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 7 

Abstract  8 

 A parameter estimation methodology has been developed on the basis of model 9 

inversion using a Quasi-Newton method and adaptive parameterization. The continuous adjoint 10 

state equations for both flow and transport in porous media are employed as the tool calculating 11 

the gradient components of the objective function with respect to parameters. Solving the 12 

continuous form of the adjoint equations can be implemented independently of the code used 13 

to solve the forward problem, which renders the technique non-intrusive. 14 

The developed methodology is applied to the identification of hydraulic conductivity 15 

and porosity fields conditioned by piezometric head data associated with steady-state flow and 16 

transient solute concentrations. Synthetic numerical experiments have been undertaken for test 17 

cases of increasing complexity, from an almost uniform flow sweeping the modeled domain 18 

with a prescribed uniform continuous injection of solute at the inflow boundary, to spatially 19 

highly variable flow conditions obtained through source/sink terms within the flow domain and 20 

a local stepwise solute injection. The results of inversions are analyzed using criteria based on 21 

the comparisons between estimated concentration and reference concentration values as well as 22 

comparisons between estimated hydraulic conductivity (and porosity for one test case) and 23 

reference hydraulic conductivity fields.  24 
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 The results show that employing a continuous adjoint state technique computed 25 

independently of the direct problem is an efficient option for parameter estimation relying 26 

jointly upon flow and transport data. In the reported numerical examples that are characterized 27 

by the identifiability of the flow problem on the basis of hydraulic head observations, 28 

concentration data from solute transport scenarios bring few added value to sought solutions of 29 

hydraulic conductivities. The spatial structure of the conductivity fields is slightly improved 30 

compared with the reference, but the overall system in terms of head distribution, identification 31 

of main flow paths, and solute transit times, only inherits cosmetics. 32 

 33 

Keywords 34 

Parameter estimation, adjoint state, adaptive parametrisation, groundwater, hydraulic 35 

conductivity, porosity. 36 

 37 

Highlights (less than 85 characters including spaces) 38 

- The continuous adjoint state associated with the transport equation is derived. 39 

- Hydraulic conductivity and porosity fields are estimated by inverse modeling. 40 

- Concentration data complementing heads slightly improve inverse solutions to flow. 41 



3 

 

1. Introduction 42 

Parameter estimation through inverse methods for flow and solute transport simulations 43 

is still challenging despite the variety of concepts and methods developed since the pioneer 44 

works in inverse methods of Vemuri et al. (1969), Emsellem and de Marsily (1971), and Yeh 45 

and Tauxe (1971), among others. Recent reviews of conceptual frameworks and methods can 46 

be found in Hendricks Franssen et al. (2009), Zhou et al. (2014), and Linde et al. (2015). Almost 47 

all the developed methods target the estimation of hydraulic conductivities (or transmissivities) 48 

constrained (conditioned) by hydraulic heads and, through the last 40 years, by additional data 49 

such as solute concentrations, geological information or geophysical properties.  50 

In this work, we focus, as a first goal, on estimating spatially-heterogeneous hydraulic 51 

conductivity and porosity fields conditioned by both hydraulic heads and solute concentrations. 52 

Many authors have already addressed this challenge, and Table 1 presents an overview of 53 

various approaches dedicated to this topic. The table is not an exhaustive presentation of the 54 

existing literature but a selection of works (17 contributions ranked as they appear in time in 55 

the literature) that we consider representative of methods and trends. 56 

 Solving the inverse problem for flow and transport in ground water systems is tightly 57 

associated with methodological choices. Among the possible choices, we exemplify, via 58 

continuous adjoint state calculations, how gradient-based inversion techniques can cope with 59 

highly parameterized problems. Mixing data of various types and weighting them in the 60 

objective function of an inverse problem is also a key feature. This is why this study emphasizes 61 

methodology as a second goal. 62 

Notably, when modeling natural systems (or synthetic test cases supposedly close to 63 

natural systems), it is always complicated to discuss on identifiability, uniqueness of inverse 64 

solutions, quality of conditioning, etc., simply because highly parameterized inverse problems 65 

encompassing multiple elementary processes result in fuzzy theoretical frameworks. That being 66 
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said, it cannot be overlooked that complex systems might result in multiple inverse solutions. 67 

Repeatability, in the sense of estimating how similar various solutions are when initiated at 68 

different locations in the parameter space, appears as a simple way to determine success or 69 

failure of inversions. Incidentally, when dealing with synthetic test cases employing fully-70 

known reference problems, the comparison between inverse solutions and references is also 71 

informative.   72 

 In this study, observations associated with flow and transport parameter estimations are 73 

scarce piezometric head data from steady-state flow conditions and solute concentrations under 74 

transient transport conditions. These data are used to build an objective function assembling 75 

two terms: the sum of the weighted squared differences between measured and computed 76 

piezometric heads hF , and the sum of the weighted squared differences between measured and 77 

computed solute concentrations c
F . Notably, the weights may sometimes serve to narrow down 78 

the range spanned by the squared differences when data of different units are used. This type 79 

of objective function is usually employed within: (i) the non-linear Least Square framework, 80 

which also often adds a regularization term on model parameters, or (ii) the Maximum 81 

Likelihood framework earlier proposed by Carrera and Neuman (1986), which allows for 82 

handling prior information on model parameters. Summing two quantities that have different 83 

units in an objective function requires an adapted strategy and/or the use of a weighting 84 

coefficient applied to one of these terms (usually c
F ).  In fact, the weighting should be directly 85 

given by the probability density functions of errors between model outputs and observations. 86 

The point is that these densities are generally conjectured, which results in weights given to h
F  87 

and c
F  becoming parameters of the inversion procedure.  Pioneer works from Umari et al. 88 

(1979), Strecker and Chu (1986), and Keidser and Rosbjerg (1991) proposed a two-stage 89 

procedure to minimize successively h
F  and c

F . Simultaneous inversion of both heads and 90 
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solute concentrations (and simultaneously decreasing both h
F  and c

F ) is nowadays the 91 

common way to estimate the parameters. Nevertheless, the optimal weighting of the two terms 92 

h
F  and c

F  has been under debate (Carrera and Neuman, 1986; Doherty, 2003; Medina and 93 

Carrera, 2003), and is still not fully resolved. 94 

Even though abundant literature and many studies are available for other inversion 95 

techniques, gradient-based methods are the most common algorithms applied to minimize the 96 

objective function. The minimization employs either sensitivity coefficients with a Gauss-97 

Newton method (Levenberg, 1944; Marquardt, 1963) or adjoint state variables coupled with a 98 

Quasi-Newton method (Byrd et al., 1994). Over the last decade, Kalman filtering (Kalman, 99 

1960) and its extensions such as Ensemble Kalman filtering (e.g., Iglesias et al., 2013; Deng et 100 

al., 2016) have been applied and improved to efficiently solve the inverse problem. The method 101 

has become a valuable alternative approach to gradient-based methods for estimating flow and 102 

transport parameters.  103 

Parameterization techniques have also shown an interesting evolution over the last 50 104 

years. Zonation was the most popular method during the seventies period, probably due to lack 105 

of powerful computers that hampered the deployment of stochastic (Monte Carlo) simulations. 106 

Stochastic parameterization now seems to be the standard approach for seeking hydraulic 107 

conductivity, but recently, Pool et al. (2015) recalled that zonation could be a relevant option 108 

to represent geological patterns for large-scale aquifers (i.e., systems of several tens of km 109 

extension with flow patterns modeled at the 100-1000 m scale). In most applications, transport 110 

parameters (effective porosity and dispersivities) are usually considered as uniform over the 111 

modeled domain, and transport heterogeneity is mainly associated with heterogeneous 112 

hydraulic conductivity fields and subsequent variations of the mean fluid velocity in the system.  113 

In this work, we explore the capacity of the adaptive parametrization technique detailed 114 

in Ackerer and Delay (2010) and Hassane and Ackerer (2017) coupled with an independently 115 



6 

 

computed adjoint equation (Delay et al., 2017) to estimate hydraulic conductivity and porosity 116 

spatial distributions conditioned by head and concentration measurements. 117 

 In the following section, the mathematical models describing the flow and transport 118 

processes are presented. Section 3 provides a synopsis of the continuous adjoint state method 119 

used to minimize the objective function under the constraints resulting from solving the flow 120 

and transport equations. The detailed mathematical development of the continuous adjoint state 121 

for transport is reported in Appendix A. It is presented in a new, convenient manner (as done 122 

for flow in Delay et al., 2017) that allows for the derivation of the gradient of the objective 123 

function with respect to all types of factors, including transport parameters, initial and boundary 124 

conditions, and source/sink terms of the transport problem. The objective function and the 125 

minimization strategies are presented in Section 4. Finally, the numerical experiments are 126 

presented and discussed in Section 5; emphasis is put on the comparison between inverse 127 

solutions obtained from calculations conditioned by head data only and by the joint use of head 128 

and concentration data. 129 

 130 

2. The forward problem  131 

Steady-state flow and transient transport conditions in a 2D confined aquifer are 132 

assumed. These conditions are quite common for practical cases where steady-state flow may 133 

represent average flow conditions. These conditions also work for shallow unconfined aquifers 134 

that show small variations of water levels (which keep the flow equations linear regarding 135 

hydraulic heads). We also assume constant aquifer thickness for simplicity, which allows for 136 

inverting hydraulic conductivities instead of transmissivities, but without loss of generality. 137 

Under these conditions, groundwater flow and solute transport are modeled over the 138 

domain Ω  and, for transport, over the time interval ] ]0,T  by (e.g., Bear, 1972): 139 
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where h [L] is the hydraulic head; K  [LT-1] is the hydraulic conductivity (considered here as 142 

a scalar); w
q  [T-1] is the flow source/sink term; c [ML-3] is the concentration;ω  [-] is the 143 

effective porosity; q [LT-1] is the Darcy flux; u [LT-1] is the average water velocity; c
q  [ML-144 

