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The paper investigates gradual semantics that are able to deal with similarity between arguments. Following the approach that defines semantics with evaluation methods, i.e., a couple of aggregation functions, the paper argues for the need of a novel function, called adjustment function. The latter is responsible for taking into account similarity when it is available. It aims at reducing the strengths of attackers according to the possible similarities between them. The reason is that similarity is seen as redundancy that should be avoided, otherwise a semantics may return inaccurate evaluations of arguments. The paper proposes a novel adjustment function that is based on the well-known weighted h-Categorizer, and investigates its formal properties.

Introduction

Argumentation is a reasoning approach, which justifies claims by arguments. It starts by generating arguments and their links (forming an argumentation graph), then evaluates the arguments by so-called semantics, and finally identifies winning claims. An argumentation graph can be enriched with various additional information like weights on arguments, which can represent votes [START_REF] Leite | Social Abstract Argumentation[END_REF] or certainty degrees [START_REF] Benferhat | Argumentative inference in uncertain and inconsistent knowledge bases[END_REF], weights on links between arguments, which can represent relevance [START_REF] Amgoud | Evaluation of Analogical Arguments by Choquet Integral[END_REF][START_REF] Dunne | Weighted argument systems: Basic definitions, algorithms, and complexity results[END_REF] or again votes of users [START_REF] Egilmez | Extending Social Abstract Argumentation with Votes on Attacks[END_REF]. A similarity measure assessing how alike are pairs of arguments may also be provided [START_REF] Amgoud | Measuring Similarity between Logical Arguments[END_REF][START_REF] Budan | Introducing analogy in abstract argumentation[END_REF].

Existence of similarity between arguments is inevitable in practice, as arguments generally share information. Hence, developing semantics that are able to take into account similarity is crucial for discarding any redundancy that may lead to inaccurate evaluation of arguments. This is particularly the case for gradual semantics and more precisely those that satisfy the Counting principle from [START_REF] Amgoud | Acceptability Semantics for Weighted Argumentation Frameworks[END_REF], which states that every alive attacker affects its target. Consequently, the authors in [START_REF] Amgoud | Gradual Semantics Accounting for Similarity between Arguments[END_REF] proposed some reasonable properties on how a gradual semantics should deal with similarity. Furthermore, they proposed three gradual semantics that deal with similarity. They all extend h-Categorizer [START_REF] Besnard | A logic-based theory of deductive arguments[END_REF] but differ in the way they remove redundancy that is due to similarity. However, the three approaches suffer from weaknesses as described in the related work section.

In this paper, we start first by extending the general framework for gradual semantics that was proposed in [START_REF] Amgoud | Gradual Semantics Accounting for Varied-Strength Attacks[END_REF]. That framework defines a gradual semantics by an evaluation method, which is a tuple of three aggregation functions. This approach makes clear the different operations done by a semantics. We start by relaxing the strong constraint that all arguments are dissimilar. Indeed, we assume availability of similarities between arguments. Then, we extend the definition of evaluation method by introducing a fourth function, called adjustment function. It is responsible for reducing the strengths of attackers of an argument according to the similarity between them. Let us consider the following example of argumentation graph on the reduction of carbon emissions. We can graphically represent this debate as follows:

b 1 b 2 b 3 b 4 a
In this example we can observe that there are some similarities between the arguments b i . The more similar ones are b 3 and b 4 as they are about the same idea with dual writing. The argument b 2 has some similarity with b 3 and b 4 because reducing distant imports implies reducing the use of aircraft but not only (freighters, trains, trucks). And for the argument b 1 even if indirectly population touch everything, we can assume that this premise based on demography is different from the others (talking about transport or economy). Note that it is important to avoid these redundancies when evaluating the argument a. For that purpose, a reasonable semantics would start by evaluating the strength of each of the attackers b i , then readjust those values by taking into account similarity.

