
HAL Id: hal-03018398
https://hal.science/hal-03018398

Submitted on 22 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Adjustment Function For Dealing With Similarities
(COMMA 2020)

Leila Amgoud, Victor David

To cite this version:
Leila Amgoud, Victor David. An Adjustment Function For Dealing With Similarities (COMMA 2020).
8th International Conference on Computational Models of Argument - COMMA 2020, University of
Perugia, Italy, Sep 2020, Perugia, Italy. pp.1-13. �hal-03018398�

https://hal.science/hal-03018398
https://hal.archives-ouvertes.fr


An Adjustment Function For Dealing
With Similarities

Leila AMGOUD a and Victor DAVID b,1

a CNRS - IRIT, France
b Université Paul Sabatier - IRIT, France

Abstract. The paper investigates gradual semantics that are able to deal with simi-
larity between arguments. Following the approach that defines semantics with eval-
uation methods, i.e., a couple of aggregation functions, the paper argues for the
need of a novel function, called adjustment function. The latter is responsible for
taking into account similarity when it is available. It aims at reducing the strengths
of attackers according to the possible similarities between them. The reason is that
similarity is seen as redundancy that should be avoided, otherwise a semantics may
return inaccurate evaluations of arguments. The paper proposes a novel adjustment
function that is based on the well-known weighted h-Categorizer, and investigates
its formal properties.
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1. Introduction

Argumentation is a reasoning approach, which justifies claims by arguments. It starts by
generating arguments and their links (forming an argumentation graph), then evaluates
the arguments by so-called semantics, and finally identifies winning claims. An argu-
mentation graph can be enriched with various additional information like weights on ar-
guments, which can represent votes [1] or certainty degrees [2], weights on links between
arguments, which can represent relevance [3,4] or again votes of users [5]. A similarity
measure assessing how alike are pairs of arguments may also be provided [6,7].

Existence of similarity between arguments is inevitable in practice, as arguments
generally share information. Hence, developing semantics that are able to take into ac-
count similarity is crucial for discarding any redundancy that may lead to inaccurate
evaluation of arguments. This is particularly the case for gradual semantics and more
precisely those that satisfy the Counting principle from [15], which states that every alive
attacker affects its target. Consequently, the authors in [8] proposed some reasonable
properties on how a gradual semantics should deal with similarity. Furthermore, they
proposed three gradual semantics that deal with similarity. They all extend h-Categorizer
[9] but differ in the way they remove redundancy that is due to similarity. However, the
three approaches suffer from weaknesses as described in the related work section.

In this paper, we start first by extending the general framework for gradual semantics
that was proposed in [10]. That framework defines a gradual semantics by an evaluation
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method, which is a tuple of three aggregation functions. This approach makes clear the
different operations done by a semantics. We start by relaxing the strong constraint that
all arguments are dissimilar. Indeed, we assume availability of similarities between argu-
ments. Then, we extend the definition of evaluation method by introducing a fourth func-
tion, called adjustment function. It is responsible for reducing the strengths of attackers
of an argument according to the similarity between them. Let us consider the following
example of argumentation graph on the reduction of carbon emissions. Four arguments
(b1,b2,b3,b4) are given and they all attack an argument (a):

• b1: decreasing the population implies lower carbon emissions,
• b2: reducing the use of aircraft implies lower carbon emissions,
• b3: reducing distant imports implies lower carbon emissions,
• b4: increasing local trade implies lower carbon emissions.

We can graphically represent this debate as follows:

b1 b2 b3 b4

a

In this example we can observe that there are some similarities between the arguments
bi. The more similar ones are b3 and b4 as they are about the same idea with dual writ-
ing. The argument b2 has some similarity with b3 and b4 because reducing distant im-
ports implies reducing the use of aircraft but not only (freighters, trains, trucks). And
for the argument b1 even if indirectly population touch everything, we can assume that
this premise based on demography is different from the others (talking about transport or
economy). Note that it is important to avoid these redundancies when evaluating the ar-
gument a. For that purpose, a reasonable semantics would start by evaluating the strength
of each of the attackers bi, then readjust those values by taking into account similarity.
For instance, if a semantics assigns the value 1 to both b3 and b4 because they are not
attacked, at the second step it may for instance decide to keep the whole strength of b3
and set the value of b4 to 0 due to the full similarity between the two arguments.

