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ABSTRACT
Two key challenges in diffusion-based molecular communication

are low data rates and accounting for the geometry of the fluid

medium in the form of obstacles and the boundary. To reduce the

need for the receiver to have knowledge of the geometry of the

medium, binary equilibrium signaling has recently been proposed

for molecular communication with a passive receiver in bounded

channels. In this approach, reversible chemical reactions are intro-

duced at the transmitter and the receiver in order for the system

to converge to a known equilibrium state. This provides a means

of designing simple detection rules that only depend on the trans-

mitted signal and the volume of the bounded fluid medium. In this

paper, we introduce multi-level equilibrium signaling, which allows

for higher data rates via higher order modulation. We show that for

a wide range of conditions, with appropriate receiver optimization,

multi-level equilibrium signaling can outperform conventional con-

centration shift keying schemes. As such, our approach provides a

basis to improve data rates in molecular communications without

the need to increase the complexity of the system by exploiting

techniques such as multiple information-carrying molecules.

KEYWORDS
Molecular communication, equilibrium signaling, multi level sig-

naling

1 INTRODUCTION
A challenge in diffusion-based molecular communications is low

data rate transmission. This challenge arises from two factors: (i)

the long time scales involved in molecular diffusion; and (ii) noise

in the observed number of molecules at the receiver. The impact

of the noise is that modulation schemes of low order—–typically,

binary–—have traditionally been required. Due to the time scale

for molecules to diffuse to the receiver, it can take a long time for a

single bit to be communicated.

A second challenge is the need for receivers to be adapted to

the geometry of the communication channel. For example, conven-

tional concentration shift keying (CSK) schemes require knowledge

of the statistics for the quantity of molecules that arrive at the sam-

pling time [12]. However, in practice, it is challenging to estimate

the distance between the transmitter and the receiver [5], and even

more difficult to characterise the boundary of a complicated bio-

chemical system in which the communication system is embedded.

The same issue also arises in other schemes such as molecular shift

keying (MoSK) [3] and pulse position modulation schemes [2].

To address the challenge of complex channel geometry, a new bi-

nary modulation scheme called equilibrium signaling with a passive

receiver has been introduced in [1] for a bounded fluid medium. To

the best of the authors’ knowledge, equilibrium signaling is the first

scheme for molecular communication utilizing a passive receiver

allowing for a bounded channel and no degradation of information

carrying molecules in the channel. As passive receivers typically

require advanced spectroscopy methods, this setup is relevant for

microfluidic circuits in the context of lab-on-a-chip systems.

The main innovation in equilibrium signaling is to introduce

reversible chemical reactions in the transmitter and the receiver.

By doing so, the system converges to an equilibrium state with

known Gaussian statistics, dependent only on the number of trans-

mitted molecules and the volume of the system. As such, a passive

receiver does not require knowledge of the shape of the boundary

or obstacles within the system.

While equilibrium signaling forms a basis to address the second

challenge, it is necessary for the receiver to sample near the equilib-

rium state which only exacerbates the challenge of low data rates.

While low data rates may be unavoidable in systems exploiting

biological circuits [1], it is not desirable in general; particularly in

the context of microfluidic circuits where advanced spectroscopy

methods may be available.

In this paper, we propose a method in order to increase the data

rate for molecular communications based on equilibrium signaling.

To do so, we introduce multi-level equilibrium signaling, where the

transmitter can exploit a higher-order modulation scheme allow-

ing for𝑀 > 2 symbols. Multi-level equilibrium signaling exploits

the possibility, as a passive receiver is utilised, of obtaining mul-

tiple independent observations for each transmitted symbol. The

consequence is that the strength of the noise can be dramatically

reduced.

In order to design parameters, we derive an accurate approxima-

tion for the probability of error for multi-level equilibrium signaling.

This provides a basis to optimise the order of themodulation scheme

and to choose appropriate amplitudes subject to constraints on the

number of samples available at the receiver.

Due to the difficulty in reducing the strength of the noise at

the receiver, conventional approaches such as CSK have typically

exploited binary modulation schemes and been limited to systems

either with an absorbing receiver, channels with unbounded vol-

ume or informationmolecule degradation. Higher order modulation

schemes based on MoSK have also been proposed at the cost of a

large number of types of information-carrying molecules. To es-

tablish the performance of multi-level equilibrium signaling, we

compare it with CSK and show significant performance improve-

ments in terms of the probability of error.

