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A FastSLAM Approach Integrating Beamforming
Maps for Ultrasound-based Robotic Inspection of

Metal Structures
Othmane-Latif Ouabi1, Pascal Pomarede1, Matthieu Geist2, Nico F. Declercq1,3, Cédric Pradalier1

Abstract—We present a novel FastSLAM approach for a
robotic system inspecting structures made of large metal plates.
By taking advantage of the reflections of ultrasonic guided
waves on the plate boundaries, it is possible to recover, with
enough precision, both the plate shape and the robot trajectory.
Contrary to our previous work, this approach takes into account
the dispersive nature of guided waves in metal plates. This is
leveraged to construct beamforming maps from which we solve
the mapping problem through plate edges estimation for every
particle, in a FastSLAM fashion. It will be demonstrated, with
real acoustic measurements obtained on different metal plates,
that such a framework achieves more accurate results, while the
complexity of the algorithm is sensibly reduced.

Index Terms—SLAM; Industrial Robots; Range Sensing

I. INTRODUCTION

IN this work4, we describe a new FastSLAM approach [1] to
achieve Simultaneous Localization and Mapping (SLAM)

for a robotic system relying on Ultrasonic Guided Waves
(UGWs) to support inspection tasks on large metal structures
such as storage tanks or ship hulls. In Structural Health
Monitoring (SHM), acoustic tomography techniques can be
used for defect detection and characterization, but they rely on
the accurate prior knowledge of the positions of the sensors
which are integrated into the structure [2], [3]. To deploy
similar methods on a robotic platform, recovering the robot
position with respect to the individual metal plates may be
beneficial, as it could lead, in combination with external
localization systems, to precise localization of the mobile unit,
and thus, to accurate inspection results.

On metal plates, guided waves are often generated by
applying piezo-electric transducers in contact with the surface.
These waves propagate radially around the emitter through
the plate material, and potentially over large distances. When
encountering the plate edges, these waves are reflected per-
pendicularly, and a receiver can sense the reflections. In this
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Fig. 1. (Left) A magnetic crawler carrying out an inspection task on a
metal structure. (Right) Guided waves reflected by the edges of a plate
in a simulation environment. We aim to enable on-plate localization and
mapping with a high precision for magnetic crawlers equipped with acoustic
transducers, and relying on such ultrasonic reflections.

setup, the resulting acoustic data carry essential information
on the source position and the plate geometry.

In this work, we consider a mobile unit equipped with
acoustic transducers for both emission and reception, and
moving on a metal surface. We leverage the sensing of the
ultrasonic reflections to estimate both the plate shape and the
robot trajectory. The principle of this approach is illustrated
in Fig.1. In the robotic field, this problem is known as
Simultaneous Localization and Mapping (SLAM).

One of the significant challenges arises from the dispersive
nature of UGWs [4]. It means that the propagation velocity is
a function of the wave frequency, resulting in a waveform
deformation when the propagation distance increases. Be-
sides, propagation in metal plates is highly reverberant. These
characteristics account for the relative complexity of acoustic
data and call for specific processing methods to achieve on-
plate localization and mapping with high accuracy. On the
robotic aspect, recent works consider the similar problem of
room shape reconstruction from acoustic echoes [5], [6]. As
the sound velocity in the air is constant, the determination,
from the measurements, of the first-order reflections is not
a significant issue. However, identifying several echoes from
guided wave data is more difficult due to the wave dispersion
and the wave packets overlapping.

In our previous work [7], ultrasonic measurements on metal
plates have proven to yield sufficient information to provide
both localization and mapping capabilities on metal plates.
However, the dispersive nature of the waves was not taken into
account and the relative complexity of the algorithm may jeop-
ardize its robustness and accuracy. In this paper, we present an
alternative method to solve the SLAM problem from ultrasonic
measurements. First, a wave propagation model is introduced
and is leveraged to detect acoustic reflections. From them, we
build beamforming maps [8] which are subsequently integrated
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into a FastSLAM framework to solve the mapping problem.
Our approach achieves more accurate results than our previous
method on real data, with less algorithmic complexity.

In summary, our contributions are the introduction of prop-
agation models and the integration of beamforming maps in
FastSLAM to achieve on-plate Simultaneous Localization and
Mapping with high accuracy for robotic inspection.

