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Abstract

The uncoordinated nature of IoT networks makes interference management a
challenging problem. Motivated by NB-IoT and SCMA protocols, we study the
interference statistics of a Poisson spatial field of IoT interferers exploiting OFDM.
We show for a sufficiently large number of subcarriers that the interference
statistics are well-approximated by a sub-Gaussian α-stable random vector with
a non-isotropic underlying Gaussian random vector. This result forms a basis to
improve detection and decoding algorithms at the receiver.
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1. Introduction

A key feature of IoT wireless networks is a lack of coordination between devices.
In contrast to mobile cellular networks, with a high level of coordination, only
limited interference mitigation strategies are available. In particular, transmissions
are typically only constrained by duty cycle guidelines or the time to listen in
carrier-sense multiple access (CSMA) protocols [1]. As such, devices must adapt to
interference locally via signal processing tailored to the interference statistics [2].

Motivated by the need for appropriate statistical models to perform signal
processing, there have recently been a number of studies of the interference statistics
in the context of IoT communications. One key observation, obtained from an
experimental campaign in Aalborg, Denmark, is that the interference power on
each subband is heavy tailed[1], with the probability of large interference power
significantly higher than for Gaussian models. This experimental observation is
consistent with theoretical analysis of interference arising from a Poisson spatial field
of interferers [3, 4] and variations including the Poisson-Poisson clustered interferers
in [5]. In particular, α-stable models have been shown to be a good approximation of
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the statistics for the interference amplitude when guard zones are sufficiently small
and the network radius is sufficiently large [6, 5].

Despite this progress, focusing on the interference on a single subband, there has
been limited work investigating interference in the context of OFDM-based systems.
In the context of the IoT, OFDM is exploited in narrowband IoT (NB-IoT). In
[7, 8, 2], we have studied the scenario where interfering devices randomly select a
subset of bands and developed accurate approximations of the interference statistics
exploiting copula models. In [9], we developed a multivariate α-stable model under a
Gaussian assumption on the product of fading and the baseband emission. However,
in both of these papers, the interferers are assumed to have the same subcarrier
spacing as the desired link, which is not necessarily the case in NB-IoT.

In this paper, we study the interference statistics arising from a Poisson spatial
field of interferers in the scenario where the desired transmitter exploits OFDM with
a different subcarrier spacing to the interfering devices. As a consequence, the signal
on each subband—as observed by the receiver—is affected by each OFDM symbol of
the interfering devices. This introduces non-trivial statistical dependence between
the signal observed on each subband at the receiver, even if each interferer transmits
on all subcarriers.

Under the assumption of interferers adopting PSK modulation, we show that the
resulting interference is well approximated by a multivariate α-stable model when
each interferers transmits on all of their subcarriers. In particular, the interference
model is sub-Gaussian α-stable with an underlying non-isotropic Gaussian random
vector. In contrast, when the interferers use the same subcarrier spacing as the desired
transmitter, the interference is sub-Gaussian α-stable with an isotropic Gaussian
random vector [8].

2. System Model

Consider a desired system with receiver at the origin exploiting OFDM with a
symbol period T ; that is, the subcarriers have a bandwidth of ∆f satisfying 1

∆f = T .
The desired system coexists with a network of interfering devices with locations
forming a homogeneous Poisson point process Φ with intensity λ. Devices in the
interfering network also transmit using OFDM with a total of L subcarriers and
subcarrier spacing ∆f ′, which in general does not satisfy the OFDM orthogonality
conditions with the symbol period utilized by the desired receiver.

We assume that the symbol period of the interfering system, T ′ = 1
∆f ′ , satisfies

T ′ > T . As such, at most two interfering symbols can be present in each time period
of duration T . We also assume that each interferer utilizes M -PSK with average
power P , with equally likely symbols.
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In continuous time, the interference observed by the desired receiver at the origin
due to the l-th subcarrier of the interfering system is then given by

Yl(t) =
∑
k∈Φ

r
−η/2
k hk,l

[√
P

2

√
2

T
cos
(
2π(fc + l∆f ′)t+ θk,l + φk,l

)
u(Dk − t)√

P

2

√
2

T
cos
(
2π(fc + l∆f ′)t+ θ′k,l + φk,l

)
u(t−Dk)

]
, 0 ≤ t ≤ T. (1)

where rk is the distance from interferer k ∈ Φ to the origin at the receiver, η is the
pathloss coefficient, hk,le

iφk,l is the baseband fading coefficient on the l-th subcarrier
from interferer k, eiθk,l is the baseband data transmitted in the first symbol, eiθk,ll is
the baseband data transmitter in the second symbol, and Dk ∼ Unif[0, T ] is the time
that transmission of the second symbol begins, assumed to be uniformly distributed
on [0, T ].

