI ,

as desired.

Remark 5.2. — When Z has dimension 1, one can give another argument which does not

appeal to Theorem 2.5. One can assume Z to be affinoid. Then one can always write ([41])

ZC = Z ′ \

(
r⋃

k=1

Dk(rk)

)
,

where Z ′ is a smooth proper curve and the Dk(rk) are open disks of radius rk (the circle of

same origin and radius as Dk(rk) will be called Ck). Let for n big enough :

Zn = Z ′ \

(
r⋃

k=1

Dk(rk − 1/n)

)
,

We get from this incision-excision triangles

lim
−→
n

RΓZn(Z
′, LηtRν′∗B)→ RΓ(ZC ,B)

† →

r⊕

k=1

RΓ(Ck,B)
† +1
−→

and

lim
−→
n

RΓZn(Z
′, LηtRν′∗B)→ RΓ(Z ′, LηtRν′∗B)→

r⊕

k=1

RΓ(Dk(rk), LηtRν′∗B)
+1
−→
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(see the proof of [29, Th. 2.8.28]). So to show that the cohomology groups of RΓ(ZC ,B)
†

are coadmissible, we are reduced to prove that the same is true for the cohomology groups

of RΓ(Z ′, LηtRν′∗B), RΓ(Dk(rk), LηtRν′∗B) and RΓ(Ck,B)
†: for the first ones, we can argue

as in the proof of the proposition ; the second ones were already computed (in disguise) in

Proposition 4.1 (cf. also [29, Cor. 2.3.30]) ; for the last ones, see [29, Cor 2.3.29].

Definition 5.3. — Let FF(Z) ∈ Db(CohX
C♭
) be the complex of coherent sheaves on XC♭

corresponding to the complex of ϕ-equivariant coadmissible modules RΓ(ZC ,B)
† over B

(we used the fact that on a noetherian scheme S, the bounded derived category of coherent

sheaves identifies with the full subcategory of the bounded derived category of OS-modules

formed by complexes whose cohomology sheaves are coherent, plus GAGA theorem for the

Fargues-Fontaine curve).

For any i ≥ 0, let

Hi
FF(Z) = Hi(FF(Z)),

which is a coherent sheaf on XC♭ .

Remark 5.4. — For any i ≥ 0, the coherent sheaf Hi
FF(Z) is obviously GK-equivariant (11).

All the identifications made below will be compatible with the GK-action, even if we will

not explicitely state it. This equivariant structure will be only used in section 6, when K is

discretely valued and Z proper and smooth.

Remark 5.5. — If one is just interested in defining individual cohomology groups instead

of a complex, one can define Hi
FF(Z) to be the coherent sheaf on XC♭ corresponding to the

pair (Hi(ZC ,Be)
†, Hi(ZC ,B

+
dR)

†). One of course has to check that the natural map

Hi(ZC ,Be)
† ⊗Be BdR → Hi(ZC ,BdR)

†

is a quasi-isomorphism but as both sides factor through the category of motives RigMot,

using Theorem 2.5 once again, it is enough to show that the above map is an isomorphism

for Z proper and smooth. This is a direct consequence of Proposition 3.4.

The next proposition will show that this gives the same groups, and it is this description

that we will need to prove that we always get vector bundles when C is the completion of

an algebraic closure of W (k)[1/p].

Proposition 5.6. — The natural map

RΓ(ZC ,B)
† ⊗B B+

dR ≃ RΓ(ZC ,B
+
dR)

†

is a quasi-isomorphism.

Proof. — This is proved exactly as in the proof of Proposition 5.1.

Remark 5.7. — This implies in particular, by Proposition 5.1, that Hi(ZC ,B
+
dR)

† is a

B+
dR-module of finite type. This can be seen directly, as follows : by Theorem 2.5, it suffices

to treat the case where Z is smooth and proper, in which case we can invoke [8, Th. 13.8].

Proposition 5.10 below gives another argument, when C is the completion of an algebraic

closure of W (k).

