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Abstract— We present a novel FastSLAM approach for a
robotic system inspecting structures made of large metal plates.
By taking advantage of the reflections of ultrasonic guided
waves on the plate boundaries, it is possible to recover, with
enough precision, both the plate shape and the robot trajectory.
Contrary to our previous work, this approach takes into ac-
count the dispersive nature of guided waves in metal plates. This
is leveraged to construct beamforming maps from which we
solve the mapping problem through plate edges estimation for
every particle, in a FastSLAM fashion. It will be demonstrated,
with real acoustic measurements obtained on different metal
plates, that such a framework achieves better performances in
terms of convergence and accuracy, while the complexity of the
algorithm is sensibly reduced.

I. INTRODUCTION

In this work1, we elaborate a new FastSLAM approach [1]
to achieve Simultaneous Localization and Mapping (SLAM)
for a robotic system relying on Ultrasonic Guided Waves
(UGWs) to support inspection tasks on large metal structures
such as storage tanks or ship hulls. In Structural Health
Monitoring (SHM), acoustic tomography techniques can be
used for defect detection and characterization, but they rely
on the accurate prior knowledge of the positions of the
sensors which are integrated into the structure [2], [3]. To
deploy similar methods on a robotic platform, recovering the
robot position with respect to the individual metal plates may
be beneficial, as it could lead, in combination with external
localization systems, to precise localization of the mobile
unit, and thus, to accurate inspection results.

Fig. 1. (Left) A magnetic crawler carrying out an inspection task on
a metal structure. (Right). Guided waves reflecting the edges of a plate
in a simulation environment. We aim to enable on-plate localization and
mapping with a high precision for magnetic crawlers equipped with acoustic
transducers, and relying on such ultrasonic reflections.
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On metal plates, guided waves are often generated by ap-
plying piezo-electric transducers in contact with the surface.
These waves propagate radially around the emitter through
the plate material, and potentially over large distances. When
encountering the plate edges, these waves are reflected per-
pendicularly, and a receiver can sense the reflections. In this
setup, the resulting acoustic data carry essential information
on the source position and the plate geometry.

In this work, we consider a mobile unit equipped with
acoustic transducers for both emission and reception, and
moving on a metal surface. We leverage the sensing of the
ultrasonic reflections to estimate both the plate shape and the
robot trajectory. The principle of this approach is illustrated
in Fig.1. In the robotic field, this problem is known as
Simultaneous Localization and Mapping (SLAM).

One of the significant challenges arises from the dispersive
nature of UGWs [4]. It means that the propagation velocity
is a function of the wave frequency, resulting in a wave-
form deformation when the propagation distance increases.
Besides, propagation in metal plates is highly reverberant.
These characteristics account for the relative complexity
of acoustic data and call for specific processing methods
to achieve on-plate localization and mapping with high
accuracy. On the robotic aspect, recent works consider the
similar problem of room shape reconstruction from acoustic
echoes [5], [6]. As the sound velocity in the air is constant,
the determination, from the measurements, of the first-order
reflections is not a significant issue. However, identifying
several echoes from guided waves data is more difficult due
to the wave dispersion and the wave packets overlapping.

In our previous work [7], ultrasonic measurements on
metal plates have proven to yield sufficient information
to provide both localization and mapping capabilities on
metal plates. However, the dispersive nature of the waves
was not taken into account and the relative complexity of
the algorithm may jeopardize its robustness and accuracy.
In this paper, we present an alternative method to solve
the SLAM problem from ultrasonic measurements. First,
a wave propagation model is introduced and is leveraged
to detect acoustic reflections. From them, we build beam-
forming maps [8] to solve the mapping problem, the overall
being integrated into a FastSLAM framework. Our approach
demonstrates better performances than our previous method
on real measurements, with less complexity.

In summary, our contributions are the introduction of prop-
agation models and the integration of beamforming maps
in FastSLAM to achieve on-plate Simultaneous Localization
and Mapping with high accuracy for robotic inspection.



II. RELATED WORK

On the one hand, standard methods to inspect large metal
structures consist in deploying a mobile robot to perform
point-by-point thickness measurements with an acoustic
probe, but the entire surface cannot be inspected in a rea-
sonable amount of time due to the limited surface of the
transducer. On the other hand, UGWs have been successfully
used by SHM systems to inspect large structures such as
pipelines or rails [4], [9], but the transducers are integrated
into the structure and their position is known accurately.
Hence, outside of the authors’ works, UGWs-based tech-
niques have not been deployed on a robotic system, nor
have guided waves proven to yield accurate localization
capabilities which are critical for such methods to work.