3T-1] is the solute source/sink term; and D  [L2T-1] is the local dispersion tensor defined by: 145 
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where ( ),x yu u are the local components of the fluid velocity, u  is the velocity magnitude 147 

and ( ),
L T

α α  are the longitudinal and transverse dispersities [L], respectively. Dirichlet 148 

boundary conditions apply to contours D H
∂ Ω  for flow and D C

∂ Ω  for transport as Neumann 149 

boundary conditions apply to contours N H
∂ Ω  for flow and N C

∂ Ω  for transport. Γn  represents 150 

the outer vector normal to the contours where Neumann boundary conditions are applied. 151 

Boundary conditions and source/sink terms are assumed to be known and prescribed at constant 152 

values over time. It is noticeable that for the above equations, the porosity should not vary over 153 

time, otherwise flow would no longer be steady-state. Boundary conditions for flow and 154 
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transport have also been written as independent from one another when it might not be the case. 155 

For example, Neumann boundary conditions for flow with fluxes exiting the domain are often 156 

associated with Neumann boundary conditions for concentrations, but for entering water fluxes, 157 

concentrations are often prescribed via Dirichlet-type boundary conditions.     158 

  159 

3. Parameter identification methodology 160 

3.1 The objective function 161 

The parameter identification procedure is based on the minimization of the quadratic 162 

differences between measured and computed variables. These differences are gathered in a so-163 

called objective function defined as: 164 

 ( ) ( ) ( ), ( ), ( ) , ( ) , ( )
h c

F F Fκ= +p h p c p p h p p c p  (4) 165 

with 166 

 

( ) ( ) ( )
( ) ( ) ( )

1

ˆ ˆ, ( )

ˆ ˆ, ( )
t

T

h h

N
T

j j j j j

c c

j

F

F
=

 = − −


 = − −


∑

p h p h h W h h

p c p c c W c c

 (5) 167 

where ()T denotes the transpose operator; h and j
c are the vectors of computed heads and 168 

concentrations with a size corresponding to the number of observations; j is the index of  169 

observation times for transport; t
N  is the number of times at which concentrations have been 170 

measured; p  is the vector of parameters (here, hydraulic conductivity and porosity) of size 171 

pN and ĥ and ˆ j
c are the vectors of observed values. ˆ −h h  and ˆ j j−c c  are usually named as 172 

"measurement" errors in the jargon of inverse problems, as they simply are the difference 173 

between model outputs and observations in a framework considering that the model is "exact" 174 

(for a given set of parameters) and data are "flawed". In essence, it must be understood that 175 

measurement errors encapsulate actual errors on measures, differences between model outputs 176 

and data, and the consequences of conceptual errors associated with a model or its settings that 177 
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are always approximations of reality. Assuming that the measurement errors are not correlated 178 

in space and invariant over time, the W matrices are diagonal, and 
1

kk kw ε−= , where kε  is the 179 

variance of the measurement errors at location k. Finally, κ  is a weighting coefficient to ensure 180 

a balanced minimization of both ( ), ( )
h

F p h p  and ( ), ( )
c

F p c p . In the framework of the 181 

Maximum Likelihood and applying the assumptions made on the W matrices, κ  represents 182 

the ratio of the measurement error variance of heads to the measurement errors variance of 183 

concentrations. These errors are usually unknown. From a practical standpoint, κ  should avoid 184 

biased optimization by giving too much importance to either h
F  or c

F  (Medina and Carrera, 185 

2003), and should therefore be modified during the minimization procedure.   186 

 Different minimization techniques of the objective function ( ), ( ), ( )F p h p c p  exist. 187 

Because the number of estimated parameters might be large, we rely upon the adjoint state 188 

method rendering an estimate of the gradient components of the objective function at a cost 189 

independent of the type and the number of parameters (see Appendix A). Even though the 190 

convergence toward a minimum of the Quasi-Newton methods is usually slower compared with 191 

the Gauss-Newton method (Cooley, 1985), for highly parameterized problems, it is wise to rely 192 

upon the adjoint method seeking gradient components which are then introduced into a Quasi-193 

Newton algorithm (Chavent 1979; Neuman and Carrera, 1985; Sun 1994; Ackerer et al., 2014; 194 

Sun and Sun, 2015; Delay et al., 2017). Variants of the adjoint state exist (e.g., Medina and 195 

Carrera, 2003) to calculate model sensitivity to parameters which then feed Gauss-Newton 196 

algorithms. The latter option is not employed here as the calculation costs strongly depend on 197 

the number of measurement values.  198 

 199 

3.2 The continuous adjoint state 200 
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 The adjoint state technique is associated with the class of problems ensuring the 201 

optimization (minimization) of an objective function under constraints (e.g., Bertsekas, 1996). 202 

These constraints can be, for example, the equations that are solved by a model for which we 203 

seek the optimal parameters rendering model outputs close to observations. Recently, Delay et 204 

al. (2017) presented a thorough discussion on the adjoint state to invert the spatially distributed 205 

problem of flow in dual-porosity systems. Their discussion dealt with both the discrete and 206 

continuous forms of the adjoint state and with a comparison of their ability to assist inversions 207 

in providing rapid calculations of the gradients of the objective function. The present work 208 

inherits the method proposed by Delay et al. (2017) and extends it to the inversion of solute 209 

transport treated via an advection dispersion equation. The adjoint state is employed in its 210 

continuous form, which can be differentiated, and then implemented, without prior knowledge 211 

about the structure of the discrete equations in the forward model. 212 

Let us take a forward problem as a continuous operator ( ), 0c p =V  handling a single 213 

state variable ( ),c tx  and a single type of parameter ( ),p tx  over the domain Ω  and the period 214 

] ]0,T . References to space x and time t coordinates are dropped herein when feasible for better 215 

readability. The objective function of the inverse problem is usually discrete because it 216 

compares a finite set of observations of c with equivalent simulated values (see e.g., Eqs. (4) 217 

and (5)). Nevertheless, the objective function is rewritten in a continuous form 218 

( ) ( )
0

, ,

T

F c p f c p d dt
Ω

= Ω∫ ∫ , with f  an elementary function, usually piecewise (or pointwise) 219 

non-null at locations in time and space where observations are available. It must be noted that 220 

the simple integrals over time and space defining F  are here employed for ease of notation, 221 

but without loss of generality. When dealing with discrete objective functions as those in Eq. 222 

(5), the formulation of F  becomes complicated with four integrals concealed in the continuous 223 
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form (see, Delay et al., 2017). For example, with point observations of concentrations ˆb

ac  224 

denoting a value at location a
x  and time b

t , a generalized least-square objective function on 225 

concentrations in a continuous form could be written as: 226 

( )( ) ( )( )
( ) ( ) ( ) ( )

,

,

0 0

ˆ ˆ, , '

' '

T T

i i j j

m m n n

m n i j

m n i j

c t c W c t c

t t t t d d dtdtδ δ δ δ
Ω Ω

− −

− − − −

∑∑∑∑∫ ∫ ∫ ∫ x y

x x y x x y

     (6) 227 

where 
,

,

i j

m n
W  denotes the weight associated with the pair of observations ( )ˆ ˆ,i j

m nc c  and ( )δ  is the 228 

delta-Dirac function.   229 

Minimizing the objective function F  knowing that the constraint ( ), 0c p =V   is 230 

fulfilled, assumes that both the objective function and the constraints are gathered in a 231 

Lagrangian operator in the form: 232 

 ( ) ( ) ( )
0 0

, , , ,

T T

c p f c p d dt c p d dtµ µ
Ω Ω

= Ω + Ω∫ ∫ ∫ ∫L V  (7) 233 

As the second term in Eq. (7) is null, the Lagrangian L  is equivalent to the objective function 234 

F , even though it encloses the addition of the constraintV multiplied by the variable ( ),tµ x  235 

over Ω  and ] ]0,T . The variable µ  is a Lagrangian multiplier which is defined up to the 236 

addition of a constant or the multiplication by a constant ( µ  multiplies a constraint expressed 237 

as a null term). The Lagrangian multiplier is named as the continuous adjoint state of the 238 

variable c. If model parameters p are perturbed by pδ , with the consequence of generating a 239 

perturbation cδ  on the variable c, such that ( ), 0c c p pδ δ+ + =V , a variation of the 240 

Lagrangian L  can be written as: 241 

 ( ) ( )( )
0 0 0

, ,

T T T
f f

c d dt p d dt c c p p c p d dt
c p

δ δ δ δ δ µ
Ω Ω Ω

∂ ∂= Ω + Ω + + + − Ω
∂ ∂∫ ∫ ∫ ∫ ∫ ∫L V V  (8) 242 

where a first-order Taylor series expansion has been used to rearrange the terms in f . 243 
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 Identifying the equations ruling the adjoint state µ  relies upon the development of the 244 

variations in the constraint ( ) ( ), ,c c p p c pδ δ+ + −V V  while separating terms in cδ  from 245 

terms in pδ . Cancelling out the terms in cδ  within δL poses the equations of the continuous 246 

adjoint state over Ω  and [ [0,T  and its initial and boundary conditions. Solving these equations 247 

eliminates terms in cδ , which in turn modifies the variation of the Lagrangian that becomes: 248 

