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Abstract—We consider communication over a state-dependent
discrete memoryless channel subject to a constraint that requires
that the output sequence be nearly independent of the state. We
consider three scenarios for the transmitter: where it knows
the state, where it does not know the state and can use a
stochastic encoder, and where it does not know the state and
must use a deterministic encoder. For the state, we assume
it to be either independent and identically distributed across
channel uses or randomly generated but constant over all channel
uses. We present single-letter capacity formulas for all except
one combination of the above scenarios, and also solve some
illustrative examples.

I. INTRODUCTION

State-dependent channels have been extensively studied in
Information Theory [1]–[3]. The current work considers com-
munication over a state-dependent channel, with an additional
requirement that the channel state should remain unknown to
the receiver. A potential application for such a model is a
scenario where the transmitter wishes to conceal its physical
location: its location may affect the statistics of the channel
to the receiver, hence can be modeled as a channel state.

The problem we study is closely related to “state masking”
and, to a lesser extent, “state amplification” [4]–[8]. Consider
a state-dependent discrete memoryless channel (DMC) where,
given input X = x and state S = s, the probability for the
output Y to equal y is given by W (y|x, s). Assume that the
state is independent and identically distributed (IID) across
channel uses according to a known distribution. The state-
masking constraint considered in [4] is

lim
n→∞

1

n
I(Sn;Y n) ≤ E (1)

for some parameter E, where n denotes the number of
times the channel is used. When channel-state information
(CSI) is available noncausally to the transmitter (meaning the
transmitter knows the realization of Sn before sending any
input to the channel), a communication rate R is achievable
under the above constraint if, and only if [4, Theorem 2]

R ≤ I(U ;Y )− I(U ;S) (2)

for some auxiliary random variable U such that U (−−
(X,S) (−− Y form a Markov chain, and that

I(S;U, Y ) ≤ E. (3)

Note that (2) is the Gel’fand-Pinsker rate expression [2], while
the condition (3) concerns I(S;U, Y ) and not I(S;Y ).

In the current paper we are interested in problems where the
states must be almost completely concealed from the receiver,

namely, where the limit in (1) must equal zero. Our result when
CSI is available to the transmitter then follows almost imme-
diately from [4]. We also consider situations where CSI is not
available and derive similar capacity formulas. Interestingly,
capacity differs between the cases where the transmitter must
use a deterministic encoder and where it may use a stochastic
encoder (that is not known to the receiver). Furthermore,
keeping in mind that the state may be used to model the
transmitter’s physical location, we study models where the
state remains constant during the entire transmission, instead
of being IID. When CSI is available to the transmitter, or
when CSI is not available and the transmitter must use a
deterministic encoder, the capacity turns out to be the same as
in the IID-state case. When CSI is not available and transmitter
may use a stochastic encoder, however, capacity is different.

We consider IID states in Section II and constant states in
Section III, and then conclude with some remarks.

II. IID STATES

Consider a DMC with input alphabet X and output alphabet
Y that is affected by a random state S which takes value in
the set S. The sets X , Y , and S are all assumed to be finite.
The channel law is, given the input x ∈ X and state s ∈ S,
the probability of the output being y ∈ Y is W (y|x, s).

In this section, we assume that the states are drawn IID
across channel uses according to a probability mass func-
tion PS .

The message to be communicated is drawn from the set
{1, . . . , b2nRc}, where n denotes the total number of channel
uses, and R the rate of communication in bits per channel use.
The message is fed to an encoder, which in turn produces the
channel input sequence xn. We consider both cases where the
state realizations are known and unknown to the transmitter,
respectively. When the states are unknown to the transmitter,
we further distinguish between deterministic and stochastic
encoders; details are provided below. In all cases, the receiver
tries to guess the message based on its observations yn.

The state-obfuscation constraint we impose is

lim
n→∞

1

n
I(Sn;Y n) = 0, (4)

where the mutual information is computed for the joint distri-
bution induced by the encoder and a uniformly drawn message.
As will become clear via our achievability proofs, all results
in this section will continue to hold when we replace (4) by
the stronger condition

I(Sn;Y n) = 0 for every n. (5)



In each of the following cases, we define capacity as the
supremum over all rates R for which a sequence of encoder-
decoder pairs can be constructed such that the probability of
a guessing error by the decoder tends to zero as n grows to
infinity, and such that (4) is satisfied.

