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Abstract

Contextualised embeddings such as BERT have become de facto state-of-the-art references in
many NLP applications, thanks to their impressive performances. However, their opaqueness
makes it hard to interpret their behaviour. SLICE is a hybrid model that combines supersense
labels with contextual embeddings. We introduce a weakly supervised method to learn inter-
pretable embeddings from raw corpora and small lists of seed words. Our model is able to
represent both a word and its context as embeddings into the same compact space, whose di-
mensions correspond to interpretable supersenses. We assess the model in a task of supersense
tagging for French nouns. The little amount of supervision required makes it particularly well
suited for low-resourced scenarios. Thanks to its interpretability, we perform linguistic analyses
about the predicted supersenses in terms of input word and context representations.

1 Introduction

The form-meaning association relating words to their senses is a fundamental component of human lan-
guages. Hence, lexical semantics, that is, the representation of the meaning of words, is an important
research topic in computational linguistics. Processing word meaning is essential for the (compositional)
interpretation of larger units such as phrases and sentences. Therefore, computational lexical semantics
is, explicitly or implicitly, at the core of higher-level NLP tasks such as textual understanding, informa-
tion extraction, and automatic summarisation.

Much effort has been put in the manual and semi-automatic construction of resources encoding lexical
semantics (i.e., word meaning). These include semantic lexicons with inventories of possible senses that
lexical units can assume (e.g., Wordnet) and sense-annotated corpora specifying which of these senses
are employed in context (e.g., SemCor). Alternatively, real-numbered vectors can encode contextual co-
occurrence, acting as a proxy for a lexical unit’s semantics. This principle has guided the development of
numerous distributional semantic models, that is, semantic vector representations inferred from corpus
co-occurrences, e.g., Landauer and Dumais (1997). Advances in neural networks shifted the focus of
computational semantics to representation learning, so as to obtain vectors as by-products of neural
networks (Mikolov et al., 2013), In this booming field, a myriad of models have emerged, efficiently
learned from corpora, benefiting from high-performance neural architectures and libraries. Thus, vector
representations, rebranded word embeddings, have become the dominant technique to represent lexical
units, at the core of state-of-the-art neural approaches.

Traditional static embeddings, such as word2vec and Fasttext, assume that each word’s meaning can
be represented as a single vector, independently of its context. While generic and reusable, these models
usually conflate the different meanings of a given unit into a single vector (Camacho-Collados and Pile-
hvar, 2018). Contextual models, such as ELMo, GPT-2, BERT, and their variants, encode each word’s
occurrence as a context-dependent vector, assuming that each context corresponds to a different sense
(Yarowsky, 1993). In short, while static models create one generic embedding per lexical unit, contextual
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models provide a fine-grained distinct representation for each occurrence. Both models, but especially
the latter, are increasingly complex and opaque (Rogers et al., 2020), requiring advanced techniques to
help humans understand their strengths and limitations (Jawahar et al., 2019; Serrano and Smith, 2019).

Given this landscape, we introduce SLICE: an alternative semantic model which constitutes a trade-off
between static, interpretable symbolic senses and contextual word embeddings. We propose a weakly su-
pervised technique to build dense low-dimensional embeddings whose dimensions represent coarse-
grained semantic classes i.e., supersenses such as ANIMATE ENTITY and NATURAL OBJECT (Sec. 3).
Our lightweight model embeds both lexical units and their contexts into the same semantic space.
Thus, words and their contexts are represented as two compact vectors of directly interpretable scores,
one per supersense, automatically learned from a non annotated corpus. Our embeddings are assessed
in a supersense tagging setting (Sec. 4). Thanks to the model’s interpretability, we are able to perform a
rich linguistic analysis of the results, providing insights to understand the model’s predictions (Sec. 5).

2 Related Work

Our work is positioned at the crossroads of word and sense embeddings, interpretable semantic repre-
sentations, and weakly supervised semantic classification. We briefly review a sample of relevant work
on these topics.

Word and sense embeddings The literature on vector-space semantic representations is enormous,
ranging from traditional models such as LSA (Landauer and Dumais, 1997) to sophisticated deep con-
textualised embeddings such as BERT (Devlin et al., 2018). Although techniques are being constantly
improved, the main principle is stable across models: vectors represent a word’s usage (and meaning)
based on its distributional context (Harris, 1954). Embeddings have become commonplace in NLP, as
they naturally represent input (words) in state-of-the-art neural models. Although they can be randomly
initialised and learned, unsupervised pre-training on raw corpora is common (Turian et al., 2010).

Embeddings can be pre-trained as by-products of predictive neural language models (Mikolov et al.,
2013), by factorisation of the co-occurrence matrix (Landauer and Dumais, 1997; Pennington et al.,
2014), etc. Sub-lexical units (character n-grams) address linguistic variability, e.g., due to rich morphol-
ogy, non-standard text, and out-of-vocabulary forms (Bojanowski et al., 2017). Most of the models prior
to 2018 are static, assuming a single vector per word. These models suffer from meaning conflation, i.e.,
a single vector is created for ambiguous units, ignoring polysemous and multi-facet words.

