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Introduction

A microelectromechanical system (MEMS), such as an electrostatic actuator, consists of an elastic plate, which is coated with a thin dielectric layer, clamped on its boundary, and suspended above a rigid ground plate. The latter is also coated with a dielectric layer but with positive thickness δ > 0, see Figures 1.1 and 1.2. Applying a voltage difference between the two plates generates a Coulomb force accross the device and induces a deformation of the elastic plate, thereby changing the geometry of the device and converting electrostatic energy to mechanical energy through a balance between electrostatic and mechanical forces [START_REF] Ambati | Some studies on the deformation of the membrane in an RF MEMS switch[END_REF][START_REF] Bernstein | Modeling and analysis of hysteresis phenomena in electrostatic zipper actuators[END_REF][START_REF] Fargas Marquès | Modelling the electrostatic actuation of MEMS: state of the art 2005[END_REF][START_REF] Pelesko | Modeling MEMS and NEMS[END_REF]. Assuming that the physical state of the MEMS device is fully described by the vertical deflection u of the elastic plate and the electrostatic potential ψ inside the device, a mathematical model is derived in [START_REF]Shape derivative of the Dirichlet energy for a transmission problem[END_REF]. It characterizes equilibrium configurations of the device as critical points of the total energy which is the sum of the mechanical and electrostatic energies, with an additional constraint stemming from the property that the elastic plate cannot penetrate the layer covering the ground plate. Specifically, ignoring variations in the transverse horizontal direction, we consider a two-dimensional MEMS in which the rigid ground plate and the undeflected elastic plate have the same one-dimensional shape D := (-L, L) with L > 0. The ground plate is located at height z = -H -δ, where H > 0, and is coated with a dielectric layer

R δ := D × (-H -δ, -H)
of positive thickness δ. The vertical deflection u of the elastic plate from its rest position at z = 0 is a function from D to [-H, ∞) with u(±L) = 0, so that the elastic plate is described by the graph {(x, u(x)) : x ∈ D} of the function u. Observe that the required lower bound u ≥ -H on u is due to the assumption that the elastic plate cannot penetrate the dielectric layer R δ , while the boundary conditions u(±L) = 0 reflect the fact that the elastic plate is clamped on its boundary. We then define

Ω(u) := {(x, z) ∈ D × R : -H < z < u(x)} u Ω 1 R δ Ω(u) D -L -L z -H -δ -H 0 Figure 1.1.
Geometry of Ω δ (u) for a state u with empty coincidence set C(u).

u as the free space between the elastic plate and the top of the dielectric layer and denote the interface separating the free space and the dielectric layer by Σ(u) := {(x, -H) : x ∈ D, u(x) > -H} .

Ω 1 R δ Ω(u) Ω(u) D -L -L Σ(u) z -H -δ -H 0 C(u)
As for the electrostatic potential ψ, it is defined in the full device

Ω δ (u) := {(x, z) ∈ D × R : -H -δ < z < u(x)} = R δ ∪ Ω(u) ∪ Σ(u) .
It is worth mentioning at this point that the geometry of the full device Ω δ (u) has different properties according to the minimal value of u. Indeed, the free space Ω(u) is connected and Σ(u) = D × {-H} when min D u > -H, while it is disconnected when min D u = -H, which corresponds to a touchdown of the elastic plate on the dielectric layer R δ on the coincidence set

C(u) := {x ∈ D : u(x) = -H} , (1.1) 
see Figures 1.1 and 1.2. In the model derived in [START_REF]Shape derivative of the Dirichlet energy for a transmission problem[END_REF], equilibrium configurations of the above described MEMS device are critical points of the total energy given by

E δ (u) := E m (u) + E e,δ (u) . (1.2) In (1.2), E m (u) is the mechanical energy E m (u) := β 2 ∂ 2 x u 2 L 2 (D) + τ 2 + a 4 ∂ x u 2 L 2 (D) ∂ x u 2 L 2 (D)
with β > 0, a ≥ 0, and τ ≥ 0, and includes bending and external stretching effects of the elastic plate. The electrostatic energy is

E e,δ (u) := - 1 2 Ω δ (u) σ δ |∇ψ u,δ | 2 d(x, z) ,
with σ δ denoting the permittivity of the device (see (2.1) below), and ψ = ψ u,δ is the electrostatic potential satisfying the transmission problem

div(σ δ ∇ψ u,δ ) = 0 in Ω δ (u) , (1.3a) 
ψ u,δ = σ δ ∂ z ψ u,δ = 0 on Σ(u) , (1.3b) 
ψ u,δ = h u,δ on ∂Ω δ (u) . (1.3c) 
Here, • denotes the jump of a function across the interface Σ(u). The boundary values of the electrostatic potential are prescribed by a function h u,δ which satisfies the assumptions listed below in (3.1). A specific example, when σ does not depend on the vertical coordinate z, is

h u,δ (x, z) =        1 + σ(x)(H + z) 1 + σ(x)(H + u(x)) , (x, z) ∈ D × [-H, ∞) , 1 δ z + H + δ 1 + σ(x)(H + u(x)) , (x, z) ∈ D × [-H -δ, -H] .
(1.4)

Since the elastic plate is clamped at the boundary and cannot penetrate the dielectric layer R δ , the set of admissible deflections is

S0 := u ∈ H 2 D (D) : u ≥ -H in D , where H 2 D (D) := u ∈ H 2 (D) : u(±L) = ∂ x u(±L) = 0 .
Equilibrium configurations of the MEMS device are then critical points u ∈ S0 of the total energy E δ . Their analysis involves the associated transmission problem (1.3) solved by the electrostatic potential ψ u,δ . A natural question is what happens when the thickness δ of the dielectric layer tends to zero, in particular, whether the reduced model derived in this limit retains the dielectric inhomogeneity of the device. When the dielectric permittivity σ δ of the device does not depend on δ, the influence of the dielectric layer is lost in the limit δ → 0, and the reduced model is obtained simply by setting δ = 0 in (1.2) and (1.3), discarding the jump condition (1.3b) which is then meaningless. Building upon the outcome of [START_REF] Acerbi | Reinforcement problems in the calculus of variations[END_REF][START_REF] Brézis | Reinforcement problems for elliptic equations and variational inequalities[END_REF], it turns out that it is rather the reinforced limit, where the dielectric permittivity scales as δ in the layer R δ , which leads to a relevant reduced model. For a given deflection u ∈ S0 , the reinforced limit of the transmission problem (1.3) is identified in [START_REF]Reinforced limit of a MEMS model with heterogeneous dielectric properties[END_REF] by a Γ-convergence approach. More precisely, it is shown in [START_REF]Reinforced limit of a MEMS model with heterogeneous dielectric properties[END_REF] that the reinforced limit as δ → 0 of (1.3) is div(σ∇ψ u ) = 0 in Ω(u) ,