Moreover, UGWs propagation is dispersive, which means
that the higher the distance a wave packet travels in a metal
plate, the more it deforms. Fig. 2 illustrates this phenomenon.
It shows that the shape of the signal is significantly different
after propagating over two meters. In SHM, the chosen
frequency range generally lies in a dispersion-limited band-
width, but for our case-study, waves might propagate over
much larger distances. Hence, wave dispersion may still have
some effects on the signals, and shall not be neglected. In
the literature, the use of propagation models in the context
of localization and mapping on metal structures has not been
thoroughly investigated. This work aims to answer this need.

Fig. 2. Illustration of wave dispersion in plates with simulated data. The
excitation signal is in blue, the signal propagated after 0.5 meters in orange,
and the signal propagated after 2 meters in red.

In typical guided wave data, there are numerous echoes
due to the multiple reflections on the plate edges and their
number increases exponentially with the observation time.
In addition, the wave packets overlap because of the wave
dispersion. The consequence is that it is very challenging to
recover individual wave-packets from the mixture data [10].
Therefore, most of the recent SHM techniques still rely
only on the incident wave packet [3], [4], [11], [12]. For
on-plate localization and mapping purposes, however, the
retrieval of multiple echoes is essential, as they all provide
range-only information to the edges. In the echo detection
literature, time-delay estimation techniques have been suc-
cessfully applied to ultrasound waves in the air [13], [14] but
in a non-dispersive context. In [7], we used L1-regularized
least squares to retrieve the multiple echoes without taking
into account wave dispersion. Here, we rely on a wave
propagation model to determine, through correlation with
acoustic data, the likelihood of a reflection over a full range

of distances to the transducers. Such an approach will prevent
us from solving the delicate echo association problem.

Recently, there have been attempts to infer a plate geom-
etry from guided waves data [15]. Yet, non-dispersive prop-
agation models are used, and the sensors are integrated into
the structure. In robotics, the most similar problem is room
shape reconstruction from acoustic echoes [5], [6]. However,
they rely on sound waves propagating in the air without
dispersion and do not consider the association problem to
determinate the wall from which each echo originates. In
[7], we rely on the most likely echo-line association but
the overall algorithm is rather complicated due to the map
management, and its robustness is limited. Here, from the
likelihoods of reflection, we build beamforming maps to
estimate the plate shape and limit ourselves to rectangular
geometries (which are to be expected in our application).
Then, these elements are integrated into a FastSLAM algo-
rithm to achieve localization and mapping simultaneously.

In summary, we present a new method that efficiently
integrates wave propagation models from the guided waves
theory and beamforming maps from Signal Processing in a
FastSLAM algorithm to achieve accurate on-plate localiza-
tion and mapping results with less complexity. The results
obtained with experimental acoustic data from different metal
plates indicate better performances than our previous method.

III. METHOD

In this work, we are considering a mobile unit equipped
with a co-localized emitter/receiver pair of transducers and
moving on a metal surface. At the ith scanning position, the
emitter sends a pulse s(t) to excite guided waves in the plate
material, and the receiver collects the acoustic response zi(t)
which contains the ultrasonic echoes. We intend to use these
data and the robot odometry to recover accurately both the
plate shape and the robot trajectory.

A. Measurement model

Acoustic measurements essentially consist of a succession
of the reflections of the excitation wave on the plate bound-
aries. Under the assumption that the material is isotropic,
the propagation linear, and the reflections on the edges are
orthogonal, a standard measurement model to reverberation
is the image source model [16]. It relies on the fact that
each reflection from the plate boundaries can be considered
as a signal originating from a fictional source, which is
deduced from the real source position and the reverberant
media geometry. In metal plates, the image source model
can be leveraged to account for first order as well as higher
order reflections, resulting in the following measurements:

zi(t) =
∑

x∈I(xi)

g(x,xi, t) ∗ s(t)

where xi = [xi, yi] is the position of the robot during time
step i, I(xi) the set of the image sources positions when the
real source is in xi, g(x,xi, t) the acoustic response of the
plate to an impulse being generated in x and received in xi,



and ∗ denotes the convolution operation. In a non-dispersive
media, the impulse response is simply given by:

g(x,xi, t) = δ

(
t− ||x− xi||

c

)
where δ denotes the Dirac distribution, and c is the constant
propagation velocity. It results in waves propagating at a
constant speed and without distortion. In a dispersive media
like metal plates, a well-suited model of the propagation
is given by the solutions of the Helmholtz equation [17].
For an ideal isotropic media, the impulse response is only a
function of the propagation distance r between the (fictional)
source and the receiver. Moreover, it is usually reduced, in
the Fourier domain, to the following form:

ĝ(r, ω) ≈ e−jk(ω)r/
√
k(ω)r. (1)

k(ω) is the wavenumber of the major acoustic mode, and its
non-linear dependency with respect to the pulsation ω is the
typical characteristic of dispersive propagation in materials.
More details on how to determine this relation given a prior
information on the plate (material, thickness...) can be found
in the literature [4].