2 SYSTEM MODEL
Let Ω ⊂ R𝑑 , 𝑑 ∈ {1, 2, 3} be a domain with smooth boundary

𝜕Ω consisting of transmitting and receiving devices with a fluid

medium separating the devices. Consider the discretization of Ω
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into 𝑁 volume elements (voxels) each of volume 𝑉vox, with the set

of points in voxel 𝑖 denoted by V𝑖 , 𝑖 = 1, . . . ,𝑁 . Here, volume is

interpreted as length in R1, area in R2, and volume in R3. The setup
for a one-dimensional channel is illustrated in Fig. 1, where the

receiver may lie in the interior of the bounded channel.

Figure 1: System Model.

Messages to be sent by the transmitter with volume 𝑉Tx are

encoded into the quantity of the chemical species S1. Within the

transmitter and the receiver, each species is produced or removed

via the unimolecular reactions

S1 → S2
S2 → S1, (1)

In particular, the transmitter produces information-carrying

molecules of species S2 by the first reaction in (1). In general, a

more complex reaction pathway may be present; however, the in-

termediate reactions occur rapidly as is common, for example, in

enzyme-based reactions.

We assume that molecules of species S1 produced in the trans-

mitter are not capable of diffusing into the channel. On the other

hand, this is possible for species S2.
In order to capture the effect of small quantities of each chemical

species in the system (i.e., S1, S2), we consider a stochastic model

for the kinetics. To formally describe the scenario, we introduce

the following notation. Let𝑀𝑙
𝑖
(𝑡), 𝑙 = 1, 2, 𝑖 = 1, . . . ,𝑁 denote the

random variable for the number of molecules of species S1 or S2
in voxel 𝑖 at time 𝑡 . Denote M𝑖 (𝑡) = [𝑀1

𝑖
(𝑡),𝑀2

𝑖
(𝑡)] as the state

vector in voxel 𝑖 and the matrix M(𝑡) = [M1 (𝑡), . . . ,M𝑁 (𝑡)]. The
probability thatM(𝑡) has value m at time 𝑡 is then denoted by

𝑃 (m, 𝑡) = Pr(M(𝑡) = m|M(0) = m0), (2)

whereM(0) is the initial quantity of molecules of each species in

each voxel. In the present context, the M(0) is dependent on the

equilibrium state of the biochemical process under observation.

Since each reaction is unimolecular, it follows that in each reac-

tion the number of molecules of the two species involved can only

increase or decrease by one. Let 1
𝑙
𝑖
be the state where the number of

molecules in all voxels is zero, except for species 𝑙 in voxel 𝑖 . That

is, M(𝑡) + 1
𝑙
𝑖
means that the number of molecules of species 𝑙 in

voxel 𝑖 is increased by one.

A popular model for stochastic kinetics of molecules is the

reaction-diffusion master equation (RDME) [11], also utilized in

the context of molecular communications in [6]. In this model, the

diffusive jump rate is denoted by 𝜅𝑙
𝑖 𝑗
for each individual molecules

of the 𝑙-th species moving from voxel 𝑗 into voxel 𝑖 , with 𝜅𝑖𝑖 =

0, 𝑖 = 1, . . . ,𝑁 . In particular, the probability per unit time that a

molecule of S𝑙 diffuses from voxel 𝑗 to voxel 𝑖 at time 𝑡 is given

by 𝜅𝑙
𝑖 𝑗
𝑀𝑙
𝑗
(𝑡). We expect that in many microfluidic systems, 𝜅𝑙

𝑖 𝑗
is

constant for a given species S𝑙 over all voxels 𝑖 , 𝑗 . Nevertheless, it
is also possible to consider spatially inhomogeneous diffusion [1].

In the case of mass-action kinetics and first-order reactions, the

probability per unit time that a molecule of S𝑙 in voxel 𝑖 reacts

at time 𝑡 is given by 𝑎𝑙
𝑖
𝑀𝑙
𝑖
(𝑡) with rate constants 𝑎𝑙

𝑖
. In general,

the reaction rate is dependent on the voxel index. The net change

of each chemical species due to the reaction with substrate S𝑙 is
expressed via the column vector 𝝂𝑙 ∈ N2. The term 𝝂𝑙1𝑖 indicates
that M(𝑡) changes by 𝝂𝑘 in the 𝑖-th voxel.

In order to model production of S1 in the transmitter and S2, we
assume that for voxels 𝑖 comprising the transmitter and the receiver

𝑎𝑙
𝑖
= 𝑎𝑙 , while 𝑎1

𝑖
= 0 for voxels comprising the channel.