(1.5a)

ψ u = h u on ∂Ω(u) \ Σ(u) , (1.5b) 
-∂ z ψ u + σ(ψ u -h u ) = 0 on Σ(u) ; (1.5c)
that is, in the reinforced limit the electrostatic potential ψ u solves Laplace's equation in Ω(u) with a Robin boundary condition along the interface Σ(u) and a Dirichlet condition on the other boundary parts. Here, σ := σ δ 1 Ω(u) is assumed to be independent of δ. The total energy is then given by

E(u) := E m (u) + E e,0 (u) , (1.6) 
where

E e,0 (u) := - 1 2 Ω(u) σ|∇ψ u | 2 d(x, z) - 1 2 D σ(x, -H) ψ u (x, -H) -h u (x) 2 dx
and h u is defined below in (3.1). The purpose of this research is to complete the outcome of [START_REF]Reinforced limit of a MEMS model with heterogeneous dielectric properties[END_REF] by identifying the reinforced limit of the full model and showing that, in this limit, if u * δ ∈ S0 is a minimizer of E δ in S0 for each δ ∈ (0, 1), then the cluster points of (u * δ ) δ∈(0,1) in L 2 (D) are minimizers of the reduced total energy E in S0 . The main tool we shall employ in the forthcoming analysis is the theory of Γ-convergence. We shall actually show that, under suitable assumptions on the dielectric permittivity σ δ and the boundary values in (1.3), the Γlimit in L 2 (D) of (E δ ) δ∈(0,1) is the reduced total energy E defined in (1.6).

Let us finally remark that, in this paper, we focus on the energy approach to take into account the influence of the thickness of a dielectric layer as first developed in [START_REF]Heterogeneous dielectric properties in models for microelectromechanical systems[END_REF] for a related model. We refer to [START_REF] Bernstein | Modeling and analysis of hysteresis phenomena in electrostatic zipper actuators[END_REF][START_REF] Lindsay | Regularized model of post-touchdown configurations in electrostatic MEMS: Equilibrium analysis[END_REF][START_REF]Regularized model of post-touchdown configurations in electrostatic MEMS: Interface dynamics[END_REF][START_REF] Pelesko | Mathematical modeling of electrostatic MEMS with tailored dielectric properties[END_REF] for alternative approaches to model dielectric layers, all designed within the so-called small aspect ratio approximation. Recall that, in the latter, the electrostatic potential is given explicitly as a function of the deflection u and the model then reduces to a single equation for u. Such models have been extensively studied in the last decades in the mathematical literature since the pioneering works of [START_REF] Bernstein | Analytical and numerical analysis of electrostatically actuated MEMS devices[END_REF][START_REF] Flores | Analysis of the dynamics and touchdown in a model of electrostatic MEMS[END_REF][START_REF] Guo | Touchdown and pull-in voltage behavior of a MEMS device with varying dielectric properties[END_REF][START_REF] Pelesko | Mathematical modeling of electrostatic MEMS with tailored dielectric properties[END_REF], see the book [START_REF] Esposito | Mathematical analysis of partial differential equations modeling electrostatic MEMS[END_REF], the survey [START_REF] Laurenc | Some singular equations modeling MEMS[END_REF] and the references therein.

Convergence of minimizers

As already mentioned, the reinforcement limit requires that the permittivity σ δ in the dielectric layer R δ scales with the layer's thickness; that is, the (scaled) permittivity of the device is given in the form

σ δ (x, z) := δσ(x, z) , (x, z) ∈ R δ , 1 , (x, z) ∈ D × (-H, ∞) , (2.1a) for δ ∈ (0, 1), where σ ∈ C 2 ( D × [-H -1, -H]) is a fixed function with σ(x, z) > 0 , (x, z) ∈ D × [-H -1, -H] . (2.1b)
With this specific form of σ, we can show that cluster points as δ → 0 of minimizers of the total energy E δ on S0 are minimizers of the reduced total energy E. More precisely: Theorem 2.1. Suppose that the dielectric permittivity satisfies (2.1) and that the assumptions on the boundary values in (1.3c) are given by (3.1) below. For δ ∈ (0, 1) let u * δ ∈ S0 be any minimizer of E δ on S0 with corresponding electrostatic potential ψ u * δ ,δ satisfying (1.3). Then sup δ∈(0,1)

u * δ H 2 (D) < ∞ and sup δ∈(0,1) ψ u * δ ,δ H 1 (Ω(u * δ )) < ∞ ,
and there are a subsequence δ j → 0 and a minimizer u * ∈ S0 of E on S0 such that

lim j→∞ u * δ j -u * H 2 (D) = 0 and lim j→∞ E δ j (u * δ j ) = E(u * ) . Moreover, for M > 0 such that -H ≤ u * δ ≤ M -H a.e., we have ψ u * δ j ,δ j -h u * δ j ⇀ ψ u * -h u * in H 1 (D × (-H, M )) ,
where ψ u * satisfies (1.5) (with u replaced by u * ).

As we shall see below, the main step in the proof of Theorem 2.1 is the Γ-convergence of the sequence (E δ ) δ∈(0,1) in L 2 (D) to E which is established in Section 4. We then combine this property with estimates on the minimizers of E δ on S0 , which do not depend on δ ∈ (0, 1) and are derived in Sections 4.3-4.4 to complete the proof.