For instance, if a semantics assigns the value 1 to both b 3 and b 4 because they are not attacked, at the second step it may for instance decide to keep the whole strength of b 3 and set the value of b 4 to 0 due to the full similarity between the two arguments. Another contribution of the paper consists of proposing a novel readjustment function. The latter distributes the burden of redundancy among attackers. In the previous example, the new function will decrease the value of both b 3 , b 4 . Furthermore, the function is based on the well-known weighted h-Categorizer that was proposed in the literature for a completely different purpose. Indeed, it is used as a gradual semantics for evaluating arguments. We investigate the properties of the novel function and compare it with the existing ones.

The paper is organised as follows: Section 2 introduces the argumentation framework, we are interested and extend the framework of gradual semantics proposed in [START_REF] Amgoud | Gradual Semantics Accounting for Varied-Strength Attacks[END_REF]. Section 3 presents the novel readjustment function, and Section 4 investigates its properties. Section 5 is devoted to related work and the last section concludes.

Background

Throughout the paper, we denote by U the universe of all possible arguments, and consider argumentation frameworks as tuples made of a non-empty and finite subset of U . Every argument has an initial weight that may represent different information (certainty degree of the argument's premises, credibility degree of its source, and so on). Arguments can attack each other and every attack is assigned a weight representing for instance its relevance as in case of analogical arguments [START_REF] Amgoud | Evaluation of Analogical Arguments by Choquet Integral[END_REF]. We also assume availability of a similarity measure that assesses how alike are pairs of arguments.

For the sake of simplicity, all weights and similarities are elements of the unit interval [0,1]. The greater the value, the stronger the argument, or the more relevant an attack, or the more similar the pair of arguments.

Definition 1 (Similarity Measure) A similarity measure on a set X ⊆ f U2 is a function s : X × X → [0, 1] such that:

• ∀a ∈ X, s(a, a) = 1, • ∀a, b ∈ X, s(a, b) = s(b, a).
The first condition states that every argument is fully similar to itself and the second states that similarity is a symmetric notion.

Definition 2 (AF) An argumentation framework (AF) is a tuple G = A , w, R, σ , s , where

• A ⊆ f U • w : A → [0, 1] • R ⊆ A × A • σ : R → [0, 1] • s : A × A → [0, 1]
For a, b ∈ A , w(a) denotes the initial weight of a, s(a, b) is the degree of similarity between a and b, (a, b) ∈ R means a attacks b, a is called attacker of b, σ (a, b) is the degree of relevance of the attack, and Att(a) denotes the set of all attackers of a. Finally, the notation s ≡ 0 denotes that there are no similarities between arguments.

In [START_REF] Cayrol | Graduality in Argumentation[END_REF], the authors introduced for the first time gradual semantics, i.e, formal methods that evaluate strengths of arguments. Formally, they are functions that assign to every argument in an argumentation framework a value from an ordered scale. Examples of such semantics are h-Categorizer [START_REF] Besnard | A logic-based theory of deductive arguments[END_REF], Trust-based semantics [START_REF] Da | Changing One's Mind: Erase or Rewind?[END_REF], (DF)-Quad [START_REF] Baroni | Automatic evaluation of design alternatives with quantitative argumentation[END_REF][START_REF] Rago | Discontinuity-Free Decision Support with Quantitative Argumentation Debates[END_REF] and those proposed in [START_REF] Amgoud | Acceptability Semantics for Weighted Argumentation Frameworks[END_REF].

In [START_REF] Amgoud | Gradual Semantics Accounting for Varied-Strength Attacks[END_REF], the authors studied argumentation frameworks of the form A , w, R, σ , s ≡ 0 , and have shown that a gradual semantics is defined using three functions. In order to better motivate those functions, let us consider the graph depicted below and focus on the argument a: In order to assess the strength of a, a gradual semantics proceeds in three steps:

1. To assess the strength of every attack (b i , a). The idea is to combine the strength of the attacker b i with the relevance degree of the attack σ (b i , a). This is done by a function h. Since b 1 , b 2 are not attacked, assume a semantics that keeps their initial weights, i.e., the strength of b 1 is 0.4 and the strength of b 2 is 0.6. Hence,