B. Correlation-based echo detection

With the aim to retrieve the distances of the robot to the
edges from acoustic data zi(t), we use the designed prop-
agation model to estimate the likelihood that an orthogonal
reflection took place at a distance r. First, we consider the
signal that would only contain such a reflection:

ẑ(r, t) = ĝ(r, t) ∗ s(t).

From it, we build the correlation signal to assess the likeli-
hood that this pattern is present within the measurement:

z′i(r) =
〈zi(t), ẑ(r, t)〉√

〈zi(t), zi(t)〉〈ẑ(r, t), ẑ(r, t)〉
(2)

where 〈., .〉 denotes the scalar product in the domain of
continuous signals:

〈u(t), v(t)〉 =
∫ +∞

−∞
u(τ)v(τ)dτ.

As the resulting signal z′i presents oscillations consistent with
the wave spatial periodicity, it is more convenient to only
work with its envelope that we will call zi(r) for simplicity
(which shall not be mistaken with the temporal signal zi(t)):

zi(r) = |z′i(r) + jH(z′i)(r)| (3)

where H denotes the Hilbert transform operator. Hence, the
resulting signal zi takes its values only between 0 and 1,
and a higher value for r translates in a high likelihood
that a reflection occurred at such a distance. In summary,
by looking at the local maxima of zi(r), one can deduce
the most likely reflections. Besides, it is noteworthy that a
single measurement cannot provide enough information to
determine an edge without ambiguity, as all the lines tangent
to the circle with radius r and centered to the sensors position
may equally account for the correlation measurement.

C. Map estimation via beamforming

Similarly to our previous work, the map is represented
by a set of lines: M = {rl, θl}l=1...4 where the parameters
(rl, θl) define the line equation in the 2D plane with:

x · cos θl + y · sin θl − rl = 0

in a non-mobile frame with respect to the plate. An illustra-
tion of such a representation is provided in Fig.3. Moreover,
as we limit our case-study to rectangular shapes, the possible
maps possess only four lines forming a rectangle altogether.

Fig. 3. Illustration of the line representation. The rl and θl coordinates
are defined in a Cartesian frame whose origin O is a point of the plate.

Let’s assume a hypothetical robot trajectory
{xi, yi}i=1...T . We aim at estimating the map M, which
means building up the probability density function
p(M|x1..T , y1..T , z1...T ). A first solution would consist in
assessing, for each map in the 8-D domain, the correlation
between the observations and the predicted data based on
the image source model. However, such an approach would
be far too cumbersome for a real-time application. Instead,
we rely on a beamforming map. Such a map attributes,
to every line parameters (r, θ), the likelihood of the line
existence given the observations. It is computed with:

LT (r, θ) =
T∑
i=1

zi(|xi · cos θ + yi · sin θ − r|).

where di(r, θ) = |xi · cos θ + yi · sin θ − r| is the distance
between the robot during time-step i and the hypothetical line
being considered. In the equation, all the correlation values
add up constructively along all the observations if an edge
is indeed present. Also, it can be noted that only first-order
reflections are taken into account, as we reason on individual
lines. One may consider that higher order reflections are less
likely to account for high correlation amplitudes because of
waves scattering after each additional reflection which causes
loss of energy to the wave packet. Finally, to retrieve the most
plausible map, we solve the following optimization problem:

M̂ = argmax
M
LT (M) = argmax

M

4∑
l=1

LT (rl, θl)

where M is restricted to be a rectangle. It can be solved
efficiently by taking that constraint into account. First, one
can determine the most likely line:

(r1, θ1) = argmax
r,θ
LT (r, θ).

Next, it is possible to rely on the assumption that the
retrieved line provides the most reliable estimation of the



plate orientation w.r.t. the robot. Therefore, the determination
of the other lines for l = 2, 3, 4 reduces to solving simple
and independent one-dimensional optimization problems:

θl = θ1 +
π(l − 1)

2
; rl = argmax

r
LT (r, θl).