II. RELATED WORK

On the one hand, standard methods to inspect large metal
structures consist in deploying a mobile robot to perform
point-by-point thickness measurements with an acoustic probe,
but the entire surface cannot be inspected in a reasonable
amount of time due to the limited surface of the transducer.
On the other hand, UGWs have been successfully used by
SHM systems to inspect large structures such as pipelines
or rails [4], [9], but the transducers are integrated into the
structure and their position is known accurately. Hence, outside
of the authors’ works, UGWs-based techniques have not been
deployed on a robotic system, nor have guided waves proven
to yield accurate localization capabilities which are critical for
such methods to work.

Moreover, UGWs propagation is dispersive, which means
that the longer the distance a wave packet travels in a metal
plate, the more it deforms. Fig. 2 illustrates this phenomenon.
It shows that the shape of the signal is significantly different
after propagating over two meters. In SHM, the chosen fre-
quency range generally lies in a dispersion-limited bandwidth,
but for our case-study, waves might propagate over much
larger distances. Hence, wave dispersion may still have some
effects on the signals, and shall not be neglected. In the
literature, the use of propagation models in the context of
localization and mapping on metal structures has not been
thoroughly investigated. This work aims to answer this need.

Fig. 2. Illustration of wave dispersion in plates with simulated data. The
excitation signal is in blue, the signal propagated after 0.5 meters in orange,
and the signal propagated after 2 meters in red.

In typical guided wave data, there are numerous echoes due
to the multiple reflections on the plate edges and their number
increases exponentially with the observation time. In addition,
the wave packets overlap because of the wave dispersion. The
consequence is that it is very challenging to recover individual
wave-packets from the mixture data [10]. Therefore, most of
the recent SHM techniques still rely only on the incident
wave packet [3], [4], [11], [12]. For on-plate localization and
mapping purposes, however, the retrieval of multiple echoes
is essential, as they all provide range-only information to the
edges. In the echo detection literature, time-delay estimation
techniques have been successfully applied to ultrasound waves

in the air [13], [14] but in a non-dispersive context. In [7],
we used L1-regularized least squares to retrieve the multiple
echoes without taking into account wave dispersion. Here,
we rely on a wave propagation model to determine, through
correlation with acoustic data, the likelihood of a reflection
over a full range of distances to the transducers. In this new
setup, the resolution of the difficult echo association problem
is no longer required.

Recently, there have been attempts to infer a plate geometry
from guided waves data [15]. Yet, non-dispersive propagation
models are used, and the sensors are integrated into the
structure. In robotics, the most similar problem is room shape
reconstruction from acoustic echoes [5], [6]. However, they
rely on sound waves propagating in the air without dispersion
and do not consider the association problem to determinate
the wall from which each echo originates. In [7], we rely on
the most likely echo-line association but the overall algorithm
is rather complicated due to the map management, and its
robustness is limited. Here, from the likelihoods of reflection,
we build beamforming maps to estimate the plate shape
and limit ourselves to rectangular geometries (which are to
be expected in our application). Then, these elements are
integrated into a FastSLAM algorithm to achieve localization
and mapping simultaneously.

In summary, we present a new method that efficiently
integrates wave propagation models from the guided waves
theory and beamforming maps in a FastSLAM algorithm
to achieve more accurate on-plate localization and mapping
results with less algorithmic complexity comparing to our pre-
vious method. The results obtained with experimental acoustic
data from different metal plates support our claim.

III. METHOD

In this work, we are considering a mobile unit equipped
with a co-localized emitter/receiver pair of transducers and
moving on a metal surface. At the ith scanning position, the
emitter sends a pulse s(t) to excite guided waves in the plate
material, and the receiver collects the acoustic response zi(t)
which contains the ultrasonic echoes. We intend to use these
data and the robot odometry to recover accurately both the
plate shape and the robot trajectory.