Advances in neural networks triggered the development of contextual embeddings, with representa-
tions conditioned on the surrounding words. They can be obtained using stacked recurrent layers as in
ELMo (Peters et al., 2018), or attention-based transformers as in BERT (Devlin et al., 2018) and GPT-2
(Radford et al., 2018). In addition to their outstanding performances, these models address meaning
conflation: contexts correspond to (slightly) different senses and are modelled with a custom embed-
dings. On the downside, they are computationally heavy and opaque (Rogers et al., 2020), requiring
sophisticated techniques such as probing to interpret predictions (Jawahar et al., 2019).

Particularly relevant to our work are sense embeddings (Camacho-Collados and Pilehvar, 2018), in
which a lexical unit is associated to several vectors (as in contextual models), but with some generali-
sation across occurrences (as in static models). Unsupervised sense (multi-prototype) embeddings can
be obtained by adapting the objective of the learning procedure (Neelakantan et al., 2014), or with word
sense induction methods based on clustering, e.g., Panchenko et al. (2017). For interpretability, resources
such as Wordnet can be used to semantically enhance static embeddings (Faruqui et al., 2015) or to learn
representations for Wordnet synsets (Rothe and Schütze, 2015), supersenses (Flekova and Gurevych,
2016), or Babelnet senses (Camacho-Collados et al., 2016). Contextual models such as BERT can be
enriched with supersenses, predicted jointly with masked words during training, with observed improve-
ments in tasks requiring lexical semantics (?).

Interpretable semantic representations One of the most popular sense inventories in NLP is Wordnet
(Miller et al., 1990), in which words are grouped into synsets and linked to each other via lexical-semantic
relations (e.g., hypernymy, synonymy). For many years, the English Wordnet has been the basis of



sense-annotated corpora (Landes et al., 1998) and WSD research (Navigli, 2009). Babelnet (Navigli and
Ponzetto, 2012) is a semi-automatic multilingual lexicon similar to Wordnet and also quite popular for
performing WSD in languages other than English (Moro et al., 2014).

Supervised WSD relies on sense-annotated corpora specifying which of the senses in the inventory
are employed in context (Pasini and Camacho-Collados, 2020), e.g., SemCor for English Wordnet (Lan-
des et al., 1998) and Eurosense for Babelnet (Delli Bovi et al., 2017). The fine granularity of sense
inventories is often criticised as unrealistic (Navigli, 2009). One alternative is to represent senses using
top-level synsets in Wordnet’s taxonomy (e.g., ANIMAL, EVENT), referred to as supersenses, reached
via hypernymy relations (Ciaramita and Johnson, 2003; Schneider et al., 2016). This reduces the number
of labels at the expense of missing potentially relevant distinctions, often with positive impact on down-
stream applications such as dependency parsing (Agirre et al., 2011) and personality profiling (Flekova
and Gurevych, 2015).1 In our evaluation, we employ the FrSemCor corpus, a French corpus in which
nouns are annotated using Wordnet supersenses as semantic tags (Barque et al., 2020).

Although the set of 25 Wordnet top-level categories is quite popular, alternative representations with
even coarser granularity can be useful for downstream applications (Jahan et al., 2018), such as a three-
way classification of adjectives (Boleda et al., 2012) or animate vs. inanimate nouns (Øvrelid, 2006). We
understand supersenses as general coarse semantic distinctions. Our set of six semantic labels is related
to Wordnet supersenses, but there is not a 1:1 relation between our supersenses and Wordnet’s ones.

Weakly supervised semantic classification Many models have been proposed to induce lexical se-
mantics from raw corpora without supervision, e.g., (Lin, 1998), usually performing unsupervised WSD
as a by-product. Most methods rely on distributional clustering algorithms, e.g., (Biemann and Riedl,
2013). While automatically induced word senses are hard to interpret, they may be automatically labeled,
for example, using hypernym-induction patterns (Ustalov et al., 2019).

There have been several proposals to integrate interpretable representations such as supersenses with
continuous (unsupervised) representations, but they often rely on annotated corpora, such as Semcor
(Flekova and Gurevych, 2016) or sense inventories such as Wordnet (?). Our embedding learning pro-
cedure is not fully unsupervised, but uses weak supervision to bootstrap semantic classes from corpora.
Typical or non-ambiguous words can be used to produce sense-annotated data, which in turn enable
training classifiers for inducing lexical knowledge. This has been proposed in several studies, e.g., Mi-
halcea (2003), especially for polysemy pattern detection (Boleda et al., 2012), and adapted to semantic
frame induction using predicate-argument pairs (Jauhar and Hovy, 2017).

