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ABSTRACT: Swarm robotics is an approach to collective robotics inspired by the self-organized behaviour of social 

animals. This approach aims to design robust, scalable and flexible collective behaviours for the coordination of a 

large number of robots using simple rules and local interactions. However, this design approach faces challenges, 

which are not present in other multi-robot systems: The strong decentralization, the continuity of methods, finding the 

simple behaviours, the local communication and action, the high number of individuals and the traceability are 

characteristics, which make a multi-robot system "too complex to be managed effectively". 

In this paper, we present a design approach based on the Property Driven Design method for the design of swarm 

robots. The specification and modeling phases are performed using SysML language. We used the SysML state-

machines to describe the robot behaviours. The behaviour models of the robots described with SysML are then 

implemented in a multi-agent tool for the simulation phase. We applied our approach to a case study of a simple robot 

aggregation application. Simulation results show that our approach is able to manage easily a large number of robots 

while ensuring the design continuity process in terms of design traceability. 
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1 INTRODUCTION 

Swarm robotics have been defined as "a novel approach 

to the coordination of large numbers of robots". It is an 

approach to collective robotics, which is inspired by the 

self-organized behaviour of social animals. Birds, ants, 

fish, and bees are some examples of the simple          

individuals who come together in groups to complete 

given tasks (Sahin, 2005). 

 

The swarm robotics research studies how to use systems 

made up of multiple autonomous agents (robots) to   

accomplish collective tasks where tasks cannot be     

accomplished by an individual robot alone. This        

approach is inspired by the system of social insects 

which are characterized by: robustness, flexibility and 

scalability. Robustness is defined as the ability to adapt 

to the loss of individuals. In social animals, robustness is 

represented by redundancy and the absence of a leader. 

Scalability is defined as the ability to work with different 

group sizes. Adding or removing individuals does not 

change the performance of a swarm. In social animals, 

scalability is promoted by local sensing and            

communication. Flexibility is defined as the ability to 

adapt to a wide range of different environments and 

tasks. In social animals, flexibility is promoted by      

redundancy, simplicity of the behaviours and           

mechanisms such as task allocation (Camazine et al, 

2001). 

 

Swarm robots are capable of performing tasks           

impossible to accomplish with other classes of robots. 

For example, they are able to (i) move over terrain so 

rough that individual robots are unable to cross, (ii) 

overcome obstacles larger than individual robots, or (iii) 

carry objects too heavy to be transported by a single  

robot (Fukada T et al, 1998). 

All of these characteristics allow them to disperse and 

perform surveillance tasks, detect dangerous events, such 

as a chemical leak, and focus on the problem and even 

act to prevent the consequences (Trianni V et al, 2007). 

 

Unfortunately, in swarm robotics, there are still no    

formal and precise approaches to designing behaviours at 

the individual level that produce the desired collective    

behaviour. The intuition of the human designer is still 

the main ingredient in the development of robotic swarm 

systems. Many researchers have worked on the continui-

ty of design approaches, emphasizing the relationship   

between the different phases of the approach (Brambilla 

et al, 2004). Others chose the swarm size as a problem to 

solve in the design of swarm robots. They proposed that 

the approach should adapt to the swarm size (Dudek et 

al, 1993). Nevertheless, until today there is no complete          

methodology for the design of these types of robots. 

 

In this paper, we present a design approach based on the 

Property Driven Design method for the design of swarm 

robots. The specification and modeling phases are 

performed using SysML language. We used the SysML 

state-machines to describe the robot behaviours. The 
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behaviour models of the robots described with SysML 

are then implemented in a multi-agent tool for the 

simulation phase. We applied our approach to a case 

study of a simple robot aggregation application.  

 

The paper is organized as follows: in the next section, 

we present the related works. Our design method of 

swarm robots will be detailed in the section three.  A 

case-study of a simple robot aggregation application will 

be considered in section four to illustrate the advantage 

of our approach. Finally, the paper is concluded in     

section five. 

