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Experimental Evidence for Heavy Tailed
Interference in the IoT

Laurent ClavierSenior Member, IEEE, Troels Pedersen, Ignacio Rodriguez, Mads Lauridsen and Malcolm Egan

Abstract—5G and beyond sees an ever increasing density of
connected things. As not all devices are coordinated, there are
limited opportunities to mitigate interference. As such, it is
crucial to characterize the interference in order to understand
its impact on coding, waveform and receiver design. While
a number of theoretical models have been developed for the
interference statistics in communications for the IoT, there is
very little experimental validation. In this paper, we address this
key gap in understanding by performing statistical analysis on
recent measurements in the unlicensed 863 MHz to 870 MHz
band in different regions of Aalborg, Denmark. In particular, we
show that the measurement data suggests the distribution of the
interference power is heavy tailed, confirming predictions from
theoretical models.

Index Terms—Interference, IoT, statistical models, subexpo-
nential distributions, heavy tails.

I. I NTRODUCTION

As the density of connected Internet of Things (IoT)
increases, interference is a pressing concern for emerging
wireless networks. In addition, non-orthogonal multiple ac-
cess, stringent constraints on cost, energy and computational
capabilities, grant free access schemes with low coordination
between devices, as well as the lack of control mechanisms
mean that interference management is a key challenge. How-
ever, characterizing the interference in unlicensed bandsis
a non-trivial issue. One reason is the high level of hetero-
geneity within the network, ranging from access protocols to
PHY-layer design. In particular, time-on-air, symbol duration,
bandwidth and waveform selection can significantly differ
from one radio access technology to another. To address
this issue, a number of different probability models for the
interference have been proposed sharing a key observation:
additive Gaussian noise is a poor model.

In this paper, we analyze recent measurements in Aalborg
of interference in the unlicensed European ISM 863 MHz
to 870 MHz band [1], which is duty cycle limited and not
based on listen before talk, such as the US 915 MHz band.
Our analysis validates key features of interference statistics
predicted from theoretical models. The converging variance
test and analysis of the empirical survival function both in-
dicate that the interference distribution from the measurement
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data is heavy tailed. This observation is confirmed through the
estimation of the tail index.

Section II sets up the notation and give the necessary
background on interference models. Section III describes
the expected properties of impulsive interference. Section IV
studies the measurement data, states the main results and opens
the discussion for the appropriate model.

II. T HEORETICAL INTERFERENCEMODELS

Interference results from (partially) concurrent transmis-
sions from different devices, called interferers, on the channel
observed by a given receiver. We consider a case where a
receiver is surrounded by a set of interferers, whose locations
form a point process denoted asΩ (see Fig. 1). Interferer8 ∈ Ω

sits at a distance38 from the receiver. Its signal is subject to a
path lossℓ(38) given by the positive path loss functionℓ. At
a particular time-frequency(C, 5 ) bin, the interference can be
expressed as a complex number

-C , 5 =

∑

8∈Ω

ℓ(38)&8,C , 5 . (1)

The term&8,C , 5 includes propagation effects (e.g., multipath
and shadowing) as well as the baseband emission of interferer
8 at time C and frequency5 . In existing work, the path loss
function ℓ(·) can take different forms, but is often given by
ℓW,n (3) = 3−W/21{3≥n }, whereW is the path loss exponent and
n is the guard zone radius; that is, no interferer can be closer
than n from the given receiver.

A key challenge is to characterize the probability distribu-
tion of the interference,-C , 5 or the corresponding interference
powerIC , 5 = |-C , 5 |

2. Here, we characterizeIC , 5 by its prob-
ability distribution function� (G) = P(- < G) or equivalently
its survival function((G) = 1 − � (G). Analytical results have
been proposed in very particular settings by using the toolsof
stochastic geometry. The early work by Middleton [2] showed
that, if interferers were located according to a homogeneous

Rx

n
838

Fig. 1. Receiver (Rx) surrounded by interferers (dots). Interferer 8 is at
distance38 from the receiver and sits outside the guard zone of radiusn .
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Poisson point process, non-Gaussian interference distributions
naturally arise. For example, when the network radius is finite
and the guard zone radius,n , is non-zero, the interference
distribution is known to be Middleton distributed [2], [3].
While exact, the Middleton model is difficult to work with
analytically (e.g., for the purpose of receiver design), and a
number of approximations have been proposed; e.g., Gaussian
mixtures [4], like then-contaminated model [5].