Another contribution of the paper consists of proposing a novel readjustment func-
tion. The latter distributes the burden of redundancy among attackers. In the previous ex-
ample, the new function will decrease the value of both b3,b4. Furthermore, the function
is based on the well-known weighted h-Categorizer that was proposed in the literature
for a completely different purpose. Indeed, it is used as a gradual semantics for evaluat-
ing arguments. We investigate the properties of the novel function and compare it with
the existing ones.

The paper is organised as follows: Section 2 introduces the argumentation frame-
work, we are interested and extend the framework of gradual semantics proposed in [10].
Section 3 presents the novel readjustment function, and Section 4 investigates its proper-
ties. Section 5 is devoted to related work and the last section concludes.



2. Background

Throughout the paper, we denote by U the universe of all possible arguments, and con-
sider argumentation frameworks as tuples made of a non-empty and finite subset of U .
Every argument has an initial weight that may represent different information (certainty
degree of the argument’s premises, credibility degree of its source, and so on). Argu-
ments can attack each other and every attack is assigned a weight representing for in-
stance its relevance as in case of analogical arguments [3]. We also assume availability
of a similarity measure that assesses how alike are pairs of arguments.

For the sake of simplicity, all weights and similarities are elements of the unit inter-
val [0,1]. The greater the value, the stronger the argument, or the more relevant an attack,
or the more similar the pair of arguments.

Definition 1 (Similarity Measure) A similarity measure on a set X ⊆ f U 2 is a function
s : X×X → [0,1] such that:

• ∀a ∈ X, s(a,a) = 1,
• ∀a,b ∈ X, s(a,b) = s(b,a).

The first condition states that every argument is fully similar to itself and the second
states that similarity is a symmetric notion.

Definition 2 (AF) An argumentation framework (AF) is a tuple G = 〈A ,w,R,σ ,s〉,
where

• A ⊆ f U
• w : A → [0,1]
• R ⊆A ×A
• σ : R→ [0,1]
• s : A ×A → [0,1]

For a,b ∈ A , w(a) denotes the initial weight of a, s(a,b) is the degree of similarity
between a and b, (a,b) ∈R means a attacks b, a is called attacker of b, σ(a,b) is the
degree of relevance of the attack, and Att(a) denotes the set of all attackers of a. Finally,
the notation s≡ 0 denotes that there are no similarities between arguments.

In [11], the authors introduced for the first time gradual semantics, i.e, formal meth-
ods that evaluate strengths of arguments. Formally, they are functions that assign to ev-
ery argument in an argumentation framework a value from an ordered scale. Examples
of such semantics are h-Categorizer [9], Trust-based semantics [12], (DF)-Quad [13,14]
and those proposed in [15].

In [10], the authors studied argumentation frameworks of the form 〈A ,w,R,σ ,s≡
0〉, and have shown that a gradual semantics is defined using three functions. In order to
better motivate those functions, let us consider the graph depicted below and focus on
the argument a:

2X ⊆ f U means X is a finite subset of U .
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In order to assess the strength of a, a gradual semantics proceeds in three steps:

1. To assess the strength of every attack (bi,a). The idea is to combine the strength
of the attacker bi with the relevance degree of the attack σ(bi,a). This is done by
a function h. Since b1,b2 are not attacked, assume a semantics that keeps their ini-
tial weights, i.e., the strength of b1 is 0.4 and the strength of b2 is 0.6. Hence, α1 =
h(0.4,σ(b1,a)) = h(0.4,0.1) and α2 = h(0.6,σ(b2,a)) = h(0.6,0.5), where αi
represents the strength of the attack (bi,a).

2. To assess the strength of the group of attacks on a. This is done by an aggregation
function g, hence δ = g(α1,α2).

3. To evaluate the impact of the two attacks on the initial weight of a. This is done by
a function f, hence λ = f(w(a),δ ) = f(0.9,δ ). This function returns the strengths
of arguments, thus the strength of a is λ .