2 RELATED WORKS 

For a long time, designers have used the ‘code-and-fix’ 

approach to develop swarm robots: It is an iterative   

bottom-up process, the developer tests and improves the 

individual behaviour of the robots until the desired      

collective behaviour is obtained. This approach is not 

structured and it depends on the developer's expertise 

and ingenuity. However, the design of swarming robots 

faces challenges that are not present in other multi-robot 

systems. Indeed, the characteristics of robot swarms, 

such as a high number of individuals, simple behaviours, 

strong decentralization, local communication and action, 

are characteristics that complicate the multi-robot system 

(Wooldridge and Jennings, 1998). This has prompted 

many researchers to propose other design approaches. 

 

(Spears et al, 2004) used the concept of artificial force to 

define a new distributed framework (called artificial 

physics) for the control of a large number of robots. This 

method is very similar to the potential field method used 

in single robot systems, but it performs all calculations at 

run time. No global map is generated. The calculations 

are also performed locally on each robot. It is assumed 

that other objects in the environment apply virtual forces 

to the selected robot. The robot calculates the average 

force calculated by its observations and heads towards 

the direction of the average force. The force exerted on a 

robot from an external object depends on two things: the 

bearing and the distance from the external object. These 

two parameters can be calculated from local 

observations. This framework is suitable for swarm 

robotic studies. 

 

(Hamann and Wörn, 2008) have proposed a method 

inspired by statistical physics. The authors describe the 

individual behaviours of robots using Langevin 

equations and, by analytical means. They derive a 

Fokker-Planck equation describing collective behavior. 

Another similar approach has also been proposed by 

(Berman et al, 2011), which derived the individual 

behaviours of a swarm performing task distribution 

using a set of partial differential advection-diffusion-

reaction equations. Both methods are based on the 

developer's ability to model robot interactions and 

advanced mathematical techniques, and these methods 

are based on ordinary or partial differential equations, 

which provide reliable results if the size of the swarm is 

infinite. In swarm robotics, this is very often not the 

case, because robot swarms are generally composed of 

around a hundred robots and often a few dozen robots 

(Brambilla et al, 2013). 

 

(Kazadi et al, 2009) have proposed a design approach 

based on Hamiltonian vector fields called the 

Hamiltonian method. From a mathematical description 

of collective behaviour, the method can be used to derive 

microscopic rules which minimize or maximize a 

selected numerical value (for example, the virtual 

potential energy of a particular state of the swarm). 

However, this method only deals with spatial 

organization behaviours such as pattern formation. 

 

(Berman et al, 2009) have developed a top-down 

approach for the design of task allocation behaviour. The 

authors present the system as a Markov chain in which 

the states represent tasks and the edges represent the 

possibility of a robot to move from one task to another. 

Using a stochastic optimization method, it is possible to 

derive the probabilities that govern how robots change 

tasks in order to minimize the time required to converge 

on the desired allocation. This approach is specific only 

for the distribution of tasks and has not been extended to 

other collective behaviours. 

 

Recently, (Konur et al, 2012) have proposed a different 

approach. The authors used model verification on a 

macroscopic model of a swarm of foraging robots. They 

specified the desired properties of the system using the 

Probabilistic Computation Tree Logic (PCTL), a 

temporal logic which includes probabilistic aspects. This 

approach is capable of going beyond the limits of linear 

temporal logic. In addition, the use of a macroscopic 

model, instead of a microscopic model, allows this 

approach to deal with systems made up of dozens of 

robots. 

 

(Brambilla et al, 2012) have proposed a new top-down 

design method for swarm robots based on normative 

modeling and model verification called "Property Driven 

Design". The method consists of four phases: In the first 

phase, the developer specifies the requirements of the 

swarm of robots by specifying the desired properties. For 

the second phase, the developer creates a normative 

model of the swarm and uses model verification to verify 

that this model satisfies the desired properties. In the 

third phase, the developer implements a simulated 

version of the desired robot swarm and validates the 

prescriptive model developed in the previous steps. 

Finally, the developer implements the desired swarm of 

robots.  