Let us finally point out that the assumptions (2.1) and (3.1) on the permittivity σ δ and the boundary conditions h u,δ guarantee that, for each δ ∈ (0, 1), the total energy E δ defined in (1.2) has at least one minimizer u * δ ∈ S0 ; that is,

E δ (u * δ ) = min S0 E δ , (2.2) 
see [START_REF]Stationary solutions to a nonlocal fourth-order elliptic obstacle problem[END_REF]Theorem 1.3]. Actually, the corresponding electrostatic potential

ψ u * δ ,δ ∈ H 1 (Ω δ (u δ )) is a strong solution to the transmission problem (1.3) in the sense that ψ u * δ ,δ | R δ ∈ H 2 (R δ ) and ψ u * δ ,δ | Ω(u * δ ) ∈ H 2 (Ω(u * δ )
), this regularity property being in fact true for any u ∈ S0 [START_REF]Shape derivative of the Dirichlet energy for a transmission problem[END_REF][START_REF]Stationary solutions to a nonlocal fourth-order elliptic obstacle problem[END_REF].

As for the reduced total energy E, the existence of minimizers of E on S0 has already been established in [START_REF] Ph | Energy minimizers for an asymptotic MEMS model with heterogeneous dielectric properties[END_REF]Theorem 2.3] by a direct approach, assuming additionally that

∂ z h(x, -H, w) = σ(x) h(x, -H, w) -h(x, w) , (x, w) ∈ D × [-H, ∞) , (2.3) 
besides (3.1) below. Theorem 2.1 then extends the existence of minimizers of E on S0 to the situation where (2.3) does not hold. However, it does not provide the H 2 -regularity of the associated electrostatic potential ψ u * solving (1.5), which is shown to be true in [13, Theorem 2.2] under the assumptions (2.3) and (3.1).

Assumptions and auxiliary results

This section is devoted to a precise definition of the boundary conditions (1.3c) and (1.5c), and includes as well useful properties of h u,δ on which we rely on in the sequel.

3.1. Boundary data. We fix two C 2 -functions

h b : D × [-H -1, -H] × [-H, ∞) → R (3.1a) and h : D × [-H, ∞) × [-H, ∞) → R (3.1b) satisfying h b (x, -H, w) = h(x, -H, w) , (x, w) ∈ D × [-H, ∞) , (3.1c) σ(x, -H)∂ z h b (x, -H, w) = ∂ z h(x, -H, w) , (x, w) ∈ D × [-H, ∞) . (3.1d)
We then define for (x, w)

∈ D × [-H, ∞) h δ (x, z, w) :=    h b x, -H + z + H δ , w , z ∈ [-H -δ, -H) , h(x, z, w) , z ∈ [-H, ∞) , (3.1e) 
and observe that

h δ ∈ C( D × [-H -δ, ∞) × [-H, ∞)) by (3.1c).
In order to guarantee the coercivity of the energy functional E δ we require that there is a constant m > 0 such that

|∂ x h b (x, z, w)| + |∂ z h b (x, z, w)| ≤ m(1 + w 2 ) , |∂ w h b (x, z, w)| ≤ √ m , (3.1f) for (x, z, w) ∈ D × [-H -1, -H] × [-H, ∞) and |∂ x h(x, z, w)| + |∂ z h(x, z, w)| ≤ m(1 + w 2 ) H + w , |∂ w h(x, z, w)| ≤ m H + w , (3.1g) 
for (x, z, w)

∈ D × [-H, ∞) × [-H, ∞)
. Moreover, we assume that

∂ w h b (x, -H -1, w) = 0 , (x, w) ∈ D × [-H, ∞) , (3.1h) 
and that there is K > 0 such that

|∂ x h(x, w, w)| + |∂ z h(x, w, w) + ∂ w h(x, w, w)| ≤ K , (x, w) ∈ D × [-H, ∞) . (3.1i)
Given a function u : D → [-H, ∞) we shall also use the abbreviations

h u,δ (x, z) := h δ (x, z, u(x)) , (x, z) ∈ Ω δ (u) , (3.1j) 
and h u (x, z) := h(x, z, u(x)) , (x, z) ∈ Ω(u) .

(3.1k) Furthermore, we set

h u (x) := h u (x, -H) := h b (x, -H -1, u(x)) , x ∈ D . (3.1l)
Note that (3.1c)-(3.1d) imply that h u,δ satisfies the transmission conditions (1.3b):

h u,δ = σ δ ∂ z h u,δ = 0 on Σ(u) .
Simple computations show that the example provided in (1.4) satisfies (3.1) with

h b (x, z, w) = z + H + 1 1 + σ(x)(H + w) , (x, z, w) ∈ D × [-H -1, -H] × [-H, ∞) , and 
h(x, z, w) = 1 + σ(x)(H + z) 1 + σ(x)(H + w) , (x, z, w) ∈ D × [-H, ∞) × [-H, ∞) .
3.2. Auxiliary results. We begin with some properties of the function h u,δ that we derive from assumptions (2.1)-(3.1) imposed above. For further use, we set

σ max := 1 + max D×[-H-1,-H]
σ .

Lemma 3.1. Assume (2.1) and (3.1).

(i) There is a constant c 0 > 0 depending on m, L, and σ max such that, given u ∈ S0 and δ ∈ (0, 1),

Ω δ (u) σ δ |∇h u,δ | 2 d(x, z) ≤ c 0 1 + u 2 L 2 (D) + ∂ x u 2 L 2 (D) . (3.2) (ii) Suppose that u δ → u in H 1 (D) as δ → 0 and that -H ≤ u δ in D. Then M := sup δ∈(0,1) u δ L∞(D) < ∞
and, as δ → 0,

h u δ ,δ → h u in H 1 (D × (-H, M )) , (3.3a) 
h u δ → h u in L 2 (D) , (3.3b) 
h u δ (., -H) → h u (., -H) in L 2 (D) . (3.3c) 
Moreover,

lim δ→0 Ω(u δ ) |∇h u δ ,δ | 2 d(x, z) = Ω(u) |∇h u | 2 d(x, z) . (3.3d)
Proof. (i) Using (2.1), (3.1e), (3.1j), and the definition of Ω δ (u) we have

