
HAL Id: hal-03018286
https://hal.science/hal-03018286

Submitted on 22 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the continuity of the swarm robot design using
MBSE method and simulation

Khalil Aloui, Moncef Hammadi, T Soriano, A. Guizani, M. Haddar

To cite this version:
Khalil Aloui, Moncef Hammadi, T Soriano, A. Guizani, M. Haddar. On the continuity of the swarm
robot design using MBSE method and simulation. 13th International Conference on Modelling, Op-
timization and Simulation (MOSIM’20)„ Nov 2020, Agadir, Morocco. �hal-03018286�

https://hal.science/hal-03018286
https://hal.archives-ouvertes.fr

13the International Conference on Modeling, Optimization and Simulation - MOSIM’20 – November 12-14, 2020-

Agadir – Morocco “New advances and challenges for sustainable and smart industries”

On the continuity of the swarm robot design

using MBSE method and simulation

K. ALOUI, M. HAMMADI, T. SORIANO

QUARTZ Lab EA7393 - SUPMECA - 3 rue Fernand

Hainaut 93400 Saint-Ouen, France

alouika95@gmail.com, moncef.hammadi@supmeca.fr,

thierry.soriano@univ-tln.fr

A. GUIZANI, M. HADDAR

University of Sfax

LA2MP, Ecole Natioanle d’Ingénieurs de Sfax

km 4 route de la Soukra, Sfax 3038, Tunisia

amir.guizani@live.fr, mohamed.haddar@enis.rnu.tn

ABSTRACT: Swarm robotics is an approach to collective robotics inspired by the self-organized behaviour of social

animals. This approach aims to design robust, scalable and flexible collective behaviours for the coordination of a

large number of robots using simple rules and local interactions. However, this design approach faces challenges,

which are not present in other multi-robot systems: The strong decentralization, the continuity of methods, finding the

simple behaviours, the local communication and action, the high number of individuals and the traceability are

characteristics, which make a multi-robot system "too complex to be managed effectively".

In this paper, we present a design approach based on the Property Driven Design method for the design of swarm

robots. The specification and modeling phases are performed using SysML language. We used the SysML state-

machines to describe the robot behaviours. The behaviour models of the robots described with SysML are then

implemented in a multi-agent tool for the simulation phase. We applied our approach to a case study of a simple robot

aggregation application. Simulation results show that our approach is able to manage easily a large number of robots

while ensuring the design continuity process in terms of design traceability.

KEYWORDS: Swarm robotics, Design methods, Property Driven Design, MBSE, Simulation.

1 INTRODUCTION

Swarm robotics have been defined as "a novel approach

to the coordination of large numbers of robots". It is an

approach to collective robotics, which is inspired by the

self-organized behaviour of social animals. Birds, ants,

fish, and bees are some examples of the simple

individuals who come together in groups to complete

given tasks (Sahin, 2005).

The swarm robotics research studies how to use systems

made up of multiple autonomous agents (robots) to

accomplish collective tasks where tasks cannot be

accomplished by an individual robot alone. This

approach is inspired by the system of social insects

which are characterized by: robustness, flexibility and

scalability. Robustness is defined as the ability to adapt

to the loss of individuals. In social animals, robustness is

represented by redundancy and the absence of a leader.

Scalability is defined as the ability to work with different

group sizes. Adding or removing individuals does not

change the performance of a swarm. In social animals,

scalability is promoted by local sensing and

communication. Flexibility is defined as the ability to

adapt to a wide range of different environments and

tasks. In social animals, flexibility is promoted by

redundancy, simplicity of the behaviours and

mechanisms such as task allocation (Camazine et al,

2001).

Swarm robots are capable of performing tasks

impossible to accomplish with other classes of robots.

For example, they are able to (i) move over terrain so

rough that individual robots are unable to cross, (ii)

overcome obstacles larger than individual robots, or (iii)

carry objects too heavy to be transported by a single

robot (Fukada T et al, 1998).

All of these characteristics allow them to disperse and

perform surveillance tasks, detect dangerous events, such

as a chemical leak, and focus on the problem and even

act to prevent the consequences (Trianni V et al, 2007).