A. Measurement model

Acoustic measurements essentially consist in a succes-
sion of the reflections of the excitation wave on the plate
boundaries. As the small-sized corrosion patches we aim to
detect with robotic inspection may not act as reflectors, their
potential effect is neglected for the SLAM problem. Under
the assumption that the material is isotropic, the propagation
linear, and the reflections on the edges are orthogonal, a
standard measurement model to reverberation is the image
source model [16]. It relies on the fact that each reflection from
the plate boundaries can be considered as a signal originating
from a fictional source, which is deduced from the real source
position and the reverberant media geometry. In metal plates,
the image source model can be leveraged to account for first
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order as well as higher order reflections, resulting in the
following measurements:

zi(t) =
∑

x∈I(xi)

g(x,xi, t) ∗ s(t)

where xi = [xi, yi] is the position of the robot during time
step i, I(xi) the set of the image sources positions when
the real source is in xi, g(x,xi, t) the acoustic response of
the plate to an impulse being generated in x and received
in xi, and ∗ denotes the convolution operation. In a non-
dispersive media, the impulse response is simply given by
g(x,xi, t) = δ

(
t− ||x−xi||

c

)
, where δ denotes the Dirac

distribution, and c is the constant propagation velocity. It
results in waves propagating at a constant speed and without
distortion. In a dispersive media like metal plates, a well-
suited model of the propagation is given by the solutions of
the Helmholtz equation [17]. For an ideal isotropic media, the
impulse response is only a function of the propagation distance
r between the (fictional) source and the receiver. Moreover, it
is usually reduced, in the Fourier domain, to:

ĝ(r, ω) ≈ e−jk(ω)r/
√
k(ω)r. (1)

where k(ω) is the wavenumber of the major acoustic mode,
and its non-linear dependency with respect to the pulsation ω
is the typical characteristic of dispersive propagation. More de-
tails on how to determine this relation given prior information
on the plate material can be found in the literature [4].

B. Correlation-based echo detection

With the aim to retrieve the distances of the robot to
the edges from data zi(t), we use the designed propagation
model to estimate the likelihood that an orthogonal reflection
occurred at a distance r. First, we consider the signal that
would only contain such a reflection: ẑ(r, t) = ĝ(2r, t) ∗ s(t).
Next, we build the correlation signal to assess the likelihood
that this pattern is present within the measurement:

z′i(r) =
〈zi(t), ẑ(r, t)〉√

〈zi(t), zi(t)〉〈ẑ(r, t), ẑ(r, t)〉
(2)

where 〈., .〉 denotes the scalar product in the domain of
continuous signals: 〈u(t), v(t)〉 =

∫ +∞
−∞ u(τ)v(τ)dτ. As the

resulting signal z′i presents oscillations consistent with the
wave spatial periodicity, it is more convenient to only work
with its envelope that we will call zi(r) for simplicity (which
shall not be mistaken with the temporal signal zi(t)):

zi(r) = |z′i(r) + jH(z′i)(r)| (3)

where H denotes the Hilbert transform operator. Hence, the
resulting signal zi takes its values only between 0 and 1,
and a higher value at r translates into a high likelihood that
a reflection occurred at such a distance. In summary, by
looking at the local maxima of zi(r), one can deduce the
most likely reflections. Besides, it is noteworthy that a single
measurement cannot provide enough information to determine
an edge without ambiguity, as all the lines tangent to the circle
with radius r and centered at the sensors position may equally
account for the correlation measurement.

C. Map estimation via beamforming

Similarly to our previous work, the map is represented by a
set of lines: M = {rl, θl}l=1...4 where the parameters (rl, θl)
define the line equation in the 2D plane with:

x · cos θl + y · sin θl − rl = 0

in a non-mobile frame with respect to the plate. Moreover,
as we limit our case-study to rectangular shapes, the possible
maps possess only four lines forming a rectangle altogether.

Let’s assume a hypothetical robot trajectory {xi, yi}i=1...T .
We aim at estimating the map M, which means establishing
the probability density function p(M|x1..T , y1..T , z1...T ). A
first solution would consist in assessing, for each map in the
8-D domain, the correlation between the observations and the
predicted data based on the image source model. However,
such an approach would be far too cumbersome for a real-time
application. Instead, we rely on a beamforming map. Such a
map attributes, to every line parameters (r, θ), the likelihood
of the line existence given the observations with:

LT (r, θ) =

T∑
i=1

zi(|xi · cos θ + yi · sin θ − r|).