The tuple M = 〈f,g,h〉 of the three functions is called in [10] an evaluation method of
a gradual semantics. An important question is: how a semantics should consider simi-
larities when they are available and at which step of the above process? As discussed in
[8], a gradual semantics should take into account similarities between the attackers of an
argument. In the above graph, assume that b1 and b2 are fully similar, i.e., s(b1,b2) = 1.
Note that b1 is redundant wrt b2, and thus considering both α1 and α2 will lead to an inac-
curate evaluation of the argument a. Indeed, a will loose a lot of weight due to redundant
information. Hence, before computing the strength of the group of attacks using the ag-
gregation function g, we introduce an adjustment function n that readjusts the two values
considering the similarity between b1 and b2. This operation results in a decrease in the
strength of the group of attacks. For instance, this function may keep the greatest value
among α1 and α2 and sets the other to 0. Assume that α1 > α2, then n(α1,α2) = (α1,0)
and the strength of the group would be g(α1,0). Note that such function ignores the at-
tack from b2. In the next section, we provide a novel adjustment function that distributes
the burden of redundancy among the two attackers. Before that, let us first extend the
definition of evaluation method.

Definition 3 (EM) An evaluation method (EM) is a tuple M = 〈f,g,h,n〉 such that:

• f : [0,1]×Range(g) 3 → [0,1],
• g :

⋃+∞

k=0[0,1]
k→ [0,+∞[,

• h : [0,1]× [0,1]→ [0,1],
• n :

⋃+∞

k=0 ([0,1]×U )k→ [0,1]k .

Note also that the function n takes as input two kinds of input: k numerical values
and k arguments. The reason is that the same values may not be adjusted in the same way
depending on the similarity between the arguments to which they refer.

Let us now define formally a gradual semantics that deals with similarity.

3Range(g) denotes the co-domain of g



Definition 4 (Gradual Semantics) A gradual semantics S based on an evaluation
method M = 〈f,g,h,n〉 is a function assigning to every AF, G = 〈A ,w,R,σ ,s〉, a
weighting DegS

G : A → [0,1] such that for every a ∈A , DegS
G (a) =

f

(
w(a),g

(
n
(
(h(DegS

G (b1),σ(b1,a)),b1), · · · ,(h(DegS
G (bk),σ(bk,a)),bk)

)))
,

where {b1, · · · ,bk}= Att(a). DegS
G (a) is the strength of a.

It has been shown in [10] that most of existing gradual semantics are instances of
the above definition. An example is weighted h-Categorizer defined as follows:

Definition 5 (Weighted h-Categorizer Gradual Semantics) Weighted h-categorizer se-
mantics is a function Swh transforming any AF, G= 〈A ,w,R,σ ,s≡ 0〉, into a weighting
DegSwh

G : A → [0,1] such that for every a ∈A ,

DegSwh
G (a) =


w(a) iff Att(a) = /0

w(a)

1+ ∑
b∈Att(a)

Deg
Swh
G (b)×σ(b,a)

else

The above semantics uses an evaluation method M = 〈f,g,h〉 such that:

ffrac(x1,x2) =
x1

1+x2
gsum(x1, · · · ,xn) = ∑

n
i=1 xi hprod(x1,x2) = x1× x2

3. A Novel Adjustment Function

Throughout this section, we assume an arbitrary but fixed argumentation framework
〈A ,w,R,σ ,s〉 and an arbitrary gradual semantics for evaluating its arguments. In what
follows, we focus on the adjustment function of this semantics. We define this function,
denoted by nwh. The new function is nothing else than weighted h-Categorizer that is
used in the literature as a gradual semantics for evaluating the strength of arguments. An
important question is: why a gradual semantics can itself play the role of an adjustment
function? The answer lies in the great analogy between the two: both aim at reducing
strengths of arguments according to a set of other arguments. Another key question is:
on which argumentation framework is the semantics applied? Recall that an input of any
adjustment function is a tuple of the form ((x1,b1), · · · ,(xn,bn)), with xi ∈ [0,1] is given
by the gradual semantics that is used and bi ∈ A . For every such input, we create an
argumentation framework 〈A ′,w′,R ′,σ ′,s′〉 such that:

• A ′ = {b1, · · · ,bn}
• For every bi ∈A ′, w′(bi) = xi
• R ′ = (A ′×A ′)\{(bi,bi) | i = 1, · · · ,n}
• For every (bi,b j) ∈R ′, σ ′((bi,b j)) = s(bi,b j)
• s′ ≡ 0



The framework contains thus the set of attackers whose strengths should be readjusted,
the initial weight of every argument is its value assigned by the semantics, the attack
relation is symmetric and the weight of every attack is the similarity degree between its
target and its source. Weighted h-Categorizer is applied to this framework and the values
assigned to arguments correspond to their readjusted values.