Lemma 5.8. — Assume that C is the completion of an algebraic closure of W (k)[1/p], and

let F be a finite extension of W (k)[1/p]. Let C be a compact rigid motive over F . One has

for all i an isomorphism

Hi(CC ,B
+
dR)

† ≃ Hi
dR(C/F )† ⊗F B+

dR,

where Hi
dR(C/F )† is the overconvergent de Rham cohomology of C, as defined in [43].

11. Any element of Aut(C) acts on XC♭ ; in particular GK acts.
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Proof. — Let us show that for any compact motive C defined over F , one has a quasi-

isomorphism :

RΓ(CC ,B
+
dR)

† ≃ RΓdR(C/F )† ⊗F B+
dR.

It suffices to construct explicit complexes computing both sides and a quasi-isomorphism

between them, for any smooth affinoid rigid space T = Spa(R,R◦) over F , functorially in

R (they will then glue). For this, let (Th)h be a presentation of a dagger structure on T .

Recall that Elkik’s theorem ([18]) gives for any h an equivalence

lim
←−
F ′|F

T̃h,F ′,ét ≃ T̃h,C,ét,

where F ′ runs among the finite extensions of F . If F is a vector bundle on Th and F ′ a

finite extension of F , F⊗̂FB
+
dR is a sheaf of O†

Th,F ′
-modules, as B+

dR is a F̄ -algebra. In other

words, F⊗̂FB
+
dR defines an object of the left hand side of the above equivalence, and can

thus be seen as an étale sheaf on Th,C , to which we’ll give the same name. One shows using

Poincaré’s lemma that for any h, the natural map

B
+
dR,Th

→ OB+
dR,Th

⊗OTh
Ω•

Th

induces an isomorphism

Rν′∗B
+
dR,Th

≃ OTh
⊗̂FB

+
dR → Ω1

Th
⊗̂F t

−1B+
dR → · · · → Ωn

Th
⊗̂F t

−nB+
dR

where n = dimTh and the differential of the complex on the right hand side is just the usual

differential of the de Rham complex (the terms of the complex on the right being seen as

étale sheaves on Th,C). Applying Lηt on both sides, we get a quasi-isomorphism :

LηtRν′∗B
+
dR,Th

≃ Ω•
Th
⊗̂FB

+
dR.

For the details, see [29, Prop. 2.3.16, Rem. 2.3.18]. Then apply RΓ(Th,C , ·) and take the

direct limit over h. We get

lim
−→

RΓ(Th,C , LηtRν′∗B
+
dR,Th

) ≃ lim
−→
h

RΓ(Th,Ω
•
Th
⊗̂FB

+
dR) ≃ lim

−→
h

(Ω•(Th)⊗̂FB
+
dR)

(the last equality by quasi-compacity). Thus the specific complex on the right com-

putes the left hand side, which is isomorphic to RΓ(TC ,B
+
dR)

†. The inductive systems

(Ω•(Th)⊗̂FB
+
dR)h and (Ω†,•(Th)⊗̂FB

+
dR)h are coinitial. Hence we can replace in the induc-

tive limit the de Rham complexes by overconvergent de Rham complexes, i.e. we get a

quasi-isomorphism :

RΓ(TC ,B
+
dR)

† ≃ lim
−→
h

(Ω†,•(Th)⊗̂FB
+
dR).

The natural map, for all h :

Ω†,•(Th)⊗F B+
dR → Ω†,•(Th)⊗̂FB

+
dR

is a quasi-isomorphism. Indeed, by [24, Lem. 4.7] and Lemma 5.9 below, we have for all k

Hk
(
Ω†,•(Th)⊗̂FB

+
dR

)
= Hk

dR(Th)
†⊗̂FB

+
dR.

and we can get rid of the completed tensor product, as we know that Hk
dR(Th/F )† is a finite

dimensional F -vector space for all h ([43, Cor. 5.21]). So, we obtain a quasi-isomorphism :

lim
−→
h

Ω•(Th)⊗F B+
dR → lim

−→
h

(Ω•(Th)⊗̂FB
+
dR).