 

In this paper, we propose to develop a design approach 

of swarm robots based on the Property Driven Design 

method. The specification and modeling phases are 

performed using SysML language. The behaviour 

models of the robots described with SysML are then 
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implemented in a multi-agent tool for the simulation 

phase. 

 

In 2006, OMG published the initial standard for SysML 

(Systems Modeling Language), an extension of UML 

designed to support systems engineering in general, but 

specifically system modeling. SysML is a graphical 

language for building models of large-scale, complex, 

and multi-disciplinary systems. It re-uses a subset of 

UML, and adds some new diagrams specifically 

designed to support systems engineering (OMG 2006). 

 

In the following section, we detail our design approach 

of swarm robots. This approach is based on the different 

phases of the property Driven Design method using  

SysML diagrams. 

3 DESIGN APPROACH OF SWARM ROBOTS 

The principle of our design approach is that a robotic 

swarm system can be described through a series of 

properties. The specification of these requirements is 

carried out through SysML diagrams. These properties 

are the characteristics of the system that the developer 

wishes to realize. 

 

In the first phase, the swarm developer uses the 

requirements diagram to specify the requirements 

representing the customer/user needs of the swarm. The 

SysML use-case diagram and sequence diagram are then 

used to describe the missions of the robots.  

 

For the second phase, the developer creates the model 

describing the structure of the swarm using the Block 

Definition Diagram (BDD). The swarm architecture 

showing the composition, the links and the interactions 

between the robots is described with the Internal Block 

Diagram (IBD). The swarm behaviour is modelled using 

the SysML state-machines, for both the individual and 

swarm levels. At the end of this phase, a second 

requirement diagram describing the technical 

specification of the swarm is generated. Model 

verification step allows the swarm developer to verify 

that the model satisfies the desired properties by tracing 

the technical specification with customer needs and the 

functional/behavioural attributes generated.  

 

In the third phase, the robot behaviour models described 

with SysML state-machines in the second phase are then 

implemented in a multi-agent tool for the simulation 

phase.  

 

Finally, in the fourth phase, the developer implements 

the simulated version of the swarm model developed in 

real robots. 

 

In figure 1, we present the steps of our approach with the 

different SysML diagrams used in the different phases. 

 
Figure 1 : Design approach process 

 

The detail of these phases is as follows: 

 

Phase 1: Specification of properties 

The first phase consists informally specifying the system 

requirements and identifying the desired properties using 

a requirements diagram, which graphically describes a 

capacity or a constraint, which must be satisfied by a 

system. The clearer and more complete these properties, 

the more the system developed will comply with the 

requirements. The first phase of requirements analysis 

aims to build all the requirements of stakeholders (users, 

customers, etc.). It is interesting to note that the analysis 

phase identifies the system boundary and characterizes 

the interfaces with other systems. This step consists in 

producing the specification of requirements, mainly as 

requirement diagrams, allowing the traceability between 

the design levels, but also in in textual format. During 

this phase, the developer describes the main mission of 

the system with its various secondary tasks using the 

use-case diagrams and sequence diagrams to present and 

detail the different possible scenarios. 

 

Phase 2: Creation of the model 

In this phase, there are two steps: the first step is 

architectural modeling using structural diagrams (block 

definition diagrams and internal block diagrams) to 

describe the architecture of the system. The second step 

is behaviour modeling using state-machine diagrams.  

In our approach, we choose the probabilistic method to 

describe the transitions between states and the actions 

that the system or its parts perform in response to an 

event. This allows the developer creating a normative 

model of the robot swarm that describes how robots 

change state over time. Each state is a simplified abstract 

description of the actions of a robot. The normative 

model should be detailed enough to capture the 

behaviour of the robots and their interactions, but should 

not be too detailed to avoid unnecessary complications. 

The desired properties indicated in the first phase are 

checked using model checking techniques to verify that 



MOSIM’20 – November 12-14, 2020 - Agadir - Morocco 

all the requirements are related to the structure and 

behaviour elements.  

Initially, it is possible that the normative model does not 

satisfy all the desired properties. Thus, through an 

iterative process, the developer improves the model until 

the properties are satisfied. The result of this process is a 

normative model of the collective behaviour of the 

swarm robots that satisfies the declared properties. 