Definition 6 (nwh) Let G = 〈A ,w,R,σ ,s〉 be an AF, x1, · · · ,xk ∈ [0,1], and b1, · · · , bk ∈
A . We define the adjustment function nwh as follows:

nwh((x1,b1), · · · ,(xk,bk)) = (DegSwh

G′ (b1), · · · ,DegSwh

G′ (bk))

where G′ = 〈A ′,w′,R ′,σ ′,s′〉, such that:

• A ′ = {b1, · · · ,bk},
• w′(b1) = x1, · · · ,w′(bk) = xk,
• R ′ = {(b1,b2), · · · ,(b1,bk), · · · ,(bk,b1), · · · ,(bk,bk−1)},
• For every (bi,b j) ∈R ′, σ ′((bi,b j)) = s(bi,b j),
• s′ ≡ 0.

Hence, the strength xi of every attacker bi will be readjusted to DegSwh

G′ (bi), where

DegSwh

G′ (bi) =
xi

1+ ∑
j∈{1,··· ,n}\{i}

Deg
Swh
G′ (b j)×s(b j ,bi)

.

Example 1 Let us illustrate the above definition on the graph below.

b1

0.4

a
0.9

b2

0.6
0.1 0.5

Assume that b1 and b2 are fully similar (s(b1,b2) = 1) and let us consider a semantics
that satisfies the Maximality principle from [15] according to which every non-attacked
argument keeps its initial weight. Hence, the strength of b1 is 0.4 and the strength of b2
is 0.6. Assume also that to deal with the weight of relevance we use hprod then the adjust-
ment function takes thus the tuples (0.04,b1),(0.3,b2) as input. It builds the following
argumentation framework:

b1

0.04

b2

0.3
11

nwh evaluates the arguments of the above graph using weighted h-Categorizer. It is easy
to check that DegSwh

G′ (b1) = 0.03, DegSwh

G′ (b2) = 0.29. So, nwh((0.04,b1),(0.3,b2)) =
(0.03,0.29) meaning that the readjusted value of b1 and b2 are respectively 0.03 and
0.29.



4. Properties

This section shows that the function nwh satisfies reasonable properties. The first result
shows that nwh can be used by a gradual semantics. Namely, the gradual semantics that is
based on the evaluation method 〈ffrac,gsum,hprod,nwh〉 assigns a unique strength to every
argument.

Theorem 1 There exists a unique semantics that is based on the evaluation method
〈ffrac,gsum,hprod,nwh〉.

Proof In [10] the authors show that the weighted h-categorizer semantics can be defined
by the evaluation method 〈ffrac,gsum,hprod〉 and it has a unique semantics, i.e. it con-
verge. More, the adjustment function nwh is the weighted h-categorizer semantics which
modifies each weight of argument in its degree. Apply the adjustment function nwh before
the aggregation function gsum changes the value of the arguments. This is equivalent to
using 〈ffrac,gsum,hprod〉 on a different graph. Therefore 〈ffrac,gsum,hprod,nwh〉 converge
and has a unique semantics.

As expected from an adjustment function, the next property states that nwh can only
reduce the value of an argument.

Proposition 1 For any AF, G= 〈A ,w,R,σ ,s〉, for all a1, · · · ,an ∈A , for all x1, · · · ,xn ∈
[0,1], if nwh((x1,a1), · · · ,(xn,an)) = (x′1, · · · ,x′n), then ∀i ∈ {1, · · · ,n}, x′i ≤ xi.

Proof Let G = 〈A ,w,R,σ ,s〉 be an AF, a1, · · · ,an ∈A and x1, · · · ,xn ∈ [0,1] such that
nwh((x1,a1), · · · ,(xn,an)) = (Deg(a1), · · · ,Deg(an)). For any i∈ {1, · · · ,n}, from Defini-
tion 6, Deg(ai) =

xi
1+X such that X ∈ [0,+∞[ therefore Deg(ai)≤ xi.