We then take the inverse limit of these isomorphisms over all possible choices of dagger

structures on T to make everything functorial in R. .

The following lemma was used in the proof.
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Lemma 5.9. — Let K• be a strict complex of Qp-Fréchet spaces, let W be a Qp-Banach

space. Then one has for all k

Hk(K•⊗̂QpW ) = Hk(K•)⊗̂QpW.

Proposition 5.10. — Assume that C is the completion of an algebraic closure of

W (k)[1/p]. Let i ≥ 0. The B+
dR-module Hi(ZC ,B

+
dR)

† is finite free.

Proof. — It is a direct consequence of Proposition 2.6, the last lemma and [43, Cor 5.21].

Remark 5.11. — If we don’t make any assumption of C, it is still true that there exists

a smooth affinoid rigid space S = Spa(A,A◦) over W (k)[1/p], with a map A → C, such

that the motive Qp(ZC) descends to a motive over S. If C is a rigid motive over S, Vezzani

defined in [43] the overconvergent relative de Rham cohomology H∗
dR(C/S)

† of C over S. If

we knew that these groups were A-modules of finite type when C is quasi-compact (i.e. if we

had a relative version of the finiteness theorem for overconvergent de Rham cohomology),

we could prove as before that one has an isomorphism :

Hi(CC ,B
+
dR)

† ≃ Hi
dR(C/S)

† ⊗A B+
dR

for any quasi-compact motive C over S. As relative de Rham cohomology groups, the

groups Hk
dR(C/S)

† are endowed with an integrable connection, the Gauss-Manin connection

(as defined in [25]). But any coherent sheaf with an integrable connection on a space over

a characteristic 0 field is automatically locally free, so this would give the result in this case

too.

Remark 5.12. — Lemma 2.8 and the motivic definition of the overconvergent de Rham

cohomology have another interesting application, unrelated to the rest of this paper. Let G

be a locally profinite group acting continuously (in the sense of [36, Def. 2.1, Lem. 2.2]) on

a smooth Stein variety Z, of dimension d. Then the action of G on Hi
dR,c(Z) is smooth, for

any i ≥ 0. Indeed let (Uj) be a Stein cover (that is, an increasing covering by affinoid Uj

such that the transition maps O(Uj+1)→ O(Uj) are compact with dense image for all j) of

Z. Let v ∈ Hi
dR,c(Z). As

Hi
dR,c(Z) = lim

−→
j

Hi
dR,c(Uj)

†,

there exists j such that v ∈ Hi
dR,c(Uj)

†. One can find a compact open subgroup H of G

stabilizing Uj . It is thus enough to show that the action of H on Hi
dR,c(Uj)

† is smooth. As

this space is finite dimensional, this amounts to say that the action of H factors through

a finite quotient and this can be checked on the dual, which, by Poincaré duality ([24]),

identifies with H2d−i
dR (Uj)

†. But if g ∈ H is close enough to the identity, the morphism it

induces on Uj is homotopic to the identity by Lemma 2.8, thus equal to the identity on

the associated motive. As H2d−i
dR (Uj)

† depends only on the motive attached to Uj , g acts

trivially on it.

This argument also applies to ℓ-adic cohomology with compact supports (ℓ 6= p), where

the result was already proved by Berkovich [5, §7]. The smoothness of the action on de Rham

cohomology with compact supports was already checked by hand in [16], in the particular

case where G = GL2(Qp) and Z is a Drinfeld covering of the non-archimedean half plane.

Corollary 5.13. — Assume that C is the completion of an algebraic closure of W (k)[1/p].

Let i ≥ 0. The B+
dR-module Hi(ZC ,B)

† ⊗B B+
dR is finite free.

Proof. — Combine Propositions 5.6 and 5.10.