A. With CSI

Assume that the state realizations are available to the en-
coder. In the case of noncausal CSI, the encoder is a (possibly
random) mapping from the message m and the state sequence
sn to the input sequence xn. In the case of causal CSI, the
encoder is a sequence of (possibly random) mappings from m
and si to xi, with i ∈ {1, . . . , n}.

Theorem 1: When the transmitter has either noncausal or
causal CSI, the capacity is

C IID
CSI = sup I(U ;Y ), (6)

where the supremum is taken over joint probability distribu-
tions of the form

PS(s)PU (u)PX|US(x|u, s)W (y|x, s) (7)

subject to
I(S;U, Y ) = 0. (8)

Proof: The noncausal case follows from [4, Theorem 2]
by noting that (8) requires that U be independent of S. It thus
remains only to prove the achievability part for the causal
case. To this end, fix any joint distribution of the form (7).
For each message m ∈ {1, . . . , b2nRc}, randomly generate a
vector un(m) by choosing each entry IID according to PU . To
send m, the encoder randomly picks its input at time i to be
xi with probability PX|US(xi|ui(m), si). Each vector un(m)
is reveaed to the receiver, but the transmitter’s choice of xi is
not revealed to the receiver. A standard argument shows that
the probability of decoding error can be made arbitrarily close
to zero as n grows large provided that R < I(U ;Y ).

We next examine the constraint (4). Note that (8) implies

PY |US(y|u, s) = PY |U (y|u) for all s, u, y. (9)

When the code is used to transmit a uniformly chosen mes-
sage, the probability of Y n = yn and Sn = sn, for any yn

and sn, can be written as

PSnY n(sn, yn) =

b2nRc∑
m=1

1

b2nRc

n∏
i=1

PS(si)PY |US(y|ui(m), si)

=

n∏
i=1

PS(si)

b2nRc∑
m=1

PY |U (yi|ui(m))

b2nRc
. (10)

Clearly, we have I(Sn;Y n) = 0 for every n.

B. No CSI, Deterministic Encoder

We next consider the case where no CSI is available to the
encoder, and where the encoder must be deterministic. Thus,
the transmitted sequence xn is a deterministic function of the
message m.

Theorem 2: When the transmitter has no CSI and cannot
use a stochastic encoder, the capacity is

C IID
det = sup I(X;Y ), (11)

where the supremum is taken over joint distributions of the
form

PS(s)PX(x)W (y|x, s) (12)

subject to
I(S;X,Y ) = 0. (13)

Proof: For achievability, we generate each codeword IID
according to PX . The analysis is essentially identical to that
in the proof of Theorem 1 and hence omitted.

For converse, by the fact that Xn is a deterministic function
of the message M , and by Fano’s inequality, we have

H(Xn|Y n) ≤ H(M |Y n) ≤ nεn, (14)

for some εn ↓ 0 as n→∞. We thus have

I(Sn;Xn, Y n) = I(Sn;Xn|Y n) + I(Sn;Y n)

≤ H(Xn|Y n) + I(Sn;Y n)

≤ 2nεn, (15)

where the last step follows by the constraint (4). We also have

I(Sn;Xn, Y n) = H(Sn)−H(Sn|Xn, Y n)

=

n∑
i=1

H(Si)−H(Si|Xn, Y n, Si−1)

≥
n∑

i=1

I(Si;Xi, Yi)

≥ nI(S; X̄, Ȳ ), (16)

where X̄ denotes a random variable whose distribution is
the average of the marginal distributions for every Xi, i =
1, . . . , n, and Ȳ is the output corresponding to X̄ . Here, the
last step follows because the distributions for Si are identical,
and by the convexity of mutual information in the conditional
distribution of (Xi, Yi) given Si. Combining (15) and (16) we
obtain

I(S; X̄, Ȳ ) ≤ 2εn. (17)

On the other hand, by the standard converse proof procedure
(see, e.g., [9]),

R ≤ I(X̄, Ȳ ) + εn. (18)

Combining (17) and (18) we obtain that

C IID
det ≤ lim inf

n→∞
sup
Pn

I(X;Y ) (19)

where the mutual information is computed according to a
distribution of the form

PS(s)PX(x)W (y|x, s) (20)

subject to
lim

n→∞
I(S;X,Y ) = 0. (21)



The converse to the theorem follows by invoking continuity
properties of mutual information.