α 1 = h(0.4, σ (b 1 , a)) = h(0.4, 0.1) and α 2 = h(0.6, σ (b 2 , a)) = h(0.6, 0.5)
, where α i represents the strength of the attack (b i , a). 2. To assess the strength of the group of attacks on a. This is done by an aggregation function g, hence δ = g(α 1 , α 2 ). 3. To evaluate the impact of the two attacks on the initial weight of a. This is done by a function f, hence λ = f(w(a), δ ) = f(0.9, δ ). This function returns the strengths of arguments, thus the strength of a is λ .

The tuple M = f, g, h of the three functions is called in [START_REF] Amgoud | Gradual Semantics Accounting for Varied-Strength Attacks[END_REF] an evaluation method of a gradual semantics. An important question is: how a semantics should consider similarities when they are available and at which step of the above process? As discussed in [START_REF] Amgoud | Gradual Semantics Accounting for Similarity between Arguments[END_REF], a gradual semantics should take into account similarities between the attackers of an argument. In the above graph, assume that b 1 and b 2 are fully similar, i.e., s(b

1 , b 2 ) = 1.
Note that b 1 is redundant wrt b 2 , and thus considering both α 1 and α 2 will lead to an inaccurate evaluation of the argument a. Indeed, a will loose a lot of weight due to redundant information. Hence, before computing the strength of the group of attacks using the aggregation function g, we introduce an adjustment function n that readjusts the two values considering the similarity between b 1 and b 2 . This operation results in a decrease in the strength of the group of attacks. For instance, this function may keep the greatest value among α 1 and α 2 and sets the other to 0. Assume that α 1 > α 2 , then n(α 1 , α 2 ) = (α 1 , 0) and the strength of the group would be g(α 1 , 0). Note that such function ignores the attack from b 2 . In the next section, we provide a novel adjustment function that distributes the burden of redundancy among the two attackers. Before that, let us first extend the definition of evaluation method.

Definition 3 (EM) An evaluation method (EM) is a tuple M = f, g, h, n such that:

• f : [0, 1] × Range(g) 3 → [0, 1], • g : +∞ k=0 [0, 1] k → [0, +∞[, • h : [0, 1] × [0, 1] → [0, 1], • n : +∞ k=0 ([0, 1] × U ) k → [0, 1] k .
Note also that the function n takes as input two kinds of input: k numerical values and k arguments. The reason is that the same values may not be adjusted in the same way depending on the similarity between the arguments to which they refer.

Let us now define formally a gradual semantics that deals with similarity.

Definition 4 (Gradual Semantics) A gradual semantics S based on an evaluation method M = f, g, h, n is a function assigning to every AF,

G = A , w, R, σ , s , a weighting Deg S G : A → [0, 1] such that for every a ∈ A , Deg S G (a) = f w(a), g n (h(Deg S G (b 1 ), σ (b 1 , a)), b 1 ), • • • , (h(Deg S G (b k ), σ (b k , a)), b k ) , where {b 1 , • • • , b k } = Att(a). Deg S G (a)
is the strength of a.

It has been shown in [START_REF] Amgoud | Gradual Semantics Accounting for Varied-Strength Attacks[END_REF] that most of existing gradual semantics are instances of the above definition. An example is weighted h-Categorizer defined as follows:

Definition 5 (Weighted h-Categorizer Gradual Semantics) Weighted h-categorizer se- mantics is a function S wh transforming any AF, G = A , w, R, σ , s ≡ 0 , into a weighting Deg S wh G : A → [0, 1] such that for every a ∈ A , Deg S wh G (a) =    w(a) iff Att(a) = / 0 w(a) 1+ ∑ b∈Att(a) Deg S wh G (b)×σ (b,a)
else