Proposition 5.14. — Assume that C is the completion of the algebraic closure of

W (k)[1/p]. Let i ≥ 0. The Be-module H0(XC♭\{∞}, Hi
FF(Z)) is a finite free Be-module.



DE RHAM COHOMOLOGY OVER THE FARGUES-FONTAINE CURVE 21

Proof. — By Proposition 2.6, there exists a finite extension F of W (k)[1/p] such that the

motive of Z is defined over F . As Be is principal, to check that H0(XC♭\{∞}, Hi
FF(Z)) is

finite free over Be amounts to say that it is torsion free, as we already know that it is of finite

type. But if Hi
FF(Z)|X

C♭ \{∞}
had a torsion part, its support would be a finite set of points

of XC♭\{∞}, stable by GF and such a set is necessarily empty, by [23, Prop. 10.1.1].

Theorem 5.15. — Assume that C is the completion of the algebraic closure of W (k)[1/p].

Let i ≥ 0. The sheaf Hi
FF(Z) is a vector bundle on XC♭ . It vanishes for i < 0 and i > 2n.

Proof. — Indeed, Corollary 5.13 tells that ̂Hi
FF(Z)∞ is a finite free B+

dR-module and Propo-

sition 5.14 that H0(XC♭\{∞}, Hi
FF(Z)) is a finite free Be-module.

The last sentence is a direct corollary of the corresponding assertion for overconvergent

de Rham cohomology.

Remark 5.16. — Assume that C is the completion of an algebraic closure of W (k)[1/p].

Let i ≥ 0. Then for any smooth quasi-compact rigid space Z defined over K, one gets an

isocrystal Hi
isoc(Z). Indeed, let E be the functor associating to an isocrystal D the vector

bundle E(D) on XC♭ whose geometric realization is given by YC♭ ×ϕ D ; let gr be the

functor with values in the category of Q-graded vector bundles on XC♭ , sending a vector

bundle E on XC♭ to the direct sum of the graded parts of the grading given by its Harder-

Narasimhan filtration. The composite functor gr ◦ E induces an equivalence between the

category ϕ−Mod
Q̆p

and the category of Q-graded vector bundles on XC♭ such that for each

λ ∈ Q, the λ-graded part is semi-stable of slope λ ([1, Lem. 3.6]). Applying this to the direct

sum of the graded parts of Hi
FF(Z), with the grading induced by its Harder-Narasimhan

filtration, we obtain the isocrystal Hi
isoc(Z).

If one moreover assumes that ZC has a proper smooth formal model Z over OC , Hi
isoc(Z)

is the isocrystal underlying Hi
crys(Zs)

(12), for all i ≥ 0, with Zs = Z×OK k, as we will see in

the next section.

Unfortunately a quasi-inverse of the above equivalence is not necessarily exact, so we

don’t get a well-behaved cohomology with values in the category of isocrystals that way.

Such a theory exists so far only at the level of formal schemes (in accordance with Scholze’s

cohomological picture, [38, §8]).

Remark 5.17. — Let K be a discretely valued extension of Qp with perfect residue field

and i ≥ 0. Let Z be a smooth quasi-compact rigid space over K. By Proposition 5.14, if we

set

Hi
isoc,+(Z) :=

⋃

[K′:K]<∞

(H0(X\{∞}, Hi
FF(Z))⊗Be Bst)

GK′ .

this defines a (ϕ,N,GK)-module over W (k)[1/p], such that if Z has a proper semi-stable

formal model Z,

Hi
isoc,+(Z) ≃ Hi

logrig(Zs)⊗K0 W (k)[1/p],

for all i ≥ 0, by the classical comparison theorems in p-adic Hodge theory.

The isocrystal underlying Hi
isoc,+(Z) is Hi

isoc(Z). The recipe of Remark 5.16 does not

allow to recover Hi
isoc,+(Z) with its additional structures, but it has the advantage that it

does not use the Galois action and thus works over any C as in the corollary.