Remark 1: Theorem 2 is equivalent to saying that the trans-
mitter can only use those input symbols that are not affected
by S, namely, it can only use x if W (·|x, s1) = W (·|x, s2)
for all s1, s2 ∈ S.

C. No CSI, Stochastic Encoder

Next we consider the case where the transmitter has no CSI,
but is allowed to use a stochastic encoder. The receiver knows
the distribution according to which the codebook is chosen,
but not the actual choice by the transmitter. Thus, the encoder
is a random mapping from message m to input sequence xn,
while the decoder is, as before, a mapping from yn to its guess
of m.

Theorem 3: When the transmitter has no CSI but can use a
stochastic encoder, the capacity is

C IID
sto = sup I(U ;Y ), (22)

where the supremum is taken over joint distributions of the
form

PS(s)PU (u)PX|U (x|u)W (y|x, s) (23)

subject to
I(S;U, Y ) = 0. (24)

Proof: The achievability part is similar to the previous
cases and is omitted. To prove the converse part, we first use
Fano’s inequality to obtain

n(R− εn) ≤ I(M ;Y n)

≤
n∑

i=1

I(M,Y i−1;Yi). (25)

We also have

I(Sn;M,Y n) = I(Sn;M |Y n) + I(Sn;Y n)

≤ H(M |Y n) + I(Sn;Y n)

≤ 2nεn, (26)

where the last step follows by Fano’s inequality and the
constraint (4). On the other hand,

I(Sn;M,Y n) =

n∑
i=1

I(Si;M,Y n, Si−1)

≥
n∑

i=1

I(Si;M,Y i−1, Yi). (27)

Let Ui , (M,Y i−1), i = 1, . . . , n. We have shown
n∑

i=1

I(Ui;Yi) ≥ n(R− εn) (28)

n∑
i=1

I(S;Ui, Yi) ≤ 2nεn, (29)

where εn ↓ 0 as n → ∞. Note that Ui is independent of Si

because Sn is IID. The rest of the proof is similar to that for
Theorem 2.

The next example shows that C IID
sto can be larger than C IID

det .
Example 1: Consider a channel where X = Y = {0, 1, 2}

and S = {0, 1}. The channel law is, when S = 0, Y = X
with probability one; when S = 1, Y = 0 if X = 0, but
the other two symbols are reversed: Y = 2 if X = 1 and
Y = 1 if X = 2 (all with probability one). A deterministic
encoder can only use the input symbol 0, hence it cannot send
any information. A stochastic encoder can choose U ∈ {0, 1}
uniformly, X = 0 if U = 0, and X = 1 or 2 equally likely if
U = 1. This achieves one bit per channel use. One can verify
that this is in fact optimal.

D. A Consequence

A simple consequence to the above results is that the
capacity in every case is upper-bounded by the worst-state
capacity over all s ∈ S.

Corollary 4: In all settings above, capacity is upper-bounded
by

min
s

sup
PX

I(X;Y |S = s). (30)

Proof: It suffices to consider the CSI case, since clearly

C IID
CSI ≥ C IID

sto ≥ C IID
det . (31)

Recall that, in the formula (6), S must be independent of the
pair (U, Y ). It follows that

I(U ;Y ) = I(U ;Y |S = s) (32)

for every s ∈ S. Hence

C IID
CSI ≤ sup

PU ,PX|US

min
s
I(U ;Y |S = s)

≤ min
s

sup
PU ,PX |U

I(U ;Y |S = s)

≤ min
s

sup
PX

I(X;Y |S = s), (33)

where the last step follows because U (−− (X,S) (−− Y
form a Markov chain.

Example 2: Consider a channel where X = Y = S =
{0, 1}. Assume that PS is uniform. When S = 0, the channel
is a perfect bit pipe: Y = X with probability one; when S =
1, it is a Z-channel with 1 → 0 cross-over probability p ∈
(0, 1) (see [9]). Corollary 4 implies that C IID

CSI cannot exceed
the capacity of the Z-channel. We show that they are equal.
Let U be a binary random variable with the capacity-achieving
input distribution of the Z-channel. Let PX|US be such that

PX|US(1|0, s) = 0, s = 1, 2 (34a)
PX|US(1|1, 0) = 1− p (34b)
PX|US(1|1, 1) = 1, (34c)

namely, when S = 1, we choose X = U with probability one;
when S = 0, X is produced by passing U through the above
Z-channel. By this choice, we have the same Z-channel from
U to Y irrespectively of the value of S, hence I(S;U, Y ) = 0,
whereas I(U ;Y ) equals the capacity of the Z-channel.