The above semantics uses an evaluation method M = f, g, h such that:

f frac (x 1 , x 2 ) = x 1 1+x 2 g sum (x 1 , • • • , x n ) = ∑ n i=1 x i h prod (x 1 , x 2 ) = x 1 × x 2

A Novel Adjustment Function

Throughout this section, we assume an arbitrary but fixed argumentation framework A , w, R, σ , s and an arbitrary gradual semantics for evaluating its arguments. In what follows, we focus on the adjustment function of this semantics. We define this function, denoted by n wh . The new function is nothing else than weighted h-Categorizer that is used in the literature as a gradual semantics for evaluating the strength of arguments. An important question is: why a gradual semantics can itself play the role of an adjustment function? The answer lies in the great analogy between the two: both aim at reducing strengths of arguments according to a set of other arguments. Another key question is: on which argumentation framework is the semantics applied? Recall that an input of any adjustment function is a tuple of the form

((x 1 , b 1 ), • • • , (x n , b n )), with x i ∈ [0, 1 
] is given by the gradual semantics that is used and b i ∈ A . For every such input, we create an argumentation framework A , w , R , σ , s such that:

• A = {b 1 , • • • , b n } • For every b i ∈ A , w (b i ) = x i • R = (A × A ) \ {(b i , b i ) | i = 1, • • • , n} • For every (b i , b j ) ∈ R , σ ((b i , b j )) = s(b i , b j ) • s ≡ 0
The framework contains thus the set of attackers whose strengths should be readjusted, the initial weight of every argument is its value assigned by the semantics, the attack relation is symmetric and the weight of every attack is the similarity degree between its target and its source. Weighted h-Categorizer is applied to this framework and the values assigned to arguments correspond to their readjusted values.

Definition 6 (n wh ) Let G = A , w, R, σ , s be an AF, x 1 , • • • , x k ∈ [0, 1], and b 1 , • • • , b k ∈ A .
We define the adjustment function n wh as follows:

n wh ((x 1 , b 1 ), • • • , (x k , b k )) = (Deg S wh G (b 1 ), • • • , Deg S wh G (b k ))
where G = A , w , R , σ , s , such that:

• A = {b 1 , • • • , b k }, • w (b 1 ) = x 1 , • • • , w (b k ) = x k , • R = {(b 1 , b 2 ), • • • , (b 1 , b k ), • • • , (b k , b 1 ), • • • , (b k , b k-1 )}, • For every (b i , b j ) ∈ R , σ ((b i , b j )) = s(b i , b j ), • s ≡ 0.
Hence, the strength x i of every attacker b i will be readjusted to Deg S wh G (b i ), where 

Deg S wh G (b i ) = x i 1+ ∑ j∈{1,••• ,n}\{i}

Properties

This section shows that the function n wh satisfies reasonable properties. The first result shows that n wh can be used by a gradual semantics. Namely, the gradual semantics that is based on the evaluation method f frac , g sum , h prod , n wh assigns a unique strength to every argument.

Theorem 1 There exists a unique semantics that is based on the evaluation method f frac , g sum , h prod , n wh .

Proof In [START_REF] Amgoud | Gradual Semantics Accounting for Varied-Strength Attacks[END_REF] the authors show that the weighted h-categorizer semantics can be defined by the evaluation method f frac , g sum , h prod and it has a unique semantics, i.e. it converge. More, the adjustment function n wh is the weighted h-categorizer semantics which modifies each weight of argument in its degree. Apply the adjustment function n wh before the aggregation function g sum changes the value of the arguments. This is equivalent to using f frac , g sum , h prod on a different graph. Therefore f frac , g sum , h prod , n wh converge and has a unique semantics.

As expected from an adjustment function, the next property states that n wh can only reduce the value of an argument.

