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Equilibrium Signaling: Molecular Communication
Robust to Geometry Uncertainties

Bayram Cevdet Akdeniz, Malcolm Egan and Bao Quoc Tang

Abstract—A basic property of any diffusion-based molecular
communication system is the geometry of the enclosing container.
In particular, the geometry influences the system’s behavior near
the boundary and in all existing modulation schemes governs
receiver design. However, it is not always straightforward to
characterize the geometry of the system. This is particularly
the case when the molecular communication system operates
in scenarios where the geometry may be complex or dynamic.
In this paper, we propose a new scheme—called equilibrium
signaling—which is robust to uncertainties in the geometry of
the fluid boundary. In particular, receiver design only depends
on the relative volumes of the transmitter or receiver, and the
entire container. Our scheme relies on reversible reactions in
the transmitter and the receiver, which ensure the existence of
an equilibrium state into which information is encoded. In this
case, we derive near optimal detection rules and develop a simple
and effective estimation method to obtain the container volume.
We also show that equilibrium signaling can outperform classical
modulation schemes, such as concentration shift keying, under
practical sampling constraints imposed by biological oscillators.

I. INTRODUCTION

The motion of molecules in a fluid depends on many
factors including the composition of the fluid, the possibility
of chemical reactions, the presence of external forces that may
induce drift, molecular degradation, the presence of obstacles,
and the structure of the fluid boundary. Pioneering work
beginning with Einstein, Langevin and Smoluchowski [1] has
established a range of stochastic models to describe how
the quantity of molecules varies over time due to diffusion,
reaction and convection. Unfortunately, it is challenging to
obtain tractable solutions to the equations governing motion,
except in a few special cases, such as free diffusion. One of
the major difficulties in obtaining tractable solutions is the
presence of boundary conditions. That is, the geometry of the
fluid boundary including its shape and the extent that it reflects
or absorbs molecules.

The lack of tractable solutions to the equations of molecu-
lar motion with non-trivial boundary conditions has impor-
tant implications for molecular communications. For many
schemes—most notably concentration shift keying (CSK) [2]–
[14]—receiver design relies heavily on the statistics for the
number of molecules in the receiver at a given sampling
time. As these statistics are obtained from the equations of
motion, a lack of tractable solutions increases the complexity
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of the receiver and, due to the use of potentially inaccurate
approximate solutions, can reduce system performance.

At the same time, solutions to the equations of motion
require estimates for the parameters of the system. In the
case the fluid boundary of the system or container has a
complex shape or the diffusion coefficient of the fluid is not
well-characterized, the resulting receiver may not be robust,
again leading to performance reductions. Moreover, as receiver
design relies on solutions for the equations of motion at a par-
ticular location, imperfect estimation of the distance between
the transmitter and receiver also degrades performance. While
there has been active work on distance estimation (see, e.g.,
[15]), it remains a challenging problem when the transmitter
and receiver are themselves moving.

In this paper, we propose a new signaling scheme, called
equilibrium signaling, tailored to systems with a finite, reflec-
tive fluid boundary as well as reversible reactions—which can
be viewed as signaling pathways in biological systems [16]—
in the transmitter and a passive receiver. A key feature of our
scheme is that it can improve the robustness of molecular com-
munication to uncertainties in the system boundary, locations
of devices, and also diffusion coefficients. This is the case even
if the diffusion coefficients are spatially inhomogeneous—i.e.,
are not constant throughout the fluid medium—which arises
in many biological systems [17]. For example, equilibrium
signaling can be readily applied in the scenarios with non-
standard fluid boundaries illustrated in Fig. 1a and Fig. 1b,
which is challenging for standard approaches such as CSK,
MoSK [18]–[20] and RSK [21].

The source of robustness in equilibrium signaling is that,
under the assumptions detailed and justified in the sequel, the
receiver observes molecules in a state near equilibrium. Unlike
in previously proposed schemes, such as CSK, (MoSK) or
RSK, the statistics of the receiver observations only depend
on the quantity of molecules emitted, reaction rates in the
transmitter and receiver, and the volume of the container. As
such, the precise values of the diffusion coefficients, the shape
or geometry of the reflective fluid boundary, and the locations
of the transmitter and receiver are not required to reliably
detect transmitted symbols.

In order to exploit equilibrium signaling, it is necessary to
wait for the system to reach a state near equilibrium before
sampling after a new transmission. As such, the required
symbol period is typically longer than that of CSK, MoSK
or RSK. Nevertheless, realistic systems require an oscillator
to perform sampling. When a biological oscillator is utilized,
its period normally exceeds one minute [22]. In this case, the
system may reach an approximate equilibrium state simply
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(a) A 2-D channel (molecules cannot diffuse into the black region).

(b) A 2-D channel (molecules cannot diffuse into the black region).

Fig. 1: Fluid boundaries with complex geometry.

due to limitations of the oscillator.

A. Related Work

Equilibrium signaling bears many similarities to CSK in that
both schemes transmit information by varying the quantity of
emitted molecules. One key difference is in the choice of the
sampling time: in CSK, the sampling time is typically opti-
mized in order to maximize the average number of molecules
to arrive in the receiver; while in equilibrium signaling, the
sampling time is chosen such that the system approximately
reaches equilibrium. A key requirement for CSK is therefore
that information carrying molecules are able to leave the fluid
medium; either by being absorbed by the transmitter as in the
vast majority of CSK schemes [2]–[12], [14], reacting with
substrates in the channel as in [23], [24], or diffusing far
away when no boundary is present as in [13]. Moreover, CSK
also requires the full solution of the Fokker-Planck equation
governing molecular motion [25], which is computationally
expensive in complex channels, such as in Fig. 1a and Fig. 1b.
The computational burden is also increased by the fact that
new solutions to the Fokker-Planck equation may be required
whenever the transmitter and receiver change their locations.

On the other hand, equilibrium signaling relies on molecules
remaining in the system in order for the equilibrium state to be
reached. As such, molecules cannot degrade (or at least, must
degrade slowly), the receiver is passive, and the fluid boundary
is reflective. A typical application of equilibrium signaling is
therefore in the context of biological systems enclosed by

a membrane, or in microfluidic systems exploiting microfil-
tration [26]. Indeed, we do not expect equilibrium signaling
to play a role in, for example, communication through blood
vessels where drift is induced by a linear potential [27].

Equilibrium signaling, as developed in this paper, also bears
superficial similarities to MoSK [18] and schemes known as
reactive signaling [23], where two species of molecules are
employed. In binary MoSK schemes, a different molecule
is used to transmit each symbol. On the other hand, reac-
tive signaling transmits two different molecules—which can
react—into the channel in order to mitigate inter-symbol
interference. While equilibrium signaling also utilizes two
different molecules, only one can pass into the channel. That
is, only one of the molecules can react to form the other,
as occurs in isomerization [28] or via enzyme-aided reactions
[24]. As such, the chemical reactions considered in equilibrium
signaling may be viewed as a signaling pathway. We also
highlight that, like CSK, MoSK and reactive signaling also
require a full solution of the Fokker-Planck equation, which
is computationally expensive.