6. Relation with other cohomology theories

In this section, we give proofs of the assertions of Remarks 1.1 and 1.2, and discuss

briefly the relation of the décalage functor Lηt with the pro-étale cohomology of Qp and

12. We are implicitly using here the fact that the categories of isocrystals over Fp and k are the same.
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syntomic cohomology on rigid spaces.

Proof of Remark 1.1. Let K be a discretely valued extension of Qp with perfect residue

field κ and V be a p-adic representation of GK , which is semi-stable. Let

Dst(V ) = (V ⊗Qp Bst)
GK .

This a (ϕ,N)-module over K. To such a (ϕ,N)-module D, Fargues and Fontaine [23, Ch.

10] attach a GK-equivariant vector bundle E(D) on XC♭ corresponding to the GK-equivariant

B-pair

((D ⊗K0 Bst)
ϕ=1,N=0, D ⊗K0 B

+
dR)

(K0 is the maximal unramified extension of W (κ)[1/p] contained in K). If V is only assumed

to be de Rham, there exists by Berger’s theorem a finite Galois extension L of K such that

V|GL
is semi-stable : it gives rise to a GL-equivariant vector bundle on XC♭ with a descent

datum from L to K ([23, Def. 10.6.3]), that is to a GK-equivariant vector bundle on XC♭

([23, Prop 10.6.4]). This vector bundle corresponds to the GK-equivariant B-pair :

((Dpst(V )⊗W (k)[1/p] Bst)
ϕ=1,N=0, Dpst(V )⊗W (k)[1/p] B

+
dR),

where

Dpst(V ) =
⋃

[K′:K]<∞

Dst(V|G
K′

).

Let Z be a proper smooth rigid space defined over K, and i ≥ 0. We know by [35] that

Hi
ét(ZC ,Qp) is a de Rham representation.

Proposition 6.1. — The GK-equivariant vector bundle on XC♭ attached to Hi
ét(ZC ,Qp)

by the above recipe is isomorphic to the GK-equivariant vector bundle Hi
FF(Z).

Proof. — We will check that Hi
FF(Z) corresponds to the same GK -equivariant B-pair. By

Proposition 4.8, we have

RΓ(ZC ,B)
† = RΓét(ZCp , LηtRν′∗B).

After inverting t, this is just

RΓproét(ZC ,B[1/t]) = RΓét(ZC ,Qp)⊗Qp B[1/t].

Around ∞, it’s given by RΓét(ZC , LηtRν′∗B
+
dR). Using 5.8 or [8, Ch. 13],

Hi(RΓét(ZC , LηtRν′∗B
+
dR)) = Hi

dR(Z)⊗K B+
dR.

In other words, Hi
FF(Z) corresponds to the B-pair

(Hi
ét(ZC ,Qp)⊗Qp Be, H

i
dR(Z)⊗K B+

dR).

The comparison theorem gives an isomorphism

Hi
ét(ZC ,Qp)⊗Qp Bst = Dpst(H

i
ét(ZC ,Qp))⊗W (k)[1/p] Bst

compatible with ϕ, N and the GK -action on both sides. Taking ϕ = 1, N = 0 shows that

the two Be-modules with GK-action considered are the same. It is also true for the two

B+
dR-modules, since

Hi
dR(Z)⊗K B+

dR = Dpst(H
i
ét(ZC ,Qp))⊗W (k)[1/p] B

+
dR.

Remark 6.2. — When Z has a proper semi-stable formal model Z over OK , the (ϕ,N)-

module Dst(H
i
ét(ZC ,Qp)) is isomorphic to the Hyodo-Kato (or log-rigid) cohomology

Hi
logrig(Zs).

Proof of Remark 1.2. We start with a
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Conjecture 6.3. — Let Z be a smooth quasi-compact formal scheme over OC . Let Z be

its rigid generic fiber and Zs = Z×OC k its special fiber. Then for all i ≥ 0,

Hi
FF(Z) = E(Hi

rig(Zs)).