Proposition 1 For any AF,

G = A , w, R, σ , s , for all a 1 , • • • , a n ∈ A , for all x 1 , • • • , x n ∈ [0, 1], if n wh ((x 1 , a 1 ), • • • , (x n , a n )) = (x 1 , • • • , x n ), then ∀i ∈ {1, • • • , n}, x i ≤ x i . Proof Let G = A , w, R, σ , s be an AF, a 1 , • • • , a n ∈ A and x 1 , • • • , x n ∈ [0, 1] such that n wh ((x 1 , a 1 ), • • • , (x n , a n )) = (Deg(a 1 ), • • • , Deg(a n )). For any i ∈ {1, • • • , n}, from Defini- tion 6, Deg(a i ) = x i 1+X such that X ∈ [0, +∞[ therefore Deg(a i ) ≤ x i .
When all the arguments are dissimilar, the adjustment function does not alter the values of the arguments.

Proposition 2 For any AF,

G = A , w, R, σ , s , for all a 1 , • • • , a n ∈ A , for all x 1 , • • • , x n ∈ [0, 1], if ∀i, j ∈ {1, • • • , n}, i = j, s(a i , a j ) = 0, then n wh ((x 1 , a 1 ), • • • , (x n , a n )) = (x 1 , • • • , x n ). Proof Let G = A , w, R, σ , s be an AF, a 1 , • • • , a n ∈ A and x 1 , • • • , x n ∈ [0, 1] such that ∀i, j ∈ {1, • • • , n}, i = j, s(a i , a j ) = 0. From Definition 6, n wh ((x 1 , a 1 ), • • • , (x n , a n )) = (Deg(a 1 ), • • • , Deg(a n )) such that Deg(a 1 ) = x 1 1+0 , • • • , Deg(a n ) = x n 1+0 .
We show next that increasing the degree of similarity of a pair of arguments leads to the diminution of values of both arguments.

Proposition 3 For any AF,

G = A , w, R, σ , s , for all a 1 , a 2 , b 1 , b 2 ∈ A and for any x 1 , x 2 ∈ ]0, 1], if • n wh ((x 1 , a 1 ), (x 2 , a 2 )) = (x 1 , x 2 ), • n wh ((x 1 , b 1 ), (x 2 , b 2 )) = (x 1 , x 2 ), • s(b 1 , b 2 ) > s(a 1 , a 2 ), then x 1 > x 1 and x 2 > x 2 . Proof Let G = A , w, R, σ , s be an AF, a 1 , a 2 , b 1 , b 2 ∈ A and x 1 , x 2 ∈]0, 1] such that • n wh ((x 1 , a 1 ), (x 2 , a 2 )) = (Deg(a 1 ), Deg(a 2 )), • s(b 1 , b 2 ) = s(a 1 , a 2 ) + α such that α ∈]0, 1] and n wh ((x 1 , b 1 ), (x 2 , b 2 )) = (Deg(b 1 ), Deg(b 2 )).
From the definition 6,

Deg(a 1 ) = x 1 1 + Deg(a 2 ) × s(a 1 , a 2 ) Deg(a 2 ) = x 2 1 + Deg(a 1 ) × s(a 1 , a 2 ) Deg(b 1 ) = x 1 1 + Deg(b 2 ) × (s(a 1 , a 2 ) + α) Deg(b 2 ) = x 2 1 + Deg(b 1 ) × (s(a 1 , a 2 ) + α)
Let us develop the equation of Deg(a 1 ):

Deg(a 1 ) = x 1 1 + s(a 1 , a 2 ) × x 2 1+Deg(a 1 )×s(a 1 ,a 2 ) ⇐⇒ Deg(a 1 ) = x 1 1+s(a 1 ,a 2 )×Deg(a 1 )+s(a 1 ,a 2 )×x 2 1+s(a 1 ,a 2 )×Deg(a 1 )
⇐⇒ Deg(a 1 ) =

x 1 + s(a 1 , a 2 ) × (Deg(a 1 ) × x 1 ) 1 + s(a 1 , a 2 ) × (Deg(a 1 ) + x 2 )
In a same way we can develop the equation of Deg(b 1 ):

Deg(b 1 ) = x 1 + (s(a 1 , a 2 ) + α) × (Deg(b 1 ) × x 1 ) 1 + (s(a 1 , a 2 ) + α) × (Deg(b 1 ) + x 2 ) . Given that x 1 , x 2 ∈]0, 1] then α × Deg(b 1 ) × x 1 < α × (Deg(b 1 ) + x 2 )
. Therefore Deg(b 1 ) < Deg(a 1 ). We can do the same reasoning with a 2 and b 2 and we obtain that Deg(b 2 ) < Deg(a 2 ).