Ω δ (u) σ δ |∇h u,δ | 2 d(x, z) = Ω(u) |∂ x h(x, z, u(x)) + ∂ x u(x)∂ w h(x, z, u(x))| 2 d(x, z) + Ω(u) |∂ z h(x, z, u(x))| 2 d(x, z) + δ R δ σ(x, z) ∂ x h b x, -H + z + H δ , u(x) +∂ x u(x)∂ w h b x, -H + z + H δ , u(x) 2 d(x, z) + δ R δ σ(x, z) 1 δ ∂ z h b x, -H + z + H δ , u(x) 2 d(x, z) .
Invoking (3.1f)-(3.1g) and Young's inequality, we derive D) . This proves (i). (ii) First, M is well-defined and finite owing to the continuous embedding of H 1 (D) in C( D) and the strong convergence of (u δ ) δ∈(0,1) in H 1 (D). Next, the stated convergences readily follow from the smoothness of h and h b , from the convergence of u δ → u in H 1 (D), and the continuous embedding of H 1 (D) in C( D).

Ω δ (u) σ δ |∇h u,δ | 2 d(x, z) ≤ 2m Ω(u) 1 + u(x) 2 + (∂ x u(x)) 2 H + u(x) d(x, z) + m Ω(u) 1 + u(x) 2 H + u(x) d(x, z) + 2mδσ max R δ 1 + u(x) 2 + (∂ x u(x)) 2 d(x, z) + mσ max δ R δ 1 + u(x) 2 d(x, z) ≤ m(1 + σ max ) 3 |D| + u 2 L 2 (D) + 2 ∂ x u 2 L 2 (

Convergence of minimizers

Three steps are needed to prove Theorem 2.1: we begin by establishing in Section 4.1 the convergence of the electrostatic energy E e,δ as δ → 0, building upon the analysis performed in [START_REF]Reinforced limit of a MEMS model with heterogeneous dielectric properties[END_REF] for a reduced problem. This convergence, along with the weak lower semicontinuity of the mechanical energy E m , leads us to the Γ-convergence of E δ to E in L 2 (D), see Section 4.2. Such a property provides information on the relationship between minimizers for the cases δ > 0 and δ = 0, which we use in Sections 4.3-4.4 to complete the proof of Theorem 2.1.

4.1.

Convergence of the electrostatic energy. Building upon the analysis performed in [START_REF]Reinforced limit of a MEMS model with heterogeneous dielectric properties[END_REF], we investigate the limit of the electrostatic energy E e,δ as δ → 0. Recalling that the main outcome of [START_REF]Reinforced limit of a MEMS model with heterogeneous dielectric properties[END_REF] is that lim δ→0 E e,δ (u) = E e,0 (u) for any u ∈ S0 , we extend this result to a sequence (u δ ) δ∈(0,1) in S0 and show that (E e,δ (u δ )) δ∈(0,1) converges to E e,0 (u) as δ → 0, provided that (u δ ) δ∈(0,1) converges to u in H 1 (D). More precisely, consider a sequence (u δ ) δ∈(0,1) in S0 and u ∈ S0 such that

u δ → u in H 1 (D) as δ → 0 , -H ≤ u δ (x) , x ∈ D . (4.1a)
Observe that the convergence (4.1a) and the continuous embedding of 

H 1 (D) in C( D) ensure that 0 ≤ H + u δ (x) , H + u(x) ≤ M := sup δ∈(0,1) H + u δ L∞(D) , x ∈ D .
and ψ u δ ,δ -h u δ ,δ -→ ψ u -h u in L 2 (Ω(M )) as δ → 0 .
Proof. We use a Γ-convergence approach combining arguments from [13, Proposition 4.1] and [START_REF]Reinforced limit of a MEMS model with heterogeneous dielectric properties[END_REF]Theorem 3.1]. Let O M := D × (-H -1, M ) and define, for δ ∈ (0, 1),

G δ [ϑ] :=    1 2 Ω δ (u δ ) σ δ |∇(ϑ + h u δ ,δ )| 2 d(x, z) , ϑ ∈ H 1 0 (Ω δ (u δ )) , ∞ , ϑ ∈ L 2 (O M ) \ H 1 0 (Ω δ (u δ )) . Then E e,δ (u δ ) = -G δ [χ u δ ,δ ] with χ u δ ,δ := ψ u δ ,δ -h u δ ,δ ∈ H 1 0 (Ω δ (u δ )) , (4.2) 
and χ u δ ,δ is the unique minimizer of G δ on H 1 0 (Ω δ (u δ )), see [17, Proposition 3.1]. We next introduce H 1 B (Ω(u)) as the closure in H 1 (Ω(u)) of the set

C 1 B (Ω(u)) := ϑ ∈ C 1 (Ω(u)) : ϑ(x, u(x)) = 0 , x ∈ D and ϑ(x, z) = 0 , (x, z) ∈ {±L} × (-H, 0] .
Noticing that ϑ(x, u(x)) = ϑ(x, -H) = 0 for x ∈ C(u) and ϑ ∈ C 1 B (Ω(u)), we agree upon setting ϑ(x, u(x)) = ϑ(x, -H) := 0 for all x ∈ C(u) and ϑ ∈ H 1 B (Ω(u)) in the sequel. Now, given ϑ ∈ H 1 B (Ω(u)), we define

G[ϑ] := 1 2 Ω(u) ∇(ϑ + h u ) 2 d(x, z) + 1 2 D σ ϑ + h u -h u 2 (x, -H) dx , (4.3) 
with h u defined in (3.1l), and

G[ϑ] := ∞ , ϑ ∈ L 2 (O M ) \ H 1 B (Ω(u)) . Then E e,0 (u) = -G[χ u ] with χ u := ψ u -h u ∈ H 1 B (Ω(u)) , (4.4) 
and χ u is the unique minimizer of G on H 1 B (Ω(u)), see [START_REF]Reinforced limit of a MEMS model with heterogeneous dielectric properties[END_REF]Proposition 3.3]. We now claim that Γ -lim

δ→0 G δ = G in L 2 (O M ) . (4.5) 
For (4.5) we have to prove the asymptotic weak lower semicontinuity and the existence of a recovery sequence.