where di(r, θ) = |xi · cos θ + yi · sin θ − r| is the distance
between the robot during time-step i and the hypothetical line
being considered. In the equation, all the correlation values
add up constructively along all the observations if an edge
is indeed present. Also, it can be noted that only first-order
reflections are taken into account, as we reason on individual
lines. One may consider that higher order reflections are less
likely to account for high correlation amplitudes because of
wave scattering after each additional reflection which causes
loss of energy to the wave packet. Finally, to retrieve the most
plausible map, we solve the following optimization problem:

M̂ = arg max
M
LT (M) = arg max

M

4∑
l=1

LT (rl, θl)

where M is restricted to be a rectangle. It can be solved
efficiently by taking that constraint into account. First, one
can determine the most likely line:

(r1, θ1) = arg max
r,θ
LT (r, θ).

Next, it is possible to rely on the assumption that the retrieved
line provides the most reliable estimation of the plate orienta-
tion w.r.t. the robot. Therefore, the determination of the other
lines for l = 2, 3, 4 reduces to solving simple and independent
one-dimensional optimization problems:

θl = θ1 +
π(l − 1)

2
; rl = arg max

r
LT (r, θl).

D. Particle evaluation and FastSLAM algorithm

FastSLAM is a common approach to approximate Bayesian
filters in the context of a SLAM problem. It relies on a particle
filter in the localization space, where each particle holds a
hypothesis on the map which is inferred from the particle
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trajectory and the measurements. During time step T , a set
with N particles has the following form:

PT =
{
X

(n)
T = {x(n)i , y

(n)
i , α

(n)
i }i=1...T ,L(n)

T

}
n=1...N

where X
(n)
T represents the n-th particle belief on the robot

trajectory augmented with its heading over time steps i =

1...T , and L(n)
T its beamforming map which depends on

the trajectory. Moreover, each particle is provided with a
weight indicating how the particle belief accounts for the
measurements. To define it, we rely on the current correlation
measurement and assess the likelihoods of the map edges
retrieved from L(n)

T and the current robot position belief:

w
(n)
T = η · exp

β
∑

(rl,θl)∈M(n)
T

zT

(
d
(n)
T (rl, θl)

) (4)

where η is the normalization factor and β a positive parameter.
It enables to fix the confidence in the correlation measurements
and shall be tuned so that the resulting weight distribution
is consistent with the motion and observation noises. The
weights are used to sample, with replacement, the particles
after each time step. Besides, one may note that we are
not considering, in (4), the uncertainty on the lines retrieval
from the beamforming maps for simplicity. Altogether, the
implementation of FastSLAM is given in Algorithm 1.

IV. RESULTS
In this part, we test our FastSLAM approach on experimen-

tal data. We detail the experimental setup and show the results
in terms of localization and mapping accuracy.

A. Experimental setup

In order to assess the efficiency of our procedure, we use
an emitter-receiver pair of transducers on two different metal

Algorithm 1: FastSLAM(PT−1,uT−1, zT (r))
Data: Particle set PT−1, odometry data uT−1 and

correlation measurement zT (r) .
Result: Particle set PT for the current time step T .
if T=0 then

Initialize the particle filter with
P0 = {[x0, y0, α0], null-fuction}n=1...N

else
for n = 1...N do

X
(n)
T ∼ p

(
XT |X(n)

T−1,uT−1

)
;

L(n)
T (r, θ) =

L(n)
T−1(r, θ)+ zT (|x(n)T cos θ+y

(n)
T sin θ−r|) ;

M
(n)
T = arg maxM L(n)

T (M);

w
(n)
T ∝ exp

{
β
∑

(rl,θl)∈M(n)
T

zT

(
d
(n)
T (rl, θl)

)}
end
Construct PT by sampling each particle
proportionally to their respective weight.

end
return PT .

plates. The first plate has dimensions 600x450x6mm, is in
aluminium, and has small artificial holes on it. The second
plate has dimensions 1700x1000x6 mm and is in steel. The
acoustic data for the plate 1 have been already presented in
[7] and will serve as a way to demonstrate the improvement
of the procedure. The acquisition process is globally the
same to collect the data on the second plate: the transducer
pair is moved by hand on the vertices of a regular grid. At
every position, 10 measurements of the ultrasonic response
are averaged to improve the signal quality. This operation
is not critical in a laboratory environment, but it may be
necessary in outdoor conditions, where the inspection robot
shall operate, to alleviate the effect of external disturbances.
The acquisition positions are also carefully recorded. In total,
108 measurements are collected on the plate 1, while this
number increases to 117 for plate 2. We use two tonebursts
of a sinusoidal wave at 100 kHz as the excitation. Moreover,
the direct incident signal is smoothly removed from the data
as it does not correspond to a reflection on an edge.