Another family of schemes is that of RSK [21]. In RSK,
a continuous-time molecular signal is transmitted and de-
tected via chemical reactions. In common with equilibrium
signaling is the use of chemical reactions in the transmitter
and receiver; however, like CSK and MoSK, RSK does not
exploit an equilibrium state and requires computation of the
expected quantity of molecules in the receiver at a given time.
As this requires a full solution of the equation of motion,
good estimates of transmitter-receiver distances and diffusion
coefficients are implicitly required. This again contrasts with
equilibrium signaling—which also has a dramatically lower
complexity—where these estimates are not required.

B. Main Contributions

We highlight the following main contributions of this paper:
(i) We propose a new signaling scheme for molecular

communications, which exploits the presence of an
equilibrium state in the system for detection. Under the
assumptions detailed in Sec. II, equilibrium signaling
is robust to uncertainty in the geometry of a finite,
reflective fluid boundary, location of the transmitter and
receiver, as well as diffusion coefficients.

(ii) We derive an accurate closed-form Gaussian approxi-
mation for receiver observations, which yields a high-
performance receiver based on the Viterbi algorithm. We
highlight that our scheme accounts explicitly for inter-
symbol interference.

(iii) We develop a low-memory sub-optimal receiver, again
accounting for inter-symbol interference, at the cost of
a small loss in performance in terms of the average
probability of error. Our low-memory scheme performs
symbol-by-symbol detection, analogous to that proposed
for standard CSK modulation (see e.g., [29], [30]).

(iv) We provide a simple method to estimate the system
volume in the receiver observation statistics, which is
the main potential source of uncertainty. We also derive
a tractable approximation for the required sampling
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time to ensure that the system is approximately in an
equilibrium state.

(v) Via particle-based simulations, we evaluate the average
probability of error in our scheme and study the impact
of using only a single molecule, analogous to CSK. The
simulations show that exploiting equilibrium signaling
with chemical reactions in the transmitter and receiver
can significantly improve performance over schemes
exploiting only a single molecule.

C. Structure of the Paper

In Sec. II, we detail the key assumptions in our model
and justify its biological relevance. In particular, we set up
the reaction-diffusion master equation, which governs the
evolution of the statistics for the quantity of molecules in each
part of the system. In Sec. III, we develop the equilibrium
signaling approach and two detection algorithms tailored to the
induced receiver statistics. In Sec. IV, we provide theoretical
and empirical evidence for the receiver statistics exploited by
the detection algorithms in Sec. III. In Sec. V, we characterize
the performance of the equilibrium signaling approach and op-
timize system parameters to reduce the probability of error. We
also develop a simple estimation procedure for the container
volume, the main unknown parameter of the receiver statistics.
In Sec. VI, we study via particle-based simulations the average
probability of error for equilibrium signaling. In Sec. VII, we
conclude by discussing the potential to relax the assumptions
in Sec. II and other variations on equilibrium signaling.

TABLE I: Notation.

Variable Definition
N Number of voxels in the system.
Vvox Volume of each voxel.
VTx, VRx Volume of the transmitter and receiver.
S1, S2 Chemical species.
Mi(t) = [M1

i (t),M2
i (t)] State vector of voxel i in time t.

κlij Diffusive jump rate.
ali, l = 1, 2. Reaction rate constants.
νl,k Quantity of each species l

produced or removed in reaction k.
NRx j(t) Number of Sj molecules in the

receiver at time t.
Sm
n Binary sequence with length n and

m elements bit 1.
sk k-th symbol of Sm

n .
Ts Communication time interval.
∆ Number of transmitted molecules

for each bit 1 transmission.
µr Expected number of molecules in the

receiver after a single bit-1 transmission:
µr = µr,1 if molecules of species S1
are observed; and µr = µr,1 + µr,2
if both S1 and S2 are observed.

Dl(x), l = 1, 2. Spatially dependent diffusion coefficient.

II. SYSTEM MODEL

Let Ω ⊂ Rd, d ∈ {1, 2, 3} be a domain with smooth
boundary ∂Ω consisting of transmitting and receiving devices
(corresponding to the subdomain ΩS ⊂ Ω) with a fluid
medium separating the devices. Consider the discretization of
Ω into N volume elements (voxels) each of volume Vvox. Here,

volume is interpreted as length in R1, area in R2, and volume
in R3.

Messages to be sent by the transmitter with volume VTx are
encoded into the quantity of species S1. Within the transmitter
and the receiver, each species is produced or removed via the
unimolecular reactions

S1 → S2

S2 → S1.
(1)

In particular, the transmitter produces information-carrying
molecules of species S2 by the first reaction in (1). We note
that the reactions in (1) can be interpreted as a signaling
pathway, which are ubiquitious in biological systems [16].
For example, the reactions in (1) may approximate the more
general family

S1 → A1 → · · · → Am → S2

S2 → B1 → · · · → Bn → S1, (2)

under the assumption that the intermediate reactions occur
sufficiently rapidly. The reactions in (1) may also be viewed
as an approximation of the enzyme-aided system

S1 + E1 → S1E1 → S2 + E1

S2 + E2 → S1E2 → S1 + E2, (3)

where E1,E2 are enzymes and S1E1,S2E2 are intermediate
complexes. Such reactions are ubiquitous in the translation
step of DNA replication, where the enzyme is viewed as a
ribosome molecule [31].

We assume that molecules of species S1 produced in the
transmitter are not capable of diffusing into the channel, while
this is possible for species S2. The absence of the species S1 in
the channel can arise when the transmitter is encapsulated by a
membrane, which can prevent diffusion of S1 via electrostatic
forces or the size of gaps in the membrane. For example, the
transmitter may be a cell or, in microfluidic applications, be
encapsulated by a microfilter [26].

At the receiver, with volume VRx (not necessarily the
same as VTx), molecules of species S2 are able to generate
molecules of species S1 via the second reaction in (1), which
can be viewed as another signaling pathway. The receiver
can then attempt to decode the transmitted message based on
observations of the quantities of species S1 and species S2 that
are present at the sampling time. As for the transmitter, the
molecules of S1 cannot diffuse out of the receiver due to the
presence of a membrane.

In order to capture the effect of small quantities of each
chemical species in the system, we consider a stochastic
model for the kinetics. To formally describe the scenario, we
introduce the following notation. Let M l

i (t), l = 1, 2, i =
1, . . . , N denote the random variable for the number of
molecules of species S1 or S2 in voxel i at time t. Denote
Mi(t) = [M1

i (t),M2
i (t)] as the state vector in voxel i

and the matrix consisting of all state vectors as M(t) =
[M1(t), . . . ,MN (t)]. The probability that M(t) has value m
at time t conditioned on there being a quantity of molecules
m0 in each voxel at time t = 0 is then denoted by

P (m, t) = Pr(M(t) = m|M(0) = m0), (4)
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where M(0) is the initial quantity of molecules of each species
in each voxel.