When all the arguments are dissimilar, the adjustment function does not alter the
values of the arguments.

Proposition 2 For any AF, G= 〈A ,w,R,σ ,s〉, for all a1, · · · ,an ∈A , for all x1, · · · ,xn ∈
[0,1], if ∀i, j ∈ {1, · · · ,n}, i 6= j, s(ai,a j) = 0, then

nwh((x1,a1), · · · ,(xn,an)) = (x1, · · · ,xn).

Proof Let G = 〈A ,w,R,σ ,s〉 be an AF, a1, · · · ,an ∈A and x1, · · · ,xn ∈ [0,1] such that
∀i, j ∈ {1, · · · ,n}, i 6= j, s(ai,a j) = 0. From Definition 6, nwh((x1,a1), · · · ,(xn,an)) =
(Deg(a1), · · · ,Deg(an)) such that Deg(a1) =

x1
1+0 , · · · ,Deg(an) =

xn
1+0 .

We show next that increasing the degree of similarity of a pair of arguments leads to
the diminution of values of both arguments.

Proposition 3 For any AF, G = 〈A ,w,R,σ ,s〉, for all a1,a2,b1,b2 ∈ A and for any
x1,x2 ∈ ]0,1], if

• nwh((x1,a1),(x2,a2)) = (x′1,x
′
2),

• nwh((x1,b1),(x2,b2)) = (x′′1 ,x
′′
2),

• s(b1,b2)> s(a1,a2),



then x′1 > x′′1 and x′2 > x′′2 .

Proof Let G = 〈A ,w,R,σ ,s〉 be an AF, a1,a2,b1,b2 ∈A and x1,x2 ∈]0,1] such that

• nwh((x1,a1),(x2,a2)) = (Deg(a1),Deg(a2)),
• s(b1,b2) = s(a1,a2)+α such that α ∈]0,1] and nwh((x1,b1),(x2,b2)) =

(Deg(b1),Deg(b2)).

From the definition 6,

Deg(a1) =
x1

1+Deg(a2)× s(a1,a2)
Deg(a2) =

x2

1+Deg(a1)× s(a1,a2)

Deg(b1) =
x1

1+Deg(b2)× (s(a1,a2)+α)
Deg(b2) =

x2

1+Deg(b1)× (s(a1,a2)+α)

Let us develop the equation of Deg(a1):

Deg(a1) =
x1

1+ s(a1,a2)× x2
1+Deg(a1)×s(a1,a2)

⇐⇒ Deg(a1) =
x1

1+s(a1,a2)×Deg(a1)+s(a1,a2)×x2
1+s(a1,a2)×Deg(a1)

⇐⇒ Deg(a1) =
x1 + s(a1,a2)× (Deg(a1)× x1)

1+ s(a1,a2)× (Deg(a1)+ x2)

In a same way we can develop the equation of Deg(b1):

Deg(b1) =
x1 +(s(a1,a2)+α)× (Deg(b1)× x1)

1+(s(a1,a2)+α)× (Deg(b1)+ x2)
.

Given that x1,x2 ∈]0,1] then α × Deg(b1) × x1 < α × (Deg(b1) + x2). Therefore
Deg(b1) < Deg(a1). We can do the same reasoning with a2 and b2 and we obtain that
Deg(b2)< Deg(a2).

When an argument is dissimilar to all other arguments, then we show that if its
initial value is 0, then it will not have any impact on the readjusted values of the other
arguments. This property is violated by one of the adjustment functions defined in [8]
(see the related work section).

Proposition 4 For any AF, G = 〈A ,w,R,σ ,s〉, for all a1, · · · ,an,b ∈ A , for all
x1, · · · ,xn,y ∈ [0,1], if

• ∀i ∈ {1, · · · ,n}, s(ai,b) = 0,
• y = 0,

then nwh((x1,a1), · · · ,(xn,an),(y,b)) = (nwh((x1,a1), · · · ,(xn,an)),0).



More strongly, we show that an argument having an initial value of 0 and for any
similarity with other arguments, this arguments doesn’t impact the readjusted values of
the other arguments.