Using the linear correlation demodulator [4], the desired receiver is subject to
interference on subcarrier i corresponding to a frequency fc + i∆f . In particular, the
in-phase component of the interference contributed by the l-th interfering subcarrier
is given by

Y1,i,l =

∫ T

0
Yl(t)

√
2

T
cos(2π(fc + i∆f)t)dt, (2)

which yields in-phase interference given by

Y1,i =

bL
2
c−1∑

l=b−L
2
c

Y1,i,l. (3)

Similarly, the quadrature component of the interference contributed by the l-th
interfering subcarrier is given by

Y2,i,l = −
∫ T

0
Y (t)

√
2

T
sin(2π(fc + i∆f)t)dt, (4)

yielding quadrature interference given by

Y2,i =

bL
2
c−1∑

l=b−L
2
c

Y2,i,l. (5)
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In this paper, we are concerned with characterizing the interference random
vector

Y = [Y1,1, Y2,1, . . . , Y1,K , Y2,K ], (6)

which consists of the inphase and quadrature interference components on each
subcarrier of the desired link. In the following, we derive a tight approximation of
the statistics of Y as L→∞.

3. Multivariate α-Stable Interference Model

In this section, we derive an approximation for the interference statistics for
sufficiently large L. As the receiver exploits the correlation demodulator, the in-phase
component of the signal observed on subcarrier i of the receiver due to subcarrier l
of the interfering system is given by

Y1,i,l =

∫ T

0
Yl(t)
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where the approximation is tight when fcT � 1. Using a similar argument, the
quadrature component of the signal observed on subcarrier i of the receiver due to
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subcarrier l of the interfering system is given by

Y2,i,l ≈
P

T

∑
k∈Φ

r
−η/2
k hk,l

·
[

1

2π(l∆f ′ − i∆f)

(
− cos(2π(l∆f ′)Dk + θk,l + φk,l) + cos(θk,l + φk,l)

)
− 1

2π(l∆f ′ − i∆f)
sin(2π(l∆f ′ − i∆f)T + θ′k,l + φk,l)

+
1

2π(l∆f ′ − i∆f)
sin(2π(l∆f ′ − i∆f)Dk + θ′k,l + φk,l)

]
=
∑
k∈Φ

Pr
−η/2
k

T
X2,k,l. (8)

We now consider
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Conditioned on Dk, the terms {X1,k,l}l are independent and identically distributed
zero mean Gaussian random variables, with variance independent of Dk. This is due
to the fact that Θk,l = θk,l + φk,l has distribution

Pr(θk,l + φk,l ≤ x) =

M∑
j=1

1

M

(
(x− θj)

2π
1{0≤x−θj<2π} + 1{x−θj>2π}

)
, (10)

where θj is the j-th symbol in the M -PSK constellation. We then have, for any
z ∈ R,

E[sin(z + Θ)] =

M∑
j=1

1

M
E[sin(z + θj + φ)] = 0. (11)
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Similarly,

E[sin2(z + Θ)] =
M∑
j=1

1

M
E[sin2(z + θj + φ)] =

1

2
. (12)

Let σ2
Y = Var(X1,k,l) = Var(X2,k,l). As L→∞, by the central limit theorem, we

then obtain

Y1,i ≈ Ỹ1,i =
∑
k∈Φ

P
√
Lr
−η/2
k

T
G1,k, (13)

where G1,k ∼ N (0, σY ). Similarly,

Y2,i ≈ Ỹ2,i

∑
k∈Φ

P
√
Lr
−η/2
k

T
G2,k, (14)

where G2,k ∼ N (0, σY ).
Writing

Ỹ1,i =
P
√
L

T

∑
k∈Φ

(r
−η/4
k )2G1,k (15)

and applying the mapping theorem for Poisson point processes [3], it follows that
Ỹ1,i is a symmetric 4/η-stable random variable by the LePage series expansion. For
more details, see [3, 4]. By the same argument, Ỹ2,i is also a symmetric 4/η-stable
random variable.

We now turn to the random vector Y. So far, we have shown that each marginal
of Y, i.e., Y1,1, Y2,1, . . ., is well approximated by an identically distributed symmetric
α-stable random variable. If each term G1,1, G2,1, . . . is independent, then by [8, 2],
it follows that Y is a sub-Gaussian α-stable random vector with underlying Gaussian
random vector G ∼ N (0, σI).