Since each reaction is unimolecular, it follows that in each
reaction the number of molecules of the two species involved
can only increase or decrease by one. Let 1li be the state
where the number of molecules in all voxels is zero, except
for species l in voxel i. That is, M(t) + 1li means that the
number of molecules of species l in voxel i is increased by
one.

A popular model for stochastic kinetics of molecules is the
reaction-diffusion master equation (RDME) [32], also utilized
in the context of molecular communications in [33]. In this
model, the diffusive jump rate is denoted by κlij for each
individual molecules of the l-th species moving from voxel
j into voxel i, with κlii = 0, i = 1, . . . , N . In particular, the
probability per unit time that a molecule of Sl diffuses from
voxel j to voxel i at time t is given by κlijM

l
j(t).

In general, κlij depends on i, j and l; that is, the probability
of a molecule diffusing between two voxels is not spatially
homogeneous (diffusive jump rates vary from voxel to voxel).
While spatially homogeneous diffusion is a standard assump-
tion in the molecular communications literature, variations in
the fluid environment can induce inhomogeneity which we are
able to capture within our model; for example, in developing
organisms [17]. In particular, the diffusive jump rate out of the
boundary voxels is zero, which can be interpreted as a reflec-
tive boundary condition. We remark that spatial inhomogeneity
of diffusion does not enforce any boundary constraints (other
than on the reflective boundary). Nevertheless, if the diffusive
jump rates near the boundary of the receiver are small, the
flux of probability for molecules of S1 into the receiver will
be low. This behavior can model the impact of a membrane
surrounding the receiver, which is more difficult for molecules
to pass through than in the microchannel.

We remark that an alternative stochastic model has recently
been studied in the context of reactive signaling which aims to
reduce interference by utilizing the reaction of two molecules
[23]. A key feature of the RDME model is that it provides
information about the statistical dependence in the receiver
observations over time, which is not the case for the model in
[23]. We also note that spatial homogeneity for the diffusion
process is assumed in [23] and in the vast majority of other
work on molecular communications. In the case of mass-action
kinetics and first-order reactions, the probability per unit time
that a molecule of Sl in voxel i reacts at time t is given
by aliM

l
i (t) with rate constants ali. In general, the reaction

rate is dependent on the voxel index. To model production
of S1 in the transmitter and S2, we assume that for voxels
i comprising the transmitter and the receiver ali = al, for
l ∈ {1, 2}, while a1i = 0 for voxels comprising the channel.
Due to the small scale of the transmitter and receiver, we
expect homogeneity in key parameters such as temperature,
which implies few variations in the reaction rate within the
transmitter and the receiver. The net change of each chemical
species due to the reaction with substrate Sl is expressed via
the vector νl = [νl,1, νl,2] ∈ N2, where νl,1 is the net gain of
molecules of S1 and νl,2 is the net gain of molecules of S2 in
the reaction where Sl is the substrate. The term νl1i indicates

that M(t) changes by νk in the i-th voxel.
In the RMDE model, the probability distribution Pr(m, t)

evolves according to the system of differential equations given
by

dP (m, t)

dt
=

N∑
i=1

N∑
j=1

2∑
l=1

(
κlij(m

l
j + 1)P (m + 1lj − 1li, t)− κljiml

iP (m, t)
)

+

N∑
i=1

2∑
l=1

(
ali(m

l
i + 1)P (m− νl1i, t)− aliml

iP (m, t)
)
,

(5)

where the first triple sum corresponds to the net increase in
probability per unit time due to diffusion and the second
double sum corresponds to the net increase in probability
per unit time due to chemical reactions. We highlight that
implicitly in (5), it is assumed that there is a finite, reflective
boundary; no degradation of molecules; constant temperature;
and no external forces (e.g., due to a linear potential inducing
drift). For more details, we refer the reader to [25].

The system of ordinary differential equations in (5) corre-
sponds to the Kolmogorov forward equation for a continuous-
time Markov chain; that is, the evolution of the system state is
Markovian. In our setting, due to the reversible reactions and
diffusive jump rates detailed above, the Markov chain corre-
sponding to the RDME is irreducible and positive recurrent.
Therefore, a stationary distribution exists and is given by [34]

π(m) = lim
t→∞

Pr(M(t) = m|M(0) = m0). (6)

In summary, we make the following assumptions in this
paper:

(i) the fluid boundary or container is smooth, reflective, and
with finite volume;

(ii) no external forces are present (e.g., the forces with linear
potential that induce drift);

(iii) no chemical reactions are present, with the exception of
those detailed in Sec. II;

(iv) molecules do not degrade;
(v) diffusion may be spatially inhomogeneous;

(vi) and motion is governed by the reaction-diffusion master
equation.

Certain assumptions can be relaxed while still allowing for
equilibrium signaling to be utilized. Such relaxations will be
discussed further in Sec. VII.

III. PROPOSED EQUILIBRIUM SIGNALING STRATEGY

The existence of an equilibrium state provides the opportu-
nity to develop a new signaling strategy. In particular, if the
statistics for the quantity of each species at the receiver can be
characterized, transmitted symbols may be recovered based on
observations near the equilibrium state. As we will show, such
an approach is highly robust to uncertainties in the container
geometry, which is not the case for classical CSK signaling
schemes.

In this section, we detail our proposed equilibrium signaling
strategy tailored to the model in Section II. We focus on the
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case of binary signaling; that is, for the transmitter to send a
bit 1, it generates ∆ molecules of species S1 within a single
voxel of the transmitter. For the case of bit 0, the transmitter
generates zero molecules of species S1. Each bit is equally
likely to be sent.

Assume that the system operates using time slots with
duration Ts and that no molecules of species S1 nor S2 are
present in the system at t = 0. The bit to be transmitted in time
slot n is denoted by sn. Moreover, molecules that are produced
by the transmitter may change the number of each species
via the reactions in (1); however, no molecules degrade.
As a consequence, inter-symbol interference is present and
is accounted for in the detection algorithms developed in
Sec. III-A and Sec. III-B.

Consider the n-th time slot. Due to the previous n − 1
transmissions, there are NTx,l(nTs), l = 1, 2 molecules of
species Sl in the transmitter. At a time nTs+δ shortly after the
beginning of the time slot, the transmitter produces a quantity
of S1 depending on the bit to be transmitted. In particular,

NTx,1(nTs + δ) =

{
NTx,1(nTs) + ∆ sn = 1,
NTx,1(nTs) sn = 0,

(7)

for δ > 0 a sufficiently small period of time; that is, δ is
chosen such that no reactions occur nor any molecules diffuse
to a voxel outside of the transmitter.

