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Experimental Evidence for Heavy Tailed
Interference in the loT

Laurent ClavierSenior Member, IEEE, Troels Pedersen, Ignacio Rodriguez, Mads Lauridsen and MalEgan

Abstract—5G and beyond sees an ever increasing density ofdata is heavy tailed. This observation is confirmed throgh t
connected things. As not all devices are coordinated, there are astimation of the tail index.
limited opportunities to mitigate interference. As such, it is Section Il sets up the notation and give the necessary

crucial to characterize the interference in order to understand back d interf dels. Secti i d b
its impact on coding, waveform and receiver design. While ackground on Inierierenceé models. Section escribes

a number of theoretical models have been developed for the the expected properties of impulsive interference. Sedo
interference statistics in communications for the 10T, there is studies the measurement data, states the main results ansl op

very little experimental validation. In this paper, we address this the discussion for the appropriate model.
key gap in understanding by performing statistical analysis on

recent measurements in the unlicensed 863 MHz to 870 MHz
band in different regions of Aalborg, Denmark. In particular, we Il. THEORETICAL INTERFERENCEMODELS

show that the measurement data suggests the distribution of the . .
interference power is heavy tailed, confirming predictions from | Interferen(_:e results Trom (partla_lly) concurrent transmi
theoretical models. sions from different devices, called interferers, on tharctel

observed by a given receiver. We consider a case where a
receiver is surrounded by a set of interferers, whose logsati
form a point process denoted @gsee Fig. 1). Interferare Q

sits at a distancd; from the receiver. Its signal is subject to a

I. INTRODUCTION path lossé(d;) given by the positive path loss functidh At

As the density of connected Internet of Things (IoT particular time-frequencyr, f) bin, the interference can be
xdaressed as a complex number

increases, interference is a pressing concern for emergif
wireless networks. In addition, non-orthogonal multiple a X, = Zf(d")Q"’f‘ 1)
cess, stringent constraints on cost, energy and compughtio o

capabilities, grant free access schemes with low coon'dime_lt.rhe termQ,,. includes propagation effects (e.g., multipath

that interf tis a k hall Hgﬁd shadowing) as well as the baseband emission of interfere
mean that interterence management 1S a key challeénge. HoWe e 4 ang frequencyf. In existing work, the path loss
ever, characterizing the interference in unlicensed bdads

N : ) function £(-) can take different forms, but is often given b
a non-trivial issue. One reason is the high level of heter ) g y

? (d)=d"1 wherey is the path loss exponent and
geneity within the network, ranging from access protocols ty’f( ) {dze)> 1 P P

PHY-| desian. | deular. ti . bol dio € is the guard zone radius; that is, no interferer can be closer
-layer design. In particular, time-on-air, symbo B, thane from the given receiver.

bandwidth and waveform selection can significantly differ A key challenge is to characterize the probability distribu

from one radio access technology to another. To addrqss . L
- . - ion of the interferenc or the corresponding interference
this issue, a number of different probability models for th iy P g

. . .Sower]’,,f = |X,.r|>. Here, we characteriz& ; by its prob-
mte_rf_erence h_ave b_ee'? proposed sharing a key observahggmty distribution functionF(x) = P(X < x) or equivalently
additive Gaussian noise is a poor model.

In thi I A s in Aalb its survival functionS(x) = 1 — F(x). Analytical results have
n IS paper, we analyze recent measurements in Aaloggq, proposed in very particular settings by using the tobls

of interference in the unlicensed European ISM 863 MH§t hasti trv. Th | k by Middleton 21 sh d
to 870 MHz band [1], which is duty cycle limited and no ochastic geometry. The early work by Middieton [2] showe

tt at, if interferers were located according to a homogeseo
based on listen before talk, such as the US 915 MHz bang. " W g 9 u

Our analysis validates key features of interference sizdis
predicted from theoretical models. The converging vaganc
test and analysis of the empirical survival function both in
dicate that the interference distribution from the measarmt