The method of Thelen and Riloff (2002) is similar to ours. They learn representations for six coarse
supersenses using pattern-based bootstrapping based on a small list of seed words. The features used to
learn senses are based on lexical patterns, syntactic co-occurrence, web queries, etc. (Qadir and Riloff,
2012). Instead of focusing on the features, our approach is more in line with current neural methods,
with features learned from the data jointly with the supersense classifiers.

3 Contextual and Lexical Signatures

The heart of SLICE consists in a series of binary classifiers, one per supersense. Each classifier takes
as input a context C and produces a score that indicates how likely C could be associated to a given
supersense si. This score, noted csi(C), is called a context score. A context C can be associated to a
d-dimensional vector, called its signature CS(C) = (cs1(C), . . . , csd(C))T , where d is the number of
different supersenses.2 The classifiers are also used to model the overall tendency of a wordw to occur in
contexts that are representative of a given supersense si. This information is modeled by the lexical scores
lsi(w), computed by aggregating the context scores of all occurrences ofw in a large corpus. A wordw is
therefore associated to a d-dimensional vector, also called its signature3 LS(w) = (ls1(w), . . . , lsd(w))T .
Such vectors can be compared to word embeddings produced by deep learning methods. The difference,
however, is that each dimension of a word signature corresponds to an interpretable supersense.

1A comprehensive list of downstream applications for supersense tagging can be found in Flekova and Gurevych (2016).
2In our case, d = 6, but the method can be applied to any number of semantic categories d ≥ 2.
3If necessary, we use the terms lexical signature and context signature to distinguish between these objects.



As stated above, SLICE relies on classifiers that themselves require, to be trained, supersense-
annotated corpora. Such corpora, when they exist, usually are of limited size and do not allow to build
reliable context and word signatures. This is why we propose a semi-supervised method not requiring
annotated corpora, but a list of representative words for each supersense, easier and cheaper to constitute.

3.1 Outline of the Method
We use as a starting point d disjoint sets of non-ambiguous words representative of each supersense;
these words are referred to as seeds. Seeds’ occurrences are deterministically annotated with their corre-
sponding supersenses in a corpus C, yielding a pseudo-annotated corpus that is used to train d classifiers,
one per supersense. More precisely, the method is composed of the following steps:

1. Manually compile d disjoint sets S1. . .Sd of positive examples, each containing lemmas that are
prototypical of supersenses s1 . . . sd.4

2. Automatically compile d sets S−1 . . .S−d of negative examples, each containing lemmas that do not
pertain to supersenses s1. . . sd. The set S−i is built by selecting lemmas randomly from ∪j 6=iSj .

3. For each supersense si, locate in a non annotated corpus C all occurrences of the words whose
lemmas are elements of Si or S−i . Words that come from Si are labelled 1 and those from S−i are
labelled 0. As a result, d pseudo-annotated corpora C1. . .Cd are produced.5

4. Train d classifiers P1. . .Pd respectively on C1. . .Cd. The classifier Pi takes as input a context C =
(W,k), where W = w1 . . . w|W | is a sentence and k is the position corresponding to the pseudo-
annotated word. Pi(C) returns a score 0 ≤ csi(C) ≤ 1, indicating how representative context C
is of class si. This score is the context score mentioned above. Contexts that are representative of
class si will have scores close to 1.

5. For each word w, extract from C all contexts C1 . . . Cn in which w occurs (contexts (W,k) such
that wk = w) and predict scores cs1(Cj). . . csd(Cj), 1 ≤ j ≤ n with P1. . .Pd. For each supersense
si, all scores csi(Cj), 1 ≤ j ≤ n are combined to form the lexical score lsi(w), which reflects the
tendency of word w to appear in contexts representative of supersense si. Finally, w is associated
to a d-dimensional vector, its lexical signature, composed of the lexical scores ls1(w) . . . lsd(w).

The preceding description outlines the main steps of our method, but leaves unspecified two important
aspects: the nature of the classifiers Pi used to compute context scores csi(c), and the way context scores
are aggregated into lexical scores lsi(w). They are discussed in the two following sections.

3.2 Context Scores
For each supersense si, context scores are computed by a binary classifier Pi trained to predict the classes
0 or 1 of the positive and negative seed occurrences wk in the pseudo-annotated corpus Ci. The classifiers
are trained on a variant of a masked language modelling task, trying to predict the pseudo-annotated
supersense of the masked word based on its context. In other words, we expect them to discriminate
between contexts that are representative of a given supersense (1) vs. context that are irrelevant (0).

In practice, the input of Pi is a context C = (W,k). Each word wj ∈ W is represented as a triple
(f, l,m) where f is the surface form of the word, l its lemma and m its morphological features (e.g.,
number=plural).6 Each element of this triple is represented as a randomly initialised embedding of size
500 for f and l and 64 for m.