D. Particle evaluation and FastSLAM algorithm

FastSLAM is a common approach to approximate
Bayesian filters in the context of a SLAM problem. It relies
on a particle filter in the localization space, where each
particle holds a hypothesis on the map which is inferred
from the particle trajectory and the measurements. During
time step T , a set with N particles has the following form:

PT =
{
X

(n)
T = {x(n)i , y

(n)
i , α

(n)
i }i=1...T ,L(n)

T

}
n=1...N

where X
(n)
T represents the n-th particle belief on the robot

trajectory augmented with its heading over time steps i =
1...T , and L(n)

T its beamforming map which depends on
the trajectory. Moreover, each particle is provided with a
weight indicating how the particle belief accounts for the
measurements. To define it, we rely on the current correlation
measurement and assess the likelihoods of the map edges
retrieved from L(n)

T and the current robot position belief:

w
(n)
T = η · exp

β
∑

(rl,θl)∈M(n)
T

zT

(
d
(n)
T (rl, θl)

)
where η is the normalization factor and β a positive pa-
rameter. It enables to fix the confidence in the correlation
measurements and shall be tuned so that the resulting weight
distribution is consistent with the motion and observation
noises. The weights are used to sample, with replacement, the

Algorithm 1: FastSLAM(PT−1,uT−1, zT (r))
Data: Particle set PT−1, odometry data uT−1 and

correlation measurement zT (r) .
Result: Particle set PT for the current time step T .
if T=0 then

Initialize the particle filter with
P0 = {[x0, y0, α0], null-fuction}n=1...N

else
for n = 1...N do

X
(n)
T ∼ p

(
XT |X(n)

T−1,uT−1

)
;

L(n)
T (r, θ) =

L(n)
T−1(r, θ)+ zT (|x(n)T cos θ+y

(n)
T sin θ−r|) ;

M
(n)
T = argmaxM L(n)

T (M);

w
(n)
T ∝ exp

{
β
∑

(rl,θl)∈M(n)
T

zT

(
d
(n)
T (rl, θl)

)}
end
Construct PT by sampling each particle
proportionally to their respective weight.

end
return PT .

particles after each time step. Altogether, the implementation
of FastSLAM is straightforward and is given in algorithm 1.

IV. RESULTS

In this part, we test our FastSLAM approach on experi-
mental data. We detail the experimental setup and show the
performance in terms of localization and mapping accuracy.

A. Experimental setup

In order to assess the efficiency of our procedure, we use
an emitter-receiver pair of transducers on two different metal
plates. The first plate has dimensions 600x450x6mm, is in
aluminium, and has artificial holes on it as depicted by Fig. 4.
The second plate has dimensions 1700x1000x6 mm and is
in steel. The acoustic data for the plate 1 have been already
presented in [7] and will serve as a way to demonstrate the
improvement of the procedure. The acquisition process is
globally the same to collect the data on the second plate: the
transducer pair is moved by hand on the vertices of a regular
grid. At every position, 20 measurements of the ultrasonic
response are averaged to improve the signal quality. Their
acquisition positions are also carefully recorded. In total,
108 measurements are collected on the plate 1, while this
number increases to 117 for plate 2. We use two tonebursts
of a sinusoidal wave at 100 kHz as the excitation and the
direct incident signal is removed from the data as it does not
correspond to a reflection.

Fig. 4. Picture of the metal plate 1.

For each plate, we determine a wave propagation model
as in eq. (1) and use N = 20 particles. To simulate
a sweep of a plate by a robotic crawler, a sequence of
measurements is selected from the database and presented
to the SLAM framework, with the theoretic displacement
between grid cells used as odometry. Also, we added noise
with moderation on the odometry data to account for the
slippage of the robot which may be limited due to the robot
magnetic adherence to the structure in a realistic scenario.

B. Echo detection

First, we illustrate the echo-detection principle. We show,
in Fig.5.a), the measured acoustic signal for a position
corresponding to 8 cm to the edges, in a corner of plate 1. On
b), we show the resulting correlation computed using eq. (2)
and its envelope calculated with eq. (3), yielding the signal
which is fed to the FastSLAM algorithm. It can be seen
on b) that we manage to retrieve, from the local maxima,



all the distances where first-order reflections occurred which
are 8, 37 and 52 cm. The echo detected at nearly 37 cm,
corresponds to a second-order reflection, but it has a lower
amplitude comparing to the first-order wave packets. The
existence of such reflections is not assumed by the algorithm.
Hence, we will verify a posteriori if their presence has a
detrimental effect on the performances.

Fig. 5. Illustration of the echo detection principle based on correlation with
a propagation model. a) represents the acoustic measurement. b) shows the
correlation signal (blue) and its envelope (orange).