However, in the present case, the terms G1,1, G2,1, . . . are not in general inde-
pendent due to the presence of {θk,l, φk,l, hk,l} in the expressions for Y1,i and Y2,i.
As such, there is a non-zero correlation between each pair Yj,i, Yj′,i′ for j 6= j′ and
i, i′ ∈ {1, . . . , I}. An approximation for the statistics of Y is given in Theorem 1.

Theorem 1. Ỹ is a sub-Gaussian 4/η-stable random vector with a non-isotropic
underlying Gaussian random vector.
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Proof. We first write

Ỹ =

√
L

T

∑
k∈Φ

r
−η/2
k Gk

=

√
L

T
C
∑
k∈Φ

r
−η/2
k G̃k, (16)

where G̃k ∼ N (0, σY I) and C is the Cholesky decomposition of the covariance matrix

of Gk. It then follows that
∑

k∈Φ r
−η/2
k G̃k is a sub-Gaussian α-stable random vector

with isotropic underlying Gaussian random vector Z by [8, 2]. Using the fact that∑
k∈Φ r

−η/2
k G̃k is sub-Gaussian α-stable,

Ỹ =

√
L

T
C
√
AZ, (17)

where A is a skewed stable random variable (see Definition 1), it then follows that Ỹ
is a sub-Gaussian α-stable random vector with non-isotropic underlying Gaussian
random vector. �

4. Conclusion

Multivariate interference models naturally arise in OFDM-based communication
systems, such as NB-IoT. In this paper, we considered the impact of a mismatch
between the subcarrier spacing of the desired link and the interfering signals. In the
case of interferer locations forming a Poisson spatial field, we have shown that the
interference is well approximated by a sub-Gaussian α-stable model with non-isotropic
underlying Gaussian random vector when the number of interferer subcarriers L is
large, bearing similarities with the analysis of passband additive symmetric α-stable
noise in [10]. The result forms a basis for improved receiver design in IoT systems.

A. α-Stable Preliminaries

In this appendix, we overview key properties of α-stable random vectors. The
probability density function of an α-stable random variable is parameterized by
four parameters: the exponent 0 ≤ α ≤ 2; the scale parameter γ ∈ R+; the skew
parameter β ∈ [−1, 1]; and the shift parameter δ ∈ R. As such, a common notation
for an α-stable random variable X is X ∼ Sα(γ, β, δ). In the case β = δ = 0, X is
said to be a symmetric α-stable random variable.

In general, α-stable random variables do not have closed-form probability density
functions. Instead, they are more compactly represented by their characteristic
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function, given by [11, Eq. 1.1.6]

E[eiθX ]

=


exp

{
−γα|θ|α(1− iβ(signθ) tan πα

2 ) + iδθ
}
,

α 6= 1
exp

{
−γ|θ|(1 + iβ 2

π (signθ) log |θ|) + iδθ
}
,

α = 1

(18)

It is possible to extend the notion of an α-stable random variable to the multi-
variate setting. In particular, a random vector X is a symmetric α-stable random
vector if for all a, b > 0 there exists c > 0 such that

aX(1) + bX(2) d
= cX, (19)

where X(1),X(2) are independent copies of X.
A sufficient condition for a random vector X to be a symmetric α-stable random

vector is that all linear combinations of the marginal distributions for the elements of
X are symmetric α-stable [11]. In general, d-dimensional symmetric α-stable random
vectors are also represented via their characteristic function, given by [11]

E[eiθ·X] = exp

(
−
∫
Sd−1

∣∣∣∣∣
d∑

k=1

θksk

∣∣∣∣∣
α

Γ(ds)

)
, (20)

where Γ is the unique symmetric measure on the surface of the d-dimensional unit
sphere.

In the case that a d-dimensional symmetric α-stable random vector X is truly
d-dimensional, there exists a joint probability density function pX(x) on Rd. Note
that a simple necessary and sufficient condition for X to be truly d-dimensional is
for the support of the spectral measure Γ to span Rd [?]. This condition means
that degenerate symmetric α-stable random vectors (e.g., when Xi = Xj for some
i 6= j, i, j ∈ {1, . . . , d}) are not considered.

An important class of α-stable random vectors is the sub-Gaussian α-stable
family.

Definition 1. Any vector X distributed as X = (A1/2G1, . . . , A
1/2Gd), where

A ∼ Sα/2((cosπα/4)2/α, 1, 0), (21)

and G = [G1, . . . , Gd]
T ∼ N (0, σ2I) is called a sub-Gaussian α-stable random vector

in Rd with underlying Gaussian vector G.



Malcolm Egan and Laurent Clavier
Multivariate α-Stable Interference

DCCN 2020
14-18 September 2020

REFERENCES
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