 ( )
0 0

,

T T
f

p d dt c p d dt
p

δ δ µ δ
Ω Ω

∂= Ω + Ω
∂∫ ∫ ∫ ∫L G   (9) 249 

with G  a continuous operator combining the state variable c and the adjoint state µ , both 250 

previously calculated by the forward problem and the adjoint state equations, respectively. This 251 

operator G  depends on the type of parameter (the perturbation pδ ) to which it is associated in 252 

the scalar product in Eq. (8). Usually, parameters in spatially distributed models are defined as 253 

uniform values over subdomains i
Ω  of Ω  (e.g., zones, cells, etc.) and eventually over periods254 

n
t∆  within ] ]0,T . Denoting n

i
p  as the restriction of the parameter ( ),p tx  to the subdomain 255 

i
Ω  and the period n

t∆ , the variation of the Lagrangian δL in Eq. (8) renders an approximation 256 

of the gradient of the objective function with respect to n

i
p  257 

 ( ),

n i n i

n n n

i i it t

dF f
d dt c d dt

p dp p

δ µ
δ ∆ Ω ∆ Ω

∂≈ = Ω + Ω
∂∫ ∫ ∫ ∫

L
G   (10) 258 

where integrals in Eq. (10) are restricted to the subdomain i
Ω  and the period n

t∆ . It is worth 259 

noting that the adjoint state µ  is independent of the type of gradient component n

i
d F d p  to 260 

be calculated. Stated differently and knowing that µ  has been calculated beforehand in a single 261 

step very similar to that of the forward model (see below), the access to gradient components 262 

is very rapid, irrespective of the type and the number of sought parameters. This renders the 263 

adjoint state technique suited to highly parameterized problems, when methods based on model 264 
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sensitivities (the calculation of each sensitivity being very similar to the forward problem) are 265 

plagued by computation costs. 266 

 267 

3.3 Adjoint state equations and gradients of the objective function 268 

 A crucial point of the continuous adjoint state application is in developing the equations 269 

ruling the adjoint state and setting the operators G  mentioned above for calculating the gradient 270 

components. Several attempts have appeared in the literature even though the technique has not 271 

been widely employed in Hydrology. The most important contribution is probably that 272 

proposed by Sun and co-workers (Sun, 1994), who developed the continuous adjoint states for 273 

single-phase flow, two-phase flow, transport under various conditions, and specific applications 274 

targeting the identification of a single type of parameter, a specific form of the objective 275 

function, or steady-state problems. Delay et al. (2017) proposed a unified development (and 276 

presentation) of the continuous adjoint state for flow in dual porosity systems, which became 277 

available for the identification of all types of parameters, initial and boundary conditions, and 278 

source/sink terms. The continuous adjoint state equations for steady-state single-phase flow in 279 

Eq. (1) are an adaptation from Delay et al. (2017). The interested reader is referred to that work 280 

for further details. Regarding the transient solute transport in Eq. (2), the unified development 281 

of the adjoint state equations do not yet appear in the literature and is reported in Appendix A. 282 

Regarding the inversion of the coupled problem of steady-state flow and transient 283 

transport, a variation of the continuous Lagrangian operator can be written as: 284 

( ) ( ) ( )( )

( ) ( )( )
0 0 0

, , , , , ,

, ,

h h

T T T

c c

f f
h c h d d h h h d

h

f f
c d dt d dt c c c d dt

c

δ λ µ δ δ δ δ λ

δ δ δ δ µ

Ω Ω Ω

Ω Ω Ω

∂ ∂= Ω + Ω + + + − Ω
∂ ∂

∂ ∂+ Ω + Ω + + + − Ω
∂ ∂

∫ ∫ ∫

∫ ∫ ∫ ∫ ∫ ∫

p p p p p
p

p p p p
p

L U U

V V

  (11) 285 

The elementary continuous objective function f  has been dissociated in the two components 286 

h
f  and c

f  enclosing the state variable h (head) for flow and the state variable c (concentration) 287 
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for transport, respectively; ( ), 0h p =U  is the continuous steady-state flow equation; 288 

( ), 0c p =V  is the continuous transient-transport equation; λ  and µ  are the continuous 289 

adjoint states associated with flow and transport, respectively; and p
 is the undifferentiated 290 

vector of factors ruling the flow and transport equations. It could include initial and boundary 291 

conditions, source/sink terms, and flow and transport parameters. Here, the aim is to retrieve 292 

hydraulic conductivity (and porosity) fields on the basis of head and concentration 293 

measurements for pre-identified dispersivity parameters, known source/sink terms, and known 294 

initial and boundary conditions. That being said, the hydraulic conductivity influences transport 295 

parameters, such as the mean water velocity u  and the dispersion tensor D  (see Eq. (2)). It 296 

makes sense to calculate via the adjoint state the gradient components of the objective function 297 

with respect to u  and D  and link them with the total variation of the objective function with 298 

respect to K. 299 

 The continuous adjoint state equations for steady-state flow ruled by Eq. (1) are derived 300 

as (see Delay et al., 2017): 301 
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  (12) 302 

Transport equations in Eq. (2) are flanked with continuous adjoint state equations in the form 303 

(see Appendix A): 304 
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The minus signs appearing in Eq. (13) for terms in t∂ ∂  and in .∇u  assume that Eq. (13) is 306 

solved backward over time from T to 0 and with a reversed water velocity field −u . Otherwise, 307 

Eq. (13) lacks physical meaning by letting a negative diffusion tensor appear. 308 

 As told earlier, continuous adjoint state equations look very similar to their equivalent 309 

forward problem in Eqs. (1) and (2). Eqs (12) and (13) can be solved numerically by any means 310 

(any discretization and numerical scheme) independent of the way the forward problem is 311 

solved. The forward model and the adjoint state calculations can be decoupled, which is not the 312 

case of the discrete adjoint state technique which is differentiated (from) and calculated with 313 

the same discrete equations as those of the forward model (e.g., Ackerer et al., 2014). For its 314 

part, the independent implementation of the continuous adjoint state is able to work with any 315 

forward model. Both simply exchange information, such as the source/sink terms of the adjoint 316 

states, h
f h∂ ∂  and c

f c∂ ∂ , those inheriting from calculations performed by the forward model. 317 

Notably, Eqs. (12) and (13) show that initial and boundary conditions for the adjoint states are 318 

always null. Stated differently, we can say that adjoint states let local source/sink terms diffuse 319 

or transport over domains that are partly disconnected from the domain of the forward problem. 320 

One might, for example, invert part of the forward problem on a restriction of its domain of 321 

definition by simply calculating the continuous adjoint states on this restriction with appropriate 322 

types of boundary conditions. 323 

With steady-state flow and transient transport aimed at retrieving hydraulic conductivity 324 

fields with known porosity and dispersivity transport parameters as well as known initial and 325 

boundary conditions, the gradient components of the objective function are of two types: 326 

h
dF dK  linking heads with hydraulic conductivity, and c

dF dK  linking concentrations with 327 

hydraulic conductivity via the mean water velocity u  and the dispersion tensor D . For the 328 
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part of the objective function handling measured and simulated heads, the gradient component 329 

with respect to K is given by (see Delay et al., 2017): 330 

 .hdF f
d h d

dK K
λ

Ω Ω

∂= Ω+ ∇ ∇ Ω
∂∫ ∫   (14) 331 

If there is no information (or no prior guess) on hydraulic conductivity values and their 332 

comparison with sought values, the term f K∂ ∂  cancels out in Eq. (14) and the gradient 333 

component of the objective function is a simple scalar product between simulated heads and 334 

the associated adjoint state. For the part of the objective function handling concentrations, the 335 

gradient component with respect to K can be obtained as: 336 

 c c c
dF F F

dK K K
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The gradient components of the objective function with respect to transport parameters, 343 

source/sink terms, and initial and boundary conditions are derived in Appendix A. As 344 

mentioned earlier, the non-intrusive character of the continuous adjoint state implies exchanges 345 

of information between the forward model and the adjoint state. This is also exemplified by the 346 

relations of Eq. (14) to Eq. (17), showing that gradient components of the objective function 347 

combine values of the state variables calculated by the forward model and values of the adjoint 348 

states. 349 

 350 

4. Parameter estimation strategy 351 

 352 

The objective function defined by Eq. (4) is a sum of two terms, depending on two very 353 

different quantities: piezometric heads expressed as a length and concentrations expressed as 354 

mass or moles per volume. In addition to differences in measurement units, the numerical values 355 

can also be significantly different. As an example, a difference of 1.0 m between computed and 356 

measured heads for heads varying between 100 m and 110 m is less significant than a difference 357 

of 1.0 mg.l-1 between computed and measured concentrations for values varying between 0.0 358 

mg.l-1  and 2.0 mg.l-1.  359 

 In the context of the Maximum Likelihood or Generalized Least Squares with 360 

regularization, the coefficient κ  in Eq. (4) has a physical meaning if the priors on measurement 361 

errors are known. However, this information is not often available. Doherty (2003) and Carrera 362 

and Neuman (1986) suggested including this coefficient in the parameter estimation procedure. 363 

Medina and Carrera (2003) analyzed the optimal weight for identifying hydraulic conductivities 364 

conditioned by piezometric heads and concentrations, and they tested different values. The 365 

expected value of the likelihood function provides robust weights to be assigned to 366 
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concentration and hydraulic conductivity data, except for the steady-state flow case. We 367 

followed the suggestion of Medina and Carrera (2003) and define the weighting coefficient as: 368 

 ( ) ( )
1

, ( ) , ( )

k

k k

h c
F F

θκ + =
+p h p p c p

 (19) 369 

where θ is a user-defined variable, and k  is the iteration index in the optimization procedure.  370 

An alternative to evaluating hydraulic parameters using both types of data h and c is to 371 

consider ( ), ( )hF p h p  and ( ), ( )cF p c p  separately. The algorithm suggested by Strecker and Chu 372 