In the RMDE model, the probability distribution 𝑃 (m, 𝑡) evolves
according to the system of differential equations given by

d𝑃 (m, 𝑡)
d𝑡

=

𝑁∑
𝑖=1

𝑁∑
𝑗=1

2∑
𝑙=1

(
𝜅𝑙𝑖 𝑗 (𝑚

𝑙
𝑗 + 1)𝑃 (m + 1

𝑙
𝑗 − 1

𝑙
𝑖 , 𝑡)

−𝜅𝑙𝑗𝑖𝑚
𝑙
𝑖𝑃 (m, 𝑡)

)
+
𝑁∑
𝑖=1

2∑
𝑙=1

(
𝑎𝑙𝑖 (𝑚

𝑙
𝑖 + 1)𝑃 (m − 𝝂𝑙1𝑖 , 𝑡)

−𝑎𝑙𝑖𝑚
𝑙
𝑖𝑃 (m, 𝑡)

)
. (3)

The system of ordinary differential equations in (3) corresponds

to the Kolmogorov forward equation for a continuous-time Markov

chain; that is, the evolution of the system state is Markovian. In our

setting, the Markov chain corresponding to the RDME is irreducible

and positive recurrent. Therefore, a stationary distribution exists

and is given by [9]

𝜋 (m) = lim

𝑡→∞
Pr(M(𝑡) = m|M(0) = m0). (4)

3 MULTI-LEVEL EQUILIBRIUM SIGNALING
3.1 Signaling
We assume that the system operates using time slots with duration

𝑇𝑠 and that no molecules of species S1 nor S2 are present in the

system at 𝑡 = 0. The symbol to be transmitted in time slot 𝑛 is

denoted by 𝑠𝑛 ∈ {1, . . . ,𝑀}. Moreover, molecules that are produced

by the transmitter may change the number of each species via the

reactions in (1); however, no molecules degrade.

Consider the 𝑛-th time slot. Due to the previous 𝑛 − 1 transmis-

sions, there are 𝑁
Tx,𝑙 (𝑛𝑇𝑠 ), 𝑙 = 1, 2 molecules of species S𝑙 in the

transmitter. At a time 𝑛𝑇𝑠 + 𝛿 shortly after the beginning of the

time slot, the biochemical process produces Δ𝑖𝑛 of S1 to convey the

𝑖-th symbol where 𝑖 ∈ {1, . . . ,𝑀}. In particular, when symbol 𝑖 is

transmitted,

𝑁Tx,1 (𝑛𝑇𝑠 + 𝛿) = 𝑁Tx,1 (𝑛𝑇𝑠 ) + Δ𝑖𝑛 (5)

for 𝛿 > 0 a sufficiently small period of time; that is, 𝛿 is chosen

such that no reactions occur nor any molecules diffuse into the

microchannel. We assume that for each time slot, the same quantity

of molecules is used to represent a given symbol; i.e., Δ𝑖
1
= Δ𝑖𝑛 = Δ𝑖 .

The key idea behind the proposed multi-level equilibrium sig-

naling strategy is that for sufficiently large 𝑇𝑠 , the total number

of molecules of species S1 and S2 in the detection chamber at the
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time of sampling will be approximately drawn from the stationary

distribution of the RDME. As such, if the stationary distribution is

known, then near-optimal detection rules can be obtained. Further-

more, this property provides a means of using multiple observations

to reduce the variance of the observed signal.

3.2 Statistics for the Quantity of S1
To obtain the statistics for the quantity of S1 in the receiver—i.e.,

𝑁Rx,1 (𝑛𝑇𝑠 ), 𝑛 = 1, 2, . . .—we first consider the case 𝑛 = 1. Suppose

that a symbol 𝑠1 is to be transmitted. Then, the following assertion

provides an accurate approximate characterization of 𝑁Rx,1 (𝑇𝑠 ), for
sufficiently large 𝑇𝑠 .

Assertion 1. Let 𝑁Rx,1 (𝑇𝑠 |𝑠1) denote the number of molecules
of S1 in the receiver at time 𝑇𝑠 given a transmission of message 𝑠1
corresponding to an emission of Δ𝑖

1
molecules of S1 for transmitting

symbol 𝑖 . Then,

𝑁Rx,1 (𝑇𝑠 |𝑠1 = 𝑖) ∼ N (𝜇𝑖
1
, 𝜇𝑖

1
), (6)

where 𝜇𝑖
1
> 0 is a known constant, only dependent on the volume of

the enclosing container and not the specific geometry, and N(𝜇,𝜎2)
denotes the Gaussian law with mean 𝜇 and variance 𝜎2. In particular,

𝜇𝑖
1
=
𝑎1

𝑎2

Δ𝑖
1

𝑉Rx
𝑉tot

1 + 𝑎1

𝑎2
𝑉Tx+𝑉Rx
𝑉tot

, (7)

where 𝑉tot is the total volume of the system.
Under the assumptions that 𝑎1 = 𝑎2 and 𝑉Tx = 𝑉Rx

𝜇𝑖
1
=

Δ𝑖
1
𝑉Rx

𝑉tot + 2𝑉Rx
. (8)

Assertion 1 has been justified for a single transmission in the

binary case in [1] based on both theoretical and empirical evidence.