 

Phase 3: Simulation of the model 

The emergent swarm behaviour requires the simulation 

to check if the model developed in the second phase 

achieves the global need of the swarm robots. The 

simulation also is used to identify some optimal value of 

properties such as the number of robots to be used in a 

swarm mission. In our approach, we used the multi-agent 

simulation technic to capture and verify the emergent 

swarm behaviour.  

 

In this phase, the swarm developer uses the model 

created in the second phase to guide the process of 

simulation model implementation.  

Generally, the transition from a descriptive macroscopic 

model to a simulation microscopic implementation is 

difficult. It depends on the developer's expertise and 

ingenuity. In our approach, this transition has been eased 

because we are talking about a transition from the 

SysML state-machine diagrams to Statechart models to 

be implemented in a multi-agent simulation tool.  

 

Even if we represented a linear process for our approach 

in figure 1, the practice shows that the process is 

iterative. Indeed, the simulation implementation can 

allow the swarm developer to identify some modeling 

faults that requires a return to the previous step.  

Simulation is also used to validate the swarm model by 

checking if the required properties are coherent with the 

simulation results. Therefore, the model in the phase two 

can be improved with values obtained by simulation, or 

in some cases the model is modified according to the 

simulation results found.  

 

Phase 4: Real Implementation 

In the last phase, the developer deploys the system on 

real robots. As for the transition between the previous 

phases, the developer can modify the simulated model or 

the descriptive model if certain assumptions are not 

verified to keep all the levels consistent. 

 

In the next section, we will apply our approach to a case 

study of a simple robot aggregation application in order 

to illustrate that our approach is able to easily manage a 

large number of robots while ensuring the design 

continuity process in terms of design traceability. 

4 CASE STUDY: AGGREGATION PROBLEM 

The aggregation problem is studied either as an 

independent problem or as a part of more specialized 

tasks involving the grouping of a certain number of 

agents. An example of aggregation of autonomous robots 

is illustrated in Figure 2. 

 
Figure 2 : An example of aggregation of autonomous 

agents 

 

Among the most effective approaches for aggregating a 

swarm of robots are the virtual force method, the 

evolutionary method and the probabilistic method which 

we use in our approach to build the simulation model. 

 

In this aggregation case study, we consider a white area 

called C with two black spots of the same size called 

area A and area B as illustrated in Figure 3. Each of the 

black spots is large enough to accommodate all the 

robots. We consider two sizes of swarms: 10 and 20. We 

use two different areas for the two different groups, of 

4.91 m2 and 19.63 m2 respectively.  

 
Figure 3: A screenshot of the simulated version of a 

swarm of robots with 10 robots 

 

In what follows, we apply the 4-phase process of our 

approach  

 

4.1 Phase one: Properties specification 

The two main properties that the swarm robot must 

satisfy are: 

• The robots must aggregate as quickly as 

possible in zone A or zone B. We have set a 

delay of 1000 seconds for the mission duration. 

• The aggregate must remain stable for a specific 

period of time. For this, we have set a duration 

of 10 seconds. 

 

Using the different SysML diagrams, we can build our 

model. We need to design a swarm robotic system that 

meets the properties specified in the first phase. The 

robots must regroup in zone A or B of the environment 

and remain stable for a period t. The requirements 

diagram illustrated in figure 4 shows two requirements 
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necessary to build the system. These requirements 

represent the customer need. 

• Choice of zone: contains the power supply and the 

programming of the robots to detect the different zones 

and avoid obstacles. The user should check the battery 

level of each robot before using. In addition, the 

developer must program the robots to be able to avoid 

obstacles and choose the available area. 

• Stability in the area: after its formation, the swarm 

must remain stable. 

 
Figure 4: Requirements diagram (customer need) 

 

Once the requirements are specified, we propose the 

possible use-cases that show the functional interactions 

of the actors and the study system. The developer 

describes the main mission of the system with its 

different secondary tasks using the sequence diagrams 

and use-case diagrams to present the different possible 

scenarios. 