(1986), for example, consists of a first stage, which estimates hydraulic conductivities 373 

conditioned by heads only, and then is followed by a second stage, which estimates hydraulic 374 

conductivities conditioned by concentrations only. In this work, we investigate the performance 375 

of the following strategies: 376 

- S1: hydraulic conductivities are estimated using head data only. 377 

- S2: hydraulic conductivities are estimated using head and concentration data 378 

simultaneously. 379 

- S3: the conditioning is alternated during the minimization in the sense that a first 380 

set of Mh iterations considers head data only, which is then followed by Mc 381 

iterations handling both head and concentration data; this swap is repeated until 382 

convergence. In this work, we set Mh=20 and Mc=5. Alternated conditioning 383 

suggests that a highly flawed flow field could result in simulated concentrations 384 

far from data and eventual problems of convergence. Thus, iterations handling 385 

head data only should first rough-out the flow field, then refined by using both 386 

heads and concentrations. The number of iterations for each type of conditioning 387 

is problem dependent. This number was chosen by trials counting solutions that 388 

converge for 10 runs started at different locations in the parameter space, and 389 

also counting the mean number of iterations required per solution to converge. 390 
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Notably, we did not delineate any strategy seeking hydraulic conductivity on the basis 391 

of concentration measurements only. In general, when concentrations are measured in open 392 

wells over a groundwater system, measures of heads in those wells are also available. It would 393 

be counter-productive to discard head data. On the other hand, there exist many actual systems 394 

where concentrations are never monitored. Another reason is that seeking hydraulic 395 

conductivity fields only via concentration measurements is usually not a convergence problem. 396 

Concentration distributions over time and space depend on the velocity field, a quantity defined 397 

as the product of conductivity and head gradient. Lack of information on heads can result in 398 

many hydraulic conductivity fields rendering the same model outputs. In other words, 399 

concentrations mainly inform on transit times between two locations along a flow line. This 400 

time is insensitive to various distributions of the velocities along the line, provided their 401 

harmonic means are similar. Therefore, with smoothly varying head gradients, many 402 

distribution of hydraulic conductivities along a flow line would result in the same transit times. 403 

That being said, heads along a flow line are also mainly controlled by the harmonic mean of 404 

conductivities. The point is that the flow equation is diffusive. Widespread head data inform on 405 

mean conductivities along all the segments joining the pairs of observations with a consequence 406 

of a better deciphering of hydraulic conductivity distributions.   407 

 408 

5. Numerical experiments 409 

We rely upon synthetic test cases to evaluate the performance of the parameter 410 

estimation methodology. Measurement errors in data (as they could be defined here by adding 411 

random fluctuations to heads and concentrations extracted from the reference problems) are not 412 

considered in the inversion exercises as we mainly focus on comparisons between inversion 413 

strategies in their ability to identify reference parameter fields over diverse flow and transport 414 

conditions. In the context of inverse problems, the notion of measurement errors is often taken 415 
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as the difference between outputs of a supposedly "exact" model and "flawed" data. Therefore, 416 

the absence of noisy measures does not go against the use of an objective function inheriting 417 

from the notion of measurement errors.   418 

 419 

5.1 Settings of the test cases  420 

The synthetic examples investigate a rectangular flow domain of 250 m in length and 421 

150 m in width. The aquifer thickness is constant at 20 m. The domain is discretized by a mesh 422 

with 1,566 triangular elements of 8 m average length. Four test cases are designed with 423 

increasing complexity in the flow field and the solute transport conditions (Table 2). 424 

 The boundary conditions for flow are a prescribed uniform head of 100 m at the west 425 

boundary and a constant over time uniformly distributed outflow rate of 
-32×10  m3.s-1 over the 426 

east boundary. The north and south boundaries are considered as impervious (see Fig 1). The 427 

hydraulic conductivity field follows a log-normal statistical distribution generated with an 428 

exponential isotropic covariance function with an effective correlation length of 60 m and a 429 

variance of ( )
2

log K
 σ =0.12 . Hydraulic conductivity values vary between 3×10-3 ms-1 and 10-5 ms-430 

1 (Fig. 2). Usually, sequential Gaussian simulation techniques, when generating random fields 431 

over a rough mesh, do not fully match the prescribed covariance. In practice, the effective 432 

covariance (variogram) of the reference hydraulic conductivity field is slightly distorted and 433 

shows a correlation length of approximately 85 m, but the right prescribed variance. This feature 434 

is unimportant when the question is to retrieve a reference parameter field via inversion without 435 

any prior guess on its structure. In the case of inversion exercises seeking both hydraulic 436 

conductivity and porosity fields, the reference porosity field follows a normal distribution 437 

generated with a spherical covariance function that has a correlation length of 80 m and a 438 

variance 2 0.002ωσ = . Porosity values vary between 0.04 and 0.36 (Fig. 2), and, as for hydraulic 439 

conductivity, the effective covariance is slightly distorted with an effective correlation length 440 
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of 100 m. Steady-state flow is considered. The test case C1 is designed without source/sink 441 

terms whereas five pumping wells and two injection wells (locations in Fig. 1) are added in the 442 

domain for the other test cases C2 and C3 (see Table 2). Pumping and injection rates are set to 443 

-35.55×10  m3.s-1. The mathematical model for flow is solved using mixed finite elements 444 

(Younes et al., 2010) with a code developed in the lab and checked for being rigorously mass-445 

conservative at the scale of each cell of the mesh. 446 

It is worth noting that all the settings employed to generate the various flow fields are 447 

assumed to render a well-posed problem for the inversion of hydraulic conductivities. The 448 

existence of source/sink terms or Neumann boundary conditions in the flow equations avoids 449 

the evaluation of conductivity up to the multiplication by a constant. Nevertheless, with only 450 

20 head values available for the identification of more than 1500 parameters (in essence, one 451 

per cell of the discretized domain, noting those 1500 values are not independent), good 452 

inversion results are not guaranteed. This motivates to complement the head data set with 453 

concentrations from transport scenarios. Incidentally, rendering the flow field tortuous by 454 

adding injection/pumping wells in the system (tests cases C2 and C3) is supposed to complicate 455 

the inversion using head data only. In these test cases, concentrations following the main flow 456 

paths are expected to increase the degree of improvement of the inverse solutions conditioned 457 

on heads only.   458 

 Regarding the simulation of solute transport, a null dispersive flux is set at all 459 

boundaries except at the line x= 0 m, [ ]25;125y ∈  where a concentration of 1 kg.m-3 is 460 

prescribed for test cases C1 and C2, and at the upstream (western) flow boundary of test case 461 

C3 where the solute concentration is set to zero. For test case C3, a pulse of solute is injected 462 

over a rectangular domain of delineation [ ]5,10x∈  m and [ ]65,85y∈  m during 2 days with a 463 

rate of 
-38.0×10  kg.m-3.s-1. The transport parameters are homogeneous and assumed to be 464 
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known for test cases C1, C2, and C3. The effective porosity is equal to 0.05 and the longitudinal 465 

and transverse dispersivities are =10Lα  m and =1Tα  m, respectively. Notably, test case C4 re-466 

handles the settings of test case C2, but adds an unknown heterogeneous porosity field to be 467 

retrieved in addition to the hydraulic conductivity field. For all test cases, the solute transport 468 

simulations are run under transient conditions with initial null concentrations within the system, 469 

and the simulations are performed over 120 days. The transport equations are solved using a 470 

combination of mixed and discontinuous finite elements methods, which limits the effects of 471 

numerical dispersion (Hassane et al., 2017). 472 

Steady-state hydraulic heads and time-varying concentrations are observed at 20 wells 473 

(see Fig. 1) uniformly distributed in the domain. Concentrations are sampled every day. Overall, 474 

the observations consist of 20 head values and 20×120 = 2400 concentration values. It is worth 475 

noting that a large number of data points, as is the case here for concentration values, can 476 

mislead the inversion procedure when the corresponding computed variables are not sensitive 477 

to the parameter values, as, for example, close to the boundary conditions. The weighting 478 

parameter θ  in the κ  coefficient of the objective function (see Eq. (19)) is set to 10-4 for each 479 

test case.  480 

The initial parameter mesh of the adaptive parameterization (see, e.g., Ackerer and 481 

Delay, 2010) consists of 12 triangular elements and 11 nodes uniformly distributed over the 482 

domain. The parameter mesh is refined 3 times and the total number of estimated hydraulic 483 

conductivities, which may vary between runs according to the way the parameter mesh is 484 

refined, is between approximately 60 and 80. Each inversion is repeated 50 times, and the initial 485 

parameter grid is assigned with initial parameter values chosen randomly in a uniform 486 

distribution. The aim of this duplication is to evaluate the reproducibility of the results and 487 

compare them to the reference. The sought hydraulic conductivity values are bounded between 488 

-51.0×10  m.s-1 and 
-33.0×10  m.s-1 during inversion, and for test case C4, porosity is sought in 489 
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the range [0.01, 0.40]. These upper and lower bounds of hydraulic conductivities and porosities 490 

are the only prior information on parameters brought to the inversion procedure. 491 