(i) Asymptotic weak lower semicontinuity. Consider

ϑ 0 ∈ L 2 (O M ) and a sequence (ϑ δ ) δ∈(0,1) in L 2 (O M ) such that ϑ δ → ϑ 0 in L 2 (O M ) . (4.6) 
We shall then show that

G[ϑ 0 ] ≤ lim inf δ→0 G δ [ϑ δ ] . (4.7)
Due to the definitions of G δ and G, we only need to consider the case where ϑ δ ∈ H 1 0 (Ω δ (u δ )) for δ ∈ (0, 1) and sup

δ∈(0,1) G δ [ϑ δ ] < ∞ . (4.8)
We may then extend ϑ δ trivially to Ω(M ) = D × (-H, M ), so that ϑ δ ∈ H 1 B (Ω(M )). We next infer from (2.1) and the definition of G δ that

Ω(M ) |∇ϑ δ | 2 d(x, z) = Ω(u δ ) σ δ |∇ϑ δ | 2 d(x, z) ≤ 2 Ω(u δ ) σ δ |∇(ϑ δ + h u δ ,δ )| 2 d(x, z) + 2 Ω(u δ ) σ δ |∇h u δ ,δ | 2 d(x, z) ≤ 2G δ [ϑ δ ] + 2 Ω(u δ ) σ δ |∇h u δ ,δ | 2 d(x, z) ,
and the right-hand side of the above inequality is bounded by (4.1), (4.8), and Lemma 3.1. Consequently, taking also into account (4.6) and the property ϑ δ ∈ H 1 0 (Ω δ (u δ )) for δ ∈ (0, 1), we conclude that (ϑ δ ) δ∈(0,1) is bounded in H 1 B (Ω(M )). Owing to (4.1) and Lemma 3.1, we may assume without loss of generality that 

ϑ δ + h u δ ,δ ⇀ ϑ 0 + h u in H 1 (Ω(M )) . ( 4 
ϑ δ → ϑ 0 in L 2 (∂Ω(M )) . (4.10) 
In particular,

ϑ δ (•, -H) → ϑ 0 (•, -H) in L 2 D , (4.11) 
and it follows from (4.1), (4.11), and Lemma 3.1 that

lim δ→0 D σ ϑ δ + h u δ -h u δ 2 (x, -H) dx = D σ ϑ 0 + h u -h u 2 (x, -H) dx . (4.12)
Next, arguing as in [START_REF] Ph | Energy minimizers for an asymptotic MEMS model with heterogeneous dielectric properties[END_REF]Proposition 4.1], we deduce from (4.9) and Lemma 3.1 that

lim inf δ→0 Ω(u δ ) |∇(ϑ δ + h u δ ,δ )| 2 d(x, z) = lim inf δ→0 Ω(M ) |∇(ϑ δ + h u δ ,δ )| 2 d(x, z) -lim δ→0 Ω(M )\Ω(u δ ) |∇h u δ ,δ | 2 d(x, z) ≥ Ω(M ) |∇(ϑ 0 + h u )| 2 d(x, z) - Ω(M )\Ω(u) |∇h u | 2 d(x, z) = Ω(u) |∇(ϑ 0 + h u )| 2 d(x, z) .
Hence, together with (4.12), lim inf

δ→0 1 2 Ω(u δ ) |∇(ϑ δ + h u δ ,δ )| 2 d(x, z) + 1 2 D σ ϑ δ + h u δ -h u δ 2 (x, -H) dx ≥ 1 2 Ω(u) |∇(ϑ 0 + h u )| 2 d(x, z) + 1 2 D σ ϑ 0 + h u -h u 2 (x, -H) dx . (4.13)
Moreover, (4.8) entails that sup

δ∈(0,1) R δ σ δ ∇(ϑ δ + h u δ ,δ )| 2 d(x, z) < ∞ .
The continuity of σ now warrants that

lim inf δ→0 R δ σ δ (x, z)|∇(ϑ δ + h u δ ,δ )| 2 d(x, z) = lim inf δ→0 δ R δ σ(x, -H)|∇(ϑ δ + h u δ ,δ )| 2 d(x, z) ≥ lim inf δ→0 δ R δ σ(x, -H)|∂ z (ϑ δ + h u δ ,δ )| 2 d(x, z) .
Since ϑ δ (•, -H -δ) = 0 a.e. in D, we infer from Hölder's inequality that

(ϑ δ + h u δ ,δ )(x, -H) -h u δ ,δ (x, -H -δ) 2 ≤ δ -H -H-δ |∂ z (ϑ δ + h u δ ,δ )(x, z)| 2 dz
for a.e. x ∈ D. Combining the previous two estimates and using (see (3.1e) and (3.1j)-(3.1l))

h u δ ,δ (x, -H) = h u δ (x, -H) , h u δ ,δ (x, -H -δ) = h u δ (x) , x ∈ D ,
we deduce from (4.1), (4.11), and Lemma 3.1 that

lim inf δ→0 1 2 R δ σ δ (x, z)|∇(ϑ δ + h u δ ,δ )| 2 d(x, z) ≥ 1 2 D σ(x, -H) ϑ 0 (x, -H) + h u (x, -H) -h u (x) 2 dx . (4.14) 
Noticing finally that

lim inf δ→0 G δ [ϑ δ ] = lim inf δ→0 1 2 Ω δ (u δ ) σ δ |∇(ϑ δ + h u δ ,δ )| 2 d(x, z) ≥ lim inf δ→0 1 2 R δ σ δ |∇(ϑ δ + h u δ ,δ )| 2 d(x, z) + lim inf δ→0 1 2 Ω(u δ ) |∇(ϑ δ + h u δ ,δ )| 2 d(x, z) + 1 2 D σ ϑ δ + h u δ -h u δ 2 (x, -H) dx -lim δ→0 1 2 D σ ϑ δ + h u δ -h u δ 2 (x, -H) dx ,
we readily obtain from (4.12), (4.13), and (4.14) that

lim inf δ→0 G δ [ϑ δ ] ≥ 1 2 Ω(u) |∇(ϑ 0 + h u )| 2 d(x, z) + 1 2 D σ ϑ 0 + h u -h u 2 (x, -H) dx = G[ϑ 0 ] .
This is the asymptotic weak lower semicontinuity (4.7).