The classifiers are made of two LSTMs: a left LSTM that processes the sentence from the first word
w1 to wk−1, and a right LSTM that processes the sentence backwards, from the last word w|W | to wk+1.
The hidden-state vector size of both LSTMs is equal to 300. Notice that the LSTMs ignore the pseudo-
annotated word wk. The final states of the two LSTMs are concatenated, along with the morphological

4Avoiding polysemous seeds is crucial to minimise the number of (inevitable) errors in automatic annotation.
5Sentences not containing any word in Si∪S−

i are discarded.
6Morphological features are represented as one-hot vectors whose positions correspond to lists of key=value pairs.



features of word wk, represented as an embedding of size 64. The resulting 664-dimensional vector is
fed to a multilayer perceptron (MLP) with one hidden dense layer of size 150. The output layer is of
dimension 2 corresponding to classes 0 (wk ∈ S−i ) and 1 to predict (wk ∈ Si), with softmax activation.

The LSTMs and the subsequent dense layer form a single network trained jointly. The loss function
used to train each Pi is categorical cross entropy, and the optimiser is Adam. We use a dropout of 30% to
prevent overfitting, that is, for each prediction, each lemma and form in the input have a 30% probability
of being masked. The size of the batches is equal to 128, and every 30,000 examples, the accuracy on the
development corpus is computed. If this accuracy is the best up to now, the model is saved, and if it does
not increase for the next 10 steps of 30,000 examples, training is stopped and the best model is kept.

3.3 Lexical Scores
Lexical scores lsi(w) reflect the tendency of word w to appear in contexts representative of class si. It
is a function of the contextual scores csi(C1) . . . csi(Cn), where C1. . .Cn are all the contexts in which
w occurs in the corpus C. A context C is representative of class si if its score csi(C) is close to 1 and
is not representative of class si when csi(C) is close to 0. Intermediate scores, close to 0.5, are less
informative, so their contribution to the lexical score should be lower than that of representative scores.

We use the parabolic function h(a) = (1 − 2a)2p to model this behaviour. It reaches its minimum
value 0 in the range [0 . . . 1] for s = 0.5 and its maximum value 1 for s = 1 and s = 0. Parameter
p controls the extent to which intermediate scores are taken into account, the higher the value of p, the
less intermediate values contribute to the lexical score (in our experiments, we arbitrarily set p = 8 upon
observation of the distribution of the predicted context scores). The lexical score lsi(w) is defined as the
average of its context scores csi(C,j) weighted by h(csi(Cj)):

lsi(w) =
1∑n

j=1 h(csi(cj))

n∑
j=1

h(csi(cj))× csi(cj)

4 Experimental Setup

We describe in this section the data we have used to build contextual and lexical signatures and the data
we will use in the following section to evaluate our method.

Supersense Tagset To guarantee a sufficient scope (with respect to the size of the seed lists) and to
simplify analysis, we grouped Wordnet supersenses into six coarser categories for our experiments on
French nouns (details in Appendix A). Animate entity (ANI) includes nouns referring to living and an-
imate entities, namely persons (e.g., agriculteur ‘farmer’) and animals (e.g., chiot ‘puppy’); Natural
object (NAT) is for nouns referring to natural entities (e.g., étoile ‘star’), plants (e.g., peuplier ‘poplar
tree’) and body parts (e.g., hanche ‘hip’); Manufactured object (MAN) is composed of nouns denoting
human-made or transformed entities: artifacts (e.g., chronomètre ‘stopwatch’) or built places (e.g., isoloir
‘voting booth’); Informational object (INF) includes nouns denoting abstract objects having informa-
tional contents (e.g., théorie ‘theory’), those referring to knowledge areas (e.g., ethnologie ‘ethnology’)
and financial assets (e.g., budget ‘budget’); Dynamic situation (DYN) gathers nouns denoting things that
happen or that are carried out, like actions (e.g., ablation ‘removal’), activities (e.g., cyclisme ‘cycling’)
and events (e.g., explosion ‘outbreak’); Stative situation (STA) is for nouns that denote properties (e.g.,
dignité ‘dignity’), states (e.g., endettement ‘easement’) and feelings (e.g., tendresse ‘tenderness’).

Seeds We used data provided by the Wolf, a French lexical resource automatically built from the Prince-
ton Wordnet (Sagot and Fišer, 2008), to draw up the six seed lists Si. A list of monosemous French nouns
has been extracted from this resource and then we manually selected 200 nouns for each coarser cate-
gory described above. For example, the seed list for the DYN class, contains nouns manually selected
from the Wolf nouns having only one supersense among those that denote dynamic situations. Selecting
monosemous seeds for pseudo-annotation of the corpus can bias the classifiers, which never encounters
polysemous words at training time, but only in test data. However, this should not be a problem, as the
we learn to classify contexts, not words. That is, the absence of polysemous words among the seeds
should not be problematic, assuming that most polysemous words in context are disambiguated.