When an argument is dissimilar to all other arguments, then we show that if its initial value is 0, then it will not have any impact on the readjusted values of the other arguments. This property is violated by one of the adjustment functions defined in [START_REF] Amgoud | Gradual Semantics Accounting for Similarity between Arguments[END_REF] (see the related work section).

Proposition 4 For any AF,

G = A , w, R, σ , s , for all a 1 , • • • , a n , b ∈ A , for all x 1 , • • • , x n , y ∈ [0, 1], if • ∀i ∈ {1, • • • , n}, s(a i , b) = 0, • y = 0, then n wh ((x 1 , a 1 ), • • • , (x n , a n ), (y, b)) = (n wh ((x 1 , a 1 ), • • • , (x n , a n )), 0).
More strongly, we show that an argument having an initial value of 0 and for any similarity with other arguments, this arguments doesn't impact the readjusted values of the other arguments.

Proposition 5 For any AF, G = A , w, R, σ , s , for all a 1 , • • • , a n , b ∈ A , for all x 1 , • • • , x n , y ∈ [0, 1], if • y = 0, then n wh ((x 1 , a 1 ), • • • , (x n , a n ), (y, b)) = (n wh ((x 1 , a 1 ), • • • , (x n , a n )), 0). Proof Let G = A , w, R, σ , s be an AF, a 1 , • • • , a n , b 1 ∈ A and x 1 , • • • , x n , y ∈ [0, 1] such that • y = 0.
From Definition 6 we have n wh ((x 1 , a 1 ),

• • • , (x n , a n )) = (Deg 1 (a 1 ), • • • , Deg 1 (a n )) = Deg 1 S wh G , where Deg 1 S wh G =    Deg 1 (a 1 ) = x 1 1+Deg 1 (a 2 )×s(a 1 ,a 2 )+•••+Deg 1 (a n )×s(a 1 ,a n ) • • • Deg 1 (a n ) = x n 1+Deg 1 (a 1 )×s(a n ,a 1 )+•••+Deg 1 (a n-1 )×s(a n ,a n-1 )
and n wh ((

x 1 , a 1 ), • • • , (x n , a n ), (y, b 1 )) = (Deg 2 (a 1 ), • • • , Deg 2 (a n )) = Deg 2 S wh G , where Deg 2 S wh G =          Deg 2 (a 1 ) = x 1 1+Deg 2 (a 2 )×s(a 1 ,a 2 )+•••+Deg 2 (a n )×s(a 1 ,a n )+Deg 2 (b 1 )×s(a 1 ,b 1 ) • • • Deg 2 (a n ) = x n 1+Deg 2 (a 1 )×s(a n ,a 1 )+•••+Deg 2 (a n-1 )×s(a n ,a n-1 )+Deg 2 (b 1 )×s(a n ,b 1 ) Deg 2 (b 1 ) = y 1 1+Deg 2 (a 1 )×s(b 1 ,a 1 )+•••+Deg 2 (a n )×s(b 1 ,a n )
Given that y = 0, Deg 2 (b 1 ) = 0, so for every i ∈ {1, • • • , n}, Deg 1 (a i ) = Deg 2 (a i ).

The function n wh cannot readjusts a positive value to 0. This means that it does not ignore any attacker when similarities are available. It rather distributes the burden of redundancy among attackers.