Unfortunately, in swarm robotics, there are still no

formal and precise approaches to designing behaviours at

the individual level that produce the desired collective

behaviour. The intuition of the human designer is still

the main ingredient in the development of robotic swarm

systems. Many researchers have worked on the continui-

ty of design approaches, emphasizing the relationship

between the different phases of the approach (Brambilla

et al, 2004). Others chose the swarm size as a problem to

solve in the design of swarm robots. They proposed that

the approach should adapt to the swarm size (Dudek et

al, 1993). Nevertheless, until today there is no complete

methodology for the design of these types of robots.

In this paper, we present a design approach based on the

Property Driven Design method for the design of swarm

robots. The specification and modeling phases are

performed using SysML language. We used the SysML

state-machines to describe the robot behaviours. The

mailto:alouika95@gmail.com
mailto:moncef.hammadi@supmeca.fr
mailto:thierry.soriano@univ-tln.fr
mailto:amir.guizani@live.fr
mailto:mohamed.haddar@enis.rnu.tn

MOSIM’20 – November 12-14, 2020 - Agadir - Morocco

behaviour models of the robots described with SysML

are then implemented in a multi-agent tool for the

simulation phase. We applied our approach to a case

study of a simple robot aggregation application.

The paper is organized as follows: in the next section,

we present the related works. Our design method of

swarm robots will be detailed in the section three. A

case-study of a simple robot aggregation application will

be considered in section four to illustrate the advantage

of our approach. Finally, the paper is concluded in

section five.

2 RELATED WORKS

For a long time, designers have used the ‘code-and-fix’

approach to develop swarm robots: It is an iterative

bottom-up process, the developer tests and improves the

individual behaviour of the robots until the desired

collective behaviour is obtained. This approach is not

structured and it depends on the developer's expertise

and ingenuity. However, the design of swarming robots

faces challenges that are not present in other multi-robot

systems. Indeed, the characteristics of robot swarms,

such as a high number of individuals, simple behaviours,

strong decentralization, local communication and action,

are characteristics that complicate the multi-robot system

(Wooldridge and Jennings, 1998). This has prompted

many researchers to propose other design approaches.

(Spears et al, 2004) used the concept of artificial force to

define a new distributed framework (called artificial

physics) for the control of a large number of robots. This

method is very similar to the potential field method used

in single robot systems, but it performs all calculations at

run time. No global map is generated. The calculations

are also performed locally on each robot. It is assumed

that other objects in the environment apply virtual forces

to the selected robot. The robot calculates the average

force calculated by its observations and heads towards

the direction of the average force. The force exerted on a

robot from an external object depends on two things: the

bearing and the distance from the external object. These

two parameters can be calculated from local

observations. This framework is suitable for swarm

robotic studies.

(Hamann and Wörn, 2008) have proposed a method

inspired by statistical physics. The authors describe the

individual behaviours of robots using Langevin

equations and, by analytical means. They derive a

Fokker-Planck equation describing collective behavior.

Another similar approach has also been proposed by

(Berman et al, 2011), which derived the individual

behaviours of a swarm performing task distribution

using a set of partial differential advection-diffusion-

reaction equations. Both methods are based on the

developer's ability to model robot interactions and

advanced mathematical techniques, and these methods

are based on ordinary or partial differential equations,

which provide reliable results if the size of the swarm is

infinite. In swarm robotics, this is very often not the

case, because robot swarms are generally composed of

around a hundred robots and often a few dozen robots

(Brambilla et al, 2013).

(Kazadi et al, 2009) have proposed a design approach

based on Hamiltonian vector fields called the

Hamiltonian method. From a mathematical description

of collective behaviour, the method can be used to derive

microscopic rules which minimize or maximize a

selected numerical value (for example, the virtual

potential energy of a particular state of the swarm).

However, this method only deals with spatial

organization behaviours such as pattern formation.

(Berman et al, 2009) have developed a top-down

approach for the design of task allocation behaviour. The

authors present the system as a Markov chain in which

the states represent tasks and the edges represent the

possibility of a robot to move from one task to another.