Corpus and Preprocessing Experiments have been conducted on the frWaC corpus, which contains
about 1.6 billion words crawled from the web (Baroni et al., 2009). The corpus has been POS tagged,
lemmatised and morphologically analysed by an in-house parser trained on the French corpora of Uni-
versal Dependencies (Nivre et al., 2016). The corpus is divided into 55 parts of about 1M sentences each.
Part 54 is used as development corpus for early stopping, all other parts are used for training.

Positive and negative seed sets Si and S−i are split into a training set (80% of the lemmas) and a
development (20% of the lemmas). The training seeds are used to annotate the training corpus, while the
development seeds are used to annotate the development corpus. This is a deterministic process: each
occurrence of a word in Si (resp. S−i ) is annotated as 1 (resp. 0). We artificially balance the number
of training contexts in each corpus Ci to avoid biases related to different distributions of positive and
negative examples. Given the seed lists Si and S−i , we count the total number of occurrences of lemmas
from each list, Ni and N−i in C. If Ni < N−i , all sentences containing a lemma from Si are added to Ci.
Then, sentences containing lemmas from S−i are randomly added until at least Ni occurrences from S−i
appear in Ci. If N−i < Ni the seed lists are inverted. All other sentences are discarded.

Evaluation data The FrSemCor corpus was used for evaluation (Barque et al., 2020).7 It contains
manual annotations for more than 12,000 nouns in the Sequoia Treebank, a corpus of 3,009 sentences
from different sources including morphological and syntactic annotations (Candito and Seddah, 2012).
Noun tokens have been annotated with 24 supersenses adapted from the Wordnet supersense tagset.8 For
this experiment, we used 7,188 annotated nouns: 5,160 have been used for training, 1,015 for develop-
ment and 1,013 for evaluation.

5 Supersense Tagging

We have evaluated SLICE on a supersense tagging task because our model produces interpretable senses
that can be directly compared to senses used in semantically annotated corpora (FrSemCor, in our case).
Our model produces, for every word in context, a description of the context through the context signature,
and a description of the word usage through its lexical signature. Comparing different ways to combine
these two pieces of information is interesting from a linguistic point of view since it can lead to interesting
analyses of complex linguistic phenomena such as polysemy, multi-facet nouns, and unusual contexts
(e.g., manufactured objects MAN in contexts typical of animate beings ANI).

As a comparison point for the performances reached by SLICE, we have used a simple baseline, which
selects for every noun occurrence its most frequent supersense (MFS) in the training corpus. When the
word does not occur in the training corpus, the most frequent supersense across all words is selected.
This crude method gives better results as the training corpus grows, since the coverage grows with size
of the training corpus and selecting the most frequent supersense is a good heuristic (Navigli, 2009).

We also compare our model to a state-of-the-art model in other WSD tasks: a French-specific version
of BERT called FlauBERT (Le et al., 2020). We use the 1024-dimensional embeddings available in
FlauBERT-large as part of the HuggingFace library.9 For each target noun, we obtain its contextualised
embedding from the top layer and provide it to an MLP identical to the one described in Section 5.2.
Tokenisation incompatibilities due to BPE encoding are rare (e.g., 50/1,013= occurrences in the test
corpus); they are resolved by taking the noun’s last subtoken before the word separator as its embedding.

In our model, the decision to tag word w in context C with a given supersense is taken based on the
lexical signature of w and the context signature of C.10 They are combined to yield a word-in-context
signature Ψ(LS(w),CS(C)), which is also d-dimensional. The component corresponding to the highest
score is selected as the predicted supersense for w in C:

ŝ(w,C) = argmax
1≤i≤d

Ψi(LS(w),CS(C))

7https://frsemcor.github.io/FrSemCor/
8 The Wordnet supersenses tagset, also known as Wordnet Unique Beginners (Miller et al., 1990), is composed of 25 nominal

supersenses. Small adjustments have been made for the annotation of French nouns (Barque et al., 2020).
9https://huggingface.co/

10In practice, our experiments use a word’s lemma signatures instead of surface forms.

https://frsemcor.github.io/FrSemCor/
https://huggingface.co/


α 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
acc. 51.83 54.99 58.05 61.01 62.59 64.46 65.55 66.35 66.34 65.84 64.36

Table 1: Accuracy of the linear model for different values of α on the training set.

config. Ref Lex Cont occ ratio LM MLP
AAA A A A 424 0.42 1.00 0.96
AAB A A B 228 0.23 0.84 0.86
ABA A B A 101 0.10 0.41 0.67
ABC A B C 155 0.15 0.10 0.65
ABB A B B 105 0.10 0.00 0.65

Table 2: Grouping word occurrences of the test set in 5 configurations. Column Ref shows the correct
supersense for a word occurrence, column Lex shows its best lexical scoring supersense and column
Cont, its best contextual scoring supersense. Column LM reports the accuracy of the Linear Model (with
α equals to 0.7) and column MLP, the accuracy of the MultiLayer Perceptron.