(ii) Recovery sequence. Let Ω(M ) := D × (-2H -M, M ). Given an arbitrary function ϑ ∈ H 1 B (Ω(u)) we define θ ∈ H 1 0 ( Ω(M )) by extending ϑ trivially to D × (-H, M ) and then reflecting the outcome to Ω(M ); that is,

θ(x, z) :=          0 , x ∈ D , u(x) < z < M , ϑ(x, z) , x ∈ D , -H < z ≤ u(x) , ϑ(x, -2H -z) , x ∈ D , -2H -u(x) < z ≤ -H , 0 , x ∈ D , -2H -M < z ≤ -2H -u(x) .
Then

F := -∆ θ ∈ H -1 ( Ω(M )). With Ω(u δ ) := Ω(u δ ) ∪ D × (-2H -M, -H] ⊂ Ω(M ) ,
the restriction of the distribution F belongs to H -1 ( Ω(u δ )). Thus, there is a unique variational solution θδ

∈ H 1 0 ( Ω(u δ )) ⊂ H 1 0 ( Ω(M )) to -∆ θδ = F in Ω(u δ ) , θδ = 0 on ∂ Ω(u δ ) .
If d H denotes the Hausdorff distance in Ω(M ) (see [12, Section 2.2.3]), then, due to (4.1) and the continuous embedding of H 1 0 (D) in C( D), we have

d H Ω(u δ ), Ω(u) ≤ u δ -u L∞(D) → 0 .
Since Ω(M ) \ Ω(u δ ) has a single connected component, it follows from [23, Theorem

.5] that θδ → θ in H 1 0 ( Ω(M )), where θ ∈ H 1 0 ( Ω(M )) is the unique variational solution to -∆ θ = F = -∆ θ in Ω(M ) , θ = 0 on ∂ Ω(M ) . 4.1] and [12, Theorem 3.2 
Clearly, since θ and θ both belong to H 1 0 ( Ω(M )), we deduce from the above identity that θ = θ. Hence, θδ → θ in

H 1 0 ( Ω(M )) . (4.15) 
Considering the corresponding restrictions to Ω(M ) yields

θδ → θ in H 1 (Ω(M )) . (4.16) 
Set

τ δ (x) :=      1 , L -|x| > √ δ , L -|x| √ δ , L -|x| ≤ √ δ , x ∈ D ,
and introduce

ϑ δ (x, z) := z + H + δ δ θδ (x, z) + z + H + δ δ h u δ ,δ (x, -H) -h u δ ,δ (x, -H -δ) τ δ (x) -h u δ ,δ (x, z) -h u δ ,δ (x, -H -δ) τ δ (x) , (x, z) ∈ R δ , and 
ϑ δ (x, z) := θδ (x, z) , (x, z) ∈ Ω(u δ ) .
The smoothness and definitions of θδ , h u δ ,δ , and τ δ imply that ϑ δ ∈ H 1 (R δ ) ∩ H 1 (Ω(M )) and thus, since moreover ϑ δ = 0 on Σ(u δ ), we deduce that ϑ δ ∈ H 1 (Ω δ (u δ )). By construction, ϑ δ vanishes on ∂Ω δ (u δ ), hence ϑ δ ∈ H 1 0 (Ω δ (u δ )). We now claim that (ϑ δ ) δ∈(0,1) is a recovery sequence for ϑ; that is,

G[ϑ] = lim δ→0 G δ [ϑ δ ] . (4.17) 
First, using that θδ = 0 in Ω(M )\Ω(u δ ) and ϑ δ = θδ in Ω(u δ ) along with (4.1), Lemma 3.1, and (4.16), it is not difficult to see that

lim δ→0 1 2 Ω(u δ ) |∇(ϑ δ + h u δ ,δ )| 2 d(x, z) = 1 2 Ω(u) |∇(ϑ + h u )| 2 d(x, z) . (4.18) 
Next, for (x, z) ∈ R δ , we have

∂ z (ϑ δ + h u δ ,δ )(x, z) = 1 δ θδ (x, z) + 1 δ h u δ ,δ (x, -H) -h u δ ,δ (x, -H -δ) τ δ (x) + z + H + δ δ ∂ z θδ (x, z) + 1 -τ δ (x) ∂ z h u δ ,δ (x, z) , (4.19) 
and we aim at identifying the limit of the right-hand side of (4.19) as δ → 0. Let us first note that, for z ∈ (-H -δ, -H), 

D θδ (x, z) -θδ (x, -H) 2 dx ≤ D |H + z| -H z ∂ z θδ 2 dz dx ≤ δ R δ ∇ θδ 2 d(x, z) ,
lim δ→0 R δ σ δ (x, z) 1 δ θδ (x, z) + 1 δ h u δ ,δ (x, -H) -h u δ ,δ (x, -H -δ) τ δ (x) 2 d(x, z) = lim δ→0 1 δ -H -H-δ D σ(x, z) θδ (x, z) + h u δ ,δ (x, -H) -h u δ ,δ (x, -H -δ) τ δ (x) 2 dx dz = D σ(x, -H)| θ(x, -H) + h u (x, -H) -h u (x)| 2 dx . (4.22) Moreover, R δ σ δ (x, z) z + H + δ δ ∂ z θδ (x, z) 2 d(x, z) ≤ δσ max -H -H-δ D ∂ z θδ (x, z) 2 dxdz ≤ δσ max θδ 2 H 1 ( Ω(M ))
so that, recalling that ( θδ ) δ∈(0,1) is bounded in H 1 ( Ω(M )) due to (4.15),

lim δ→0 R δ σ δ (x, z) z + H + δ δ ∂ z θδ (x, z) 2 d(x, z) = 0 . (4.23)
Finally, observe from (3.1e) that