C. Localization and mapping results

We run our FastSLAM algorithm using the data of plate 1,
and simulate a lawn-mower path. In Fig.6, we show the
particles’ belief on the sensors trajectory during measurement
steps 1, 25, 50 and 108. We also represent the map retrieved
by the particle with the highest weight. During Step 1, the
map is not correctly estimated as only one measurement has
been integrated. Rapidly, the three closer edges are recovered
as shown during Step 25. However, the right edge is not yet
well estimated as it is further away. During Step 50, the plate
shape is fully recovered, and during the final step, we obtain
both a correct shape and trajectory estimation which does
not present any drift.

Step 1 Step 25

Step 50 Step 108

Fig. 6. Trajectories estimated by all the particles (red lines) and map
retrieved by the most likely particle (green lines) during steps 1, 25, 50 and
108 for a lawn-mower path on plate 1. The true outline of the plate and true
sensor positions correspond to the blue rectangle and blue dot respectively.

Fig.7 depicts the beamforming map for the most likely
particle during the final step. We can see that the intensity
peaks due to the edges are clearly visible, and our optimiza-
tion method does not face difficulty to retrieve them.

Fig. 7. Beamforming map for the particle with the highest weight during
the final step. The red rectangles indicate the edges retrieved with our
optimization method.

To compare this approach with our previous method, we
show, on Fig.8, the average localization and line parameters
estimation errors calculated over 100 runs of each algorithm,
and using the same acoustic data on plate 1. We simulated
100 repetitions of the lawn-mower path for the sensors
trajectory. On the figure, we represent the 10% and 90%
quantiles with the aim to measure the repeatability of each
approach. It can be observed that, with our new method, only
a few tens of measurement steps are necessary to recover, in
average, the range parameters of the lines with a precision of
a few millimeters, and the plate orientation with a precision

Fig. 8. Localization and mapping performances over 100 repetitions of
a lawn-mower path on plate 1 for the previous and the new method. a)
Average estimation errors on the range parameter of the lines. b) Average
estimation errors on the angle parameter of the lines. c) Average localization
errors in the estimated plate frame. The 10% and 90% quantiles correspond
to the upper and lower bounds of the coloured areas.



Fig. 9. Localization and mapping performances over 100 repetitions of
a lawn-mower path on plate 2 for the new method. a) Average estimation
error on the range parameter of the lines. b) Average estimation error on the
angle parameter of the lines. c) Average localization error in the estimated
plate frame. The 10% and 90% quantiles correspond to the upper and lower
bounds of the coloured areas.

better than one degree. The localization performance is also
very precise as, after a quick convergence, the position
errors remain in the order of a few millimeters. Besides, the
estimation is not much subject to randomness as the 10 %
and 90% quantiles remain close to the average performance.
In comparison, our previous method demonstrates poorer
performances. Indeed, not only are the estimation errors
higher, but also the variation of performance can be rela-
tively significant between two runs. Altogether, the results
illustrate the improvement of the localization and mapping
performances that is achieved by our new method.

With the aim to assess the performances on a larger plate,
we run our algorithm with the measurements obtained on
plate 2, and simulate again a lawn-mower path. The results
obtained over 100 runs are provided on Fig.9. On this plate,
the echo detection method employed by our previous method
is not efficient due to the large propagation distances. Hence,
we display only the performances of our new approach.
Despite the slower convergence caused by the larger surface
and the slightly higher localization error, our method still
achieves estimations with an acceptable level of precision.
This result indicates that it scales appropriately on large
plates which are used for realistic applications.

TABLE I

Scenario Range error [mm] Angle error [degree]
Scenario 1 3.007± 0.098 0.234± 0.0004
Scenario 2 10.766± 22.921 0.206± 0.134

As a final evaluation, we determine the average mapping
errors and standard deviations over 100 runs obtained during
the final step for a lawn-mower path (Scenario 1) and a
random walk (Scenario 2) on plate 1. Table I presents the

results. It can be noticed that the overall performances are
relatively poorer for the random walk. This illustrates that
the estimation accuracy also depends on the robot path which
shall be optimized for better performances.

V. CONCLUSIONS

We have designed a new FastSLAM approach to achieve
Simultaneous Localization and Mapping on metal plates by
relying on ultrasonic guided waves. Comparing to our pre-
vious work, this method relies on wave propagation models
and beamforming maps. Experiments carried on metal plates
demonstrate that this new approach achieves better perfor-
mances in terms of accuracy and robustness while being
more simple. In future works, this method shall be tested
in more realistic conditions where propagation models may
not be perfectly appropriate, or where several propagation
modes may co-exist. Also, a real robotic platform shall be
used, and active-sensing strategies shall be investigated to
recover the plate geometry even more efficiently.
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