Proposition 5 For any AF, G = 〈A ,w,R,σ ,s〉, for all a1, · · · ,an,b ∈ A , for all
x1, · · · ,xn,y ∈ [0,1], if

• y = 0,

then nwh((x1,a1), · · · ,(xn,an),(y,b)) = (nwh((x1,a1), · · · ,(xn,an)),0).

Proof Let G = 〈A ,w,R,σ ,s〉 be an AF, a1, · · · ,an,b1 ∈A and x1, · · · ,xn,y∈ [0,1] such
that

• y = 0.

From Definition 6 we have nwh((x1,a1), · · · ,(xn,an)) = (Deg1(a1), · · · ,Deg1(an)) =

Deg1
Swh

G′ , where

Deg1
Swh

G′ =


Deg1(a1) =

x1
1+Deg1(a2)×s(a1,a2)+···+Deg1(an)×s(a1,an)

· · ·
Deg1(an) =

xn
1+Deg1(a1)×s(an,a1)+···+Deg1(an−1)×s(an,an−1)

and nwh((x1,a1), · · · ,(xn,an),(y,b1)) = (Deg2(a1), · · · ,Deg2(an)) = Deg2
Swh

G′ , where

Deg2
Swh

G′ =


Deg2(a1) =

x1
1+Deg2(a2)×s(a1,a2)+···+Deg2(an)×s(a1,an)+Deg2(b1)×s(a1,b1)

· · ·
Deg2(an) =

xn
1+Deg2(a1)×s(an,a1)+···+Deg2(an−1)×s(an,an−1)+Deg2(b1)×s(an,b1)

Deg2(b1) =
y1

1+Deg2(a1)×s(b1,a1)+···+Deg2(an)×s(b1,an)

Given that y = 0, Deg2(b1) = 0, so for every i ∈ {1, · · · ,n}, Deg1(ai) = Deg2(ai).

The function nwh cannot readjusts a positive value to 0. This means that it does not
ignore any attacker when similarities are available. It rather distributes the burden of
redundancy among attackers.

Proposition 6 Let G = 〈A ,w,R,σ ,s〉 be an AF, a1, · · · ,an ∈A , x1, · · · ,xn ∈ [0,1] and
nwh((x1,a1), · · · ,(xn,an)) = (x′1, · · · ,x′n). For any i ∈ {1, · · · ,n}, if xi > 0, then x′i > 0.

Proof Let G = 〈A ,w,R,σ ,s〉 be an AF, a1, · · · ,an ∈ A , x1, · · · ,xn ∈ [0,1] and
nwh((x1,a1), · · · ,(xn,an)) = (Deg(a1), · · · ,Deg(an)). For any i ∈ {1, · · · ,n}, from Def-
inition 6, Deg(ai) =

xi
1+X such that X ∈ [0,+∞[ therefore if xi > 0, then Deg(ai) > 0.

5. Related Work

In [8], the authors proposed three gradual semantics dealing with similarity in argumen-
tation frameworks that are free of weights on attacks. We are interested in comparing the



adjustment functions, hence the lack of function h is not a problem. However, from the
three gradual semantics, one of them (Grouping weighted h-categorizer - GHbs) has not
an independent adjustment function, that means this gradual semantics mixed the aggre-
gation function (g) with the adjustment function (n). That is why we will not compare
this method with our own.

The first semantics that we will compare is the Extended weighted h-Categorizer
(EHbs) which uses a similarity measure between set of arguments. The principle of its
adjustment function used consists in two steps:

1. ordering arguments from the strongest to the weakest ones (depending on their
strengths),

2. then after permutation, from each argument the function keeps only the propor-
tion of novelty according to the previous arguments already adjusted.

As described in the background section, there exist different strategies to distribute the
similarity. In this function, the similarity is applied on sub-set of arguments according to
its rank in the permutation. The first argument of this permutation will for instance keep
all its initial weight. Another strategy can be to distribute the diminution on both argu-
ments as done by our nwh function (proposition 3). These different strategies of adjust-
ment are relevant for some aggregation functions g and not for others. For instance, when
g is the aggregation function gmax, i.e. returning the maximal value of a set; distributing
redundancy will make a significant difference in the evaluation.

