
HAL Id: hal-03018340
https://hal.science/hal-03018340v1

Preprint submitted on 22 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Countries should aim to lower the reproduction number
close to 1.0 for the short-term mitigation of COVID-19

outbreaks
Michael E Hochberg

To cite this version:
Michael E Hochberg. Countries should aim to lower the reproduction number close to 1.0 for the
short-term mitigation of COVID-19 outbreaks. 2020. �hal-03018340�

https://hal.science/hal-03018340v1
https://hal.archives-ouvertes.fr


 1 

Countries should aim to lower the reproduction number 𝓡 close to 1.0 for 

the short-term mitigation of COVID-19 outbreaks 

 

Michael E. Hochberg 

ISEM, University of Montpellier, CNRS, IRD, EPHE, Montpellier, France 

Santa Fe Institute, Santa Fe, New Mexico, USA 

michael.hochberg@umontpellier.fr 

 

 

 

Abstract 

The COVID-19 pandemic is still in its early stages and given the speed and magnitude of local 

outbreaks it is urgent to understand how mitigation measures translate into changes in key 

epidemiological and clinical outcomes. Here, we employ a mathematical model to explore the 

short-term consequences of lowering the reproduction number ℛ0 and delaying measures on 

total infections and fatalities. The positive implications of mitigation generally accrue as these 

measures are adopted early, with the most striking effects seen when the reproductive number 

is lowered to a level ℛC≈1.0. As the delay in adopting measures exceeds approximately the 

half-way point to the peak of an outbreak, the effects of lowering ℛ0 markedly decrease. 

Aiming for reproduction numbers close to 1.0 can substantially reduce fatality probabilities 

over short time scales, particularly for larger populations. We conclude that research is urgently 

needed on how mitigation measures impact ℛ0 and how these can be optimized so as to achieve 

ℛC≈1.0 whilst supporting individual freedoms, society and the economy. 
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Introduction 

As of April, 2020, COVID-19 is continuing to spread in many countries despite dedicated 

measures. Persistent spread could reflect multiple factors, including insufficient physical 

distancing or incomplete adoption of those measures, delays in outbreaks between areas within 

a given country, and inhomogeneities in local contact networks (1,2). Because of the explosive 

nature of new cases in the exponential growth phase of COVID-19, data may be incomplete 

and can lag behind their potential use in making important decisions for curbing outbreaks. 

Modeling analyses are central in this regard, since they can evaluate different scenarios to 

achieve the interlocked objectives of preserving health services, reducing individual morbidity 

and mortality, while maintaining social freedoms. Numerous promising avenues have been 

explored, and can be broadly characterized as conceptual tools for understanding outbreaks and 

for proposing control strategies, and more tactical instruments for actually applying strategies 

(e.g., 3-13). 

We previously simulated a simple SEIR model (14) to evaluate how short-term ‘bang-bang’ 

suppression-mitigation strategies could establish the conditions for a longer-term approach. A 

longer-term approach would integrate medicine (e.g., repurposed drugs, antibody transfusions, 

vaccines), technology (e.g., cell phone apps) and infrastructure (dedicated institutions) to 

reduce outbreaks and increase normalcy. The analysis showed that reacting insufficiently or 

increasingly late to an outbreak meant the need to enact more stringent ‘suppression’ measures 

to obtain a given level of reset in the numbers of infectious individuals. We found that this reset 

level, in turn, was crucial to how subsequent ‘mitigation’ measures could manage an outbreak. 

Importantly, approximate target levels were identified for lowered reproductive numbers, ℛ, 

that correspond to the rate of change in new cases.  