The key idea behind the proposed signaling strategy is that
for sufficiently large Ts, the total number of molecules of
species S1 and S2 in the receiver at the time of sampling will
be approximately drawn from the stationary distribution of the
RDME. As such, if the stationary distribution is known, then
near-optimal detection rules can be obtained.

To this end, suppose that a sequence of bits, s1, . . . , sn,
over a period of n sampling intervals is sent. Let Smn de-
note such a sequence containing with m transmissions (each
corresponding to a bit 1). Further, let NRx,1(nTs|Smn ) and
NRx,2(nTs|Smn ) denote the number of molecules of species
S1 and S2, respectively, observed by the receiver at the end
of the n-th symbol period (i.e., at time (n+ 1)Ts), given the
transmitted sequence Smn .

We make the following assertion, which will be validated
in Section IV.

Assertion 1. For ∆ sufficiently large,

NRx,1(nTs|Smn ) ∼ N (mµr,1,mµr,1),

NRx,2(nTs|Smn ) ∼ N (mµr,2,mµr,2), (8)

where µr,1, µr,2 > 0 are known constants, dependent on
the volume of the enclosing container and not the specific
geometry, and N (µ, σ2) denotes the Gaussian law with mean
µ and variance σ2. In particular,

µr,1 =
a1

a2
µr,2, µr,2 =

∆VRx

Vtot

1 + a1

a2
VTx+VRx

Vtot

, (9)

where Vtot = NVVox is the total volume of the system.
Moreover,

NRx,1(nTs|Smn ) +NRx,2(nTs|Smn ) ∼
N (m(µr,1 + µr,2),m(µr,1 + µr,2)). (10)

We emphasize that Assertion 1 is not a rigorous statement
and for this reason we have called it an assertion rather than
a proposition or theorem. For special families of reaction-
diffusion systems—e.g., with no diffusion or homogeneous
reaction rates and diffusion coefficients)—it is feasible to make
Assertion 1 rigorous (see, e.g. [35]). However, to the best of
our knowledge it is not possible to directly apply these results
to our model.

In (8), µr,1 and µr,2 are the average number of molecules
for corresponding species in each voxel given ∆ molecules
are in the system (corresponding to a single transmission of
bit 1). To gain some intuition into the values of µr,1 and µr,2,
consider the case when a1 = a2 and VRx = VTx. Here,

µr,1 = µr,2 =
∆VRx

Vtot + 2VRx
. (11)

The effect of diffusion is to evenly spread the molecules of
each species between all voxels. This implies that the average
number of molecules of S1 is the same within each voxel
comprising VTx and VRx. Moreover, the average number of
molecules of S2 is the same within each voxel in the total
volume. On the other hand, the effect of the reactions is
to produce, on average at equilibrium, the same number of
molecules of each species within the transmitter and receiver
voxels. As such, on average at equilibrium, there are twice
the total number of molecules in the transmitter and receiver
voxels compared with the voxels comprising the channel
from which (11) follows. A similar argument accounting for
different reaction rates yields (9).

Suppose that only the quantity of S1 is observed by the
receiver. Under Assertion 1, the distribution for the quantity
of S1 in the receiver at the sampling time for the n+1-th time
slot, corresponding to a transmission sn+1 ∈ {0, 1} is given
by

NRx,1((n+ 1)Ts|Smn , sn+1) ∼ (12){
N (mµr,1,mµr,1) sn+1 = 0,

N ((m+ 1)µr,1, (m+ 1)µr,1) sn+1 = 1.

Observe in (12) that the impact of previous transmissions is
accounted through the parameter m, which corresponds to the
total number of previous bit-1 transmissions.

On the other hand, if both S1 and S2 are observed by
the receiver, then the distribution for the total quantity of
molecules at the sampling time for the n + 1-th time slot,
corresponding to a transmission sn+1 ∈ {0, 1} is given by

NRx,1((n+ 1)Ts|Smn , sn+1) ∼{
N (m(µr,1 + µr,2),m(µr,1 + µr,2)) sn+1 = 0,

N ((m+ 1)(µr,1 + µr,2), (m+ 1)(µr,1 + µr,2)) sn+1 = 1.
(13)

In the following, we will consider the cases where the
receiver observes only S1, and where both S1 and S2 are
observed. In the first case (only S1), we define µr = µr,1.
In the second case (both S1 and S2), µr = µr,1 + µr,2.
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A. Near-Optimal Detection

We seek to obtain an estimate for the sequence
(s1, . . . , sn+1). Although the observation process is Marko-
vian, for a sufficiently large time slot Ts, the observations
are approximately independent. Let NRx denote the vector
of observations at the receiver for the quantity of observed
molecules (i.e., only S1, or S1 and S2) and s ∈ {0, 1}n+1 de-
note a potential vector of transmitted bits. Under Assertion 1,
the joint likelihood of the observations is given by

fNRx|s(n) =

n+1∏
i=1

exp

(
− (ni−µr

∑i
j=1 sj)

2

2µr
∑i

j=1 sj

)
√

2πµr
∑i
j=1 sj

, (14)

and the resulting detection rule is given by

ŝ∗ = arg max
s∈{0,1}n+1

fNRx,1|s(n). (15)

A brute force search for the estimate ŝ∗ in (14) leads to
a complexity that grows exponentially in n. Nevertheless, the
Viterbi algorithm with appropriate branch weights can be used
to solve the optimization problem with complexity of order
O(n). Note that while the Viterbi algorithm yields an optimal
solution for (15), it is under the assumption that Assertion 1
holds.

We briefly sketch the computations in Algorithm 1, which
is a form of the Viterbi algorithm with branch metrics tailored
to the problem in (14). For the k-th symbol sk ∈ {0, 1},
let p(nk|sk) = log(fNRx(kTs)|sk(nk)). In the k-th symbol
interval, it is necessary to compute Pk−1,0 and Pk−1,1, which
correspond to the probability of the most probable sequence
until the k − 1-th symbol and the k-th symbol is 0 and 1,
respectively.

Algorithm 1 Near-Optimal Detection Algorithm

1: Initialize: k = 0.
2: while k < n+ 1
k = k + 1.
logPk,0 = maxi logPk−1,i + p(nk|0).
logPk,1 = maxi logPk−1,i + p(nk|1).
rk,0 = arg maxi logPk−1,i + p(nk|0).
rk,1 = arg maxi logPk−1,i + p(nk|1).
End while.

3: s∗n+1 = arg maxi Pn+1,i.
j = n+ 1.

4: while j > 1
j = j − 1.
s∗j = rj,s∗j+1

.
End while.

5: Return: s∗.

B. Detection with Low Memory Requirements

For large n, directly solving the optimization problem in
(15) requires the storage all previous observations, which may
not be feasible due to limitations of the underlying biological
circuits. As such, it also is desirable to consider approaches
that only require limited memory.