Moreover, it can be noted that the way to ordering the attackers is not determinative,
i.e. the constraint producing the ranking (only by degree) is not always unique (there may
be ties) and these different rankings may produce different adjustments. For instance, if
3 arguments a,b,c have the same degree x but not the same similarity between them then
the ordering will change the adjustment.

The second semantics that we will compare is the Readjustment weighted h-
Categorizer (RHbs) which uses a binary similarity measure like our semantics. Let us
introduce its adjustment function named Readjusted score. This function is based on dif-
ferent averages. We can describe its process in two operations to adjust the degree of an
argument a:

1. for each other arguments x, it compute an average adjusted score α between x
and a,

2. the final adjusted degree of a is the average of all the average adjusted score α .

We denote by avg the average operator. Formally the definition is the following:

Definition 7 (nrs) Let a1, · · · ,ak ∈U and x1, · · · ,xk ∈ [0,1]. nrs((x1,a1), · · · ,(xk,ak))=

(
avg

xi∈{x1,··· ,xk}\{x1}

(
avg(x1,xi)× (2− s(a1,ai))

2

)
, · · · ,

avg
xi∈{x1,··· ,xk}\{xk}

(
avg(xk,xi)× (2− s(ak,ai))

2

))
.

nrs() = () and nrs((x1,a1)) = (x1) if k = 1.



To compare nwh with nrs let’s come back to the example 1.

Example 1 (Cont) As reminder, x1 = 0.04, x2 = 0.3 and s(b1,b2) = 1.
Then nrs((x1,b1),(x2,b2)) = (0.085,0.085) while nwh((x1,b1),(x2,b2)) = (0.03,0.29).

Moreover, we propose the new adjustment function nwh, because the Readjusted
score violate some intuitive proposition.

Proposition 7 The adjustment function nrs violates proposition 2, i.e. it does alter the
values of the arguments when all the arguments are dissimilar.

Proof Let a,b∈U such that s(a,b) = 0 and xa = 1, xb = 0.8, then nrs((xa,a),(xb,b)) =
(0.9,0.9).

Proposition 8 The adjustment function nrs violates proposition 4, i.e. an argument dis-
similar to all other and whose its initial value is 0, can have an impact on the readjusted
values of the other arguments.
In addition, using the aggregation function gsum there exist a1, · · · ,an,b ∈ U and
x1, · · · ,xn,y ∈ [0,1] such that:

• ∀i ∈ {1, · · · ,n}, s(ai,b) = 0,
• y = 0,
• gsum(nrs((x1,a1), · · · ,(xn,an)))< gsum(nrs((x1,a1), · · · ,(xn,an),(y,b))).

This means that adding an attacker dissimilar to all other and whose its initial value is
0, can increase the sum of readjusted values of the set of attackers.

Proof Let a,b,c ∈ U such that s(a,b) = 0.5, s(a,c) = 0, s(b,c) = 0 and xa = 1, xb =
0.8, xc = 0 then nrs((xa,a),(xb,b)) = (0.675,0.675) and nrs((xa,a),(xb,b),(xc,c)) =
(0.5875,0.5375,0.45). Moreover, we have that 0.675 + 0.675 = 1.35 < 1.575 =
0.5875+0.5375+0.45.

6. Conclusion

The paper extended the general framework for gradual semantics proposed in [10]. The
latter defines a gradual semantics with evaluation methods, which are tuples of three ag-
gregation functions. In this paper, we relaxed the constraint that arguments are all dissim-
ilar. We assumed thus the existence of a similarity measure on the set of arguments. We
extended the definition of evaluation method by introducing a novel adjustment function.
The latter is responsible for taking into account similarity. We also proposed an instance
of such function, which is based on the weighted h-Categorizer. Note that the latter is
used in the literature for a completely different reason, namely as a gradual semantics.
We investigated the properties of the function, and have shown that it can safely be used
by a semantics including h-Categorizer itself. This would mean that h-Categorizer can
be used as an adjustment function of a semantics and as the semantics itself.

This work can be extended in different directions. One of them is to study adjust-
ment functions more generally in evaluation methods. The objective would be to give the
crucial properties of a reasonable adjustment function.
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