When instead interferers are located according to a binomial
point process, Weber and Andrews have shown that the result-
ing interference amplitude is subexponential [6]1. In this case,
the tail behaviour is dominated by the strongest interferer: �
is subexponential if for independent and identically distributed
(i.i.d.) -8 with common survival function(, with G =

∑=
8=1 -8,

( (G) → =( (-1) asG → +∞.
A detailed study of the interference power has been carried

out by Haenggi and Ganti [8]. In particular for interferers
located according to a Poisson point process, they showed that
the distribution depends heavily on the path loss attenuation
coefficientW. For example, also shown by Win and Pinto [9],
in a network with infinite radius and no guard zone (n = 0), the
interference power has the totally skewedU-stable distribution,
whereU depends onW.

While these theoretical results suggest that interference is
better modeled by heavy tailed distribution, there has been
little experimental validation; particularly in the context of
the IoT. In the following sections, we address this issue by
identifying features of the Aalborg measurement data that is
consistent with a family of heavy tailed distributions.

III. C LASSES OFHEAVY TAILED DISTRIBUTIONS

Several important performance metrics, such as outage
probability, strongly depend on the probability that the interfer-
ence is large. These rare events of high interference valuesplay
a key role, but are under-represented by the Gaussian model
distribution in which the tail decay too rapidly. Alternative
models such as the Middleton orU-stable with fatter tails exist.

Heavy tailed distributions are defined in general as dis-
tributions with tails that decay slower than the exponential
distribution [10]. Formally, a distribution is heavy tailed if for
any " > 0 and C > 0, the survival function does not satisfy

((G) ≤ " exp(−CG), ∀G > 0. (2)

Failing to satisfy (2) means that the moment generating
function does not exist, and hence higher order moments, the
variance or even the mean are not finite.

It is natural to ask whether measurements are consistent
with heavy tailed models. To clarify if such models, predicted
theoretically, are indeed good approximations of the real
interference behaviour, we consider two subclasses of models
and their corresponding corresponding statistical tests.

A. Fat Tailed Distributions

A distribution with infinite variance is said to be fat tailed.
Given a set of observations, the hypothesis that the variance

1We also note that the subexponential family has been used to model the
transmit power distribution in [7].

of the underlying distribution is finite can be tested using the
converging variance test [11, Section 5.5]. Assuming that the
process is a first order stationary and ergodic time-frequency
process, we estimate the variance by computing the sample
variance using all available time and frequency measurements
(indexed by a single integer) as

f2
= =

1

=

=
∑

:=1

(

I: − I=

)2

, (3)

whereI= =
1
=

∑=
:=1 I: . If I has finite variance, thenf= should

rapidly converge to a finite value as= increases. If, on the other
hand, the variance is infinite or very large, the convergence
should not be obvious and features such as large jumps can
be present as= increases.

B. Subexponential Tail Decay

A distribution� is said to havesubexponential tail decay if
there exists somê > 0 such that its survival function satisfies

((G) = G−
1
^ !(G), for G > 0, (4)

where ^ is called the tail index and! is a slowly varying
function satisfyinglim

C→∞

! (C G)
! (C)

= 1. Plotting((G) againstlog(G)

yields, for subexponentially decaying�, a straight line with
slope−1/^ for G large. An exponentially decaying distribution
has ^ = 0 which leads to an abrupt decrease in the curve as
log G increases.

Again, assuming that the interference process is first order
stationary and ergodic, we estimate the marginal distribution
by computing the empirical distribution function aŝ� (G) =
1
=

∑=
:=1 1{I: ≤G } and the empirical survival function aŝ((G) =

1 − �̂ (G).

C. Tail index estimation.

To quantify the results, we estimate the tail index^. To
do so, we assume the interference process is stationary and
ergodic and order the observations to obtain the sequence
{I(8) }8=1,...,= such thatI(1) ≥ I(2) ≥···≥I(=) . With the : largest
samples, the tail index is obtained via the Hill estimator [12]

�:,= =
1

:

:
∑

8=1

log
I(8)

I(:)
(5)

This estimator is consistent, meaning that if(:=)=∈N is such
that, as= goes to infinity,:= goes also to infinity but:=/=
goes to zero, then�:= ,= tends in probability to1/^, provided
that {I=}, besides stationary, satisfies one among a broad set
of assumptions, for instance being i.i.d [12]. However, the
performance of�:,= strongly depends on the choice of:. It
is then useful to construct the Hill plot, by plotting: against
�:,= for : = 1, . . . , =. The value of^ can be obtained from
a flat region in the graph. To make such a plot more useful,
[13] proposes to use a log scale for the x-axis, by choosing
: = ⌈=\ ⌉, 0 < \ < 1 and plotting�:,= against\. Here, ⌈G⌉
denotes the smallest integer greater than or equal toG.
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IV. M EASUREMENTDATA ANALYSIS

We now analyze the measured interference data first re-
ported in [1], where received power measurements were
performed at five distinct locations in Aalborg (Denmark):
1) downtown shopping area; 2) a business park with office
buildings; 3) hospital complex; 4) industrial area consisting
of industrial production facilities and office buildings; and 5)
residential area with single-family houses. At each location,
measurements were performed at street level by using a radio
network scanner equipped with an omni-directional antenna
for a period of 2 hours. While the measurements do not reflect
the interference at an elevated position, which is relevantfor
a base stations, they cover many IoT use cases like private
homes, smart things around roads and parks, smart meters,
etc... The entire on-air RF activity in the 868 MHz ISM band
(863 MHz to 870 MHz) was recorded with a 7 kHz bin
resolution in frequency and 200 ms sampling time yielding
a sensitivity level of approximately –115 dBm. The setup and
measurements are further detailed in [1].