To this end, define

R(n+ 1) = NRx((n+ 1)Ts)−NRx(nTs). (16)

In this case, each bit is decoded sequentially via the detection
rule

s̃n+1 =

{
1 R(n+ 1) > τ,
0 otherwise. (17)

The optimal choice of τ for the decision rule in (17) can
be obtained via an analysis of the bit error rate, which we
carry out in Section V-B. As will be shown in Section VI via
particle-based simulations, this low memory detection achieves
nearly the same performance as the near-optimal algorithm in
Algorithm 1.

IV. EQUILIBRIUM CHARACTERIZATION: JUSTIFICATION
OF ASSERTION 1

The potential of the signaling scheme in Section III relies on
the validity of Assertion 1. We first develop a stochastic linear
noise approximation of the RDME model in Section II, which
justifies the Gaussian law. We then perform the Kolmogorov-
Smirnov test to provide a further empirical validation.

A. Stochastic Linear Noise Approximation

It is known that for stochastic chemical reaction networks
under mass-action kinetics, the evolution of the molecular
counts of each species can be approximated by the chem-
ical Langevin equation [36]. Since diffusion is modeled by
unimolecular reactions in the RDME model in Section II,
it follows that a similar approximation can be applied. In
particular, following [36], we have

M l
i (t+ τ) ≈M l

i (t)

+

N∑
j=1

κlijM
l
j(t)τ +

N∑
j=1

√
κlijM

l
j(t)τND,j(0, 1)−

N∑
j=1

κjiM
l
i (t)

+

N∑
j=1

√
κljiM

l
i (t)τND′,j(0, 1) + a3−li M3−l

i (t)τ − aliM l
i (t)τ

+

2∑
k=1

√
akiM

k
i (t)τNR,k(0, 1), (18)

where each standard normal random variable ND,j(0, 1),
ND′,j(0, 1), and NR,k(0, 1) are independent.

Let V = Vi, i = 1, . . . , N be the volume of voxel i and
define the concentration of species Sl in voxel i by

Cli(t) =
M l
i (t)

V
. (19)

It then follows from the RDME that

dE[Cli(t)]

dt
=

N∑
j=1

(
κlijE[Clj(t)]− κljiE[Cli(t)]

)
− E[aliC

l
i(t))]

+E[a3−li C3−l
i (t)], (20)

with details given in [32, Sec. 1.1.3].
Since all reactions are unimolecular, under the assumption

that the diffusion jump rates, κij , are chosen appropriately, the



7

expected concentrations converge to a deterministic reaction-
diffusion system [32]. In particular, let u1, u2 be the de-
terministic concentrations. Then, the deterministic system is
described by the system of partial differential equations, for
all l = 1, 2,
∂tul − div(Dl(x)∇ul) = a3−l(x)u3−l − al(x)ul, x ∈ Ω,

Dl(x)∇ul · ν = 0, x ∈ ∂Ω,

ul(x, 0) = ul0(x), x ∈ Ω,
(21)

where ∂t denotes the derivative with respect to time. The
vector-valued function ν(x) is the outer unit normal defined
for x ∈ ∂Ω. The condition Dl(x)∇ul·ν = 0 is a homogeneous
Neumann boundary condition. The initial data ul, l = 1, 2, is
assumed to be nonnegative. The diffusion coefficients satisfy
Dl(x) ≥ 0 and can be zero on a set with positive measure.
For spatially homogeneous diffusion coefficients Dl(x) =
Dl, x ∈ Ω.

Using the same argument as [37], it follows from the
Langevin approximation in (18) that fluctuations are of the
order of

√
V . This suggests the Gaussian approximation

M l
i (t) ≈ V ul(xi, t) +

√
V Zli(t), (22)

where Zli(t) is a zero-mean Gaussian random variable and xi
is a point inside the i-th voxel. We note that this approximation
can be rigorously justified in the case of chemical reaction
networks [37] via a convergence result in [35]. A similar result
for the reaction-diffusion setting with spatially homogeneous
diffusion and reactions is available in [38].

B. Verification of Assertion 1

The linear noise approximation provides a justification
for the Gaussianity of the stationary distribution required to
establish Assertion 1. However, the mean and the variance
are dependent on the equilibrium solution to the system of
PDEs in (21). At present, for the spatially inhomogeneous
reaction rates and diffusion coefficients, even the existence of
an equilibrium solution has not been rigorously established.

Nevertheless, the ansatz for the mean and variance of the
stationary distribution in Assertion 1 is provided for the related
problem where only the diffusion coefficients are spatially
inhomogeneous; that is, the reaction rates are spatially homo-
geneous or, said in different words, independent of the spatial
coordinates. In this case, it has been established in [39] that
the mean and variance do indeed correspond to those given in
Assertion 1.

To empirically validate the ansatz, we have carried out
Monte Carlo simulations and performed a Kolmogorov-
Smirnov test. Both a standard 2-D scenario and a non-
standard 2-D scenario are considered, illustrated in Fig. 2a
and Fig. 2b, respectively. In the numerical validation, the
following parameters are used: a1 = a2 = 1, ∆ = 600,
VRx = VTx = Vvox = 10−6, N ∈ {60, 100}, D2(x) = D2 ∈
{4, 40, 400}×10−9, x ∈ Ω, the corresponding diffusive jump
rates κlij = Dl/h

2 for cubic voxels with height h [32].
The first step is to verify that the deterministic system of

differential equation in (21) admits a spatially homogeneous

solution as the time t→∞. To do so, we obtain a numerical
solution using the method in [40], for a range of different
system parameters.

(a) Standard 2-D scenario.

(b) Non-standard 2-D scenario.

Fig. 2: Miscellaneous channel models

To verify that the mean quantity of molecules is consistent
with Assertion 1, we estimate the mean from a particle-based
simulation. In Fig. 3, there are N = 60 voxels and ∆ = 600
molecules in the system. In the voxels of the transmitter and
the receiver, both S1 and S2 are present while S1 can only
diffuse in the voxels corresponding to the transmitter and the
receiver. Moreover, since the reactions a1 = a2, the expected
number of molecules at the equilibrium for each voxel is equal
to 600

60+2 = 9.68, which is consistent with Fig. 3. In Fig. 4, we
examine the scenario where the diffusion coefficient is spa-
tially inhomogeneous and again observe spatial homogeneity
of the equilibrium. Here, N = 100 and hence the expected
number of molecules at the equilibrium for each voxel is equal
to 600

100+2 = 5.88.
In order to verify that the number of observed molecules

is well approximated by the Gaussian law in Assertion 1,
we perform the Kolmogorov–Smirnov test based on particle-
based simulations of the system. In the Kolmogorov-Smirnov
test, H(t) denotes be the emprical distribution function
(estimated from the simulated data) and F (t) denotes the
candidate distribution function (given in Assertion 1). The
Kolmogorov–Smirnov statistic between two distributions is
then given by T ∗ = supt(|H(t)−F (t)|). The hypothesis that
the candidate distribution is true is rejected if

α > 1− FKol

(√
UT ∗

)
, (23)

where α ∈ (0, 1) is the significance level (α ≈ 0 corresponds
to high significance), U is the number of samples, and FKol

is the distribution function of Kolmogorov distribution [41].
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(a) D2 = 4× 10−9 m2/s for all x ∈. (b) D2 = 40× 10−9 m2/s. (c) D2 = 400× 10−9 m2/s.