It is straightforward to extend the argument to the case of non-

binary modulation.

Suppose now that a sequence of equilibrium states, 𝑆𝑛 = [𝑠1, . . . , 𝑠𝑛],
over a period of 𝑛 sampling intervals is sent. Let the quantity of

S1 at time 𝑛𝑇𝑠 given the sequence of transmissions 𝑆𝑛 be denoted

by 𝑁Rx,1 (𝑛𝑇𝑠 |𝑆𝑛). A consequence of Assertion 1 is that under the

additional assumption that the observations are independent,

𝑁Rx,1 (𝑛𝑇𝑠 |𝑆𝑛) ∼ N (𝜇 (𝑆𝑛), 𝜇 (𝑆𝑛)), (9)

where 𝜇 (𝑆𝑛) = 𝜇 (𝑆𝑛−1) + 𝜇
𝑠𝑛
𝑛 and 𝜇 (𝑆1) = 𝜇

𝑠1
1
. For samples that are

sufficiently separated in time, 𝑁Tx,1 (𝑇𝑠 ) is approximately indepen-

dent of 𝑁Tx,1 (2𝑇𝑠 ), as discussed further in Sec. 4.3.

Let 𝑁𝑠 be the number of independent samples that receiver can

observe at the equilibrium induced by the transmission of each

symbol. Under the assumption of independent observations, it is

possible to reduce the variance by averaging these observations

and get the symbol 𝑁Rx,1 (𝑛 + 1) via

𝑁Rx,1 (𝑛 + 1) =
1

𝑁𝑠

𝑁𝑠∑
𝑖=1

𝑁Rx,1 (𝑡𝑖 |𝑆𝑛 , 𝑠𝑛+1), (10)

where 𝑡𝑖 ∈
{
𝑡1, 𝑡2, . . . , 𝑡𝑁𝑠 : 𝑡𝑖 > 𝑛𝑇𝑠

}
. Then the corresponding

distribution of 𝑁Rx,1 (𝑛 + 1) can be well approximated by

𝑁Rx,1 (𝑛 + 1|𝑆𝑛 , 𝑠𝑛+1 = 𝑖) ∼ N (𝜇𝑖
𝑛+1 + 𝜇 (𝑆𝑛), 𝜇

𝑖
𝑛+1+𝜇 (𝑆𝑛)

𝑁𝑠
). (11)

3.3 Near Optimal Detection Scheme
Although the observation process is Markovian, for a sufficiently

large time slot 𝑇𝑠 , the observations 𝑁Rx,1 (1), . . . ,𝑁Rx,1 (𝑛 + 1) are
approximately independent. Let NRx,1 denote the vector of obser-

vations at the receiver for the quantity of S1 and s ∈ {1, 2…𝑀}𝑛+1
denote a potential vector of transmitted bits. Under Assertion 1, the

joint likelihood of the observations is given by

𝑓NRx,1 |s (n) =
𝑛+1∏
𝑖=1

1√
2

𝑁𝑠
𝜋𝜇 (𝑆𝑖 )

exp

(
− (𝑛𝑖 − 𝜇 (𝑆𝑖 ))2

2

𝑁𝑠
𝜇 (𝑆𝑖 )

)
, (12)

and, assuming the independence of elements of NRx,1, the optimal

detection rule is given by

ŝ∗ = arg max

s∈{0,1,...𝑀−1}𝑛+1
𝑓NRx,1 |s (n). (13)

A brute force search for the estimate ŝ∗ in (12) leads to a com-

plexity that grows exponentially in 𝑛. Nevertheless, the Viterbi

algorithm with appropriate branch weights can be used to solve

the optimization problem with complexity of order𝑂 (𝑛). Note that
while the Viterbi algorithm yields an optimal solution for (13), it is

under the assumption that Assertion 1 holds.

We briefly sketch the computations in Algorithm 1, which is

a form of the Viterbi algorithm with branch metrics tailored to

the problem in (12). For the 𝑘-th symbol 𝑠𝑘 ∈ {0, 1, . . . 𝑀 − 1}, let
𝑝 (𝑛𝑘 |𝑠𝑘 ) = log(𝑓𝑁Rx,1 (𝑘𝑇𝑠 ) |𝑠𝑘 (𝑛𝑘 )). In the 𝑘-th symbol interval, it

is necessary to compute 𝑃𝑘−1,𝑠𝑘 terms, which correspond to the

probability of the most probable sequence until the 𝑘 − 1-th symbol

and the 𝑘-th symbol is for 𝑠𝑘 ∈ {1, . . . 𝑀}.