Proposition 6 Let G = A , w, R, σ , s be an AF, a 1 , • • • , a n ∈ A , x 1 , • • • , x n ∈ [0, 1] and n wh ((x 1 , a 1 ), • • • , (x n , a n )) = (x 1 , • • • , x n ). For any i ∈ {1, • • • , n}, if x i > 0, then x i > 0. Proof Let G = A , w, R, σ , s be an AF, a 1 , • • • , a n ∈ A , x 1 , • • • , x n ∈ [0, 1] and n wh ((x 1 , a 1 ), • • • , (x n , a n )) = (Deg(a 1 ), • • • , Deg(a n )). For any i ∈ {1, • • • , n}, from Def- inition 6, Deg(a i ) = x i
1+X such that X ∈ [0, +∞[ therefore if x i > 0, then Deg(a i ) > 0.

Related Work

In [START_REF] Amgoud | Gradual Semantics Accounting for Similarity between Arguments[END_REF], the authors proposed three gradual semantics dealing with similarity in argumentation frameworks that are free of weights on attacks. We are interested in comparing the adjustment functions, hence the lack of function h is not a problem. However, from the three gradual semantics, one of them (Grouping weighted h-categorizer -GHbs) has not an independent adjustment function, that means this gradual semantics mixed the aggregation function (g) with the adjustment function (n). That is why we will not compare this method with our own. The first semantics that we will compare is the Extended weighted h-Categorizer (EHbs) which uses a similarity measure between set of arguments. The principle of its adjustment function used consists in two steps:

1. ordering arguments from the strongest to the weakest ones (depending on their strengths), 2. then after permutation, from each argument the function keeps only the proportion of novelty according to the previous arguments already adjusted.

As described in the background section, there exist different strategies to distribute the similarity. In this function, the similarity is applied on sub-set of arguments according to its rank in the permutation. The first argument of this permutation will for instance keep all its initial weight. Another strategy can be to distribute the diminution on both arguments as done by our n wh function (proposition 3). These different strategies of adjustment are relevant for some aggregation functions g and not for others. For instance, when g is the aggregation function g max , i.e. returning the maximal value of a set; distributing redundancy will make a significant difference in the evaluation. Moreover, it can be noted that the way to ordering the attackers is not determinative, i.e. the constraint producing the ranking (only by degree) is not always unique (there may be ties) and these different rankings may produce different adjustments. For instance, if 3 arguments a, b, c have the same degree x but not the same similarity between them then the ordering will change the adjustment.

The second semantics that we will compare is the Readjustment weighted h-Categorizer (RHbs) which uses a binary similarity measure like our semantics. Let us introduce its adjustment function named Readjusted score. This function is based on different averages. We can describe its process in two operations to adjust the degree of an argument a:

1. for each other arguments x, it compute an average adjusted score α between x and a, 2. the final adjusted degree of a is the average of all the average adjusted score α.

We denote by avg the average operator. Formally the definition is the following:

Definition 7 (n rs ) Let a 1 , • • • , a k ∈ U and x 1 , • • • , x k ∈ [0, 1]. n rs ((x 1 , a 1 ), • • • , (x k , a k )) = avg x i ∈{x 1 ,••• ,x k }\{x 1 } avg(x 1 , x i ) × (2 -s(a 1 , a i )) 2 , • • • , avg x i ∈{x 1 ,••• ,x k }\{x k } avg(x k , x i ) × (2 -s(a k , a i )) 2 .
n rs () = () and n rs ((x 1 , a 1 )) = (x 1 ) if k = 1.

To compare n wh with n rs let's come back to the example 1. 

Conclusion

The paper extended the general framework for gradual semantics proposed in [START_REF] Amgoud | Gradual Semantics Accounting for Varied-Strength Attacks[END_REF]. The latter defines a gradual semantics with evaluation methods, which are tuples of three aggregation functions. In this paper, we relaxed the constraint that arguments are all dissimilar. We assumed thus the existence of a similarity measure on the set of arguments. We extended the definition of evaluation method by introducing a novel adjustment function. The latter is responsible for taking into account similarity. We also proposed an instance of such function, which is based on the weighted h-Categorizer. Note that the latter is used in the literature for a completely different reason, namely as a gradual semantics. We investigated the properties of the function, and have shown that it can safely be used by a semantics including h-Categorizer itself. This would mean that h-Categorizer can be used as an adjustment function of a semantics and as the semantics itself.