Fig. 3: Solution of (21) for the concentration of S2 for a1 = a2 = 1 s−1, ∆ = 600, VRx = VTx = Vvox = 10−6, N = 60,
D = 4, 40, 400× 10−9, D1(x) = D2(x) if x ∈ ΩS and D1(x) = 0 otherwise.

(a) D2(x) = D/(1 + 104x). (b) D2(x) = D(1 + e−((104x−1)/2)2). (c) D2(x) = D +De10
4(x).

Fig. 4: Solution of (21) for the concentration of S2 for different D(x), a1 = a2 = 1 s−1, ∆ = 600, VRx = VTx = Vvox = 10−6,
N = 100, D = 40× 10−9 m2/s, D1(x) = D2(x) if x ∈ ΩS and D1(x) = 0 otherwise.

TABLE II: KS Test for (9) in Assertion 1.

Parameters Acceptance Probability p-value
∆ = 60, NVvox/VRx = 10 0.92 0.32
∆ = 100, NVvox/VRx = 10 0.93 0.40
∆ = 600, NVvox/VRx = 10 0.94 0.46
∆ = 100, NVvox/VRx = 20 0.92 0.40
∆ = 600, NVvox/VRx = 20 0.92 0.43
∆ = 600, NVvox/VRx = 100 0.91 0.43

In our setting, we compare the observations at the receiver
with the Gaussian law in Assertion 1 using the Kolmogorov-
Smirnov test for U = 500. Table II shows the results of the
test with a confidence of α = 0.05. As can be seen in this
table, data obtained from the particle-based simulations is in
good agreement Assertion 1 with high acceptance rate and p-
values significantly larger than the confidence level α = 0.05,
which suggests that Assertion 1 cannot be ruled out.

The second part of Assertion 1 corresponding to (10) states
that near equilibrium the quantity of S1 and the quantity of
S2 in the receiver are approximately independent. In order
to verify this part of the assertion, we have performed an
additional KS test. Table 1 shows the results of the test with
confidence level α = 0.05 for varying reaction rates a1, a2.
As for Table II, the results show a high acceptance rate and
high p-values, indicating that (10) cannot be ruled out.

TABLE III: KS Test for (10) in Assertion 1.

Parameters Acceptance Probability p-value

∆ = 100, NVvox/VRx = 10, (a1

a2 ) = 1 0.89 0.3

∆ = 100, NVvox/VRx = 10, (a1

a2 ) = 2 0.88 0.32

∆ = 600, NVvox/VRx = 10, (a1

a2 ) = 1 0.91 0.34

∆ = 600, NVvox/VRx = 20, (a1

a2 ) = 2 0.90 0.34

V. SYSTEM PARAMETER DESIGN

In this section, we focus on the design of key system pa-
rameters including the sampling time, the detection threshold
in the low memory scheme from Sec. III-B. We also develop
an estimation procedure for the container volume, which is
necessary for selecting the decision threshold.

A. Choosing the Sampling Time

The equilibrium signaling scheme is based on the assump-
tion that sampling is performed when the system is nearly in
equilibrium. As such, we now turn to the problem of selecting
the sampling time. We base the analysis on the underlying
deterministic system in (21), which determines the average
behavior of the system governed by the RDME.

As a tractable closed-form solution to (21) is not available,
we introduce a heuristic approach which provides a means
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of selecting the sampling time. The analysis is based on a
one dimensional model with a spatially homogeneous diffusion
coefficient for S2. This is in order to obtain a simple heuristic
in order to obtain a sampling time. We also assume that only
S1 is observed by the receiver, although the analysis can be
carried out analogously for observations of both S1 and S2.

Our approach decomposes the kinetics into three phases: a
reaction-limited phase in the transmitter; diffusion of S2 from
the transmitter to the receiver; and a reaction-limited phase in
the receiver. Each phase is formalized in the following, where
we assume a1 = a2 = a and VTx = VRx.

a) Phase A: In the first phase, the system is modeled as
a single container with reaction S1 → S2 and no diffusion. In
particular, the initial concentration of Sl is denoted by u0A,l,
with u0A,1 = ∆ and u0A,2 = 0 , and the concentrations evolve
according the following differential equation

duA,1
dt

= −auA,1(t), (24)

which admits the explicit solution

uA,1(t) = uA,1(0)e−at = ∆e−at. (25)

It is clear that limt→∞ uA,1(t) = 0. On the other hand, for
sufficiently small ε, we can obtain the approximate equilibrium
time for the first phase, tA, by plugging uA,1(t) = ε into (25)
as

tA = −
1

a1
log

(
ε

∆

)
. (26)

b) Phase B: In the second phase, a diffusion-limited
model is adopted, where chemical reactions are ignored. In
this case, the concentration evolves according to

∂uB,2
∂t

(x, t) = D
∂2uB,2
∂x2

(x, t), (27)

where u2,B(x, 0) = ∆δx=0, with δx=0 denoting the Dirac
delta function. The solution to this differential equation is
given by

uB,2(x, t) =
∆√

4πDt
exp

(
− x2

4Dt

)
. (28)

Since at equilibrium, spatial homogeneity is required, the
spatial derivative in (28) should be negligible. This implies
that L2 � 4Dt where L is chosen to be the maximum
distance between the transmitter and the container. Therefore,
the required time for spatial homogeneity, tB , can be expressed
as

L2

4D
� tB . (29)

c) Phase C: In the third phase, the system is again
modeled as a single container with S2 → S1 and no diffusion.
As in Phase A, the evolution of the concentrations uC,2 is
governed via (24), with uC,2 in place of uA,1 and initial
conditions given by u0C,2 = ∆VRx/(NVvox) (due to spatial
homogeneity in Phase B) and u0C,1 = 0. Hence,

uC,2(t) =
∆VRx

(NVvox)
e−at. (30)

Note that, as discussed in Section III, the expected num-
ber of molecules in the receiver in equilibrium is µr,1 =

∆VRx

NVvox + 2VRx
. The required time tC to decrease from

∆VRx/(NVvox) to
∆VRx

NVvox + 2VRx
can be obtained by using

(30) as

tC = −
1

a2
log

(
NVvox

NVvox + 2VRx

)
. (31)

Let, tr = tA + tB and td = tC denote the required time to
approach equilibrium. A useful heuristic for the required time
to approach equilibrium is then given by

t∗ = tr + td, (32)

which is plotted in Fig. 5 and evaluated for different pa-
rameters in Table IV. In the table, Dl(x) = D2(x) = D,
ε = 10−3, r = NVvox/VRx. The time teq corresponds to
when the solution to (21) is first within ε of the equilibrium
concentration. In order to calculate the teq , the system (21) is
solved numerically.