Using a stochastic optimization method, it is possible to

derive the probabilities that govern how robots change

tasks in order to minimize the time required to converge

on the desired allocation. This approach is specific only

for the distribution of tasks and has not been extended to

other collective behaviours.

Recently, (Konur et al, 2012) have proposed a different

approach. The authors used model verification on a

macroscopic model of a swarm of foraging robots. They

specified the desired properties of the system using the

Probabilistic Computation Tree Logic (PCTL), a

temporal logic which includes probabilistic aspects. This

approach is capable of going beyond the limits of linear

temporal logic. In addition, the use of a macroscopic

model, instead of a microscopic model, allows this

approach to deal with systems made up of dozens of

robots.

(Brambilla et al, 2012) have proposed a new top-down

design method for swarm robots based on normative

modeling and model verification called "Property Driven

Design". The method consists of four phases: In the first

phase, the developer specifies the requirements of the

swarm of robots by specifying the desired properties. For

the second phase, the developer creates a normative

model of the swarm and uses model verification to verify

that this model satisfies the desired properties. In the

third phase, the developer implements a simulated

version of the desired robot swarm and validates the

prescriptive model developed in the previous steps.

Finally, the developer implements the desired swarm of

robots.

In this paper, we propose to develop a design approach

of swarm robots based on the Property Driven Design

method. The specification and modeling phases are

performed using SysML language. The behaviour

models of the robots described with SysML are then

MOSIM’20 – November 12-14, 2020 - Agadir - Morocco

implemented in a multi-agent tool for the simulation

phase.

In 2006, OMG published the initial standard for SysML

(Systems Modeling Language), an extension of UML

designed to support systems engineering in general, but

specifically system modeling. SysML is a graphical

language for building models of large-scale, complex,

and multi-disciplinary systems. It re-uses a subset of

UML, and adds some new diagrams specifically

designed to support systems engineering (OMG 2006).

In the following section, we detail our design approach

of swarm robots. This approach is based on the different

phases of the property Driven Design method using

SysML diagrams.

3 DESIGN APPROACH OF SWARM ROBOTS

The principle of our design approach is that a robotic

swarm system can be described through a series of

properties. The specification of these requirements is

carried out through SysML diagrams. These properties

are the characteristics of the system that the developer

wishes to realize.

In the first phase, the swarm developer uses the

requirements diagram to specify the requirements

representing the customer/user needs of the swarm. The

SysML use-case diagram and sequence diagram are then

used to describe the missions of the robots.

For the second phase, the developer creates the model

describing the structure of the swarm using the Block

Definition Diagram (BDD). The swarm architecture

showing the composition, the links and the interactions

between the robots is described with the Internal Block

Diagram (IBD). The swarm behaviour is modelled using

the SysML state-machines, for both the individual and

swarm levels. At the end of this phase, a second

requirement diagram describing the technical

specification of the swarm is generated. Model

verification step allows the swarm developer to verify

that the model satisfies the desired properties by tracing

the technical specification with customer needs and the

functional/behavioural attributes generated.

In the third phase, the robot behaviour models described

with SysML state-machines in the second phase are then

implemented in a multi-agent tool for the simulation

phase.

Finally, in the fourth phase, the developer implements

the simulated version of the swarm model developed in

real robots.

In figure 1, we present the steps of our approach with the

different SysML diagrams used in the different phases.

Figure 1 : Design approach process

The detail of these phases is as follows:

Phase 1: Specification of properties

The first phase consists informally specifying the system

requirements and identifying the desired properties using

a requirements diagram, which graphically describes a

capacity or a constraint, which must be satisfied by a

system. The clearer and more complete these properties,

the more the system developed will comply with the

requirements. The first phase of requirements analysis

aims to build all the requirements of stakeholders (users,

customers, etc.). It is interesting to note that the analysis

phase identifies the system boundary and characterizes

the interfaces with other systems. This step consists in

producing the specification of requirements, mainly as

requirement diagrams, allowing the traceability between

the design levels, but also in in textual format. During

this phase, the developer describes the main mission of

the system with its various secondary tasks using the

use-case diagrams and sequence diagrams to present and

detail the different possible scenarios.