Remarks 6.4. — a) One can also formulate a similar conjecture in the semi-stable case,

using log-rigid cohomology.

b) If true, this conjecture allows to give an alternative definition of rigid cohomology for

smooth varieties over k, inspired by Vezzani [44]. Let W be a smooth scheme over k. Fix

a section k → OC♭ of the canonical projection. Let Z♭ (13) be the analytification of the

base change of W to C♭ and denote by Z the rigid motive over C attached to Z♭ by the

equivalence of [42] between rigid motives over C and C♭. The for all i ≥ 0, the isocrystals

Hi
rig(W ) and Hi

isoc(Z) (defined in Remark 5.16) are isomorphic.

We now prove Conjecture 6.3 in the proper case, in which case rigid cohomology is just

crystalline cohomology. It is an easy consequence of the results of [8, Ch. 12, 13].

Proposition 6.5. — Let Z be a smooth proper formal scheme over OC . Let Z be its rigid

generic fiber and Zs = Z×OC k its special fiber. Then for all i ≥ 0,

Hi
FF(Z) = E(Hi

crys(Zs)).

Proof. — Let i ≥ 0 and I be a compact interval contained in ]p−1, 1[. By Proposition 4.8,

we know that

Hi(Z,BI)
† = Hi

ét(Z,LηtRν′∗BI).

Applying Proposition 3.12, we get :

Hi(Z,BI)
† ≃ Hi

ét(Z,LηµRν∗Ainf)⊗Ainf
BI

(the cohomology groups on the right are finitely presented Ainf -modules). Our choice of I

allows to rewrite the right hand side as :

Hi
ét(Z,LηµRν∗Ainf)⊗Ainf

BI = (Hi
ét(Z,LηµRν∗Ainf)⊗Ainf

B+
crys)⊗B+

crys
BI .

Now [8, Th. 12.1], combined with [8, Prop. 13.9], tells us that

Hi
ét(Z,LηµRν∗Ainf)⊗Ainf

B+
crys ≃ Hi

crys(Zs)⊗W (k)[1/p] B
+
crys.

Hence we have an isomorphism :

Hi(Z,BI)
† ≃ Hi

crys(Zs)⊗W (k)[1/p] BI .

This isomorphism holds for any compact interval I ⊂]p−1, 1[ and is compatible with Frobe-

nius structures in the obvious sense (see the beginning of Paragraph 5). It therefore implies

the isomorphism of the proposition.

Remark 6.6. — Using Proposition 3.12 and the results of C̆esnavic̆ius- Koshikawa (namely,

[10, Th. 5.4] and [10, Prop. 9.2]), one can extend the above proof to the semi-stable case.

Geometric syntomic cohomology : étale-syntomic comparison theorem. The reader is

referred to [29, §2.8] for some results regarding the relation between syntomic cohomology

and the décalage functor Lηt. In this paragraph, we simply explain how to give a short

proof of the étale-syntomic comparison theorem in the proper good reduction case, which

is essentially a reformulation of the proof of Colmez-Nizioł [15] in the language of Bhatt-

Morrow-Scholze [8]. We start with an easy generalization of Lemma 3.10.

13. Beware that Z♭ is not the tilt of anything. It is just a notation.
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Lemma 6.7. — We keep the notations of Lemma 3.10. For r ≥ 0, let εr = r+ δr. For any

r ≥ 0, one has a distinguished triangle

ηεr ,fK
• −→ ηfK

• −→ (ηfK
•/Filr)

+1
−→ ,

the filtration being the tensor product of the filtration bête by the f -adic filtration.