We reduce the data by aggregating data in time-frequency
windows of 200 ms and 126 kHz to fit a LoRa scheme [14].
This yields a sequence of interference samplesI1, . . . ,I=, = =

#C · # 5 with #C and # 5 the number of time and frequency
samples, respectively, as shown in Fig. 2 for a given frequency
band. The presence of rare but large values can be observed.

A. Fat Tails: Converging Variance Test

We first test whether the data set is consistent with fat tails;
i.e., infinite variance, or at least some infinite moments. To
illustrate the variance convergence test, we plot in Fig. 3
the results on one finite variance distributions (exponential
with parameter̀ = 1) and two subexponential distributions
from the U-stable family (withU = 1.9, slightly impulsive,
and U = 1.2, more impulsive). For the exponential model,
as expected, the estimated variance converges rapidly as the
sample size increases. For the two non-GaussianU-stable
distributions, there is no clear convergence even for very large
sample sizes up to= = 200 000. For the measured data, no
clear convergence can be seen which is consistent with fat
tailed models.

B. Subexponential Tail Decay

In Fig. 4, we plot the log empirical survival function versus
log(G) for the different areas. To highlight the slow decay of
the tails, we also plot curves corresponding to the exponential
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Fig. 2. Examples of recorded interference samples for different areas.

TABLE I
HILL ESTIMATE OF THE TAIL INDEX (\ = 0.4).

Case ˆ̂

Shopping Area 1.41
Residential Area 2.34
Industrial Area 2.10
Hospital complex 0.41
Business park 1.05

Exponential (̀ = 1) 8.15
U-stable (U = 1.7, V = 1, W = 0.1, X = 0) 1.61

distribution (̀ = 1) and anU-stable distribution fitted to
the data (subexponential decay). The estimatedU is also
given in the different plots. These visual tests clearly confirm
that, on the measurement sets, interference is consistent with
subexponentially decaying tails.

C. Tail Index Estimation

Fig. 5 shows the modified Hill plots. The plot for exponen-
tial distribution is decreasing while theU-stable model yields
a plateau. In the measurements, the plateau is clearly present
and not the monotonically decreasing line which is consistent
with sub-exponential distributions. The Hill estimate of the tail
index is the plateau value (see [12] for more details). Hence
we read of the values at\ = 0.4, see Table I. It appears that the
tail indices of the data agree far better with heavy tail models
(like the U-stable) than the exponential model.

V. D ISCUSSION

Measurement data obtained at five different locations con-
firm the heavy tailed nature of the interference power distribu-
tion. The survival function and tail index are clearly thoseof
sub-exponential random variables. Even distributions with in-
finite moments of order two or larger could be attractive: they
can represent sudden changes in the interference that is harder
to capture by distributions with all moments finite. While
there is an abundance of theoretical studies of interference
statistics, the measurements in Aalborg are—to the best of our
knowledge—the first to clearly validate the heavy tailed nature
of the interference in the context of IoT communications.

However, further measurements are required to properly
explain the deviations in the tails and identify the best adapted
models. Indeed, the data set is limited (one city, five locations
and a receiver at the ground level). In particular, this work
focused on a frequency band where users exploit random
access with a duty cycle constraint (e.g., SigFox and LoRa).
Other frequency bands may exploit listen-before-talk access
strategies. However, at present, there are no measurement data
to study the interference statistics in such cases. Also, inan IoT
network, access points will more likely be at higher altitudes
which could impact the interference statistics. Finally wedid
not analyze time or frequency dependence which is another
important issue for future study.

Heavy tailed interference is known to affect the performance
of signal processing and network design in wireless commu-
nication systems, and the signal processing at the receiverside
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Fig. 3. Variance convergence test for four measured data sets, along with similar curves for the exponential and skewedU-stable models.
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Fig. 4. Log empirical survival functionlog (̂ (G) as a function oflog(G) for measured data and fittedU-stable and exponential models.
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Fig. 5. Modified Hill plots for the interference data, theU-stable and exponential models. Numerical values for^ at \ = 0.4 are reported in Table I.

should take it into account. Also, this work suggests several
important avenues of research. One such issue is the design of
channel access strategies depending on user locations to limit
the impact of interference.
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