Phase 2: Creation of the model

In this phase, there are two steps: the first step is

architectural modeling using structural diagrams (block

definition diagrams and internal block diagrams) to

describe the architecture of the system. The second step

is behaviour modeling using state-machine diagrams.

In our approach, we choose the probabilistic method to

describe the transitions between states and the actions

that the system or its parts perform in response to an

event. This allows the developer creating a normative

model of the robot swarm that describes how robots

change state over time. Each state is a simplified abstract

description of the actions of a robot. The normative

model should be detailed enough to capture the

behaviour of the robots and their interactions, but should

not be too detailed to avoid unnecessary complications.

The desired properties indicated in the first phase are

checked using model checking techniques to verify that

MOSIM’20 – November 12-14, 2020 - Agadir - Morocco

all the requirements are related to the structure and

behaviour elements.

Initially, it is possible that the normative model does not

satisfy all the desired properties. Thus, through an

iterative process, the developer improves the model until

the properties are satisfied. The result of this process is a

normative model of the collective behaviour of the

swarm robots that satisfies the declared properties.

Phase 3: Simulation of the model

The emergent swarm behaviour requires the simulation

to check if the model developed in the second phase

achieves the global need of the swarm robots. The

simulation also is used to identify some optimal value of

properties such as the number of robots to be used in a

swarm mission. In our approach, we used the multi-agent

simulation technic to capture and verify the emergent

swarm behaviour.

In this phase, the swarm developer uses the model

created in the second phase to guide the process of

simulation model implementation.

Generally, the transition from a descriptive macroscopic

model to a simulation microscopic implementation is

difficult. It depends on the developer's expertise and

ingenuity. In our approach, this transition has been eased

because we are talking about a transition from the

SysML state-machine diagrams to Statechart models to

be implemented in a multi-agent simulation tool.

Even if we represented a linear process for our approach

in figure 1, the practice shows that the process is

iterative. Indeed, the simulation implementation can

allow the swarm developer to identify some modeling

faults that requires a return to the previous step.

Simulation is also used to validate the swarm model by

checking if the required properties are coherent with the

simulation results. Therefore, the model in the phase two

can be improved with values obtained by simulation, or

in some cases the model is modified according to the

simulation results found.

Phase 4: Real Implementation

In the last phase, the developer deploys the system on

real robots. As for the transition between the previous

phases, the developer can modify the simulated model or

the descriptive model if certain assumptions are not

verified to keep all the levels consistent.

In the next section, we will apply our approach to a case

study of a simple robot aggregation application in order

to illustrate that our approach is able to easily manage a

large number of robots while ensuring the design

continuity process in terms of design traceability.

4 CASE STUDY: AGGREGATION PROBLEM

The aggregation problem is studied either as an

independent problem or as a part of more specialized

tasks involving the grouping of a certain number of

agents. An example of aggregation of autonomous robots

is illustrated in Figure 2.

Figure 2 : An example of aggregation of autonomous

agents

Among the most effective approaches for aggregating a

swarm of robots are the virtual force method, the

evolutionary method and the probabilistic method which

we use in our approach to build the simulation model.

In this aggregation case study, we consider a white area

called C with two black spots of the same size called

area A and area B as illustrated in Figure 3. Each of the

black spots is large enough to accommodate all the

robots. We consider two sizes of swarms: 10 and 20. We

use two different areas for the two different groups, of

4.91 m2 and 19.63 m2 respectively.

Figure 3: A screenshot of the simulated version of a

swarm of robots with 10 robots

In what follows, we apply the 4-phase process of our

approach

4.1 Phase one: Properties specification

The two main properties that the swarm robot must

satisfy are:

• The robots must aggregate as quickly as

possible in zone A or zone B. We have set a

delay of 1000 seconds for the mission duration.

• The aggregate must remain stable for a specific

period of time. For this, we have set a duration

of 10 seconds.