More generally, a sequence of targets was proposed, based empirical observations of how 

countries have initially dealt with outbreaks, and a simple rational approach for future outbreak 

management. The sequence of targets that are being adopted – with each successive step 

following the perceived failure of the previous set of measures – take the symbolic form: (1) 

ℛ0 à (2) ℛC<ℛ0 à (3) ℛC<<1.0 à (4) ℛC≈1.0 à (5) ℛC<1.0, where ℛ0 is the basic 

reproductive number at the start of an outbreak (15) and ℛC is the level of ℛ that suppression 

or mitigation tactics strive to achieve in order to reduce the burden of an outbreak or meet 

specific objectives. Note that with the possible exception of a given country adopting or 

modifying measure packages engaged in other countries, governments do not know beforehand 
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exactly what a given set of measures will achieve in terms of precise reductions in ℛ0 and the 

corresponding impacts on the outbreak. Many countries – for example, Italy, France, Spain, 

Germany and the United States – are currently in the second (suggested mitigation measures, 

e.g., social distancing, quarantining...) or third (enforced lockdowns) phase of this simple suite 

of strategies. A successful step 2 that actually results in ℛC<1.0 may take the country directly 

to step 4, or possibly step 5, the latter which also seeks ℛC<1.0, but does so through less socially 

burdensome measures, such as the introduction of repurposed drugs and vaccination. 

We explore the short-term consequences of lowering ℛ0 (referred to hereafter as ‘mitigation’) 

and of delaying measures on the impacts of outbreaks in terms of the number of individuals 

eventually infected by the virus and fatalities. We find that the positive implications of 

mitigation accrue as these measures are adopted early, with the most striking effects as 

ℛCà1.0. As the delay exceeds approximately the half-way point to the peak of an outbreak, 

the effects of lowering ℛC decrease. Finally, we show that lowering ℛCà1.0 can substantially 

lower fatalities over fixed time scales, particularly for larger populations. We conclude that 

research is urgently needed on how measures impact ℛ0 and how these can be optimized so as 

to achieve ℛC≈1.0, whilst supporting individual freedoms, society and the economy. 

  

Model 

We employ a modified SEIR model of Susceptible (S) → Exposed (E) → Infectious (I) → 

Removed (R) states (15). The ordinary differential equations take the form: 

𝑑𝑆
𝑑𝑡 = −b	

𝐼𝑆
𝑁  

𝑑𝐸
𝑑𝑡 = b	

𝐼𝑆
𝑁 −

1
𝑇/01	

	𝐸 

𝑑𝐼
𝑑𝑡 =

1
𝑇/01	

	𝐸 − 𝛾𝐼 

		
𝑑𝑅
𝑑𝑡 = 𝛾𝐼, 

where N is a constant equal to S+E+I+R, b is the transmission parameter, Tinf is the infectious 

period, 𝛾 is the rate of removal into different subclasses of R, including mild cases, severve 

cases and fatalities. Specifically, here we focus on fatalities 𝐶6, given by  
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𝑑𝐶6
𝑑𝑡 = 𝑃6	𝛾	𝐼 −

𝐶6
𝐷6
	, 

where 𝑃6	 is the case fatality rate and	𝐷6 is the time from end of incubation to death (Titod) 

minus duration of infectiousness (Tinf). 

An outbreak occurs if the basic reproduction number, ℛ0 = b /	𝛾 > 1.0. The impact of control 

measures is easily understood by their impact on ℛ0, and in the presentation below, we refer to 

these effects by percent reductions in ℛ0, yielding the modified constant value, ℛC.  

 

Numerical methods 

The details of the numerical methods are described in (14). Briefly, the above model is an over-

simplified representation of COVID-19 outbreaks. The purpose of its use is to generate first 

approximations of how mitigation efforts modeled by the proxy parameter ℛC could 

quantitively translate into the attenuation of outbreaks. Linking specific measures to their 

influence on key epidemiological parameters will be important in the future management of 

COVID-19. 

The influences of reductions in ℛ0 on key epidemiological parameters were investigated using 

the Epidemic Calculator package (16) (Supplementary Material). This platform enables the 

user to set the parameters under focus here, namely, the total population size (N), the initial 

sub-population of infections individuals (I), the basic reproduction number (ℛ0), the day on 

which the mitigation measures begin and the resulting (lowered) reproduction number (ℛC). 

The platform produces output in a display that the user can consult by clicking on the day or 

period of interest (Figure 1). As discussed in 14, the accuracy of the Epidemic Calculator 

package has not been extensively tested, and the platform has several shortcomings. Caution is 

therefore necessary in interpreting the results presented below.  