The main missing part in this model is the nature of function Ψ that combines lexical and contextual
signatures. We discuss in the two following sections two instantiations of function Ψ.

5.1 Linear Model

The linear model (LM) simply performs a linear combination of vectors LS(w) and CS(C):
Ψ(LS(w),CS(C)) = αLS(w) + (1 − α)CS(C). This model has one parameter: α, which value has
to be estimated on the training corpus. The accuracy on the training set for different values of α has
been represented in Table 1. We observe that, when only the lexical score is taken into account (α = 1),
the model achieves an accuracy of 64.3%. It is equal to 51.83% when the decision is based on the only
account of the context score. The optimal value is α = 0.7, that reaches an accuracy of 66.35% on the
training set and an accuracy of 65% on the test set.

In order to get a better understanding of the results obtained by the linear model, we have grouped
the noun occurrences into 5 configurations, described in Table 2 and calculated the accuracy of the
linear model for each of them. The configurations compare for each noun occurrence, the correct su-
persense (column Ref), the best lexical scoring supersense (column Lex) and the best contextual scoring
supersense (column Cont). In configuration AAA, all three candidates are equal (Ref=Lex=Cont). In
configuration AAB, Lex is correct and Cont is wrong while in configuration ABA, Lex is wrong and
Cont is correct. In configuration ABC both Lex and Cont are wrong but they are different, while in
configuration ABB they are both wrong and equal to each other. Column 5 reports the number of occur-
rences that fall in each category. Column 6 gives the ratio of each configuration and column 7 shows the
accuracy of LM for every configuration.

The table reveals that in 25% of the cases (configurations ABC and ABB), both L and C are wrong
and the linear model behaves very poorly. This was expected, since the model just makes a linear
combination of the lexical and contextual scores. The model also behaves poorly in configuration ABA,
where Cont should be selected. This is due to the high value of α that tends to favour lexical scores over
contextual ones. Linearly combining lexical and contextual signatures with a fixed weight is clearly not
an adequate model.

5.2 Multilayer Perceptron

In the MLP model, Ψ is a complex non linear function learned by a neural network that combines the 12
scores that constitute the lexical and contextual signatures. The model chosen is a simple MLP with two
hidden layers. Its parameters are learned on the training part of FrSemCor by minimising the categorical
cross entropy between the six supersenses. The MLP model achieves an accuracy of 83.02% on the test
corpus, an increase of 18.02% absolute with respect to the linear model. The behaviour of the MLP
model in the 5 configurations is indicated in the last column of Table 2. As one can see, the predictions
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Figure 1: Learning curves for FlauBERT (green), SLICE with the MLP (red), and MFS (blue).

Supersense Rec. Prec. F
ANI 94.02 95.16 94.59
NAT 72.73 86.49 79.01
MAN 75.00 83.61 79.07
INF 79.07 76.84 77.94
DYN 88.82 81.84 85.19
STA 60.87 69.42 64.86
Macro-avg. 78.42 82.23 80.11

ANI NAT MAN INF DYN STA Σ

ANI 236 1 2 2 7 3 251
NAT 2 32 1 0 3 6 44
MAN 2 2 51 5 7 1 68
INF 3 0 2 136 17 14 172
DYN 2 2 3 18 302 13 340
STA 3 0 2 16 33 84 138
Σ 248 37 61 177 369 121 1013

Table 3: On the left, MLP’s precision (Prec.), recall (Rec.) and F-measure (F) per supersense. On the
right, supersenses confusion matrix, where reference supersenses index rows and predicted ones index
columns.

made in configurations ABC and ABB are much more satisfactory. Accuracy jumps from 10% to 65%
in configuration ABC and from 0% to 65% in configuration ABB.

Figure 1 shows the learning curve of SLICE+MLP, the most frequent supersense baseline (MFS), and
FlauBERT models. With 300 words in the training set, the MLP model reaches an accuracy of 70%,
while the MFS model reaches 31.5%. The difference between the two models decreases as the size of
the training set increases. The MFS model accuracy exceeds the MLP’s when the size of the training
data reaches approximately 4,000 words. FlauBERT is the best performing method after 600 words in
the training set, reaching a maximum accuracy of 89.8% on the full training corpus. Notice, however,
that FlauBERT embeddings are 85 times larger than ours and were trained on a corpus about 6 times
larger than ours. Moreover, the analyses presented in Section 5.3 are only possible in our model, thanks
to its interpretability.

Table 3 gives a more detailed view on the MLP predictions. The table on the left hand side displays the
precision, recall and F-measure for each supersense. It shows that the model behaves very differently on
the different supersenses: supersense ANI obtains the best result, with an F-score of 94.59%, while STA

behaves poorly and reaches an F-score of 64.86%, mainly due to its low precision. The confusion matrix
on the right hand side reveals that STA is mostly confused with DYN, a confusion partly due to nouns per-
taining to both categories, such as déshydratation ‘dehydration’, reconnaissance ‘recognition/gratitude’
or grossesse ‘pregnancy’.