Using the different SysML diagrams, we can build our

model. We need to design a swarm robotic system that

meets the properties specified in the first phase. The

robots must regroup in zone A or B of the environment

and remain stable for a period t. The requirements

diagram illustrated in figure 4 shows two requirements

MOSIM’20 – November 12-14, 2020 - Agadir - Morocco

necessary to build the system. These requirements

represent the customer need.

• Choice of zone: contains the power supply and the

programming of the robots to detect the different zones

and avoid obstacles. The user should check the battery

level of each robot before using. In addition, the

developer must program the robots to be able to avoid

obstacles and choose the available area.

• Stability in the area: after its formation, the swarm

must remain stable.

Figure 4: Requirements diagram (customer need)

Once the requirements are specified, we propose the

possible use-cases that show the functional interactions

of the actors and the study system. The developer

describes the main mission of the system with its

different secondary tasks using the sequence diagrams

and use-case diagrams to present the different possible

scenarios.

The use-case diagram illustrated in Figure 5 gives an

overview of the functional behaviour of the swarm robot

system. This mission includes 3 necessary tasks: robot

programming, robot power supply and swarm self-

formation.

Figure 5: Use case diagram

Figure 6 shows that the developer must program the

robot: This program allows the robot to distinguish

between different areas of the environment and decide

where to stay. Before starting operation, the user must

check the robot battery level. This operation must be

applied to each robot. Once the robot group is ready, two

scenarios are possible:

• If the batteries are charged: the user begins to use

robots to form the aggregate.

• If the batteries are low: the user must charge the

batteries before starting to use them.

Figure 6 : Generalized sequence diagram

We use a referential block called "Forming a Swarm"

that allows the swarm to perform the main function. In

Figure 7 we present an instance of 5 robots to explain the

“Forming a Swarm” block.

Figure 7 : Sequence diagram: an instance of 5 robots

In this example we use 5 robots: We assume that 3

robots (R1, R4 and R5) have chosen zone A, one robot

(R2) has chosen zone B and the last robot (R3) has

decided to stay in zone C. We define a counter that

returns the number of robots detected in each zone to

return this information to the user.

MOSIM’20 – November 12-14, 2020 - Agadir - Morocco

After the functional analysis and the mission definition,

the second requirements diagram illustrated in figure 8,

is used to specify the technical requirements of our

system:

• Swarm formation: autonomy, speed and precision.

• The swarm shape: the general swarm shape, the

geometric parameters.

• Swarm stability: formation time, stability time.

Figure 8: Requirements diagram of technical specifications

As indicated in figure 8, the formation of a swarm of

robots must be autonomous without any external

intervention. Indeed, the developer must design a

program that allows robots to detect obstacles. In

addition, the robots must move over the entire surface

without being recharged each time. Each robot in the

group randomly moves into the search space from its

initial position. The goal of this behaviour is searching

for a shelter site while avoiding static and dynamic

obstacles (other robots), while the environment of the

robot is completely unknown.

Obstacle avoidance is a basic behaviour found in almost

all mobile robots. It is essential to allow the robot to

operate in a dynamic environment. It makes it possible to

avoid obstacles that appear in the robot's field of vision.

For this, the robot must determine another path (via the

path selection behavior). Obstacle avoidance behaviour

is determined by the robot agent according to the

environment in which it operates and according to its

position in relation to the obstacles encountered. The

method we are going to use is effective as long as we

have a correct perception of the environment.

Before starting the formation, we must specify the

swarm shape: circular, rectangular, each time specifying

the necessary geometric parameters (length, width,

radius, …)

First, we need to specify the execution time T. Once the

swarm is formed, the robots must be stable for a specific

period of time t.

Before going to the next step, we need to check if the

technical requirements are going with the requirements

describing stakeholder’s needs. This verification is only

the first step in a two-step process (verification, then

validation) which is essential to lead to the acceptance of

the system by the customer: This will be done through

tests (called acceptance tests) based on the requirements

identified with the customer.