For each plate, we determine a wave propagation model
as in eq. (1) and use N = 20 particles. To simulate a
sweep of a plate by a robotic crawler, a sequence of measure-
ments is selected from the database and is presented to the
SLAM framework, with the theoretic displacement between
grid cells used as odometry. Also, we add Gaussian noise
on the odometry data: ∆̄r ∼ N

(
∆r, (10−2∆r + ∆r0)2

)
and

∆̄θ ∼ N
(
∆θ, (10−2∆θ + ∆θ0)2

)
with ∆r0 = 10−3 m and

∆θ0 = 10−2 rad to simulate odometry uncertainty which may
be limited due to the robot magnetic adherence and embedded
accelerometers used to provide precise heading on a nearly-
vertical structure, in a realistic scenario [7].

B. Echo detection

First, we illustrate the echo-detection principle. We show,
in Fig.3.a), the measured acoustic signal for a position cor-
responding to 8 cm to the edges, in a corner of plate 1. On
b), we show the resulting correlation signal computed using
eq. (2) and its envelope calculated with eq. (3), yielding the
signal which is fed to the FastSLAM algorithm. It can be
seen on b) that we manage to retrieve, from the local maxima,
all the distances where first-order reflections occurred which
are 8, 37 and 52 cm. The echo detected at nearly 37 cm
corresponds to a second-order reflection, and has a lower
amplitude comparing to the first-order wave packets. The
existence of such reflections is not assumed by the algorithm.
Hence, we will determine a posteriori if their presence has a
detrimental effect on the results.

C. Localization and mapping results

We run our FastSLAM algorithm using the data of plate 1,
and simulate a lawn-mower path. Although the results are
generated off-line, our method can run online on a real robotic
platform. Indeed, as the beamforming maps of size Z × Z
are updated incrementally, the complexity of one FastSLAM
iteration with N particles is O(N × Z2), which leads to a
computational time of a few tens of milliseconds per iteration
in our setup, with Z = 300 and N = 20.
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Fig. 3. Illustration of the echo detection principle based on correlation with
a propagation model. a) represents the acoustic measurement. b) shows the
correlation signal (blue) and its envelope (orange).

In Fig.4, we show the particles’ belief on the sensors
trajectory during measurement steps 1, 22, 50 and 108. We
also represent the map retrieved by the particle with the highest
weight and several dead-reckoning trajectories obtained using
noisy odometry input only. During Step 1, the map is not
correctly estimated. As only one measurement has been inte-
grated, the distance to the closest edge can be recovered but,
the orientation is essentially random. Rapidly, the three closer
edges are recovered as shown during Step 22. However, the
right edge is not yet well estimated as it is further away. During
Step 50, the plate shape is fully recovered, and during the final
step, both the estimation of the plate shape and trajectory are
accurate. In contrast, the dead-reckoning trajectories present
noticeable drift. This illustrates that, by relying on the acoustic
data, the proposed approach can appropriately compensate for
moderate odometry noise.

Fig.5 depicts the beamforming map for the most likely
particle during the final step. We can see that the intensity
peaks due to the edges are clearly visible, and our optimization
method does not face difficulty to retrieve them.

To compare our new FastSLAM approach with the previous
one, we show, in Fig.6, the average localization and line
parameters estimation errors calculated over 100 runs of each

Step 1 Step 22

Step 50 Step 108

Fig. 4. Trajectories estimated by all the particles (black lines), dead-reckoning
trajectories (dash magenta lines) and map retrieved by the most likely particle
(green lines) during Steps 1, 22, 50 and 108 for a lawn-mower path on plate 1
(zoom for details). The true outline of the plate and true sensor positions
correspond to the blue rectangle and blue dot respectively.