 Adjoint state variables associated with both flow and transport are computed with a 492 

different numerical code but with the same grid and the same numerical methods as those 493 

employed for the calculation of the state variables. Codes for the adjoint states were developed 494 

in the lab as tools independent of the forward codes with the aim of building an inversion 495 

toolbox working in parallel with any forward model, even on non-proprietary codes for which 496 

the calculation structures are unknown. Separate codes between the forward problem and the 497 

adjoint state calculations also allowed us to check how the exchanges of information between 498 

the grids of adjoint states and that of the forward flow and transport models could eventually 499 

hamper inversions (see e.g., Delay et al., 2017). This feature is not reported in this study as both 500 

the forward problems and adjoint state calculations share the same computation grids with 501 

exchanges of information free from any interpolation.  502 

 503 

5.2. Inversion of the hydraulic conductivity with known uniform porosity 504 

The settings of the test cases are motivated by three objectives that are: (i) to evaluate 505 

the different strategies for estimating the parameters (strategies S1 to S3), (ii) to assess the 506 

effects of flow conditions by comparing test cases C1 and C2, and (iii) to assess the effects of 507 

transport boundary conditions by comparing test cases C2 to C3. 508 

Irrespective of the addressed test cases, the observed hydraulic heads are always 509 

matched within an error of 5-10 cm for maximal variations of heads over the flow fields of 510 

approximately 2 m. This very good matching (see also a comparison of heads between inverted 511 

and reference flow fields in Fig. 3) justifies that results on heads will not be addressed in the 512 

following discussion. Consequently, the comparisons are based on different criteria and only 513 

involve concentration and hydraulic conductivities. These criteria deal with the overall spatial 514 
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distribution of concentrations at a given time, the analysis of breakthrough curves (BTC) at 3 515 

locations (see Fig. 1), and the calibrated parameter fields compared with the reference. Fifty 516 

different solutions per test were analyzed. These solutions were obtained by starting the 517 

inversion procedure from different randomly picked locations in the parameter space. It is also 518 

worth noting that the multiscale parameterization randomizes the current inverse solution each 519 

time the parameter grid is refined. These solutions cannot be distinguished in view of the final 520 

values of the objective function, meaning that they are of similar quality in terms of quadratic 521 

differences between the reference and estimated heads and concentrations. 522 

Regarding solute concentrations, the BTC stemming from 50 solutions were gathered 523 

into a confidence interval computed for each time step n and defined by 
n

n

c
c σ ± 

 where n
c  524 

is the mean of the 50 concentration values at time step n , and 
n

c
σ  is the corresponding standard 525 

deviation. Preliminary computations show that the confidence intervals did not change 526 

significantly by running more simulations. With these 50 realizations, an average value of the 527 

decimal logarithm of the hydraulic conductivity ( )log EK%  was computed for each element E 528 

of the mesh with its associated standard deviation. An average error for each element E Eε  529 

was also used as an assessment criterion and defined by: 530 

 ( ) ( )log logE E EK Kε = −%  (20) 531 

where E
K  is the exact value (from the reference field) of the hydraulic conductivity at element 532 

E , and 
E

K%  is the estimated value. The variograms of ( )log EK%  were also compared with the 533 

reference as an overall indicator of quality of estimated parameter fields. In the same way as 534 

for breakthrough curves, the 50 variogram functions were gathered into a confidence interval 535 

for each lag. 536 

The concentration distributions are provided in Fig. 3. The main features of the 537 

reference concentration distributions are reproduced by the inverse solutions for all test cases 538 
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and all inversion strategies (regarding the objective function). However, the estimated 539 

concentrations show additional smearing compared with the reference even though the same 540 

mesh and same dispersivities were used for calculating reference and inverse solutions. As 541 

shown hereafter, the retrieved hydraulic conductivity fields are smoother than the reference. 542 

This feature is consistent with the robustness of the flow equation with respect to hydraulic 543 

conductivity, in the sense that the head variable is not very sensitive to local contrasts in 544 

hydraulic conductivity values (e.g., Giudici and Vassena, 2008). 545 

The strategy overlooking concentration data in the objective function (S1) provides 546 

results as good as the other strategies accounting for concentrations in test cases C1 and C3; 547 

however, in test case C2, the effects of the injection wells are not completely reproduced. The 548 

quality of the match for test case C3 is still quite good, even though solute concentrations remain 549 

null for some observation wells that are not downstream of the local injection source. This 550 

means that including observations at locations that do not see any concentrations is helpful to 551 

retrieve the fluid velocity field and its subsequent relationship with hydraulic conductivities. 552 

 The different strategies can be distinguished when considering BTC (Figs. 4 to 6) as a 553 

quality criterion of the parameter estimation. For test case C1 (Fig. 4), the BTC are well 554 

reproduced when employing the two strategies S1 and S2.  For strategy S3, which consists of 555 

incorporating concentration data in the objective function while calculating the first iterations 556 

of convergence by relying upon head data only, the method results in a few discrepancies 557 

regarding the arrival times of concentrations. This bias on arrival times also occurs with strategy 558 

S1 (concentration data are never used) and test case C2 (Fig. 5). These two attempts show that 559 

concentration data provide useful and valuable information on solute travel times, which in turn 560 

inform on hydraulic conductivity values.  561 

Test case C3 is harder to decipher because solute concentrations remain equal to the 562 

initial conditions (null concentration values) at a significant number of monitored wells not 563 
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located downstream of the local injection. Therefore, test case C3 is more sensitive to flow 564 

direction variations within the domain than test cases C1 and C2. A poor estimation of the flow 565 

direction in test case C3 leads to either a difference in mean travel time or a difference in the 566 

total solute "mass" passing through the wells (the mass being defined as the integral of the BTC 567 

over time). Discrepancies in mass can be observed at wells P7 and P9 (except for strategy S2). 568 

Again, strategy S2, which includes weighted information on both head and concentration data 569 

in the objective function, is the most efficient strategy to retrieve the flow field. It is worth 570 

noting that for all test cases and all strategies, the early arrival times of concentrations are well 571 

estimated. The accuracy of the estimated parameters decreases with the travel distance (late 572 

arrival times) as shown by the increase in the range of the confidence interval from well P11 to 573 

well P9 for test cases C1 and C2. 574 

The estimated hydraulic conductivities are analyzed by comparing the average value of 575 

( )log K , its related standard deviation, and the average error in Eq. (20) (Figs. 7 to 9). The 576 

three test cases provide very similar results, showing that: 577 

- In general, the hydraulic conductivity field is fairly well reproduced irrespective 578 

of the inversion strategy employed. 579 

- The largest differences between estimated and reference ( )log K  are located 580 

close to the eastern boundary of the domain assigned with a prescribed flux for 581 

flow. At these locations, fluxes remain almost similar irrespective of the local 582 

conductivity values. The reliability of the estimated parameters, measured by the 583 

local standard deviation of ( )log K , is poor (high standard deviation) in this 584 

eastern area compared with the rest of the domain. It is also worth noting that 585 

after 120 days of transport, solute concentrations did not reach the eastern 586 

boundary and thus poorly inform the inverse problem on local hydraulic 587 

conductivity experienced during transport. This could be an additional 588 
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explanation for the poor evaluation of conductivities close to the eastern 589 

boundary of the domain.  590 

- The third strategy, S3, leads to the poorest parameter estimation compared with 591 

the other two. 592 

- The ensemble of inverse solutions is wider for strategy S2 than for strategy S1 593 

(see test cases C2 and C3 in Figs. 8 and 9). These results may appear counter-594 

intuitive as it is usually expected that more information (of good quality) brought 595 

to the inverse problem should yield better results, or at least more constrained 596 

solutions (which is consistent with the robustness of these solutions). This 597 

notwithstanding, the additional information provided by concentrations does not 598 

have the same meaning as information on heads. In short, concentrations are 599 

sensitive to flow directions and associated travel times along these directions as 600 

heads are sensitive to conductivities in a neighborhood roughly centered on the 601 

head measurement location. Increasing the complexity of the inverse problem 602 

by multiplying the number of sensitive factors or phenomena is conducive to an 603 

increase of local minima. This feature spreads out the set of possible inverse 604 

solutions even though these solutions resulted in similar values of the objective 605 

function.  606 

Finally, the results were analyzed via a global criterion, comparing the variogram of 607 

( )log K  from the reference solution to the variograms computed from the estimated solutions 608 

(Fig. 10). All variograms from inverse solutions underestimate the spatial variability of 609 

hydraulic conductivities within lag distances less than one-half the size of the domain. This 610 

feature is consistent with the fact evoked above stating that hydraulic head fields are not very 611 

sensitive to local contrasts in hydraulic conductivity values. In addition, concentrations at a 612 

given time and location depend on the average travel time between the source and the 613 
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observation well. Therefore, they are rather less sensitive to local hydraulic conductivity 614 

variations than to the mean of conductivities experienced along the flow path between injection 615 

and observation. This could explain the inference of smaller variances for variograms from 616 

inverted conductivity fields. In the same vein, hydraulic heads, as the variables of a diffusion 617 

process (Darcian flow), are known to be rather more sensitive to mean values of conductivities 618 

over large patches than to contrasts between local values. 619 

 620 

5.3 Identification of hydraulic conductivity and effective porosity distributions 621 

The additional test case C4 re-handles the settings of test case C2 but considers the 622 

inversion of both the hydraulic conductivity field and a heterogeneous effective porosity field. 623 

A single strategy S2 was employed to estimate the parameters, with the minimization in a single 624 

phase of an objective function mixing both hydraulic head and concentration data (Eq. (4)). 625 

This choice of a single strategy is motivated by the inversions of hydraulic conductivity fields 626 

that showed strategy S2 to be the most efficient (even though the three strategies employed 627 

render almost similar results). It was thought that strategy S2 would also be the best suited to 628 

the joint inversion of hydraulic conductivity and porosity. As the mean porosity of the 629 

heterogeneous field is approximately 0.12-0.15 in the western half of the domain compared 630 

with the uniform value of 0.05 in test case C2, the simulation time for transport is increased up 631 

to 280 days (120 days for test case C2) to let the solute plume widely invade the system. 632 

The reliability of the simulated concentrations (Figs. 11 and 12) and of the estimated 633 

parameters (Figs. 13 and 14) has been significantly diminished compared with the test cases 634 

solely inverting hydraulic conductivities. This can tentatively be explained by several features, 635 

among which the most likely is that the main driver to solute concentration propagation is the 636 

mean water velocity, which depends on the ratio of hydraulic conductivity to effective porosity. 637 

It is always challenging to identify both terms of a ratio when the latter is the sensitive 638 
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parameter, even though both terms of the ratio in the present study are independent quantities 639 

with different correlation lengths, etc. It is worth noting that actual data may show relationships 640 

between porosity and conductivity values, following for example the well-known Archie's law 641 

in its various forms. However, these relationships mainly apply to the fine scale of core samples, 642 

but rarely apply to the elementary mesh of a regional aquifer model. In the latter case, small 643 

variations in porosity values do not generate enough variability in hydraulic conductivities that 644 

might vary over orders of magnitude. That being said, it seems that choosing independent 645 

porosity and conductivities values does not help/hamper inversion more than choosing loosely 646 

correlated values. Another feature hampering inversion is the increased number of sought 647 

parameters, which is approximately 70 hydraulic conductivity values in test case C2 inversions 648 

and becomes approximately 210 (in our tests with two independent parameter grids, one for 649 

conductivity and one for porosity) in test case C4 inversions. 650 

The difficulties experienced by the inverse procedure in test case C4 are also witnessed 651 

by the important variability in the estimated concentrations resulting from flow and transport 652 

through solution parameter fields (Fig. 12). The spreading of the 50 different possible solutions, 653 

and the mean local errors between solutions and the reference are also enlarged (compare, for 654 