Index Terms—Interference, IoT, statistical models, subexpo-
nential distributions, heavy tails.
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Poisson point process, non-Gaussian interference distits of the underlying distribution is finite can be tested usihg t
naturally arise. For example, when the network radius isgfiniconverging variance test [11, Section 5.5]. Assuming that the
and the guard zone radius, is non-zero, the interferenceprocess is a first order stationary and ergodic time-frequen
distribution is known to be Middleton distributed [2], [3].process, we estimate the variance by computing the sample
While exact, the Middleton model is difficult to work with variance using all available time and frequency measure&men
analytically (e.g., for the purpose of receiver design)d @n (indexed by a single integer) as
number of approximations have been proposed; e.g., Gaussia "
mixtures [4], like thee-contaminated model [5]. o2 = 1 Z (Ik B ~7n)z 3)
When instead interferers are located according to a binomial "on & '
point process, Weber and Andrews have shown that the result-
ing interference amplitude is subexponential'[6h this case, wherel, = % Yie1 Lk If I has finite variance, them, should
the tail behaviour is dominated by the strongest interfefer rapidly converge to a finite value asncreases. If, on the other
is subexponential if for independent and identically distted hand, the variance is infinite or very large, the convergence
(i.i.d.) X; with common survival functior§, with x = 37" | X;, should not be obvious and features such as large jumps can
S (x) = nS (X)) asx — +oo. be present as increases.
A detailed study of the interference power has been carried
out by Haenggi and Ganti [8]. In particular for interferers ) )
located according to a Poisson point process, they shoveed tR: Subexponential Tail Decay
the distribution depends heavily on the path loss atteanati A distribution F is said to havesubexponential tail decay if
coefficienty. For example, also shown by Win and Pinto [9there exists some > 0 such that its survival function satisfies
in a network with infinite radius and no guard zore=(0), the 1
interference power has the totally skewedtable distribution, S(x) =x"«L(x), for x >0, (4)
wherea depends orny. ) o ) .
While these theoretical results suggest that interfereace§here « is called the tail index and. is a slowly varying

. SN i iofvinlim LX) _ ; ;
better modeled by heavy tailed distribution, there has beffiction satisfyinglim 7=+ = 1. Plotting S(x) againstiog(x)
little experimental validation; particularly in the corteof Yields, for subexponentially decaying, a straight line with
the IoT. In the following sections, we address this issue gjope—-1/« for x large. An exponentially decaying distribution

identifying features of the Aalborg measurement data thathasx = 0 which leads to an abrupt decrease in the curve as

consistent with a family of heavy tailed distributions. logx increases.
Again, assuming that the interference process is first order
[1l. CLASSES OFHEAVY TAILED DISTRIBUTIONS stationary and ergodic, we estimate the marginal disiobut

Several important performance metrics, such as outagjé computing the empirical distribution function @x) =
probability, strongly depend on the probability that theeifer- = 21 1{Z <x} @nd the empirical survival function agx) =
ence is large. These rare events of high interference vplags ! — F(x).

a key role, but are under-represented by the Gaussian model
distribution in which the tail decay too rapidly. Alternai
models such as the Middleton @fstable with fatter tails exist.

Heavy tailed distributions are defined in general as dis- To quantify the results, we estimate the tail indexTo
tributions with tails that decay slower than the exponéntido so, we assume the interference process is stationary and
distribution [10]. Formally, a distribution is heavy tadléf for ergodic and order the observations to obtain the sequence
any M > 0 andr > 0, the survival function does not satisfy {Z(}i=1,...» SUch thatZ(;) > 7(3)>...>7,, - With the k largest

samples, the tail index is obtained via the Hill estimatd?][1

C. Tail index estimation.

S(x) < Mexp(-tx), Vx > 0. (2)
k
Failing to satisfy (2) means that the moment generating Hy, = lZlOg& ()
function does not exist, and hence higher order moments, the "k — T Iy

variance or even the mean are not finite.

It is natural to ask whether measurements are consistdfiis estimator is consistent, meaning thatf,),ey is such
with heavy tailed models. To clarify if such models, preett that, asn goes to infinity,k, goes also to infinity buk,/n
theoretically, are indeed good approximations of the re@Pes to zero, thef,, , tends in probability tol /«, provided
interference behaviour, we consider two subclasses of imod®at {Z,}, besides stationary, satisfies one among a broad set

and their corresponding corresponding statistical tests. ~ Of assumptions, for instance being i.i.d [12]. However, the
performance off; , strongly depends on the choice bf It

A Fat Tailed Distributions is then useful to construct the Hill plot, by plottiﬂgagainst
o e . . . . Hy, for k =1,...,n. The value ofk can be obtained from
A distribution with infinite variance is said to be fat ta|leda flat region in the graph. To make such a plot more useful
Given a set of observations, the hypothesis that the vaafiarl(i?)] proposes to use a log scale for the x-axis, by choosing

e . .
1We also note that the subexponential family has been used telrttoel k=Tn"],0<6<1 a_nd plOttlnng,,, againstd. Here, [x]
transmit power distribution in [7]. denotes the smallest integer greater than or equal to
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IV. MEASUREMENTDATA ANALYSIS TABLE |

We now analyze the measured interference data first re- HILL ESTIMATE OF THE TAIL INDEX (6 = 0.4).
ported in [1], where received power measurements were
performed at five distinct locations in Aalborg (Denmark):
1) downtown shopping area; 2) a business park with office Shopping Area 141