∂ z h u δ ,δ (x, z) = 1 δ ∂ z h b x, -H + z + H δ , u δ (x) , (x, z) ∈ R δ .
Hence,

R δ σ δ (x, z) 1 -τ δ (x) ∂ z h u δ ,δ (x, z) 2 d(x, z) ≤ σ max -H -H-1 D 1 -τ δ (x) ∂ z h b (x, ξ, u δ (x))
2 dxdξ so that, using (4.1), the definition of τ δ , the continuity of ∂ z h b , and Lebesgue's dominated convergence theorem, we derive Furthermore, we note that

lim δ→0 R δ σ δ (x, z) 1 -τ δ (x) ∂ z h u δ ,δ (x, z) 2 d(x, z) = 0 . ( 4 
∂ x ϑ δ (x, z) = z + H + δ δ ∂ x θδ (x, z) + z + H + δ δ ∂ x h u δ ,δ (x, -H) -∂ x h u δ ,δ (x, -H -δ) τ δ (x) + z + H + δ δ h u δ ,δ (x, -H) -h u δ ,δ (x, -H -δ) ∂ x τ δ (x) -∂ x h u δ ,δ (x, z) -∂ x h u δ ,δ (x, -H -δ) τ δ (x) -h u δ ,δ (x, z) -h u δ ,δ (x, -H -δ) ∂ x τ δ (x)
and, recalling (3.1e),

∂ x h u δ ,δ (x, z) = ∂ x h b x, -H + z + H δ , u δ (x) + ∂ x u δ (x)∂ w h b x, -H + z + H δ , u δ (x) for (x, z) ∈ R δ . Thus, since 0 ≤ τ δ (x) ≤ 1 , 0 ≤ z + H + δ δ ≤ 1 , (x, z) ∈ R δ ,
we easily obtain from 

σ δ = δσ in R δ that R δ σ δ (x, z) ∂ x (ϑ δ + h u δ ,δ ) 2 d(x, z) ≤ c δσ max R δ |∂ x θδ (x, z)| 2 d(x, z) + c δ 2 σ max h b 2 C 1 D 1 + |∂ x u δ (x)| 2 + |∂ x τ δ (x)| 2 dx ≤ c δσ max θδ 2 H 1 ( Ω(M )) + c δ 2 σ max h b 2 C 1 |D| + u δ 2 H 1 (D) + |D| δ , where h b C 1 denotes the norm of h b in C 1 ( D × [-H -1, -H] × [-H, M ]),
G δ [ϑ δ ] = lim δ→0 1 2 Ω(u δ ) |∇(ϑ δ + h u δ ,δ )| 2 d(x, z) + 1 2 R δ σ δ |∂ x (ϑ δ + h u δ ,δ )| 2 + |∂ z (ϑ δ + h u δ ,δ )| 2 d(x, z) = 1 2 Ω(u) ∇(ϑ + h u ) 2 d(x, z) + 1 2 D σ(x, -H) θ(x, -H) + h u (x, -H) -h u (x) 2 dx = G[ϑ] ,
where we used that θ(x, -H) = ϑ(x, -H) by construction of θ. Hence, (ϑ δ ) δ∈(0,1) is indeed a recovery sequence for ϑ.

(iii) Convergence. Since (i) and (ii) prove (4.5), we may invoke the Fundamental Theorem of Γ-convergence [START_REF] Maso | An introduction to Γ-convergence[END_REF]Corollary 7.20] to deduce from (4.2)-(4.5) that, as δ → 0,

E e,δ (u δ ) = -G δ [χ u δ ,δ ] -→ -G[χ u ] = E e,0 (u) 
and

ψ u δ ,δ -h u δ ,δ -→ ψ u -h u in L 2 (Ω(M )) .
This proves Proposition 4.1.

4.2. Γ-convergence of the total energy. We now turn to the Γ-convergence of the total energy and first establish that the H 2 -norm of u is controlled by the total energy E δ (u) (defined in (1.2)) and the L 2 -norm of u, whatever the value of δ ∈ (0, 1).

Lemma 4.2. Given κ > 0 there is a constant c(κ) > 0 such that, if u ∈ S0 satisfies 

u L 2 (D) ≤ κ and E δ (u) ≤ κ , δ ∈ (0, 1) , (4.27) then u H 2 (D) + Ω δ (u) σ δ |∇ψ u,δ | 2 d(x, z) ≤ c(κ) , δ ∈ (0, 1) . ( 4 
σ δ |∇ψ u,δ | 2 d(x, z) ≤ Ω δ (u) σ δ |∇h u,δ | 2 d(x, z) ≤ c 0 1 + u 2 L 2 (D) + ∂ x u 2 L 2 (D) , (4.29) 
where c 0 is defined in Lemma 3.1. Furthermore, since u ∈ S0 ⊂ H 2 D (D) we have

∂ x u 2 L 2 (D) = - D u∂ 2 x u dx ≤ u L 2 (D) ∂ 2 x u L 2 (D) , (4.30) 
so that we deduce from (4.27) and ( 4.29) that

-E e,δ (u) = 1 2 Ω δ (u) σ δ |∇ψ u,δ | 2 d(x, z) ≤ c(κ) 1 + ∂ 2 x u L 2 (D) . (4.31) 
Consequently, we obtain from (4.31), the definition of E δ , and Young's inequality that

E δ (u) ≥ β 2 ∂ 2 x u 2 L 2 (D) -c(κ) 1 + ∂ 2 x u L 2 (D) ≥ β 4 ∂ 2 x u 2 L 2 (D) -c(κ) .
Combining the above estimate with (4.27) and (4.30) entails that u H 2 (D) ≤ c(κ), which also implies the second assertion of (4.28) due to (4.31).