✻

✲

�
�
�
�
�
�

r

r

εr

We will apply the lemma to the complex Rν′∗B, and f = t. Assume that K is a com-

plete discretely valued extension of Qp with perfect residue field. Let Z be a smooth

proper formal scheme over OK , with rigid generic fiber Z, and 0 ≤ i ≤ r. The ϕ-module

Hi(ZC , Lηεr,tRν′∗t
rB) over B gives rise to a sheaf on XC♭ and we denote by E i(Z, r) its

twist by OX
C♭
(r). We claim that its global sections are isomorphic to the geometric syn-

tomic cohomology group Hi
syn(ZOC , r)[1/p]. Indeed, Lemma 6.7 gives a long exact sequence

of sheaves on the Fargues-Fontaine curve :

· · · → i∞,∗H
i−1(ZC , LηtRν′∗B

+
dR/Fil

r)→ E i(Z, r)→ Hi
FF(Z)⊗OX

C♭
(r)

→ i∞,∗H
i(ZC , LηtRν′∗B

+
dR/Fil

r)→ . . .

By Proposition 6.5, we know that

Hi
FF(Z)⊗OX

C♭
OX

C♭
(r) = E(Hi

cris(Zs))⊗OX
C♭
OX

C♭
(r).

This vector bundle has positive slopes, since the isocrystal (14) Hi
cris(Zs) has slopes between

0 and i ([11, Th. 3.1.2]) and i ≤ r. Hence Hi
FF(Z) ⊗OX

C♭
OX

C♭
(r) and Hi

FF(Z) ⊗OX
C♭

OX
C♭
(r) have no H1 on the curve and the same is obviously true for the skyscraper sheaves

showing up in the exact sequence. From this we deduce an exact sequence :

(Hi−1
cris (Zs)⊗B)ϕ=pr

→ Hi−1(ZC , LηtRν′∗B
+
dR/Fil

r)→ E i(Z, r)

→ (Hi
cris(Zs)⊗B)ϕ=pr

→ Hi(ZC , LηtRν′∗B
+
dR/Fil

r).

It remains to compute the cohomology groups of LηtRν′∗B
+
dR/Fil

r. We deduce from

Poincaré’s lemma (see the proof of Lemma 5.8) that :

LηtRν′∗B
+
dR ≃ Ω•

Z⊗̂KB+
dR.

As Z is proper, this gives, for all j ≥ 0 :

Hj(ZC , LηtRν′∗B
+
dR/Fil

r) = (Hj
dR(Z)⊗K B+

dR)/Fil
r.

This proves the claim, because of the description of geometric syntomic cohomology in terms

of crystalline and de Rham cohomologies, [32, 3.2].

But now we can reprove the étale-syntomic comparison theorem for free : indeed, one has

a map

Lηεr ,tRν′∗B→ Rν′∗t
r
B

14. Recall that the slopes of the vector bundle are the opposites of the slopes of the isocrystal.
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which obviously induces an isomorphism between the truncations τ≤rLηεr ,tRν′∗t
rB and

τ≤rRν′∗t
rB, by choice of the function εr. But we know (Proposition 3.4) that for all j,

Hj
proét(ZC , t

r
B) = Hj

ét(ZC ,Qp(r)) ⊗Qp t
rB,

so for i ≤ r, the sheaf E i(Z, r) will just be the sheaf Hi
ét(ZC ,Qp(r)) ⊗Qp OX

C♭
. Taking

global sections, we get that the above map induces an isomorphism

Hi
syn(ZOC , r)[1/p] ≃ Hi

ét(ZC ,Qp(r)),

for every i ≤ r. That this isomorphism is the same as the one induced by the Fontaine-

Messing period map can probably be done as in [15, §4.7] (the author did not check this).

Relation with the pro-étale cohomology of Qp. Assume that C is the completion of an

algebraic closure of W (k)[1/p]. Let Z be a Stein rigid space over K. Choose a Stein covering

(Zk)k of Z (see Remark 5.12).

One has an exact sequence (15) of pro-étale sheaves on ZC :

0→ Qp → B[1/t]ϕ=1 → BdR/B
+
dR → 0.