Contextual signature Lexical signature Ref MLP
ANI NAT MAN INF DYN STA ANI NAT MAN INF DYN STA

organisme 0.22 0.87 0.19 0.15 0.17 0.09 0.92 0.04 0.04 0.29 0.05 0.01 NAT ANI
demande 0.16 0.04 0.04 0.46 0.11 0.04 0.02 0.01 0.07 0.91 0.60 0.44 DYN INF
verger 0.19 0.90 0.16 0.01 0.58 0.08 0.29 0.87 0.61 0.02 0.13 0.02 MAN NAT
cas (1) 0.01 0.84 0.87 0.26 0.12 0.42 0.09 0.08 0.41 0.68 0.23 0.27 STA MAN
cas (2) 0.58 0.11 0.34 0.74 0.57 0.03 0.09 0.08 0.41 0.68 0.23 0.27 DYN INF

Table 4: Contextual and lexical signatures for noun tokens in the test set, where the reference class (4th
column) is not the one predicted by the MLP model (5th column).

5.3 Error Analysis

A manual analysis of the results revealed that one key source of errors are nouns having multiple mean-
ings, be they polysemous or multi-facet nouns11. They account for 43.4% of the lemmas involved in
errors. As a reminder, polysemous nouns have distinct and mutually exclusive meanings. For exam-
ple, organisme ‘body/organisation’ can denote a natural object (NAT) or an institution (ANI) but a single
occurrence of this noun cannot denote both. Multi-facet nouns, on the other hand, have multiple but com-
patible meanings, a property that can be highlighted by copredication (Cruse, 2002; Ježek and Melloni,
2011). For instance, demande ‘request’ denotes both the request (DYN) and the subject of the request
(INF). In some contexts, both facets are triggered, such as La demande effectuée par la présidente n’a
pas été acceptée. ‘The request from the president was not granted’.

Table 4 shows five cases of errors involving multiple meaning words and details their lexical and
contextual scores12. In row 1, an occurrence of the polysemous noun organisme ‘body/organisation’ is
incorrectly labelled ANI instead of NAT. An analysis of the scores reveals that although the context gives
a clear preference for the correct sense (NAT), its lexical score is extremely low, while the score of sense
ANI is high, provoking the selection of the incorrect sense.

The lexical signature of the word demande ‘request’, in row 2, clearly reflects its multi facet nature,
both facets (INF and DYN) obtain the best and second best scores. However, contrary to annotators, the
model considered the context as more representative of the INF class.

Another source of errors concerns questionable annotations in the gold data, where decisions made
on class delimitation can be debated. For instance, verger ‘orchard’ or potager ‘vegetable garden’ refer
to natural objects, but because they are also human creations, they have been classified as MAN in the
reference. Our model, however, votes for the NAT class, relying both on contextual and lexical cues. It is
interesting to note that the human-made aspect of this natural object seems to be captured in the lexical
signature (second best score for MAN).

Gold annotation can also be questioned for nouns that are hard to classify. Notable among those
are general nouns such as fait ‘fact’ or cas ‘case’, that can be used to characterise multiple referents
and do not clearly pertain to one of the considered supersenses. The two occurrences of cas, rows
4 and 5, illustrate these noun properties: the best lexical score is rather low (0.68 for INF) and the
gold supersenses, determined by the reference-driven annotation method, are not clearly captured in the
contextual signatures.

Linguistic phenomena responsible for the association of several meanings to a single lexical form
are thus numerous: homonymy, polysemy, facets, general units having heterogeneous referents. Our
interpretable embeddings allow to observe these phenomena and investigate whether these different types
of ambiguity or indeterminacy appear as structural properties of our embeddings. They also allow us to
take a critical look at the linguistic data we used to learn them, namely the composition of seed lists
with respect to the target semantic class, the corpus used to learn lexical signatures or the method used
to compute lexical scores. For example, knowing that our model does not classify organisme as NAT,

11In a word supersense disambiguation task, which consists in selecting the appropriate supersense of a word in a list of
predefined supersenses (generally from the Princeton Wordnet), errors are always due to words having multiple meanings. As
for supersense tagging, monosemous words can be misclassified, as well as polysemous ones, since word supersenses are not
predefined.

12Complete sentences are given in Appendix B.



surely because the word is not detected as pertaining to this class in the lexicon, leads us to the following
assumptions: nouns related to the body domain may not be well represented in the seed list for NAT;
or the body meaning of organisme is not frequent enough in frWac, at least in contexts discriminant
for the NAT class; or the method we used to compute lexical scores does not properly take into account
differences between balanced vs. biased meanings for a given noun. In other words, our model of
lexical representation opens the way to several linguistic studies that could allow the prioritisation of
ambiguities (e.g., a confusion between the meaning of a polysemous word is more problematic than a
confusion between facets of a multi-facet word), and hopefully help supersense tagging and WSD.