Observe that with the realistic parameters in Fig. 5, equilib-
rium is approximately reached before 50 s. In general, the rate
of convergence depends on the diffusion coefficients, reaction
rate coefficients, and also the initial quantity of molecules for
each species. Therefore, these parameters should be carefully
considered in the design of the communication system in order
to match the desired symbol period.
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Fig. 5: Value of t∗ in (32) for D = 80×10−11 m2/s, r = 60,
a1 = a2 = a = 1 s−1.

B. Optimizing the Threshold for Low Memory Detection
A key parameter for implementing the low memory de-

tection scheme in Section III is the decision threshold. This
parameter can be obtained by minimizing the probability of
error, defined by

Pn,me (τ) =
1

2
(Pr (R(n) > τ |sn = 0)

+Pr (R(n) ≤ τ |sn = 1)) , (33)
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TABLE IV: Sampling Time Heuristic teq for ε = 0.01.

Parameters tB tA + tC t∗ teq
D = 80 × 10−9 m2/s, r = 60, a = 0.1 s−1 0.3 s 74.3 s 74.6 s 80.1 s
D = 80 × 10−10 m2/s, r = 60, a = 0.1 s−1 3.6 s 74.3 s 77.9 s 82 s
D = 80 × 10−11 m2/s, r = 60, a = 0.1 s−1 36 s 74.3 s 110.3 s 118 s
D = 80 × 10−11 m2/s, r = 60, a = 1 s−1 36 s 7.4 s 43.4 s 50.9 s
D = 80 × 10−11 m2/s, r = 100, a = 1 s−1 99.4 s 7.4 s 106.8 s 114 s

where n is the symbol index and m is the number of previously
transmitter symbols corresponding to bit 1. This probability of
error is evaluated in Proposition 1.

Proposition 1. Assume that the previous n− 1 symbols have
been correctly decoded, with m transmissions of bit 1. Then,
under Assertion 1, the low memory detector in (17) has a
probability of error for the n-th symbol given by

Pn,me (τ) = 0.5

(
1−Q

(
τ − µr√

(m+ 1)µr +mµr

))

+ 0.5Q

(
τ

√
2mµr

)
,

(34)

where µr = µr,1 if only S1 is observed by the receiver, and
µr = µr,1 + µr,2 if both S1 and S2 are observed. We also
denote Q(x) =

∫∞
x

1√
2π

exp(− z
2

2 )dz, x ∈ R.

Proposition 1 follows immediately from the Gaussian statis-
tics in Assertion 1. Note that it is necessary to index Pn,me by
n and m due to the fact that the receiver observation statistics
vary as n and m increase. As such, the optimal threshold also
depends in general on n and m.

To proceed, we note that the derivative of Pn,me (τ) is given
by

dP
(n,m)
e

dτ
=

1√
2π(2m+ 1)µr

exp

(
− (τ − µr)2

2(2m+ 1)µr

)
− 1√

4πmµr
exp

(
− τ2

4mµr

)
.

Therefore, for large m,

dP
(n,m)
e

dτ
≈ − 1√

4πmµr
exp

(
− τ2

4mµr

)
+

1√
4πmµr

exp

(
− (τ − µr)2

4mµr

)
.

The threshold minimizing the probability of error for large m
can then be well-approximated by

τ∗ =
µr
2
. (35)

We remark for a sufficiently large number of transmissions,
even if some symbols have been incorrectly decoded, τ∗ in
(35) is a good approximation for the optimal threshold for
the low memory detector. Then the optimum Pn,me can be
obtained as

Pn,me (τ∗) = 0.5

(
1−Q

(
− µr

2√
(m+ 1)µr +mµr

))

+ 0.5Q

(
µr

2√
2mµr

)
,

(36)

C. Selection of Receiver Observations

So far, we have allowed the possibility of the receiver
observing only S1 or both S1 and S2. From Assertion 1, it
is clear that this decision depends on the reaction rates a1, a2.
In particular, the probability of error in (36) is a decreasing
function of µr.

It is also possible to consider equilibrium signaling with
only a single species and no chemical reactions. This scenario
is analogous to standard CSK schemes, where observations are
made near equilibrium. In this case, the expected number of
molecules in the receiver at the sampling time after a single
bit-1 transmission is given by

µCSK = ∆
VRx

Vtot
. (37)

A comparison of Assertion 1 and (37) reveals that if the
reaction rates a1 and a2 are equal, then µCSK > µr,1. On the
other hand, as (a

1

a2 ) increases, so does µr,1. However, this is
not the case for µCSK . As such, for sufficiently large (a

1

a2 ),
µr,1 > µCSK , yielding a lower probability of error. If both
S1 and S2 are observed at the receiver, then if a1 = a2,
µr,1 + µr,2 = 2µCSK > µCSK . As such, for a1 ≈ a2, it
is desirable to observe both S1 and S2. These observations
are illustrated in Fig. 6. In particular, we see the significant
advantage of observing both S1 and S2 (corresponding to
µr,1 + µr,2) over utilizing a single chemical species in the
system (corresponding to µCSK).

D. Container Volume Estimation

The two key parameters in equilibrium signaling are the
relative volumes of the transmitter and receiver with respect
to the total container volume. For applications in vitro, for
example, the total volume the container and the relative
volumes of the transmitter and receiver may not be known
a priori. This is due to the fact that the exact environment
of the molecular communication system may be complex or
time varying. As such, it is highly desirable to estimate the
container volume.

Unlike more detailed features of the container—which are
required to optimize decisions in classical CSK—estimating
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Fig. 6: Impact of a1

a2 on µr,1 and µr,2 with ∆ = 1000, VTx =
VRx = Vtot

10 .

the container volume is straightforward. Suppose that K trans-
missions of ∆ molecules of S1, corresponding to K time slots,
are allocated to volume estimation. Under Assertion 1, the
observations x1, . . . , xK of the quantity of S1 near equilibrium
are independent with known Gaussian statistics. In particular,
the variance of sample k is then given by kµr, where µr is
given by (9).

Under Assertion 1, the observations are Gaussian and
therefore the maximum likelihood estimator µ̂r for µr is the
solution to

µ̂r = arg max
µr

K∏
k=1

1√
2πkµr

exp

(
− (xk − kµr)2

2kµr

)
, (38)

which admits a solution satisfying

K∑
k=1

k

2
+

K∑
k=1

1

2µ̂r
+

1

2

K∑
k=1

x2k
2kµ̂2

r

= 0. (39)

While the objective in (38) is in general non-convex, it is
twice differentiable and therefore it is straightforward to verify
numerically which of the solutions corresponds to a maximum.