( )log K  plots, Fig. 13 and test case C2-S2 in Fig. 8). The variograms of the solution parameter 655 

fields (Fig. 14) render the same appraisal by underestimating the variability at small scales 656 

(small lag-distances). They also highlight the difficulty in estimating with confidence the spatial 657 

distribution of porosity.  658 

 659 

6. Conclusion  660 

We have provided a rigorous and detailed presentation of the partial differential 661 

equations ruling the continuous adjoint state associated with solute transport. The adjoint state 662 

obeys an advection-dispersion equation that must be solved backward in time and with a 663 
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reversed flow field compared to the forward problem of transport. It also obeys specific 664 

boundary conditions. It can be identified uniquely in a single calculation very similar to that of 665 

the forward problem; then, it can serve as calculations for all gradients of the objective function 666 

with respect to parameters, initial and boundary conditions, and source/sink terms. We have 667 

also extended the adaptive parameterization technique to solute transport and to coupled 668 

inversion of flow and transport data. The methodology has been applied to four synthetic test 669 

cases targeting the estimation of hydraulic conductivity and effective porosity fields, using both 670 

piezometric heads and solute concentration data. These numerical experiments showed: 671 

1. Employing the continuous adjoint state solved via an independent numerical code, that is, in 672 

a non-intrusive way with regard to existing (proprietary) transport models, is a viable alternative 673 

to more common methods (Gauss-Newton and Quasi-Newton methods with embedded 674 

computations of sensitivities or adjoint variables) for joint parameter estimation. 675 

2. Concentration data has to be taken into account in the parameter estimation and included in 676 

the objective function in a balanced way. If the objective function is not weighted, usually 677 

hydraulic head observations are rapidly fitted by the inverse procedure, and the conditioning by 678 

concentrations will not bring any additional information. In the weighting procedure, the 679 

weighting coefficient can be adapted during the minimization and is not necessarily a parameter 680 

to include in the minimization. 681 

3. Concentration data render information on travel times and flow directions as a valuable 682 

means to improve the inference of unknown hydraulic conductivity fields. Null concentrations 683 

at some locations are also helpful. In the process of incorporating transport data to retrieve 684 

conductivity fields, it could be conjectured that a poor prior knowledge of the fluid velocity 685 

field could mislead the inversion relying upon transport data. The consequence would be to 686 

partly separate the inversion procedure in a first step, predefining the flow field (conductivities) 687 

on the basis of hydraulic head measurements; then, in a second step, launching calculations of 688 



31 

 

transport. Even though successes of inversions are problem dependent, we have shown that the 689 

above conjecture is wrong. It is wise to invert both flow and transport scenarios in the same 690 

procedure, which means that the objective function of the inverse problem should mix 691 

information on heads and concentrations. The objective function would then be minimized in a 692 

single phase, handling both terms in heads and concentrations. 693 

4. In the test cases reported by this study, it is worth noting that hydraulic head observations 694 

were always rapidly fitted, and when used alone, these data rendered valuable hydraulic 695 

conductivity fields. The addition of concentration data in the inversion procedure brought few 696 

cosmetic features to the conductivity fields, except for better assessment of early and mean 697 

travel times in the system, which applies to both sweeping-uniform or tortuous flow fields. A 698 

key question raised by this study can be formulated as: Is it worth a try to include concentration 699 

data for identifying hydraulic conductivities when it is known how cumbersome and costly 700 

concentration measurements can be?  701 
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Appendix A 709 

The development of the continuous adjoint state associated with the advection-710 

dispersion equation for solute transport in porous media is presented below. The continuous 711 

expressions of the gradient components of the objective function are also provided.  712 

The continuous operator that solves solute transport and that represents the constraint 713 

( ), 0c =pV  in the Lagrangian operator of an optimization problem is written as: 714 

( ) ( ) ] ], 0 . . 0 over  and 0,
c

c
c ω c ω c q T

t

ω∂= ≡ + ∇ − ∇ − = Ω
∂

p u DV  (A1) 715 

with initial and boundary conditions: 716 

] ]
] ]

0 over  at 0

over and 0,

. . over and 0,

D D C

c

N N C

c c t

c c T

c q TΓ

 = Ω =


= ∂ Ω
− ∇ = ∂ Ω D n

       (A2) 717 

At this stage, perturbations δ p  resulting in perturbations cδ  to keep ( ), + 0c cδ δ+ =p pV  718 

only concern model parameters, that is, ( ), ,δ δω δ δ=p u D , noting that u  is a parameter for the 719 

transport equation but also an output of a flow model. A later discussion will address 720 

perturbations regarding source/sink terms, initial conditions, and boundary conditions. A 721 

variation of the Lagrangian operator is employed to derive the equations of the adjoint state, 722 

which takes the form: 723 

( ) ( )( )
0 0 0

, ,

T T T
f f

c d dt d dt c c c d dt
c

δ δ δ δ δ µ
Ω Ω Ω

∂ ∂= Ω + Ω + + + − Ω
∂ ∂∫ ∫ ∫ ∫ ∫ ∫p p p p

p
L V V724 

 (A3) 725 

with f  the continuous objective function, µ  the continuous adjoint state, and the constraint 726 

( ), 0c cδ δ+ + =p pV . The latter is developed as: 727 
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( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ] ]

, 0 .

. . 0 over  and 0,
c

c c
c c c c

t

c c q T

ω δω δ
δ δ ω δω δ δ

ω δω δ δ

∂ + +
+ + = ≡ + ∇ + + +

∂
−∇ + + ∇ + − = Ω

p p u u

D D

V
(A4)  728 

and flanked with initial and boundary conditions: 729 

] ]
( ) ( ) ] ]

0 over  at 0

over and 0,

. over and 0,

D D C

C

N N C

c c c t

c c c T
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δ
δ

δ δ Γ

 + = Ω =


+ = ∂ Ω
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    (A5) 730 

Developing to the first order (i.e., by neglecting terms in 2δ ), the difference δ −V V  renders: 731 

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ] ]

, , 0

. . .
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c c c

c c
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δ δ
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∂ ∂
+ + ∇ + ∇ + ∇
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p p p

u u u

D D D

V V

  (A6) 732 

with initial and boundary conditions: 733 

] ]
] ]

0 over  at 0

0 over and 0,

. . . . 0 over and 0,

D C

N C

c t

c T

c c T

δ
δ

δ δΓ Γ

 = Ω =


= ∂ Ω
− ∇ − ∇ = ∂ Ω D n D n

    (A7) 734 

The basic idea prevailing for the identification of the continuous adjoint state equations 735 

is to isolate the terms in δ  in the integrals ( )
0

T

d dtδ µ
Ω

− Ω∫ ∫ V V  of the operator δ L  in Eq. 736 

(A3). This occurs via integration by parts for all terms in Eq. (A6), which are handled below as 737 

they appear ranked in Eq. (A6). 738 

( )
0 0 0

0

T
T T

T

c
d dt c d dt c d

t t

c d dt
t

ωδ µµ ωδ ωδ µ

µωδ

Ω Ω Ω

Ω

 ∂ ∂Ω = − Ω + Ω ∂ ∂  

∂= − Ω
∂

∫ ∫ ∫ ∫ ∫

∫ ∫

       (A8) 739 

In Eq. (A8), simplifications come from the following properties: at 0t = , 0cδ =  is due to 740 

boundary conditions in Eq. (A7); at t T= , µ  is set to zero as it is the initial condition for 741 

calculating µ  (see below), and µ  can be defined up to the addition of a constant. 742 
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0 0 0

0

T
T T

T

c
d dt c d dt c d

t t

c d dt c d
t

δω µµ δω δωµ
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     (A9) 743 

where it has been accounted for the fact that 0µ =   at t T= . We note that:  744 

[ ] 0 0

0

0 0 0

0

T T T
T Ta b b

bdt adt a b adt a b if b
t t t

∂ ∂ ∂= − + = − − =
∂ ∂ ∂∫ ∫ ∫      (A10) 745 

Using the property 0µ =   at t T=  and applying Eq. (A10) in Eq. (A9) results in: 746 

( )
0 0

T T
c c

d dt d dt
t t

δω
µ δωµ

Ω Ω

∂ ∂Ω = Ω
∂ ∂∫ ∫ ∫ ∫        (A11) 747 

( )
0 0 0

. . .

N C

T T T

c d dt c d dt c d dtω δ µ ωδ µ ωδ µ Γ
Ω Ω ∂ Ω

∇ Ω = − ∇ Ω + Γ∫ ∫ ∫ ∫ ∫ ∫u u u n    (A12) 748 

In Eq. (A12), the contour integral over the Dirichlet-type boundary D C
∂ Ω  has been cancelled 749 

out, considering that 0cδ =  along this type of boundary (see Eq. (A7)). 750 

( )
0 0 0

0

. . .

.

T T T

T

c d dt c d dt c d dt

c d dt

ωδ µ ω δ µ ω µδ

ω δ µ
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Ω Ω ∂Ω

Ω

∇ Ω =− ∇ Ω + Γ

=− ∇ Ω

∫ ∫ ∫ ∫ ∫ ∫

∫ ∫

u u u n

u

    (A13) 751 

( )
0 0 0

0

. . .

.