Assume (for simplicity) that dimZ = 1. The cohomology of the pro-étale sheaf BdR/B
+
dR

can be analyzed via the Poincaré lemma : this was done in [29, Rem. 2.3.21] (16). One

finds that H0
proét

(ZC ,BdR/B
+
dR) is an extension of (O(ZC)/C)(−1) by BdR/B

+
dR, that

H1
proét

(ZC ,BdR/B
+
dR) = H1

dR(Z)⊗̂KBdR/t
−1B+

dR and that Hi
proét

(ZC ,BdR/B
+
dR) = 0 for

i > 1.

One gets a short exact sequence :

0→ (O(ZC)/C)(−1)→ H1
proét

(ZC ,Qp)→

Ker
(
H1

proét
(ZC ,B[1/t]

ϕ=1)→ H1
dR(Z)⊗̂KBdR/t

−1B+
dR

)
→ 0.

Let k ≥ 0 and E = H1
FF(Zk)⊗O(1). The exact sequence, for any k,

0→ H0(XC♭ , E)→ H0(XC♭\{∞}, E)→ Ê∞[1/t]/Ê∞ → 0

tells us that

Ker
(
H1

proét
(ZC ,B[1/t]

ϕ=1)→ H1
dR(Zk)

†⊗̂KBdR/t
−1B+

dR

)

is isomorphic to

H0(XC♭ , H1
FF(Zk)⊗O(1)) = (H1(Zk,C ,B)

†)ϕ=p.

Taking the inverse limit over k (17), one gets an exact sequence :

0→ (O(ZC)/C)(−1)→ H1
proét

(ZC ,Qp)→ H1
ét(ZC , LηtRν′∗B)

ϕ=p → 0.(2)

We now turn to the relation with the results of [14]. Assume that K is a discretely valued

extension of Qp with perfect residue field (18) and that Z has a semi-stable formal model Z

over OK . If the semi-stable version of Conjecture 6.3 was known to be true, this could be

rewritten using log-rigid cohomology. Indeed, let (Zk)k be an affine covering of Z such that

(Zk)k is a Stein covering of Z. Then we would know that for all k and all i ≥ 0, Hi
FF(Zk)

is the vector bundle attached to the (ϕ,N)-module Hi
logrig(Zk,s)

†. In particular,

H0(XC♭ , Hi
FF(Zk)(1)) = (Hi

logrig(Zk,s)
† ⊗K0 B

+
st)

ϕ=p,N=0.

15. That a variant of such an exact sequence may be relevant to the study of the pro-étale cohomology of

Qp was suggested to the author by Gabriel Dospinescu and was used in [29, §2.3] to compute the pro-étale

cohomology of Qp on the affine space and the open disk.
16. One needs to write the Tate twists, which was not done in loc. cit., but is easy to do.
17. And using that the R1 lim

←−
term vanishes, as it only involves H0 which can be computed.

18. This assumption is probably unnecessary.
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As a Stein space is partially proper, one deduces easily that

H1
ét(ZC , LηtRν′∗B)

ϕ=p = (H1
logrig(Zs)⊗̂K0B

+
st)

ϕ=p,N=0.

Injecting this into the exact sequence (2), one would recover the exact sequence :

0→ (O(ZC)/C)(−1)→ H1
proét(ZC ,Qp)→ (H1

logrig(Zs)⊗̂K0B
+
st)

ϕ=p,N=0 → 0,

proved in [14].

Even without being able to express the right term of the exact sequence (2) in terms

of log-rigid cohomology, one can still say interesting things in some cases. For example,

for Drinfeld’s coverings of the p-adic upper half-plane, Cerednik-Drinfeld uniformization

theorem and the Hochschild-Serre spectral sequence, combined with Remark 1.1 (applied to

Shimura curves), give a description of the right term of the exact sequence (2) in terms of

(classical) local Langlands and Jacquet-Langlands correspondences : this was done in [13,

§5] (their argument is formulated differently, but could be transposed to this setting).
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