The model parameter values employed in this study are presented in Table 1. Estimates of ℛ0 

for COVID-19 vary approximately four-fold from c.1.5 to 6.5 (17-20), and we adopt a modal 

value of 2.5. Although the quantitative model predictions differ for lower and higher values of 

ℛ0 in the observed range, the qualitative patterns remain the same. 
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Results  

The fraction of the population infected by SARS-CoV-2 depends on the start day of mitigation 

measures, the time horizon, and the impact of measures on ℛ0 (Figure 2). As expected, 

delaying intervention results in larger fractions of a population infected at any given time, and 

infected levels are lower for the shorter (80 day) compared to the longer (200 days) time 

horizons. However, the differences between the two time-horizons decrease as impacts on ℛ0 

increase (cf. values beyond a 60% decrease in ℛ0 – corresponding to ℛC≲1.0 – in Figs. 2A,B). 

Note too that sensitivity to start date increases as the time horizon decreases, but this effect is 

most appreciable for intermediate reductions in ℛ0 (e.g., cf. 20% to 40% reduction in Figs. 

2A,B). In other words, whereas achieving 1.5≲ ℛC<ℛ0 – if commenced early – can result in a 

substantial reduction in total infections by day 80 (Fig. 2A), the effect is largely erased on the 

longer time horizon of 200 days (Fig. 2B). Interestingly, small delays in starting mitigation 

measures from the start of a simulation may make little difference to the total number 

eventually infected. This effect is most noticeable between start days 10 and 30, as mitigation 

exceeds a 60% or greater decrease in ℛ0 (i.e., ℛC≲1.0), and for the longer time window of 200 

days. Note that the lack of sensitivity between start days for lower mitigation in Fig. 2B can be 

explained by the fact that the epidemic is virtually complete by 200 (see Fig. 1). These results 

thus underscore how attaining mitigation objectives is contingent on the time frame, with rapid 

responses having short term benefits for a range of mitigation levels (Fig. 2A), whereas they 

have disproportionately higher benefits in the longer-term only for sufficiently pronounced 

mitigation levels (Fig. 2B).   

Lives saved by mitigation measures is influenced by the same factors considered above, but in 

an inverse way compared to total infections (cf. Figs. 2,3). Notably, reductions in ℛ0 

approaching and exceeding 60%, corresponding to ℛC≲1.0, have major benefits to reducing 

fatalities, particularly when measures are started with minimum delays (Fig. 3). Delays of 40 

or more days never exceed saving more than 50% of lives that would have been lost without 

measures, even if the reproduction number is lowered by 100% to 0.0. As for the total number 

of individuals infected, the shortcomings of insufficient impacts on ℛ0 accrue with time (cf. 

20%-40% reductions in Figs. 3A,B). 

Our previous work suggested that population size was important in the impact of mitigation 

measures (14). We find that the fraction of lives saved in a given time frame can be strongly 

associated with population size (Figure 4). The sensitivity in fatality reduction is maximal 
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intermediate reductions in ℛ0. For example, an individual who would have died in the first 80 

days without mitigation measures has a virtually 100% chance of surviving based on mitigation 

measures that reduce ℛ0 by 40% or more, and if living in a population with c.1 billion 

inhabitants. In contrast, survival chances drop below 50% under the same conditions in a 

population of c.100,000 individuals. Similar to the observations in the previous paragraphs, 

longer mitigation time frames require stronger impacts on ℛ0 to achieve equivalent benefits of 

shorter ones in terms of the percentage of lives saved (cf. Figs. 4A,B).  

 

Conclusions 

The results support the patterns observed in our previous study showing how lowering ℛ0 to 

approximately 1.0 is a sensible strategy for mitigating outbreaks on time scales of several 

weeks to several months (14). Measures falling too short of the ℛC≈1.0 target can mean 

substantially diminished outcomes and the likelihood that additional measures are needed to 

mitigate the outbreak. This is in effect what we have observed in different countries, where 

sensible, but untested measures such as physical distancing, travel restrictions, washing hands 

frequently, coughing or sneezing away from others, and self-quarantining were insufficient in 

stemming new cases on time scales of days to weeks (21). On the other hand, further reductions 

below ℛC≈1.0 may have specific objectives (e.g., steps 3 and 5 in the Introduction section), 

but come with increased constraints to personal freedoms and costs to the economy. 