The total energies (defined in (1.2) and (1.6)), being a priori defined only on S0 , are extended to functionals on L 2 (D) by setting

E δ (u) := ∞ , E(u) := ∞ , u ∈ L 2 (D) \ S0 .
Then we can prove: 

≥ β 2 ∂ 2 x u 2 L 2 (D) + a 4 ∂ x u 4 L 2 (D) -c 0 1 + (1 + 16L 2 ) ∂ x u 2 L 2 (D) ≥ β 2 ∂ 2 x u 2 L 2 (D) + a 8 ∂ x u 4 L 2 (D) -c 0 - c 2 0 a (1 + 16L 2 ) 2 ≥ β 2 ∂ 2 x u 2 L 2 (D) + a 4 ∂ x u 2 L 2 (D) -c 1 ,
with c 0 defined in Lemma 3.1 and c 1 := a/8 + c 0 + c 2 0 (1 + 16L 2 ) 2 /a. Hence,

β 2 ∂ 2 x u 2 L 2 (D) + a 4 ∂ x u 2 L 2 (D) ≤ E δ (u) + c 1 , u ∈ S0 . (4.38)
Now, for each δ ∈ (0, 1), let u * δ ∈ S0 be an arbitrary minimizer of E δ in S0 , see (2.2), with corresponding electrostatic potential ψ u * δ ,δ satisfying (1.3). Since E δ (u * δ ) ≤ E δ (0) ≤ 0, we readily infer from (4.37) and (4.38) that (u * δ ) δ∈(0,1) is bounded in H 2 (D). In particular, there are a subsequence δ j → 0 and u * ∈ S0 such that u * δ j ⇀ u * in H 2 (D) , (4.39)
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so that Corollary 4.3 and the Fundamental Theorem of Γ-convergence, see [START_REF] Maso | An introduction to Γ-convergence[END_REF]Corollary 7.20], imply that u * is a minimizer of E on S0 and lim j→∞ E δ j (u * δ j ) = E(u * ) . (4.40)

Moreover, since (u * δ ) δ∈(0,1) is bounded in H 2 (D) and (E δ (u * δ )) δ∈(0,1) is bounded, Lemma 4.2 and (2.1) entail that (the trivial extensions of)

where

is finite thanks to the boundedness of (u * δ ) δ∈(0,1) in H 2 (D) and the continuous embedding of H 2 (D) in L ∞ (D). Therefore, upon extracting a further subsequence if necessary, we may assume that ψ u * δ j ,δ j -h u * δ j ,δ j j≥1 weakly converges in H 1 (D × (-H, M )), the limit necessarily being ψ u * -h u * owing to Proposition 4.1.

Let us finally improve the convergence (4.39) of (u * δ j ) j≥1 . Since H 2 (D) embeds compactly in H 1 (D), it follows from (4.39) that

Together with the convergences (4.39) and (4.41), this property implies the strong convergence of (u * δ j ) j≥1 to u * in H 2 (D) and completes the proof of Theorem 2.1 when a > 0.

4.4.

Remaining arguments for the proof of Theorem 2.1: The case a = 0. To finish off the proof of Theorem 2.1, we are left with the case a = 0 for which the weak compactness of minimizers in H 2 (D) is harder to derive. Additional information on these minimizers is actually required and follows from the analysis performed in [START_REF]Shape derivative of the Dirichlet energy for a transmission problem[END_REF][START_REF]Stationary solutions to a nonlocal fourth-order elliptic obstacle problem[END_REF], using that they are critical points of the total energy. Lemma 4.4. There is a constant c 2 > 0 which does not depend on δ ∈ (0, 1) such that, if u is a minimizer of E δ on S0 for some δ ∈ (0, 1), then

δ ∈ (0, 1) .

Taking Lemma 4.4 for granted, we are in a position to complete the proof of Theorem 2.1 when a = 0.

Proof of Theorem 2.1: a = 0. For each δ ∈ (0, 1), let u * δ ∈ S0 be an arbitrary minimizer of E δ in S0 , see (2.2), with corresponding electrostatic potential ψ u * δ ,δ satisfying (1.3). By Lemma 4.4, (u * δ ) δ∈(0,1) is bounded in L ∞ (D) and thus also in L 2 (D). Therefore, since E δ (u * δ ) ≤ E δ (0) ≤ 0, it is also bounded in H 2 (D) according to Lemma 4.2. We may then proceed as in the previous case a > 0 in order to complete the proof of Theorem 2.1.

We are left with proving Lemma 4.4, which relies on the same comparison argument as [START_REF]Stationary solutions to a nonlocal fourth-order elliptic obstacle problem[END_REF]Proposition 2.6] and uses in an essential way the Euler-Lagrange equation satisfied by minimizers of the total energy E δ .

Proof of Lemma 4.4. Let δ ∈ (0, 1) and consider a minimizer u ∈ S0 of E δ on S0 (if any). Owing to (3.1), it follows from [18, Theorem 1.3] (see also [START_REF]Shape derivative of the Dirichlet energy for a transmission problem[END_REF]Theorem 5.3]) that u is a weak solution to the parabolic variational inequality β∂ 4

x u -τ ∂ 2 x u + ∂I S0 (u) ∋ -g δ (u) in D , where ∂I S0 denotes the subdifferential in L 2 (D) of the indicator function I S0 of the closed convex set S0 (that is, I S0 (v) = 0 for v ∈ S0 and I S0 (v) = ∞ for v ∈ L 2 (D) \ S0 ). Taking into account assumptions (2.1) and (3.1h), the electrostatic force g δ (u) ∈ L 2 (D) is given by

for x ∈ D, where

for x ∈ C(u), the coincidence set C(u) being defined in (1.1). In the definition of g δ (u), ψ u,δ,1 := ψ u,δ 1 R δ and ψ u,δ,2 := ψ u,δ 1 Ω(u) , where we recall that [17, Theorem 1.1] guarantees that ψ u,δ,1 ∈ H 2 (R δ ) and ψ u,δ,2 ∈ H 2 (Ω(u)), so that the traces involved in (4.42) are welldefined. Now, since g δ (u * δ ) ≥ 0 in D, it easily follows from (3.1i) that g δ (u) ≥ -K 2 in D and we argue as in the proof of [START_REF]Stationary solutions to a nonlocal fourth-order elliptic obstacle problem[END_REF]Proposition 2.6] to conclude that there is a constant c > 0 depending only on L, β, τ , and K such that u ≤ c in D. Recalling that u ≥ -H completes the proof.