Algorithm 1 Near-Optimal Detection Algorithm

1: Input: 𝑠0,𝑢 ∈ {1, 2, . . . 𝑀}, 𝑝 (𝑛𝑘 |𝑠𝑘 ),
2: for 𝑘 = 1 to 𝑛 + 1

3: for 𝑖 = 1 to𝑀

log 𝑃𝑘 ,𝑖 = max𝑢

(
log 𝑃𝑘−1,𝑢 + 𝑝 (𝑛𝑘 |𝑠𝑖 )

)
.

𝑠𝑘 ,𝑖 = argmax𝑢 log 𝑃𝑘 ,𝑢 .

4: Find the most probable path:

𝑣 = argmax𝑢 𝑃𝑛+1,𝑢 .
5: Backtrack this path to obtain ŝ∗.

3.4 Low Memory Detection Scheme
For large 𝑛, directly solving the optimization problem in (13) re-

quires the storage all previous observations, which may not be

desirable. As such, we also consider an approach that only requires

limited memory.

A simple and effective detection scheme is the amplitude-based

passive receiver proposed in [7]. For this receiver, detection of

binary symbols is achieved by comparing two consecutive observed

signals. If the current signal is greater than the previous signal, a

bit 1 is detected, otherwise a bit 0.

Inspired by this approach, we have developed a detection scheme

based on an optimized threshold derived from the statistics of the
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difference of two consecutive observations. To this end, define

𝑅(𝑛 + 1) = 𝑁Rx,1 ((𝑛 + 1)𝑇𝑠 ) − 𝑁Rx,1 (𝑛𝑇𝑠 ) which approximately

satisfies

𝑅(𝑛 + 1) ∼ 𝑁 (𝜇𝑠𝑛+1
𝑛+1 ,

𝜇
𝑠𝑛+1
𝑛+1 + 2𝜇 (𝑆𝑛)

𝑁𝑠
). (14)

Under this approximation, we develop the following low memory

detection scheme

𝑠𝑛+1 = min{𝑢 : 𝜏𝑢−1 < 𝑅(𝑛 + 1) < 𝜏𝑢 , 𝑢 = 1, 2, . . . ,𝑀 } (15)

where 𝜏0 = 0 and 𝜏𝑀 = ∞. We remark that this scheme extends

the low memory detector developed in [1] for binary equilibrium

signaling.

To select the thresholds 𝜏1, . . . ,𝜏𝑀−1, note that the probability
of error is given by

𝑃
𝑀−𝐸𝑞
𝑒 =

1

𝑀

𝑀∑
𝑖=1

Pr(𝑅(𝑛 + 1|𝑠𝑖 ) < 𝜏𝑖−1 ∪ 𝑅(𝑛 + 1|𝑠𝑖 ) > 𝜏𝑖 )

(16)

For sufficiently large 𝑛, observe that 𝜇 (𝑆𝑛) + 𝜇
𝑠𝑛+1
𝑛+1 ≈ 𝜇 (𝑆𝑛). That

is, the variance of 𝑅(𝑛 + 1) is approximately the same for each

symbol 𝑠𝑛+1 ∈ {1, . . . ,𝑀}. Under this approximation and using the

assumption 𝜇𝑖
1
= 𝜇𝑖𝑛 = 𝜇𝑖 , the thresholds that minimize the proba-

bility of error are 𝜏𝑖 =
𝜇𝑖+𝜇𝑖+1

2
, 𝑖 = 1, . . . ,𝑀 − 1. The corresponding

probability of error is then given by

𝑃
𝑀−𝐸𝑞
𝑒 ≈

1

𝑀

𝑀∑
𝑖=1

(
1 −𝑄

(
𝜏𝑖−1 − 𝜇𝑖

𝜇approx

))
+𝑄

(
𝜏𝑖 − 𝜇𝑖

𝜇approx

)
, (17)

where 𝜇approx = 𝑛𝜇𝑀 and 𝑄 (𝑥) = 1√
2𝜋

∫ ∞
𝑥

exp(−𝑢2/2)d𝑢.

4 MULTI-LEVEL EQUILIBRIUM SIGNALING
VS CSK

In this section, we study the performance of multi-level equilibrium

signaling and provide a comparison with CSK. Conventional CSK

schemes—characterized by a sampling time optimized for the peak

arrival time of information-carrying molecules—assuming either

an absorbing receiver, a bounded channel, or information molecule

degradation. As such, to provide a baseline, we first adapt CSK to our

system model to form a baseline. We then establish via simulation

that multi-level equilibrium signaling outperforms CSK in a wide

range of conditions.