The use-case diagram illustrated in Figure 5 gives an 

overview of the functional behaviour of the swarm robot 

system. This mission includes 3 necessary tasks: robot 

programming, robot power supply and swarm self-

formation. 

 
Figure 5: Use case diagram 

 

Figure 6 shows that the developer must program the 

robot: This program allows the robot to distinguish 

between different areas of the environment and decide 

where to stay. Before starting operation, the user must 

check the robot battery level. This operation must be 

applied to each robot. Once the robot group is ready, two 

scenarios are possible: 

• If the batteries are charged: the user begins to use 

robots to form the aggregate. 

• If the batteries are low: the user must charge the 

batteries before starting to use them. 

 
Figure 6 : Generalized sequence diagram 

 

We use a referential block called "Forming a Swarm" 

that allows the swarm to perform the main function. In 

Figure 7 we present an instance of 5 robots to explain the 

“Forming a Swarm” block. 

 
Figure 7 : Sequence diagram: an instance of 5 robots 

 

In this example we use 5 robots: We assume that 3 

robots (R1, R4 and R5) have chosen zone A, one robot 

(R2) has chosen zone B and the last robot (R3) has 

decided to stay in zone C. We define a counter that 

returns the number of robots detected in each zone to 

return this information to the user. 
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After the functional analysis and the mission definition, 

the second requirements diagram illustrated in figure 8, 

is used to specify the technical requirements of our 

system: 

•   Swarm formation: autonomy, speed and precision. 

• The swarm shape: the general swarm shape, the      

geometric parameters. 

•   Swarm stability: formation time, stability time. 

 
Figure 8: Requirements diagram of technical specifications 

 

As indicated in figure 8, the formation of a swarm of 

robots must be autonomous without any external 

intervention. Indeed, the developer must design a 

program that allows robots to detect obstacles. In 

addition, the robots must move over the entire surface 

without being recharged each time. Each robot in the 

group randomly moves into the search space from its 

initial position. The goal of this behaviour is searching 

for a shelter site while avoiding static and dynamic 

obstacles (other robots), while the environment of the 

robot is completely unknown. 

Obstacle avoidance is a basic behaviour found in almost 

all mobile robots. It is essential to allow the robot to 

operate in a dynamic environment. It makes it possible to 

avoid obstacles that appear in the robot's field of vision. 

For this, the robot must determine another path (via the 

path selection behavior). Obstacle avoidance behaviour 

is determined by the robot agent according to the 

environment in which it operates and according to its 

position in relation to the obstacles encountered. The 

method we are going to use is effective as long as we 

have a correct perception of the environment. 

 

Before starting the formation, we must specify the 

swarm shape: circular, rectangular, each time specifying 

the necessary geometric parameters (length, width, 

radius, …) 

 

First, we need to specify the execution time T. Once the 

swarm is formed, the robots must be stable for a specific 

period of time t. 

Before going to the next step, we need to check if the 

technical requirements are going with the requirements  

 

 

 

describing stakeholder’s needs. This verification is only 

the first step in a two-step process (verification, then 

validation) which is essential to lead to the acceptance of 

the system by the customer: This will be done through 

tests (called acceptance tests) based on the requirements 

identified with the customer. 

 
Table 1: Requirements check table 

 

Table 1 illustrates the checking if all requirements 

specifying the customer needs are traced to the technical 

requirements of the swarm (and vice-versa). 

We note in this case that all the technical requirements 

described in figure 8 are well linked to customer 

requirements described in figure 4. 

 

4.2 Phase two: Swarm modeling 

Figure 9 describes the robot development process: First, 

a group of autonomous robots is programmed to 

accomplish the mission (avoid obstacles, choose the area 

where will stay and communicate with other agents). 
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Then, the developer will check the battery levels of each 

robot: if the batteries are charged, we start using the 

robots. Else, we charge the batteries. 

 

The design process consists of the following operations: 

Programming the robots, checking the batteries and 

recharging of the robots. 