Table 1: Requirements check table

Table 1 illustrates the checking if all requirements

specifying the customer needs are traced to the technical

requirements of the swarm (and vice-versa).

We note in this case that all the technical requirements

described in figure 8 are well linked to customer

requirements described in figure 4.

4.2 Phase two: Swarm modeling

Figure 9 describes the robot development process: First,

a group of autonomous robots is programmed to

accomplish the mission (avoid obstacles, choose the area

where will stay and communicate with other agents).

MOSIM’20 – November 12-14, 2020 - Agadir - Morocco

Then, the developer will check the battery levels of each

robot: if the batteries are charged, we start using the

robots. Else, we charge the batteries.

The design process consists of the following operations:

Programming the robots, checking the batteries and

recharging of the robots.

Figure 9: Robot development process

Figure 10 shows the action process that was a collection

of predefined behaviours, such as displacement,

aggregation, obstacle avoidance. These behaviours are

necessary for moving a robot. While respecting an order

of priority: in the case where the robot agent is

confronted between two cases: reaching the goal

(aggregate area) and avoiding an obstacle, in this case

the robot must first avoid obstacles, then continue

moving.

Figure 10: Action process

To understand the process, we apply in figure 11 an

instance of 5 robots: 5 Robots (R1, R2, R3, R4, R5) are

put in zone C, three robots have chosen zone A, one

robot has chosen zone B and the latter decided to stay in

zone C.

Figure 11: Design process for an instance of 5 Robots

To develop the normative model of the aggregation case

study, we use the probabilistic method presented in

Figure 12. We consider the three areas in which the

environment is divided. We define three states: Sa, Sb

and Sc. A robot in zone A or B is in state Sa or Sb,

respectively. The robot outside zone A or B is in the

state Sc.

A robot in zone C can move either in zone A, or in zone

B or stay in zone C. This means that a robot in zone C

has a probability of moving from zone C to zone A equal

to Pca = , to move from zone C to zone B equal to

Pcb =

, and stay in zone C equal to Pcc =

Note that Pca = Pcb, because the two zones have the same

size and Arena is the total zone : 𝒜 arena = 𝒜A+ 𝒜B + 𝒜C

Figure 12: Swarm behaviour with probabilistic Model

The remaining probabilities depend on the behaviour of

the robots. The aggregate can be obtained in zone A or

zone B, so we fix the probabilities of leaving these two

equal zones: Pac = Pbc.

A robot in zone A can only go to zone C or stay in zone

A, therefore Paa = 1 - Pac. The same goes for zone B.

According to the previous description, it follows that

Paa = Pbb. The only remaining independent probability

is Pac. With the check model, we can find the value of

Pac which maximizes the probability of property 1.

Using the simulation model (next step), we can find the

best values for the parameter Pac.

Finally, with this current model, we are also able to

define the specifications of the hardware capacities of

the robots using the block definition diagram illustrated

in Figure 13:

• A power supply system made up of batteries

and conductive wires.

• A movement system consisting of DC motor,

wheels and movement transmission system.

• A communication system between the robots.

• A control system made up of time counters,

position sensors and an electrical control card.

• A PLC to install the program.

MOSIM’20 – November 12-14, 2020 - Agadir - Morocco

Figure 13: Block Definition Diagram (BDD)

To show the internal organization of the system, we use

the Internal Block Diagram. It’s a static diagram used to

describe the hardware architecture of the system. It

represents the instances of the shares of a block. The

IBD is framed within the boundaries of the block

concerned. The flows of flow (MEI) between the parts

are carried out thanks to the connectors which connect

their ports. The IBD is defined from the corresponding

BDD. A flow enters or leaves on the one hand via a port.

Figure 14: Internal Blocks Diagram (IBD)

Finally, we must verify that the system components

described in the BDD respond to the different missions

specified in the first phase (sequence diagrams and state

machine diagrams). Table 2 links each component of the

system with their functions.

Table 2: Allocation Matrix

4.3 Phase three: Simulation

In this step we used AnyLogic™ as a multi-agent

software tool to implement the swarm simulation model.