4.1 CSK with a Passive Receiver and Bounded
Channel

In conventional binary CSK, it is assumed that the quantity, Δ, of S1
molecules are transmitted when 𝑠𝑛 = 1, and no molecules of S1 are
transmitted otherwise. Moreover, no other species of molecules are

present in the system, molecules of S1 can diffuse freely, and the

quantity of S1 in the receiver forms the basis for detection. Consider

the scenario that the channel is one-dimensional and bounded with

length 𝐿, and a passive receiver is centered at a position 0 ≤ 𝑥𝑑 ≤ 𝐿.

The expected concentration of molecules at the receiver is given

by [10]

𝑐 (𝑥𝑑 , 𝑡) =
2Δ

√
4𝜋𝐷𝑡

𝑚=+∞∑
𝑚=−∞

[
exp

(
−(𝑥𝑑 − 2𝑚𝐿)2

4𝐷𝑡

)]
. (18)

Detection in conventional binary CSK is often based on the peak

concentration of the underlying deterministic model of diffusion

[13]. That is, the sampling time, 𝑡𝐶𝑆𝐾𝑜𝑝𝑡 is chosen such that 𝑐 (𝑥𝑑 , 𝑡)
is maximized; i.e.,

𝑡𝐶𝑆𝐾𝑜𝑝𝑡 = 𝑎𝑟𝑔max

𝑡 ≥0
𝑐 (𝑥𝑑 , 𝑡). (19)

As noted earlier, a detection scheme for binary CSK in the pres-

ence of a passive receiver, bounded channel, and no information-

carrrying molecule degradation has not been developed. To design

a detection scheme, we first require the statistics for the quan-

tity of molecules within the receiver at times 𝑛𝑡𝐶𝑆𝐾𝑜𝑝𝑡 , 𝑛 = 1, 2, . . .,

accounting for inter-symbol interference.

Let 𝑀𝑝 = 𝑉Rx𝑐 (𝑥𝑑 , 𝑡𝐶𝑆𝐾𝑜𝑝𝑡 ) be the mean number of molecules

of S1 at the receiver at time 𝑡𝐶𝑆𝐾𝑜𝑝𝑡 . Recall that the distribution of

molecules of S1 after the first transmission can be well approxi-

mated by 𝑁Rx,1 (𝑡𝐶𝑆𝐾𝑜𝑝𝑡 ) ∼ Poiss(𝑀𝑝 ) (see, e.g., [4]).
In the case that multiple previous transmissions have occurred,

we develop an approximation for the statistics of 𝑁Rx,1 (𝑛𝑡𝐶𝑆𝐾𝑜𝑝𝑡 )
with 𝑛 > 1. We first note that for sufficiently large 𝑡 , the mean

quantity of molecules in the system is spatially homogeneous. As

such, the mean number of molecules of S1 in the receiver from each

previous transmission of a non-zero quantity of molecules may be

approximated by

𝑀𝑒 =
Δ𝑉Rx

𝑁𝑉Vox
. (20)

Given a𝑚 transmissions of a bit 1, the mean number of molecules

of S1 is then𝑚𝑀𝑒 +𝑀𝑝 . As such, for a sufficiently large number of

molecules in the channel, we obtain the approximation

𝑁Rx,𝐶𝑆𝐾 ((𝑛 + 1)𝑇𝑠 |𝑆𝑚𝑛 , 𝑠𝑛+1)

∼
{

N(𝑚𝑀𝑒 ,𝑚𝑀𝑒 ) 𝑠𝑛+1 = 0,

N(𝑀𝑝 +𝑚𝑀𝑒 ,𝑀𝑝 +𝑚𝑀𝑒 ) 𝑠𝑛+1 = 1.

(21)

A natural receiver for binary CSK in our setting then exploits

the statistic

𝑅(𝑛 + 1) = 𝑁Rx,1 ((𝑛 + 1)𝑡𝐶𝑆𝐾𝑜𝑝𝑡 ) − 𝑁Rx,1 (𝑛𝑡𝐶𝑆𝐾𝑜𝑝𝑡 ). (22)

We note that a similar scheme has been proposed for binary CSK in

[7] for unbounded channels. In this case, each bit can be decoded

sequentially via the detection rule

𝑠𝑛+1 =
{

1 𝑅(𝑛 + 1) > 𝜏 ,

0 otherwise.

(23)

The optimal choice of 𝜏 for the decision rule in (23) can then be

obtained via an analysis of the probability of error. In particular,

𝑃
𝑛,𝑚,𝐶𝑆𝐾
𝑒 (𝜏) ≈ 0.5

(
1 −𝑄

(
𝜏 −𝑀𝑝√

𝑀𝑝 + 2𝑚𝑀𝑒

))
+ 0.5𝑄

(
𝜏

√
2𝑚𝑀𝑒

)
.