An expression for the relationship between µr and the total
volume of the container NVvox is given in (9). Using this
relationship, the estimator for the volume of the container
NVvox is given by

NVvox =
∆VRx − µ̂r a

1

a2 (VTx + VRx)

µ̂r
. (40)

Fig. 7 shows the impact of increasing the number of samples
on the normalized mean-square error (NMSE). Observe that
using (39), it is possible to estimate the volume of the
container with low NMSE even for small numbers of samples
and regardless of the true value of µr.

VI. NUMERICAL RESULTS

In this section, we study the performance of the proposed
equilibrium signaling scheme via particle-based simulations.
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Fig. 7: Plot of NMSE for varying numbers of samples and µr.

Throughout this section, we assume that the receiver can
observe both molecules of S1 and S2.

Both the near-optimal and low memory schemes are com-
pared, along with a scheme based on CSK. These comparisons
are based on transmissions of n = 1000 bits. Since the channel
is non-stationary, the performance is evaluated in terms of the
average number of errors in the sequence of n bits. More
formally, let Ei be the error random variable for bit i in the
sequence; that is

Ei =

{
1 ŝi 6= si,
0 ŝi = si,

(41)

where ŝi is the estimate of the transmitted bit si. Then, the
average probability of error is defined as

Pave = E

[
1

n

n∑
i=1

Ei

]
. (42)

In order to estimate Pave, 10000 iterations of the transmission
of n bits are simulated.

The parameters used in the simulations are: a1 = 1, 2, 3s−1,
a2 = 1s−1; D1 = D2 = 80 × 10−11 m2/s; Ts = t∗ given in
(32); and VRx = VTx. We remark that very similar results are
obtained with different choices of a1, a2, D1, D2 as long as
the ratio a1/a2 remains constant. This is due to the fact that
µr = µr,1 +µr,2 only depends on the ratio and not the precise
values of a1 and a2.

In the numerical results, five scenarios are considered by
using channel in Fig. 2a:

(i) Near-optimal detection scheme: The average probability
of error for Viterbi-based detection scheme developed in
Sec. III-A is obtained via particle-based simulations. In
particular, the dynamics arising from the RDME model
are simulated using the next reaction algorithm [40].

(ii) Low memory detection scheme: The average probability
of error for the low memory detection scheme developed
in Sec. III-B is obtained via particle-based simulations
in the same manner as for the near-optimal scheme.
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Fig. 8: BER performance for different VRx/(NVvox) and a1

a2 .

(iii) Semi-analytical evaluation: For the low memory detec-
tion scheme developed in Sec. III-B, the observations in
the receiver are simulated based on Assertion 1.

(iv) Analytical evaluation: For the low memory detection
scheme developed in Sec. III-B, the probability of error
is approximated by the expression in Proposition 1.

(v) Equilibrium CSK: The average probability of error for
a scheme where only a single molecule is employed is
obtained via particle-based simulations as for the near-
optimal scheme. The sampling time is chosen as t∗ with
observations drawn from S2 (the only species in the
system), which may be necessary due to limitations of
the biological oscillator needed to implement sampling.

Fig. 8 plots the average probability of error for varying
quantities of emitted molecules ∆, in each of the five sce-
narios and with varying receiver and transmitter volumes.
As expected, the near-optimal scheme based on the Viterbi
algorithm outperforms the low memory scheme. The perfor-
mance gains depend on the relative volume of the receiver,

ranging from approximately 300 molecules in the case where
VRX/(NVVox) = 0.05. In general, this suggests a tradeoff
between the complexity of the receiver and available energy
in the transmitter. Fig. 8 also shows that for the low mem-
ory scheme, the semi-analytical and analytical models well
approximate the results from particle-based simulations. This
provides further evidence for the validity of Assertion 1 and
also Proposition 1.

Moreover, Fig. 8 shows a significant performance gain
using equilibrium signaling over equilibrium CSK under the
sampling time constraint. To gain intuition into why this gain
arises, observe that near equilibrium the average number of
molecules observed in the receiver under CSK (i.e., only S2
is present in the system) will be ∆ VRx

NVvox
. On the other hand,

the proposed equilibrium signaling scheme yields on average
a quantity µr = µr,1+µr,2 given in (9). In any scenario where
the number of voxels comprising the channel is greater than
zero, µr > ∆ VRx

NVvox
, which is the reason for the performance

gains.
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We remark that the gain of equilibrium signaling over CSK
may not be present if the sampling time is optimized as
in classical CSK. However, realistic biological circuits may
place strong constraints on sampling [22] and therefore such
a constraint on the sampling time may be unavoidable.

VII. CONCLUSION

A key challenge for molecular communications, particularly
in biological environments, is uncertainty in the geometry of
the environment. This uncertainty may take the form of the
shape of the environment, or the distance between the trans-
mitter and the receiver. As it is not necessarily straightforward
to estimate parameters of the environment and schemes such
as classical CSK are not robust to changes in the geometry, it
is highly desirable to develop schemes that are in fact robust.

In this paper, we proposed equilibrium signaling, which
only requires knowledge of the container volume in order
to develop near-optimal detection schemes. This robustness
comes at the cost of large sampling times; however, it is
necessary in some applications to exploit biological oscillators
in order to obtain samples. As such, the requirement of long
sampling periods may in fact be a realistic system constraint.

In order to precisely specify conditions under which equi-
librium signaling can be applied, we focused on systems
satisfying the assumption in Sec. II. Nevertheless, there is
strong evidence that some of these assumptions can be relaxed.
In the case that no chemical reactions are present (even in the
transmitter and receiver), diffusion can be modeled via the
Smoluchowski equation, which allows external forces to be
accounted for. An initial investigation applying equilibrium
signaling in this model has been carried out in [42].

It should be possible to allow additional chemical reactions,
as long as an equilibrium state can be guaranteed. For example,
with weakly reversible first order reactions or high order
reactions satisfying complex balance as well as appropriate
choices of the diffusion jump rates [43]. We remark, however,
that in the case of high order reactions, nonlinearities in the
Fokker-Planck equation make a rigorous characterization of
the equilibrium state more challenging.

We also expect that slow degradation of molecules can be
accounted for within the equilibrium signaling framework.
We expect that analysis of this situation can be carried out
within the quasi-equilibrium framework commonly used to
investigate enzyme-based reactions (see, e.g., [44]). A related
issue is the sensitivity of the receiver in the presence of
very large quantities of information-carrying molecules. This
may be accounted for by limiting the number of consecutive
transmissions and incorporating a cleaning process to remove
information-carrying molecules from the system.

Finally, we have focused on utilizing only a single chem-
ical species within the channel. Nevertheless, an interesting
question is whether equilibrium signaling exploiting multiple
molecules in the channel (such as in MoSK [19], MCSK [2],
D-MoSK [20]) brings significant performance improvements.
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