One can show that C IID
sto = C IID

det = 0. We delay the proof to
the end of the next section, when we return to this example.



III. CONSTANT STATES

Consider the same DMC as described in the first paragraph
of Section II. We now assume the state to be constant instead
of IID. This means the state is generated randomly according
to PS before communication starts, and remains the same
throughout the n channel uses when transmission takes place.
The decoder is, as in Section II, a mapping from yn to a guess
of the message. For state obfuscation, we now require

lim
n→∞

I(S;Y n) = 0. (35)

All our claims in this section will continue to hold under the
stronger condition that removes the limit in (35). In all cases
below, capacity is defined as the supremum over all rates for
which one can find a sequence of encoder-decoder pairs such
that (35) is satisfied while the decoding error probability will
approach zero when n grows large.1

A. With CSI
When CSI is available to the transmitter, the encoder is a

possibly random mapping from (s,m) to xn, where m denotes
the message and xn the input sequence. The capacity in this
case is the same for constant and IID states.

Theorem 5: For any DMC described by transition law
W (·|·, ·) and state distribution PS , the capacity when S is
constant and when CSI is available to the transmitter is

Cconst
CSI = C IID

CSI, (36)

where C IID
CSI is given by Theorem 1.

Proof: The achievability proof is essentially the same as
that for Theorem 1. We note that, since by the choice of joint
distribution, the pair (U, Y ) is independent of S, we can use
typicality to treat (un, yn), even though the state is constant
and not ergodic.

To prove the converse, we define auxiliary random variables

Ui ,M,Y i−1, i = 1, . . . , n. (37)

Using Fano’s inequality and the chain rule, we have

n(R− εn) ≤ I(M ;Y n)

≤
n∑

i=1

I(M,Y i−1;Yi)

=

n∑
i=1

I(Ui;Yi). (38)

We next show that I(S;Ui, Yi) must be close to zero for
every i. Clearly, it is enough to show that I(S;M,Y n) must
approach zero as n grows large. To this end, define a binary
random variable F that equals 0 when decoding is correct and
equals 1 when decoding is incorrect. Then we have

I(S;M,Y n) = I(S;Y n) + I(S;M |Y n)

≤ I(S;Y n) + I(S;M,F |Y n)

= I(S;Y n) + I(S;F |Y n) + I(S;M |Y n, F )

≤ I(S;Y n) +H(F ) + I(S;M |Y n, F ). (39)

1Since the state remains constant during communication, our definition
requires that the error probability be small for every possible realization of S.

The first two terms on the right-hand side of (39) both tend
to zero as n grows large, the first by (35), and the second
because the probability of a decoding error must tend to zero.
For the last term, let ε denote the probability of a decoding
error, then we have

I(S;M |Y n, F )

= (1− ε)
∑
yn

Pr(Y n = yn|F = 0)I(S;M |Y n = yn, F = 0)

+ ε
∑
yn

Pr(Y n = yn|F = 1)I(S;M |Y n = yn, F = 1)

≤ (1− ε) · 0 + ε · log |S|
= ε · log |S|, (40)

which also must tend to zero as n grows large. Hence we have
shown that, as n grows large, the right-hand side of (39) must
tend to zero, and consequently I(S;Ui, Yi) must tend to zero
for every i. This, together with (38) and a continuity argument,
completes the converse proof.

B. No CSI, Deterministic Encoder

Assume that the encoder must be a deterministic mapping
that maps the message m to an input sequence xn. The
capacity is again the same as in the IID-state case.

Theorem 6: For any W (·|·, ·) and PS , the capacity in the
current setting is

Cconst
det = C IID

det . (41)

Proof: The achievability is essentially the same as before.
For converse, we have, for every i ∈ {1, . . . , n},

I(S;Xi, Yi) ≤ I(S;Xi, Y
n)

= I(S;Y n) + I(S;Xi|Y n)

≤ I(S;Y n) +H(Xi|Y n). (42)

Since the encoder is deterministic, the decoder should be able
to correctly guess every Xi from Y n (by first guessing M ).
By Fano’s inequality, H(Xi|Y n) must vanish together with
the error probability. Hence, for every i,

lim
n→∞

I(S;Xi, Yi) = 0. (43)

Next consider the communication rate R. For some vanish-
ing εn,

n(R− εn) ≤ I(Xn;Y n)

≤ I(Xn, S;Y n)

≤
n∑

i=1

I(Xi, S;Yi)

≤
n∑

i=1

I(Xi;Yi) + I(S;Xi, Yi). (44)

Combining (43) and (44) completes the converse.