This work can be extended in different directions. One of them is to study adjustment functions more generally in evaluation methods. The objective would be to give the crucial properties of a reasonable adjustment function.

  Four arguments (b 1 , b 2 , b 3 , b 4 ) are given and they all attack an argument (a): • b 1 : decreasing the population implies lower carbon emissions, • b 2 : reducing the use of aircraft implies lower carbon emissions, • b 3 : reducing distant imports implies lower carbon emissions, • b 4 : increasing local trade implies lower carbon emissions.

G.Example 1 n

 1 (b j )×s(b j ,b i ) Let us illustrate the above definition on the graph below.Assume that b 1 and b 2 are fully similar (s(b 1 , b 2 ) = 1) and let us consider a semantics that satisfies the Maximality principle from[START_REF] Amgoud | Acceptability Semantics for Weighted Argumentation Frameworks[END_REF] according to which every non-attacked argument keeps its initial weight. Hence, the strength of b 1 is 0.4 and the strength of b 2 is 0.6. Assume also that to deal with the weight of relevance we use h prod then the adjustment function takes thus the tuples (0.04, b 1 ), (0.3, b 2 ) as input. It builds the following argumentation frameworkwh evaluates the arguments of the above graph using weighted h-Categorizer. It is easy to check that Deg S wh G (b 1 ) = 0.03, Deg S wh G (b 2 ) = 0.29. So, n wh ((0.04, b 1 ), (0.3, b 2 )) = (0.03, 0.29) meaning that the readjusted value of b 1 and b 2 are respectively 0.03 and 0.29.

Example 1 (Proposition 7 Proposition 8

 178 Cont) As reminder, x 1 = 0.04, x 2 = 0.3 and s(b 1 , b 2 ) = 1. Then n rs ((x 1 , b 1 ), (x 2 , b 2 )) = (0.085, 0.085) while n wh ((x 1 , b 1 ), (x 2 , b 2 )) = (0.03, 0.29). Moreover, we propose the new adjustment function n wh , because the Readjusted score violate some intuitive proposition. The adjustment function n rs violates proposition 2, i.e. it does alter the values of the arguments when all the arguments are dissimilar.Proof Let a, b ∈ U such that s(a, b) = 0 and x a = 1, x b = 0.8, then n rs ((x a , a), (x b , b)) = (0.9, 0.9). The adjustment function n rs violates proposition 4, i.e. an argument dissimilar to all other and whose its initial value is 0, can have an impact on the readjusted values of the other arguments. In addition, using the aggregation function g sum there exist a1 , • • • , a n , b ∈ U and x 1 , • • • , x n , y ∈ [0, 1] such that: • ∀i ∈ {1, • • • , n}, s(a i , b) = 0, • y = 0, • g sum (n rs ((x 1 , a 1 ), • • • , (x n , a n ))) < g sum (n rs ((x 1 , a 1 ), • • • , (x n , a n ), (y, b))).This means that adding an attacker dissimilar to all other and whose its initial value is 0, can increase the sum of readjusted values of the set of attackers.ProofLet a, b, c ∈ U such that s(a, b) = 0.5, s(a, c) = 0, s(b, c) = 0 and x a = 1, x b = 0.8, x c = 0 then n rs ((x a , a), (x b , b)) = (0.675, 0.675) and n rs ((x a , a), (x b , b), (x c , c)) = (0.5875, 0.5375, 0.45). Moreover, we have that 0.675 + 0.675 = 1.35 < 1.575 = 0.5875 + 0.5375 + 0.45.

Corresponding Author: victor.david@irit.fr

X ⊆ f U means X is a finite subset of U .

Range(g) denotes the co-domain of g