Case R

buildings; 3) hospital complex; 4) industrial area corisgt IRZSide_”tlieiArea 22'135‘
of industrial production facilities and office buildingsnch5) ndustrial Area '
idential ith sinale-familv h At h fi Hospital complex 0.41
residential area with single-family houses. each lavati Business park 105
measurements were performed at street level by using a radio
Exponential ft = 1) 8.15

network scanner equipped with an omni-directional antenna
for a period of 2 hours. While the measurements do not reflect
the interference at an elevated position, which is relefant

a base stations, they cover many IoT use cases like privgigtribution (« = 1) and ana-stable distribution fitted to
homes, smart things around roads and parks, smart metgig, data (subexponential decay). The estimateds also
etc... The entire on-air RF activity in the 868 MHz ISM bandjyen in the different plots. These visual tests clearlyficon

(863 MHz to 870 MHz) was recorded with a 7 kHz binthat, on the measurement sets, interference is consisftmt w
resolution in frequency and 200 ms sampling time yielding pexponentially decaying tails.

a sensitivity level of approximately —115 dBm. The setup and
measurements are further detailed in [1]. C. Tail Index Estimation
We reduce the data by aggregating data in time-frequency

windows of 200 ms and 126 kHz to fit a LoRa scheme [14}, 'lz'ég S.Ehc.)ws .thE mOdiﬁ?d Hilrll_ﬁwlotsj.}Theblplot fodr Txpolr&en-
This yields a sequence of interference samples. ., 7, n= & Istribution Is decreasing while the-stable model yields

N, - Ny with N, and N, the number of time and frequencya plateau. In the measurements, the plateau is clearlyrirese

samples, respectively, as shown in Fig. 2 for a given fre enar_1d not the monot_onic_ally de_creasing Iin_e Wh_ich is cons_tste
D P 4 g g v h sub-exponential distributions. The Hill estimate loé tail

band. The presence of rare but large values can be obsenéff S :
index is the plateau value (see [12] for more details). Hence

i , i we read of the values &t= 0.4, see Table I. It appears that the
A. Fat Tails: Converging Variance Test tail indices of the data agree far better with heavy tail nle®de
We first test whether the data set is consistent with fat;tailgike the a-stable) than the exponential model.
i.e., infinite variance, or at least some infinite moments. To
illustrate the variance convergence test, we plot in Fig. 3 V. DISCUSSION

the results on one finite variance distributions (expoménti \jeasurement data obtained at five different locations con-
with parameteru = 1) and two subexponential distributionsiym the heavy tailed nature of the interference power distri
from the a-stable family (witha = 1.9, slightly impulsive, tjon The survival function and tail index are clearly thase
and @ = 1.2, more impulsive). For the exponential modelg,_exponential random variables. Even distributions it

as expected, the estimated variance converges rapidlyeas ffjite moments of order two or larger could be attractiveythe
sample size increases. For the two non-Gaussisstable cap represent sudden changes in the interference thatderhar
distributions, there is no clear convergence even for v@myel 1 capture by distributions with all moments finite. While
sample sizes up te = 200000. For the measured data, NOpere is an abundance of theoretical studies of interferenc
clear convergence can be seen which is consistent with &gliistics, the measurements in Aalborg are—to the bestrof ou

a-stable @=1.7,8=1, y=0.1, 6 =0) 1.61

tailed models. knowledge—the first to clearly validate the heavy tailed ratu
of the interference in the context of loT communications.
B. Subexponential Tail Decay However, further measurements are required to properly

In Fig. 4, we plot the log empirical survival function versugxplain the deviations in the tails and identify the besipaeia
log(x) for the different areas. To highlight the slow decay ofodels. Indeed, the data set is limited (one city, five lowei

the tails, we also plot curves corresponding to the expdaalen@nd a receiver at the ground level). In particular, this work
focused on a frequency band where users exploit random

access with a duty cycle constraint (e.g., SigFox and LoRa).
0 Incusral Areh Other frequency bands may exploit listen-before-talk asce
strategies. However, at present, there are no measureimant d
to study the interference statistics in such cases. AlsaniloT
% o network, access points will more likely be at higher altéad
e e which could impact the interference statistics. Finally e
not analyze time or frequency dependence which is another

Business area

Power (nW)

Hospital Complex Residential Area

important issue for future study.
W‘“"*““ bbbl Heavy tailed interference is known to affect the perfornganc
’ T ’ Fmew of signal processing and network design in wireless commu-
Fig. 2. Examples of recorded interference samples for diffeageas. nication systems, and the signal processing at the recsier

Power (nW)

o
8
Power (nW)

0
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Fig. 5. Modified Hill plots for the interference data, tleestable and exponential models. Numerical valuesf@t 6 = 0.4 are reported in Table I.

should take it into account. Also, this work suggests sévergs] S.Weber and J. Andrews, “Transmission capacity of wigbeetworks,”
important avenues of research. One such issue is the design o
channel access strategies depending on user locationsito li 7]
the impact of interference.
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