 
Figure 9: Robot development process 

 

Figure 10 shows the action process that was a collection 

of predefined behaviours, such as displacement, 

aggregation, obstacle avoidance. These behaviours are 

necessary for moving a robot. While respecting an order 

of priority: in the case where the robot agent is 

confronted between two cases: reaching the goal 

(aggregate area) and avoiding an obstacle, in this case 

the robot must first avoid obstacles, then continue 

moving. 

 
Figure 10: Action process 

 

To understand the process, we apply in figure 11 an 

instance of 5 robots: 5 Robots (R1, R2, R3, R4, R5) are 

put in zone C, three robots have chosen zone A, one 

robot has chosen zone B and the latter decided to stay in 

zone C. 

 
Figure 11: Design process for an instance of 5 Robots 

To develop the normative model of the aggregation case 

study, we use the probabilistic method presented in 

Figure 12. We consider the three areas in which the 

environment is divided. We define three states: Sa, Sb 

and Sc. A robot in zone A or B is in state Sa or Sb, 

respectively. The robot outside zone A or B is in the 

state Sc.  

 

A robot in zone C can move either in zone A, or in zone 

B or stay in zone C. This means that a robot in zone C 

has a probability of moving from zone C to zone A equal 

to Pca =  , to move from zone C to zone B equal to 

Pcb = 
 
, and stay in zone C equal to Pcc =  

Note that Pca = Pcb, because the two zones have the same 

size and Arena is the total zone : 𝒜 arena = 𝒜A+ 𝒜B + 𝒜C 

 
Figure 12: Swarm behaviour with probabilistic Model 

 

The remaining probabilities depend on the behaviour of 

the robots. The aggregate can be obtained in zone A or 

zone B, so we fix the probabilities of leaving these two 

equal zones: Pac = Pbc. 

 

A robot in zone A can only go to zone C or stay in zone 

A, therefore Paa = 1 - Pac. The same goes for zone B. 

According to the previous description, it follows that  

Paa = Pbb. The only remaining independent probability 

is Pac. With the check model, we can find the value of 

Pac which maximizes the probability of property 1. 

Using the simulation model (next step), we can find the 

best values for the parameter Pac. 

 

Finally, with this current model, we are also able to 

define the specifications of the hardware capacities of 

the robots using the block definition diagram illustrated 

in Figure 13: 

• A power supply system made up of batteries 

and conductive wires. 

• A movement system consisting of DC motor, 

wheels and movement transmission system. 

• A communication system between the robots. 

• A control system made up of time counters, 

position sensors and an electrical control card. 

• A PLC to install the program. 
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Figure 13: Block Definition Diagram (BDD) 

 

To show the internal organization of the system, we use 

the Internal Block Diagram. It’s a static diagram used to 

describe the hardware architecture of the system. It 

represents the instances of the shares of a block. The 

IBD is framed within the boundaries of the block 

concerned. The flows of flow (MEI) between the parts 

are carried out thanks to the connectors which connect 

their ports. The IBD is defined from the corresponding 

BDD. A flow enters or leaves on the one hand via a port. 

 
Figure 14: Internal Blocks Diagram (IBD) 

 

Finally, we must verify that the system components 

described in the BDD respond to the different missions 

specified in the first phase (sequence diagrams and state 

machine diagrams). Table 2 links each component of the 

system with their functions. 

 
Table 2: Allocation Matrix 

 

 

4.3 Phase three: Simulation 

In this step we used AnyLogic™ as a multi-agent 

software tool to implement the swarm simulation model. 

We do two different sets of experiments, one for each 

group size. To validate our model, we measure the time 

required to form a complete aggregate. The robots are 

deployed in a random position at the start of each 

experiment. Each experiment is interrupted when a 

complete aggregate is formed or after 1000 seconds of 

simulation. 

Experiment 1 

In this example, we want to obtain a probability value 

for having an aggregate in area A or B (Pr1) equal to 0.8 

and the probability of remaining stable for 10 seconds 

(Pr2) is equal to 0.6. 