T T T

T

c d dt c d dt c d dt

c d dt

δω µ δω µ δω µ

δω µ

Γ
Ω Ω ∂Ω

Ω

∇ Ω =− ∇ Ω + Γ

=− ∇ Ω

∫ ∫ ∫ ∫ ∫ ∫

∫ ∫

u u u n

u

   (A14) 752 

In Eqs. (A13) and (A14), the contour integrals cancel out because the perturbations δ u  and 753 

δω  are null along the boundaries (ω  and u are not defined straight at the boundary of the 754 

modeled domain, they do not appear in the boundary conditions), and incidentally, the adjoint 755 

state µ , which is defined up to the addition of a constant, can be considered as null along a 756 

Dirichlet-type boundary. 757 
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∫ ∫ ∫ ∫

D D D n

D n

D D n

 (A15) 758 

The expression in Eq. (A15) has been integrated by parts twice to extract the perturbation cδ  759 

from the operator .∇∇ . The simplification of contour integrals results from 0µ =  over the 760 

contour D C
∂ Ω , and the boundary conditions 0cδ =  over D C

∂ Ω . Note also that . .cδ Γ∇D n   from 761 

(A15) in addition to . .cδ Γ∇D n  which appear in (A16) results in a null term over N C
∂ Ω  (see 762 

boundary conditions (A7)). 763 

( ) ( )

( )

0 0 0

0

. . . . . .

. .

T T T
T

T
T

c d dt cd dt c d dt

c d dt

ωδ µ ω µ δ ωµδ

ω µ δ

Γ
Ω Ω ∂Ω

Ω

− ∇ ∇ Ω = ∇ ∇ Ω − ∇ Γ

= ∇ ∇ Ω

∫ ∫ ∫ ∫ ∫ ∫

∫ ∫

D D D n

D   (A16) 764 

In Eq (A16) the contour integral cancels out because 0µ =  over the contour D C
∂ Ω , and 765 

. .cδ Γ∇D n  in addition to . .cδ Γ∇D n  in (A15) cancel out over N C
∂ Ω . 766 

( ) ( )

( )

0 0 0

0

. . . . . .

. .

T T T
T

T
T

c d dt cd dt c d dt

cd dt

δω µ δω µ δωµ

δω µ

Γ
Ω Ω ∂Ω

Ω

− ∇ ∇ Ω = ∇ ∇ Ω − ∇ Γ

= ∇ ∇ Ω
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∫ ∫

D D D n

D   (A17) 767 

In Eq (A17), the contour integral cancels out because 0µ =  over the contour D C
∂ Ω , and the 768 

perturbationδω  is zero over the whole contour ∂Ω . 769 
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 Gathering all terms in cδ  over the expressions  in Eqs. (A8) to (A17), then reintroducing 770 

them into the variation of the Lagrangian operator δ L  in Eq. (A3) and cancelling out the 771 

whole, poses the continuous equations of the adjoint state, which render:  772 

( ) ] ]

] ]
( ) ] ]

. . . 0 over  and T,0

0 over  at 

0 over and T,0

. . 0 over and T,0

D C

N C

f
ω ω
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t T
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µω µ µ

µ
µ

µ ω µ Γ

∂ ∂− − ∇ −∇ ∇ + = Ω ∂ ∂
 = Ω =
 = ∂ Ω


+ ∇ = ∂ Ω

u D

u D n

    (A18) 773 

It is worth noting that Eq. (A18) has to be solved backward in time and with a reversed velocity 774 

field −u ; otherwise, the problem lacks physical meaning with a negative dispersion tensor in 775 

the advection-dispersion equation. The Neumann boundary condition of the forward problem 776 

in Eq. (A2) has been transformed into a Robin boundary condition (with a reversed velocity 777 

field −u ) along the contour N C
∂ Ω . Usually in transport problems, a so-called homogeneous 778 

Neumann boundary condition . 0c Γ− ∇ =D n  is associated with a no-flow boundary, yielding 779 

. 0Γ =un . In that case, the Robin boundary condition for the adjoint state simplifies into 780 

. 0µ Γ∇ =n . Another possibility where the condition . 0c Γ− ∇ =D n  applies is that of a "free" 781 

advective flux exiting the system with no modification beyond the boundary. In that case, the 782 

Robin boundary condition of the adjoint state with a reversed flow field simply consists in 783 

letting a prescribed value 0µ =  enter into the domain.      784 

 Solving the adjoint state equations in Eq. (A18) changes the expression of the variation 785 

of the Lagrangian operator in Eq. (A3), which simplifies into: 786 

( )
0 0

,

T T
f

d dt c d dtδ δ δ µ
Ω Ω

∂= Ω + Ω
∂∫ ∫ ∫ ∫p p

p
L G        (A19) 787 

With the three types of parameters ω , u, and D  in p, the operator δ L  can be separated into 788 

three components: 789 
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From Eqs. (A11), (A14), and (A17): 790 

( )
0 0

. . .

T T
Tf c

d dt c c d dt
tωδ δω δω µ µ µ

ωΩ Ω

∂ ∂ = Ω + − ∇ + ∇ ∇ Ω ∂ ∂ 
∫ ∫ ∫ ∫ u DL      (A20) 791 

From Eq. (A13): 792 

0 0

.

T T
f

d dt c d dtδ δ ω δ µ
Ω Ω

∂= Ω − ∇ Ω
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u u
u

L        (A21) 793 

From Eq. (A16):       794 

( )
0 0

. .

T T
Tf

d dt c d dtδ δ ω µ δ
Ω Ω

∂= Ω + ∇ ∇ Ω
∂∫ ∫ ∫ ∫D

D D
D

L       (A22) 795 

The expressions in Eqs. (A20), (A21), and (A22) give the form of the gradient components of 796 

the objective function with respect to parameters ω , u, and D . For example, let us take ,

n

x iu , 797 

the velocity along the x direction over a subdomain i
Ω  of Ω  and over the time step n

t∆  within 798 

the period ] ]0,T . The gradient component of the objective function with respect to ,

n

x iu  is 799 

expressed via Eq. (A21) as: 800 

, , ,
n i n i

n n n

x i x i x it t

dF f
d dt c d dt

u u u x

δ µω
δ δ ∆ Ω ∆ Ω

∂ ∂≈ = Ω − Ω
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L
      (A23) 801 

 The strength of the continuous adjoint state also allows us to retrieve source/sink terms, 802 

initial conditions, and boundary conditions by providing the gradient components of the 803 

objective function with respect to these factors. Regarding source/sink terms, the operator 804 

δ −V V  in Eq. (A6) is modified to include a perturbation c
qδ− . As this perturbation is 805 

independent of that on the parameters δω , δ u , and δ D , the integration ( )
0

T

d dtδ µ
Ω

− Ω∫ ∫ V V  806 

simply lets an additional term in the form 
0

T

cq d dtδ µ
Ω

− Ω∫ ∫  appear. The latter does not alter the 807 

development between Eqs. (A8) and (A17). Consequently, the continuous adjoint state equation 808 
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(A18) and the gradient components of the objective function (precisely, the components of the 809 

operator δ L ) with respect to  parameters ω , u, and D  (Eqs. A20, A21, and A22) are 810 

unmodified. After the adjoint state µ  has been calculated by solving Eq. (A18), the gradient 811 

components of the objective function with respect to source/sink terms c
q  are calculated by 812 

employing: 813 

0 0
c

T T

c cq

c

f
q d dt q d dt

q
δ δ δ µ

Ω Ω

∂= Ω − Ω
∂∫ ∫ ∫ ∫L        (A24) 814 

 Regarding initial and boundary conditions, the operator δ −V V  in (A6) is modified on 815 

its initial and boundary conditions in Eq. (A7). The latter become: 816 
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    (A25) 817 

with 0
cδ  the perturbation associated with initial conditions, and D

cδ , 
C

Nqδ   the perturbations 818 

associated with Dirichlet- and Neumann-type boundary conditions, respectively. The general 819 

form of the operator ( )
0

T

d dtδ µ
Ω

− Ω∫ ∫ V V   is not modified, but the expansion of a few terms 820 

slightly changes. 0
cδ  appears in Eq. (A8), which becomes: 821 

0 0 0
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c
d dt c d dt c d
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ωδ µµ ωδ ωδ µ
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∫ ∫ ∫ ∫ ∫
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     (A26) 822 

where the properties 0µ =  at t T=  and 0
c cδ δ=  at 0t =  have been accounted for. The 823 

perturbations D
cδ  and 

c

Nqδ  appear in the two successive integrations by parts of Eq. (A15) and 824 

the integration by parts of (A16). More precisely, only the contour integrals are modified; their 825 

sum from expressions in (A15) and (A16) renders: 826 
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       (A27) 827 

The contour integrals of Eq. (A27) take into account the following properties: 0µ =  over the 828 

contour D C
∂ Ω , the boundary condition D

c cδ δ=  over D C
∂ Ω , and the boundary condition 829 

. . . . c

Nc c qδ δ δΓ Γ− ∇ − ∇ =D n D n  over N C
∂ Ω . 830 

All the remaining terms in the development of ( )
0

T

d dtδ µ
Ω

− Ω∫ ∫ V V  are unchanged, 831 

which also comes down to unchanged continuous equations for the adjoint state µ  and the 832 

components of Lagrangian operator δ L  regarding perturbations on parameters δω , δ u , and 833 

δ D . When the adjoint state has been calculated by solving Eq. (A18), the gradient components 834 

of the objective function with respect to initial and boundary conditions are accessible via: 835 
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Figure and table captions 1005 
 1006 

Fig. 1. Flow domains of the three synthetic test cases C1, C2, and C3. Dirichlet boundary 1007 

conditions for flow at western (red bolt line, h = 100 m) and eastern (blue bolt line, h = 90 m) 1008 

boundaries. North and south boundaries are of no-flow type. Green lines in test cases C1 and 1009 