Fig. 5. Beamforming map for the particle with the highest weight during the
final step. The rectangles indicate the edges retrieved with our method.

algorithm, and using the same acoustic data on plate 1. We
simulated 100 repetitions of the lawn-mower path for the
sensors trajectory. In the figure, we represent the 10% and
90% quantiles with the aim to measure the repeatability of
each approach. It can be observed that, with our new method,
only a few tens of measurement steps are necessary to recover,
in average, the range parameters of the lines with a precision
of a few millimeters, and the plate orientation with a precision
better than one degree. The localization result is also very pre-
cise as, after a quick convergence, the position errors remain in
the order of a few millimeters despite the defects on the plate.
Besides, the estimation is not subject to randomness as the 10
% and 90% quantiles remain close to the average results. In
comparison, our previous method demonstrates poorer results.
Indeed, not only are the estimation errors higher, but also
the variation of precision can be relatively significant between
two runs. Altogether, the results illustrate the improvement of
localization and mapping that is achieved by our new method.

With the aim to assess the results for a larger plate, we

Fig. 6. Localization and mapping results over 100 repetitions of a lawn-mower
path on plate 1 for the previous and the new method. a) Average estimation
errors on the range parameter of the lines. b) Average estimation errors on the
angle parameter. c) Average localization errors in the estimated plate frame.
The 10% and 90% quantiles correspond to the upper and lower bounds of the
coloured areas. The scales along the y-axis are logarithmic.
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Fig. 7. Localization and mapping results over 100 repetitions of a lawn-
mower path on plate 2 for the new method. a) Average estimation errors on
the range parameter of the lines. b) Average estimation error on the angle
parameter. c) Average localization errors in the estimated plate frame. The
10% and 90% quantiles correspond to the upper and lower bounds of the
coloured areas. The scales along the y-axis are logarithmic.

run our algorithm with the measurements obtained on plate 2,
and simulate again a lawn-mower path. The results obtained
over 100 runs are provided in Fig.7. On this plate, the echo
detection employed by our previous method is not efficient,
as it does not consider the wave dispersion effect, whereas the
propagation distances are larger. This induces large misdetec-
tion rates and poor results. Hence, we display only the results
of our new approach. Despite the slower convergence caused
by the larger surface, and the slightly higher localization error,
our method still provides precise estimates of the trajectory
and plate geometry. This result indicates that our approach
still works on surfaces sufficiently large to be used for re-
alistic applications. The underlying prerequisites are a wave
propagation model and filter parameters that conveniently fit
the acoustic measurements and on-the-field noisy conditions.
Naturally, one may also expect longer convergence times when
the plate surface increases, as the echo detection is expected
to be efficient mostly for short ranges as shown in Fig.7.a).

As a final evaluation, we determine the average mapping
errors and standard deviations over 100 runs obtained during
the final step for a lawn-mower path (Scenario 1) and a random
walk (Scenario 2) on plate 1. Fig. 8 presents the results. It can
be noticed that the overall results are relatively poorer for the
random walk. This illustrates that the estimation accuracy also
strongly depends on the robot path which shall be optimized
for optimal reconstruction.

V. CONCLUSIONS

We have designed a new FastSLAM approach to achieve
Simultaneous Localization and Mapping on metal plates by
relying on ultrasonic guided waves. Comparing to our previous
work, this method relies on wave propagation models and
beamforming maps. Experiments carried on an undamaged and
a damaged metal plate in a laboratory environment demon-

Scenario Range error [mm] Angle error [degree]
Scenario 1 3.007± 0.098 0.234± 0.0004
Scenario 2 10.766± 22.921 0.206± 0.134

Fig. 8. Average estimation errors and standard deviations on the lines
parameters obtained during the last measurement step for the two scenarios
in consideration. The errors are evaluated using 100 repetitions.

strate that this new approach achieves better results in terms
of accuracy and robustness with less algorithmic complexity.
In future works, this method shall be adapted and tested in
more realistic scenarios. Indeed, on a large metal structure in
outdoor environments, more complex and noisy signals are
expected due, for example, to inferior surface quality, to the
presence of anti-fouling coating on the plates, to more complex
plate geometries, or due to wave scattering caused by the welds
which fix the different plates altogether. Furthermore, adaptive
techniques shall be investigated to adjust the propagation
model and filter parameters which may no longer be assumed
known a priori. Also, a real robotic platform shall be used,
and active-sensing strategies shall be investigated to recover
the plate geometry efficiently.
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