(24)

Assuming 2𝑚𝑀𝑒 ≫ 𝑀𝑝 , the variances of the both term are ap-

proximately the same and the corresponding threshold is given by
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𝜏 = 𝑀𝑝/2. When each symbol is equally likely, 2𝑚𝑀𝑒 = 𝑛𝑀𝑒 . As

such,

𝑃
𝑛,𝑚,𝐶𝑆𝐾
𝑒 (𝜏) ≈ 0.5

(
1 −𝑄

(
𝜏 −𝑀𝑝√
𝑀𝑝 + 𝑛𝑀𝑒

))
+ 0.5𝑄

(
𝜏

√
𝑛𝑀𝑒

)
,

(25)

which is independent of𝑚.

4.2 A Fair Choice of Parameters for
Multi-Level Equilibrium Signaling

A desirable feature of the binary CSK scheme is that the sampling

time 𝑡𝐶𝑆𝐾𝑜𝑝𝑡 is generally much shorter than the sampling time 𝑇𝑠 for

multi-level equilibrium signaling. As such, in order to provide a

fair comparison, the number of levels𝑀 for multi-level equilibrium

signaling should yield a data rate that is approximately the same.

In particular, let𝑇𝑠 be the required time for the system exploiting

multi-level equilibrium signaling to approximately reach equilib-

rium. As detailed in [1], this time can be approximated (with small

error 𝜖 corresponding to the gap to an equilibrium state) as,

𝑇𝑠 ≈
𝐿2

4𝐷
−

1

𝑎1
log

(
𝜖

Δ

)
−

1

𝑎2
log

(
𝑁𝑉vox

𝑁𝑉vox + 2𝑉Rx

)
. (26)

In order to choose convenient number of levels𝑀 to provide a

fair comparison with CSK, we require that

𝑀 = 2


𝑇𝑠

𝑡𝐶𝑆𝐾𝑜𝑝𝑡

 . (27)

Once the number of levels 𝑀 is determined, the other issue is

choosing transmission levels Δ1
,Δ2

, . . . ,Δ𝑀 . For the sake of a fair

comparison with CSK, there should be an equal average number

of molecules transmitted per bit. In conventional CSK, assuming

equally likely transmission, the average number of transmission

per bit is
Δ
2
, Therefore, for multi-level equilibrium signaling, the

number of molecules emitted for each symbol must satisfy

1

𝑀

𝑀∑
𝑖=1

Δ𝑖 = log
2
𝑀

Δ

2

. (28)

To satisfy this constraint, we set Δ1 = 0 and impose equally

spaced levels. That is, Δ2 = 𝛾 , Δ3 = 2𝛾 and Δ𝑀 = (𝑀 − 1)𝛾 , where
𝛾 is given by

𝛾 =
Δ log

2
𝑀

𝑀 − 1

. (29)

4.3 Sample Independence
In our development of multi-level equilibrium signaling, we have

made the approximation (see, (11)) that multiple independent sam-

ples can be obtained for the quantity of S1 in the receiver for each
symbol. In order to verify that this assumption holds, we plot the

autocorrelation function for 𝑁Tx,1 in Fig. 2(b) with the parameters

presented in Section 4.4. Observe the rapid decay of the autocorre-

lation function, which implies near independence of samples given

the statistics are approximately Gaussian.

Fig. 2(a) plots the autocorrelation function for𝑁Tx,1 in the case of

CSK with the same parameters. Observe that the decay of the mag-

nitude of the autocorrelation function is significantly slower than

for multi-level equilibrium signaling. This suggests that samples

closely spaced in time are not independent, limiting the possibility

of noise reduction via averaging.

(a) Autocorrelation for 𝑁Tx,𝐶𝑆𝐾 (CSK) (b) Autocorrelation for 𝑁Tx,1 (Equilib-

rium Signaling).

Figure 2: Autocorrelation functions of 𝑁Tx,1 and 𝑁Tx,𝐶𝑆𝐾 for
𝑎1 = 𝑎2 = 1s

−1; 𝐷1 = 𝐷2 = 1.51 × 10
−12

m
2/s, Δ = 500, 𝑉Rx =

𝑉Tx = 𝐿
10
, 𝐿 = 40 × 10

−5 and 𝑥𝑑 = 0.5𝐿.

4.4 Error Probability
We now turn to performance in terms of the probability of error. We

assume that transmissions consist of 𝑛 = 160 bits. For multi-level

equilibrium signaling, gray coding is used to encode each symbol.

Since the channel is non-stationary, the performance is evaluated

in terms of the average number of errors in the sequence of 𝑛 bits.