• P (Pr1) = 0.8 

• P (Pr2) = 0.6 

For a group of 10 robots, we took the value of Pac = 

0.05. 

In Table 3, we have calculated the different probabilities. 

 
Table 3: the values of different probabilities for 

Pac=0.05 

 

We noticed the formation of two aggregates in the two 

zones A and B: 7 robots are placed in zone A and 3 

robots are placed in zone B. In addition, the stability 

time is equal to 5s. 

 

From the results obtained, we observed that a fixed Pac 

does not favor the formation of a single aggregate. A 

better solution is to let a robot decide to leave based on 

the number of robots detected around it. We set  
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Pac = 1 - Pmin - ac ∗ (Ns + 1), where Pmin - ac is the minimum 

probability of stay that we want for a robot and Ns is the 

number of other robots detected. We add 1 to the number 

of robots detected, because we also include the robot that 

chooses its next action (M. Brambilla et al, 2014) 

We set the value Pmin - ac in the interval [0.19, 0.24]. 

 
Table 4: values of different probabilities for 

 Pac = 0.04 

 

We have noticed in figure 15 the formation of an 

aggregate in zone A: 9 robots are placed in zone A. In 

addition, the stability time is equal to 7s. So, the two 

properties (Pr1 and Pr2) are verified. 

 
Figure 15: A screenshot of the simulation results of the 

swarm robot with 10 robots 

 

This figure 16 gives us an idea on the time of start of 

aggregate formation depending on Pmin-ac. 

 
Figure 16: Time to start forming an aggregate for a 

group of 10 robots 

 

We notice that the best value of Pmin-ac is in the interval 

[0.18, 0.28] to obtain an aggregate as quickly as 

possible. 

 

Results verification  

Table 5 shows a comparison between the results 

obtained and the desired properties. 

 
Table 5: Verification table of the results obtained 

Experiment 2 

In this example, we want to obtain a probability of 

having an aggregate in area A or B (Pr1) equal to 0.4. 

• P (Pr1) = 0.4 

 

For a group of 20 robots, we took the value                

Pmin – ac = 0.12  

 

In Table 6, we have calculated the different probabilities. 

 
Table 6: Values of different probabilities for Pac = 0.4 

 

We have noticed the formation of an aggregate in zone 

A: 11 robots are placed in zone A. 

So, property 1 is verified: P (Pr1) = 0.55 

 

Figure 17 presents the start time for aggregate formation. 

We notice that the best value of Pmin-ac is in the interval 

[0.12, 0.24] to obtain an aggregate as quickly as 

possible. 

 
Figure 17: Time to start forming an aggregate for a 

group of 20 robots 

 

4.4 Phase four: Real robots’ implementation 

In the last phase, the swarm developer realizes the final 

swarm robots. In this paper, we have not yet 

implemented the real robots. This task is undergoing and 

it could be a subject of a future paper. 

5 CONCLUSION  

Differently from bottom-up approaches such as code-

and-fix technique, our top-down design approach, which 

is based on the Property Driven Design method and the 

use of SysML language, offers a systematic 

methodology towards the development of swarm robotic 

systems. With our approach, we are able to specify the 

system requirements to avoid the risk of developing the 

“wrong” system, that is, a system that does not satisfy 

the requirements. Our approach facilitates also the 
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development of a set of simulation and hardware 

independent models that can be easily reused in future 

applications. 

 

The simulation results of the aggregation application 

show that our approach is able to manage easily a large 

number of robots while ensuring the design continuity 

process in terms of design traceability. 

 

In the near future, we plan to validate our approach with 

a real implementation of a swarm robotic system. After 

that we can apply our design approach to more complex 

applications. A problem to work on is how to derive the 

individual behaviour of the robots from a collective 

behaviour. Several possibilities can be studied, such as 

the integration of spatial calculation and artificial 

evolution. 

 

REFERENCES 

 

Batishchev D.I and Isayev S.А, 1997. Optimization of 

multi functions using genetic algorithms. 

Interuniversity    collection of scientific papers "High 

technologies in engineering, medicine and 

education". (Voronezh: VGTU) pp. 4‒17. 