C2 delimit the boundary associated with continuous uniform injection of solute. The green 1010 

rectangle in test case C3 is the location of a short-step injection of solute. Observations of 1011 

hydraulic heads and concentrations are located at the square dots. Blue and red dots mark the 1012 

locations of extraction and injection wells, respectively. Wells P7, P9, and P11 are locations 1013 

where solute concentration breakthrough curves are compared between reference and inverse 1014 

solutions. 1015 

Fig. 2. Reference log hydraulic conductivity (logK) and porosity (ω) fields. 1016 

Fig. 3.  Reference and examples of simulated head fields (constant over time) and solute plumes 1017 

after 120 days for flow and transport test case C1, 80 days for test case C2, and 50 days for test 1018 

case C3. S1, S2, and S3 denote the strategies employed for inversion, and h or c refer to either 1019 

head or concentration fields. Black lines through some fields mark the main streamlines of the 1020 

flow field. The reference flow fields for test cases C2 and C3 are similar. The color scale ranks 1021 

values for both head and concentration casted between 0 and 1 for minimal and maximal 1022 

reference values, respectively 1023 

Fig. 4. Solute concentration breakthrough curves at the three locations P11, P7, and P9 (ranked 1024 

with increasing distance from solute source) for test case C1 and three inversion strategies S1, 1025 

S2, and S3. Black lines denote the references; blue areas delineate the envelope 
  cc σ±     of 1026 

50 inverse solutions. 1027 

Fig. 5. Solute concentration breakthrough curves at the three locations P11, P7, and P9 (ranked 1028 

with increasing distance from solute source) for test case C2 and three inversion strategies S1, 1029 

S2, and S3. Black lines denote the references; blue areas delineate the envelope 
  cc σ±     of 1030 

50 inverse solutions. 1031 

Fig. 6. Solute concentration breakthrough curves at the three locations P11, P7, and P9 (ranked 1032 

with increasing distance from solute source) for test case C3 and three inversion strategies S1, 1033 

S2, and S3. Black lines denote the references; blue areas delineate the envelope 
  cc σ±     of 1034 

50 inverse solutions.  1035 

Fig. 7. Average log hydraulic conductivity ( )log K  (left), standard deviation of ( )log K  1036 

(middle), and mean error in ( )log K  compared to reference (right), for 50 inverse solutions of 1037 

test case C1. The reference ( )log K  field is at the top of the figure. S1, S2, and S3 correspond 1038 

to the three inversion strategies employed. 1039 

Fig. 8. Average log hydraulic conductivity ( )log K  (left), standard deviation of ( )log K  1040 

(middle), and mean error in ( )log K  compared to reference (right), for 50 inverse solutions of 1041 
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test case C2. The reference ( )log K  field is at the top of the figure. S1, S2, and S3 correspond 1042 

to the three inversion strategies employed. 1043 

Fig. 9. Average log hydraulic conductivity ( )log K  (left), standard deviation of ( )log K  1044 

(middle), and mean error in ( )log K  compared to reference (right), for 50 inverse solutions of 1045 

test case C3. The reference ( )log K  field is at the top of the figure. S1, S2, and S3 correspond 1046 

to the three inversion strategies employed. 1047 

Fig. 10. Variogram of the reference log hydraulic conductivity (black lines) compared with the 1048 

variogram envelopes 
  γγ σ ±   (grey areas) calculated over 50 inverse solutions. C1, C2, and 1049 

C3 denote the three flow-transport test cases; S1, S2, and S3 correspond to the inversion 1050 

strategies. 1051 

Fig. 11. Reference (left) and simulated (right) solute plumes after 280 days for flow and 1052 

transport test case C4.  1053 

Fig. 12. Solute concentration breakthrough curves at the three locations P11, P7, and P9 (ranked 1054 

with increasing distance from solute source) for test case C4. Black lines denote the references; 1055 

blue areas delineate the envelope 
  cc σ±     of 50 inverse solutions. 1056 

Fig. 13. Average parameters – log hydraulic conductivity ( )log K  and porosityω  – (left), 1057 

standard deviation of parameters (middle), and mean error in parameters compared to reference 1058 

(right) for 50 inverse solutions of test case C4. 1059 

Fig. 14. Variograms of the reference (black lines) log hydraulic conductivity (left) and porosity 1060 

(right) compared with the variogram envelopes 
  γγ σ ±   (grey areas) calculated over 50 1061 

inverse solutions of test case C4. 1062 

Table 1. 17 reference studies dealing with coupled flow-transport inversions. Main 1063 

characteristics of these studies. 1064 

Table 2. Main characteristics of synthetic tests cases C1 to C4 inverting coupled flow and 1065 

transport to retrieve hydraulic conductivities (and porosity, only test C4). 1066 
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 1 

Reference Measured variables Strategy Optimization Parameterization Estimated parameters 

Umari et al., 

1979 

Transient transport - Quasi-linear 

minimization 

Uniform α  

Hypothetical test case 

Strecker and 

Chu, 1986 

Transient flow and 

transient transport 

Two stage Gradient-based 

minimization 

Zonation T, α. 

Hypothetical test case 

Wagner and 

Gorelick, 

1987 

Steady flow, transient 

transport 

Simultaneous inversion Gradient based with 

adjoint state. 

Homogeneous aquifer K, ω, α. 

Hypothetical test case 

Sun and Yeh, 

1990 

Transient flow and 

transport 

Simultaneous inversion Gradient based with 

adjoint state. 

Zonation K, α. 

Hypothetical test case 

Keidser and 

Rosbjerg, 

1991 

Steady flow, transient 

transport 

Two stage with a feedback 

procedure 

Gradient based, 

Levenberg-Marquardt 

Gauss Newton 

Kriging (pilot points) and/or 

zonation 

Ln(T), α, source 

concentration. 

Hypothetical test case 

Wagner, 1992 Steady flow, transient 

transport 

Simultaneous with 

optimized weighting 

(Carrera, Neuman, 1986a) 

Gradient based with 

adjoint state. 

Zonation K, ω, α, recharge, flux 

boundary for flow.  

Source location and mass 

flux with known 

hydrogeological 

parameters. 

Hypothetical test case. 

Hendricks 

Franssen et 

al., 2003 

Steady state flow, 

transient transport 

Simultaneous inversion Gradient based with 

adjoint state. 

Stochastic distribution with 

master blocks 

Ln(K),ln(Ss), Dirichlet 

for flow, retardation 

factor, mass sources. 

Hypothetical test case. 

Medina and 

Carrera, 1996 

Steady state and 

transient flow, 

transient transport 

Simultaneous inversion  Gradient based, 

Levenberg-Marquardt 

Gauss Newton 

Zonation Ln(T), α, retardation 

factor, matrix diffusion, 

contaminant source 

strength. 

Laboratory test case and 

field case. 

Wen et al., 

2002 

Transient flow and 

transient transport 

Simultaneous inversion Gradient-based 

minimization 

Stochastic distribution 

(Sequential self-calibration 

method) 

Ln(K). 

Hypothetical test case. 



Medina and 

Carrera, 2003 

Steady state or 

transient flow, 

transient transport 

Simultaneous inversion  Gradient based (revised 

adjoint state), 

Levenberg-Marquardt 

Gauss Newton 

Stochastic distribution Ln(T). 

Hypothetical test case. 

Liu et al., 

2008 

Steady state flow, 

transient transport. 

Simultaneous inversion EnKF Stochastic distribution for 

K, uniform value for other 

parameters  

Ln(K), α, mass transfer 

rate and mobile porosity 

ratio. 

Made experimental site. 

Li et al., 2012 Transient flow and 

transient transport 

Simultaneous inversion EnKF Stochastic distribution for K 

and ω 

Ln(K), ω. 

Hypothetical test case. 

Pollock and 

Cirpka, 2012 

Steady state flow, 

transient transport 

(through temporal 

moments) 

 

Simultaneous inversion Gradient-based Gauss-

Newton 

Stochastic distribution 

Quasi-linear geostatistical 

method 

Ln(K) and structural 

parameters by a two steps 

iterative method. 

Laboratory experiment. 

Kitanidis and 

Lee, 2014 

Steady state flow, 

transient transport 

Simultaneous inversion Gradient based with 

Principal Component 

Geostatistical Approach 

Stochastic distribution Hypothetical test case. 

Pool et al., 

2015 

Transient flow and 

transient transport 

Simultaneous inversion Gradient based with 

adjoint state. 

Stochastic distribution 

(regularized pilot points) 

and geology-based zonation 

Ln(T). 

Field case. 

Erdal and 

Cirpka, 2017 

Transient flow, 

transient transport 

Simultaneous inversion EnKF,  

Kalman Ensemble 

Generator 

Stochastic distribution for 

Ln(K) and ω, zonation for 

recharge. 

Ln(K), ω, transient 

recharge. 

Hypothetical test case. 

Carniato et 

al., 2015 

Transient flow and 

concentrations of 

different species. 

Local values of K, Ss. 

Lab. scale values for 

chemical parameters 

Three steps: 

1. Flow 

2. Transport 

3. Flow and transport 

with optimal weighting 

from Doherty (2003) 

Gradient based method. 

Levenberg Marquardt 

Pilot point for K, Ss, 

recharge. 

K, Ss, ω, α, recharge, , 

degradation rates, mass 

transfer coefficients. 

Field site. 

EnKF: Ensemble Kalman filter. K: Hydraulic conductivity, Ss: specific storage capacity, T: transmissivity, ω: porosity, α: dispersivity 2 
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Table 1 4 

 5 



 

 

 Sink/source for flow Boundary Conditions for transport Porosity 

C1 No sink/source Continuous prescribed concentration at the 

upstream boundary 

Known 

C2 5 pumping wells and 2 

injection wells 

 

Continuous prescribed concentration at the 

upstream boundary  

Known 

C3 5 pumping wells and 2 

injection wells 

 

Pulse injection Known 

C4 5 pumping wells and 2 

injection wells 

Continuous prescribed concentration at the 

upstream boundary 

Unknown 

 

Table 2 

 
 