We do two different sets of experiments, one for each

group size. To validate our model, we measure the time

required to form a complete aggregate. The robots are

deployed in a random position at the start of each

experiment. Each experiment is interrupted when a

complete aggregate is formed or after 1000 seconds of

simulation.

Experiment 1

In this example, we want to obtain a probability value

for having an aggregate in area A or B (Pr1) equal to 0.8

and the probability of remaining stable for 10 seconds

(Pr2) is equal to 0.6.

• P (Pr1) = 0.8

• P (Pr2) = 0.6

For a group of 10 robots, we took the value of Pac =

0.05.

In Table 3, we have calculated the different probabilities.

Table 3: the values of different probabilities for

Pac=0.05

We noticed the formation of two aggregates in the two

zones A and B: 7 robots are placed in zone A and 3

robots are placed in zone B. In addition, the stability

time is equal to 5s.

From the results obtained, we observed that a fixed Pac

does not favor the formation of a single aggregate. A

better solution is to let a robot decide to leave based on

the number of robots detected around it. We set

MOSIM’20 – November 12-14, 2020 - Agadir - Morocco

Pac = 1 - Pmin - ac ∗ (Ns + 1), where Pmin - ac is the minimum

probability of stay that we want for a robot and Ns is the

number of other robots detected. We add 1 to the number

of robots detected, because we also include the robot that

chooses its next action (M. Brambilla et al, 2014)

We set the value Pmin - ac in the interval [0.19, 0.24].

Table 4: values of different probabilities for

 Pac = 0.04

We have noticed in figure 15 the formation of an

aggregate in zone A: 9 robots are placed in zone A. In

addition, the stability time is equal to 7s. So, the two

properties (Pr1 and Pr2) are verified.

Figure 15: A screenshot of the simulation results of the

swarm robot with 10 robots

This figure 16 gives us an idea on the time of start of

aggregate formation depending on Pmin-ac.

Figure 16: Time to start forming an aggregate for a

group of 10 robots

We notice that the best value of Pmin-ac is in the interval

[0.18, 0.28] to obtain an aggregate as quickly as

possible.

Results verification

Table 5 shows a comparison between the results

obtained and the desired properties.

Table 5: Verification table of the results obtained

Experiment 2

In this example, we want to obtain a probability of

having an aggregate in area A or B (Pr1) equal to 0.4.

• P (Pr1) = 0.4

For a group of 20 robots, we took the value

Pmin – ac = 0.12

In Table 6, we have calculated the different probabilities.

Table 6: Values of different probabilities for Pac = 0.4

We have noticed the formation of an aggregate in zone

A: 11 robots are placed in zone A.

So, property 1 is verified: P (Pr1) = 0.55

Figure 17 presents the start time for aggregate formation.

We notice that the best value of Pmin-ac is in the interval

[0.12, 0.24] to obtain an aggregate as quickly as

possible.

Figure 17: Time to start forming an aggregate for a

group of 20 robots

4.4 Phase four: Real robots’ implementation

In the last phase, the swarm developer realizes the final

swarm robots. In this paper, we have not yet

implemented the real robots. This task is undergoing and

it could be a subject of a future paper.

5 CONCLUSION

Differently from bottom-up approaches such as code-

and-fix technique, our top-down design approach, which

is based on the Property Driven Design method and the

use of SysML language, offers a systematic

methodology towards the development of swarm robotic

systems. With our approach, we are able to specify the

system requirements to avoid the risk of developing the

“wrong” system, that is, a system that does not satisfy

the requirements. Our approach facilitates also the

MOSIM’20 – November 12-14, 2020 - Agadir - Morocco

development of a set of simulation and hardware

independent models that can be easily reused in future

applications.

The simulation results of the aggregation application

show that our approach is able to manage easily a large

number of robots while ensuring the design continuity

process in terms of design traceability.

In the near future, we plan to validate our approach with

a real implementation of a swarm robotic system. After

that we can apply our design approach to more complex

applications. A problem to work on is how to derive the

individual behaviour of the robots from a collective

behaviour. Several possibilities can be studied, such as

the integration of spatial calculation and artificial

evolution.