 

Bayindir L and Sahin E, 2007. A review of studies in 

swarm robotics. Turkish Journal of Electrical 

Engineering, 15(2):115–147. 

 

Bowden N et al, 1997. “Self-Assembly of mesoscale     

objects into ordered two-dimensional arrays,” 

Science 276(5310), 233– 235. 

 

Blickle T and Thiele L, 1995. A Comparison of 

Selection Schemes used in Genetic Algorithm, 2 

Edition. TIK-Report. 67 p. 

 

Brambilla M , Pinciroli C, Birattari M, and Dorigo.M 

2012. Property-driven design for swarm robotics. In 

Proceedings of the AAMAS 2012. IFAAMAS, 139–

146. 

 

Brambilla M, Ferrante E, Birattari M, and Dorigo M, 

2013. Swarm robotics: A review from the swarm 

engineering perspective. Swarm Intelligence 7, 1, 1–

41. 

 

Brambilla M, Dorigo M, and Birattari M, 2014. 

Property-driven design for robot swarms: 

Supplementary material. 

 

Brooks R.A, 1986. A robust layered control system for a    

mobile robot. IEEE Journal of Robotics and 

Automation, 2(1):14–23. 

 

Brooks R.A, 1990. Elephants don’t play chess. Robotics 

and    autonomous systems, 6(1-2): 3–15. 

 

 

Cao Y, Fukunaga S, and Kahng A, 1997. “Cooperative 

mobile robotics: antecedents’ directions and,” 

Autonomous Robots, vol.4, no.1, pp.226–234. 

 

Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. 

Theraulaz, and E. Bonabeau, 2001. Self-Organization 

in Biological Systems. Princeton Studies in 

Complexity. Princeton University Press, Princeton, 

NJ. 

 

Dudek G, Jenkin M, Milios E and Wilkes D, 1993. A 

taxonomy for swarm robots, in: Intelligent Robots 

and Systems’ 93, IROS’93. Proceedings of the 

IEEE/RSJ International Conference on, Vol. 1, IEEE, 

1993, pp. 441–447. 

 

Dudek G, Jenkin M, Milios E and Wilkes D,1996. A 

taxonomy for multi-agent robotics, Autonomous 

Robots 3 (4) 375–397. 

 

Francesca G, Brambilla M, Brutschy A, Trianni V and 

Birattari M, 2014. Auto Mo De: a novel approach to 

the automatic design of control software for robot 

swarms. Swarm Intell. 8(2) 89– 112. 

 

Fukada T et al, 1998. “Self-Organising Robots Based on 

Cell Structures,” IEEE Int. Workshop on Intelligent  

Robotics (IEEE Computer Society Press, Los 

Alamitos. 

 

Iocchi L, Nardi D and Salerno M, 2001. “Reactivity and 

deliberation: a survey onmulti-robot system,” in 

Balancing Reactivity and Social Deliberationin 

Multi-Agent Systems. From RoboCup to Real-World 

Applications, pp. 9–32, Springer, Berlin, Germany. 

 

Jan Carlo Barca and Ahmet Sekercioglu Y, 2012. 

‘‘Swarm robotics reviewed’’, Robotica (2013) 

volume 31, pp. 345–359.  Cambridge University 

Press. 

 

Kernbach S, Thenius R, Kernbach O and Schmickl T, 

2009. Re-embodiment of honeybee aggregation 

behaviourin an artificial micro-robotics system. 

Adapt. Behav. 17(3) 237–259. 

 

Minsky M, 1967. Computation: Finite and Infinite    

Machines. Prentice-Hall, Upper Saddle River, NJ. 

 

Spears W, Spears D, Hamann J and Heil R, 2004.       

“Distributed, Physics-Based Control of Swarms of    

Vehicles”, Autonomous Robots, Volume 17(2-3). 

 

Trianni V et al, 2007. “From Solitary to Collective    

Behaviours: Decision Making and Cooperation,” In: 

Proceedings of the 9th European Conference on         

Artificial Life (Springer-Verlag, Berlin, Germany). 

 