C. No CSI, Stochastic Encoder

When the transmitter has no CSI, a stochastic encoder is
a random mapping that maps m to xn. The decoder knows
the distribution used by the stochastic encoder, but not which
codebook is chosen. Denote the capacity in this case subject
to (35) by Cconst

sto . We have not been able to find a single-letter
expression for Cconst

sto . One can verify that the achievability part
of Theorem 3 is still valid. We can thus order the capacities
in various cases as

C IID
det = Cconst

det ≤ C IID
sto ≤ Cconst

sto ≤ C IID
CSI = Cconst

CSI . (45)

That the first inequality above can be strict was demonstrated
by Example 1. The other two inequalities can also be strict,
as we show via the next two examples.

Example 3: Let X = Y = S = {0, 1}. When S = 0 the
channel is a noiseless bit pipe; when S = 1 the bit is flipped
at the output with probability one.

We have C IID
sto = 0 because, without CSI and when the

states are IID, it is impossible for the transmitter to send any
information, even without the constraint (4). We show that

Cconst
sto = 1 bit. (46)

Consider the following simple scheme. The transmitter gen-
erates a random variable B uniformly over {0, 1}. To send
(n − 1) information bits over n channel uses, it sends B
followed by the XOR of each information bit and B. The
output string is then IID and uniform irrespectively of the
value of S. To decode, the receiver obtains B ⊕ S from the
first bit, and computes its XOR with the next (n−1) received
bits to recover the information bits.

Example 4: Consider the same channel as in Example 2,
except now the state remains the same for all n channel uses.
Recall that C IID

CSI equals the capacity of the Z-channel; by
Theorem 5, so does Cconst

CSI . We shall show that

Cconst
sto = 0. (47)

Together with (45), this will imply C IID
det = Cconst

det = C IID
sto = 0.

To show (47), consider any sequence of encoder-decoder pairs,
and define

An ,
n∑

i=1

Xi (48)

Bn ,
n∑

i=1

Yi. (49)

Further define
α , P - lim sup

n→∞

An

n
, (50)

where P - lim sup denotes the limit-supremum in probability:
α is the smallest real number for which the probability that
An

n > α tends to zero as n → ∞. Assume that α > 0. Note
that, when S = 0, Bn = An with probability one. Thus we
have

lim sup
n→∞

Pr

(
Bn

n
≥
(

1− p

2

)
α

∣∣∣∣S = 0

)
> 0. (51)

When S = 1, Bn is conditionally a binomial distribution with
parameters An and p, so its limit-supremum in probability
given S = 1 must equal (1− p)α, therefore

lim
n→∞

Pr

(
Bn

n
≥
(

1− p

2

)
α

∣∣∣∣S = 1

)
= 0. (52)

It follows from (51) and (52) that the total variation distance
between the conditional distributions of Bn conditional on
S = 0 and S = 1, respectively, cannot approach zero as n
grows large. By Pinsker’s Inequality [9], this further implies
that I(S;Bn) cannot approach zero, and therefore I(S;Y n)
cannot approach zero either. Thus the assumption that α > 0
is incompatible with the requirement (35). But having α = 0
clearly does not permit communication at a positive rate. We
have thus proven (47).

IV. CONCLUDING REMARKS

We have presented information-theoretic capacity expres-
sions for several instances of communication subject to state
obfuscation. The case where the state remains constant during
transmission time and is unknown to the transmitter, and where
the transmitter can use a stochastic encoder, is yet unsolved.
We have demonstrated via examples that the capacity in this
case differs from both the IID-state no-CSI stochastic-encoder
case and the constant-state with-CSI case.

To analyze real-life scenarios where the transmitter wishes
to guarantee a low probability of geolocation by the receiver,
one may replace the abstract models considered in the current
paper by specific channel models. For example, in line-of-
sight multiple-antenna wireless communication, the state S
may correspond to the phase difference between observation
at receive antennas. For free-space optical communication,
S may correspond to attenuation of the transmitted signal.
Examples 2 and 4 may be considered a first step along the
latter direction.
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