REFERENCES

Batishchev D.I and Isayev S.А, 1997. Optimization of

multi functions using genetic algorithms.

Interuniversity collection of scientific papers "High

technologies in engineering, medicine and

education". (Voronezh: VGTU) pp. 4‒17.

Bayindir L and Sahin E, 2007. A review of studies in

swarm robotics. Turkish Journal of Electrical

Engineering, 15(2):115–147.

Bowden N et al, 1997. “Self-Assembly of mesoscale

objects into ordered two-dimensional arrays,”

Science 276(5310), 233– 235.

Blickle T and Thiele L, 1995. A Comparison of

Selection Schemes used in Genetic Algorithm, 2

Edition. TIK-Report. 67 p.

Brambilla M , Pinciroli C, Birattari M, and Dorigo.M

2012. Property-driven design for swarm robotics. In

Proceedings of the AAMAS 2012. IFAAMAS, 139–

146.

Brambilla M, Ferrante E, Birattari M, and Dorigo M,

2013. Swarm robotics: A review from the swarm

engineering perspective. Swarm Intelligence 7, 1, 1–

41.

Brambilla M, Dorigo M, and Birattari M, 2014.

Property-driven design for robot swarms:

Supplementary material.

Brooks R.A, 1986. A robust layered control system for a

mobile robot. IEEE Journal of Robotics and

Automation, 2(1):14–23.

Brooks R.A, 1990. Elephants don’t play chess. Robotics

and autonomous systems, 6(1-2): 3–15.

Cao Y, Fukunaga S, and Kahng A, 1997. “Cooperative

mobile robotics: antecedents’ directions and,”

Autonomous Robots, vol.4, no.1, pp.226–234.

Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G.

Theraulaz, and E. Bonabeau, 2001. Self-Organization

in Biological Systems. Princeton Studies in

Complexity. Princeton University Press, Princeton,

NJ.

Dudek G, Jenkin M, Milios E and Wilkes D, 1993. A

taxonomy for swarm robots, in: Intelligent Robots

and Systems’ 93, IROS’93. Proceedings of the

IEEE/RSJ International Conference on, Vol. 1, IEEE,

1993, pp. 441–447.

Dudek G, Jenkin M, Milios E and Wilkes D,1996. A

taxonomy for multi-agent robotics, Autonomous

Robots 3 (4) 375–397.

Francesca G, Brambilla M, Brutschy A, Trianni V and

Birattari M, 2014. Auto Mo De: a novel approach to

the automatic design of control software for robot

swarms. Swarm Intell. 8(2) 89– 112.

Fukada T et al, 1998. “Self-Organising Robots Based on

Cell Structures,” IEEE Int. Workshop on Intelligent

Robotics (IEEE Computer Society Press, Los

Alamitos.

Iocchi L, Nardi D and Salerno M, 2001. “Reactivity and

deliberation: a survey onmulti-robot system,” in

Balancing Reactivity and Social Deliberationin

Multi-Agent Systems. From RoboCup to Real-World

Applications, pp. 9–32, Springer, Berlin, Germany.

Jan Carlo Barca and Ahmet Sekercioglu Y, 2012.

‘‘Swarm robotics reviewed’’, Robotica (2013)

volume 31, pp. 345–359. Cambridge University

Press.

Kernbach S, Thenius R, Kernbach O and Schmickl T,

2009. Re-embodiment of honeybee aggregation

behaviourin an artificial micro-robotics system.

Adapt. Behav. 17(3) 237–259.

Minsky M, 1967. Computation: Finite and Infinite

Machines. Prentice-Hall, Upper Saddle River, NJ.

Spears W, Spears D, Hamann J and Heil R, 2004.

“Distributed, Physics-Based Control of Swarms of

Vehicles”, Autonomous Robots, Volume 17(2-3).

Trianni V et al, 2007. “From Solitary to Collective

Behaviours: Decision Making and Cooperation,” In:

Proceedings of the 9th European Conference on

Artificial Life (Springer-Verlag, Berlin, Germany).