Our previous work suggested that population size was an important parameter in how an 

outbreak unfolds and the impact of mitigation measures (14). We found that larger populations 

benefit more in terms of percentage reduced fatalities than do smaller populations. This can be 

explained in part because the same initial number (10000) of infectious individuals was used 

in all simulations, meaning that smaller countries were effectively further along in their 

outbreaks than were more populous ones. Nonetheless, this result and the findings of our 

previous study indicate that – all else being equal – larger populations have more time to reduce 

morbidity and mortality in outbreaks than do smaller ones. This insight could apply either to 

the homogenous populations assumed here, or to spatially subdivided ones, where we would 

expect delays in outbreaks between different localities. Further investigation is needed to 

establish how country size may correlate with other potentially important epidemic parameters 

such as population density and the age and spatial structure of contact networks. 
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We conclude that the key short-term target of mitigation measures is to lower the reproductive 

number as close as possible to 1.0, but that values slightly above are acceptable, especially if 

the numbers of circulating cases is very low. Mitigation measures engaged once an outbreak 

approaches its peak will have substantially less impact on infections and lessened fatalities than 

when started early. Given that different combinations of measures and their detailed 

deployments will influence ℛ, empirical and modeling research is urgently needed to establish 

optimal packages that prioritize those measures also sustaining individual freedoms, society 

and the economy. 
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Parameter Value 

Basic Reproduction Number (ℛ0) 2.5 

Removal rate (g ) 1/5.2 days 

Duration patient is infectious (Tinf) 2.9 days 

Case fatality rate (𝑃6	) 0.02 

Time from end of incubation to death (Titod)    32 days 

Table 1. Parameters and their baseline values employed in this study. See (16) and main text for details on 
parameter value sources. 

 

 

 
Figure 1. Visualization of output from the Epidemic Calculator (16), showing daily numbers of currently 
infectious individuals and cumulative fatalities in a population of 7 million. Statistics for Day 80 shown on 
the left. Initial number of infectious individuals=100. Other parameter values in Table 1. 
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Figure 2. Effect of mitigation measures (represented as % reductions in ℛ0), number of days elapsed before mitigation 
begins (numbers next to lines), and number of days of the simulation (A 80 days; B 200 days), on the percentage of 
the population infected. At ℛ0, we observed 72% of the population had been infected at 80 days and 89% at 200 days. 
Lines connecting points at 0, 20, 40, 60 and 100% reduction in ℛ0 aid visualization. Assume population of 7 million 
inhabitants and 100 initial number infectious cases. Other parameters as in Table 1.  
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Figure 3. Effect of mitigation measures (represented as % reductions in ℛ0), number of days elapsed before 
mitigation begins (numbers next to lines), and number of days of the simulation (A 80 days; B 200 days), on 
the percentage of fatalities averted compared to no mitigation measures. Assume population of 10 million 
and 10,000 initial infectious individuals. At ℛ0, we observed 111,437 deaths at 80 days and 177,756 at 200 
days. Lines connecting points at 0, 20, 40, 60 and 100% reduction in ℛ0 aid visualization. Other parameters 
as in Table 1. 

0

25

50

75

100

0

25

50

75

100

0 20 40 60 80 100 

DAY 80 

0 20 40 60 80 100 

% Reduction in ℛ0 

DAY 200 

% Reduction in 
Fatalities 

B 

A 10 

20 

30 

40 

50 

10 

20 

30 

40 

50 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 17, 2020. ; https://doi.org/10.1101/2020.04.14.20065268doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.14.20065268
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Effect of mitigation measures (represented as % reductions in ℛ0), population size (letters next to 
lines), and number of days of the simulation (A 80 days; B 200 days), on the percentage of fatalities averted 
compared to no mitigation measures. a=1 billion, b=100 million, c=10 million, d=1 million, e=100 thousand 
individuals. Assume 10,000 initial infectious individuals. At ℛ0, we observed 111,437 deaths at 80 days and 
177,756 at 200 days. Lines connecting points at 0, 20, 40, 60 and 100% reduction in ℛ0 aid visualization. 
Other parameters as in Table 1. 
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