6 Conclusions

We have presented a method to learn interpretable embeddings using as weak supervision a list of seed
nouns for each supersense. We use the occurrences of seed (prototypical) nouns to train a classifier which
associates contexts to supersenses. The context scores are aggregated to generate a single lexical score
per supersense. Each of these scores are seen as an interpretable dimension of a dense word embedding.

We have evaluated our method on a supersense tagging task to predict in-context coarse supersenses.
In addition to a good performance with very little training data, our method’s interpretability allows
us to analyse the results in terms of the (supersense) dimensions of the input embeddings. Moreover,
our model is considerably faster and lighter than state-of-the-art contextualised embeddings, e.g., we
represent inputs as a set of 12 scores whereas FlauBERT uses 1024-dimensional opaque vectors.

We have also built and released the lexicon containing the 10K most frequent French nouns of the
frWaC and their corresponding embeddings. We hope that this resource can be complementary to existing
embeddings and lexical semantic resources. The lexicon, along with the seed lists, predictions and
evaluation data are freely available.13

We have applied our method to nouns only, and our embeddings are 6-dimensional (one per coarse
supersense), certainly lacking expressive power to cover the full range of semantic distinctions. In theory,
there is nothing that prevents us from increasing the number of dimensions (e.g., to cover the traditional
Wordnet supersenses), and to experiment with other parts of speech (e.g., verbs and adjectives). In
practice, the list of seeds for some supersenses may be too small (e.g., TIME), and we lack annotated
corpora to evaluate the method for other POS in French. The sensitivity of the method to the number
of seed elements needs to be studied in more detail in the future. Another issue that remains open is
the integration of embeddings with different POS tags: should we build a different model per POS (with
different interpretable dimensions) or one single models in which inapplicable dimensions are empty?

As future extensions, we envisage integrating our embeddings in other downstream tasks such as
semantic parsing. We would like to generalise our method to other syntactic and semantic categories,
e.g., can we build interpretable embeddings in which each dimensions represents a given POS using seed
lists of verbs, nouns, etc.? Transformer models are a promising alternative to recurrent neural networks
to focus on relevant contexts for the classifiers.
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A Supersense Correspondences

Supersense Wordnet supersenses

Animate entity (ANI) Animal, Person
Manufactured object (MAN) Artefact
Natural object (NAT) Body, Plant, Object
Informational object (INF) Cognition, Communication, Possession
Dynamic situation (DYN) Act, Event
Stative situation (STA) Attribute, State, Feeling

Table 5: List of supersenses proposed in our work, and corresponding Wordnet supersenses.

B Analysed Sentences

• organisme (emea-fr-dev 00335)

En tant que peptide, la bivalirudine est logiquement catabolisée en ses acides aminés consti-
tutifs, avec recyclage ultérieur des acides aminés dans le pool de l’organisme.
‘As a peptide, bivalirudin is logically catabolized into its constituent amino acids, with subse-
quent recycling of the amino acids into the body’s pool.’

• demande (frwiki 50.1000 00458)

Le 16 juin 2006, les juges Renaud van Ruymbeke et Xavière Simeoni (qui remplace Dominique
de Talancé) ont adressé une nouvelle demande de levée du secret défense au ministère de
l’Économie et des Finances, seul habilité à saisir la commission consultative du secret de la
défense nationale (CCSDN).
‘On 16 June 2006, Judges Renaud van Ruymbeke and Xavière Simeoni (replacing Dominique
de Talancé) sent a new request for the lifting of defence secrecy to the Ministry of Economy and
Finance, which is the only body authorised to refer the matter to the Consultative Commission
on National Defence Secrecy (CCSDN).’

• verger (annodis.er 00416)

La visite du jardin de J.-P. Bruneau est également un moment attendu, lors des portes ou-
vertes organisées en juin dans ses 1.100 m2 de verger et potager : ”Cela permet d’échanger,
transmettre un savoir et partager une passion”.
‘The visit of J.-P. Bruneau’s garden is also an awaited moment, during the open house days
organised in June in its 1.100 m2 of orchard and vegetable garden: ”It allows to exchange, to
transmit a knowledge and to share a passion”.’

• cas(1) (emea-fr-test 00454)

Dans le cas où vous avez eu récemment une fracture de hanche, il est recommandé qu’Aclasta
soit administré 2 semaines ou plus après réparation de votre fracture.
‘If you have had a recent hip fracture, it is recommended that Aclasta be given 2 weeks or more
after your fracture is repaired.’

• cas(2)(emea-fr-test 00176)

Aucun cas d’hypocalcémie symptomatique n’a été observé.
‘No cases of symptomatic hypocalcemia have been observed.’
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