More formally, let 𝐸𝑖 be the error random variable for symbol 𝑖 in

the sequence; that is

𝐸𝑖 =

{
1 𝑠𝑖 ≠ 𝑠𝑖 ,

0 𝑠𝑖 = 𝑠𝑖 ,
(30)

where 𝑠𝑖 is the estimate of the transmitted bit 𝑠𝑖 . Then, the average

probability of error is defined as

𝑃𝑎𝑣𝑒 = E

[
1

𝑛

𝑛∑
𝑖=1

𝐸𝑖

]
. (31)

In order to estimate 𝑃𝑎𝑣𝑒 , 10000 iterations of the transmission of

𝑛 bits with different Δ are simulated. The parameters used in the

simulations are: 𝑎1 = 𝑎2 = 1s
−1
; 𝐷1 = 𝐷2 = 1.51 × 10

−12
m
2/s and

𝑉Rx = 𝑉Tx = 𝐿
10

and 𝐿 = 40 × 10
−5

which are the same as in the

microfluidic diffusion experiment setup in [10] and it is simulated

via voxel-based approach as explained in detail in [8]. Unless stated,

low memory detector is used to obtain corresponding BER curves.

In Fig. 3(d), the effect of number of samples on probability of

error is plotted for different modulation levels 𝑀 . Observe that

increasing the number of samples per symbol dramatically reduces

the probability of error. This is consistent with the fact that the

samples are nearly independent. Moreover, since the number of

molecules per bit is kept constant, 4-level equilibrium signaling has

a lower probability of error than higher level signaling schemes

as 𝑁𝑠 increases. This is also expected since as 𝑀 increases, the

molecules used for each symbol decreases, which resulting in lower

performance.

An illustrative performance comparison with CSK and multi-

level equilibrium signaling is presented in Fig. 3(a) and Fig. 3(b). In

these scenarios, the receiver is placed at 𝑥 = 𝑥𝑑 while the transmit-

ter is placed at 𝑥 = 0. Using (27) for these setups, in Fig. 3(a), when
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(a) BER performance comparison with CSK and𝑀 =

8 level equilibrium signaling for 𝑥𝑑 = 0.3𝐿.
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(b) BER performance comparison with CSK and

𝑀 = 4 for 𝑥𝑑 = 0.5𝐿.
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(c) BER vs distance analysis for CSK

and 4-Level Equilibrium for Δ=300
molecules and 𝑁𝑠 = 50.
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Figure 3: BER performance of multi-level equilibrium signaling and CSK for different distances.

the receiver is closer to the transmitter𝑀 = 8 level is required to

equalize data rate with CSK.

Observe in Fig.3(b) that when 𝑥𝑑 increases (corresponding to an

increase in the sampling time for CSK), 𝑀 = 4 level equilibrium

scheme is sufficient to equalize the data rate. As seen in Fig. 3(a)

and Fig. 3(b),𝑀-level equilibrium signaling outperforms CSK, even

when both schemes use the same number,𝑁𝑠 , of samples per symbol.

This is not surprising since in CSK, the observed samples are highly

correlated with each other while in equilibrium signaling they are

almost independent. As such, there is only a small improvement

in the performance with CSK compared to that of equilibrium

signaling, consistent with Fig. 3(d).

Another interesting property of equilibrium signaling is its ro-

bustness to geometric uncertainties and channel parameters such

as distance. Since the observed signal statistics only depend on the

transmitted signal and the volume of the channel, performance

does not change as the distance 𝑥𝑑 increases, which is not the case

for CSK, illustrated in Fig. 3(c). Observe that the performance of

CSK reduces as distance increases while for equilibrium signaling

it is same for all distances 𝑥𝑑 .

We also observe in Fig. 3(c) that for sufficiently large 𝑥𝑑 , multi-

level equilibrium signaling outperforms CSK. For small 𝑥𝑑 , CSK

leads to better performance since it has a greater mean peak value,

𝑀𝑝 , for smaller distances. In these cases, the peak time 𝑡𝐶𝑆𝐾𝑜𝑝𝑡 is

much smaller than equilibrium time 𝑇𝑠 resulting in necessity of

higher level equilibrium signaling which reduces the performance

as observed in Fig. 3(d). However, the benefits of CSK are only

obtained when the receiver has a good knowledge of the location of

the transmitter and it is possible to properly optimize the sampling

time.

5 CONCLUSION
In this paper, we addressed the problem of designing a molecular

communication scheme that admits a detector that does not require

full knowledge of the channel geometry and can support for higher

order modulation schemes. We showed that our approach, called

multi-level equilibrium signaling, can exploit multiple samples per

symbol in order to reduce the probability of error. Moreover, multi-

level equilibrium signaling admits a simple near optimal detection

rule. We also show that our method can outperform conventional

CSK schemes in a range of scenarios.
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