Impact of the 2018 Ambae Eruption on the Global Stratospheric Aerosol Layer and Climate
Corinna Kloss, Pasquale Sellitto, Bernard Legras, Jean-Paul Vernier, Fabrice Jegou, M. Venkat ratnam, B. Suneel Kumar, B. Lakshmi Madhavan, Gwenaël Berthet

To cite this version:

HAL Id: hal-03017697
https://hal.science/hal-03017697
Submitted on 23 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Copyright
Global perturbation of the stratospheric aerosol layer
and climatic impact associated with the Ambae
(Vanuatu) eruption of July 2018

Corinna Kloss1, Pasquale Sellitto2, Bernard Legras3, Jean-Paul Vernier4,5,
Fabrice Jégou1, Venkat Ratnam6, Suneel Kumar7, Gwenaëll Berthet1

1Laboratoire de Physique et Chimie de l’Environnement et de l’Espace, CNRS/Université d’Orléans,
UMR 7328, Orléans, France
2Laboratoire Interuniversitaire des Systèmes Atmosphériques Université Paris-Est Créteil and Université
Paris Diderot, CNRS, IPSL, UMR 7583, Créteil, France
3Laboratoire de Météorologie Dynamique, UMR 8539, CNRS – École-PSL/Sorbonne Université/École
Polytechnique, Paris, France
4Science Systems and Applications, Inc, Hampton, Virginia, USA
5NASA Langley Research Center, Hampton, Virginia, USA
6National Atmospheric Research Laboratory, Department of Space, Gadanki-517112, India
7National balloon facility, TIFR, Hyderabad, India

Key Points:
\begin{itemize}
 \item Two stratospheric eruptions occurred at Ambae in 2018, in April and July.
 \item Various satellite data reveal a significant impact on the global stratosphere.
 \item Radiative forcing values similar to that of recent moderate volcanic eruptions was
found.
\end{itemize}

This is a submitted version which is visible on this server
due to internal CNRS policy. The authors recommend the
published version doi:10.1029/2020JD032410 which is the
only one they recognize.
Abstract

During an extended volcanic unrest starting in 2017, two main moderate stratospheric eruptions occurred at Ambae volcano, Vanuatu, in April and July 2018. Observations from the geostationary satellite Himawari show that the April and July eruptions injected sulphate into the lower stratosphere at altitudes higher than 17 km for both events. While aerosol enhancements from the April eruption have only had an impact on the Southern Hemisphere, the plume from the July eruption was distributed within the lower branch of the Brewer-Dobson circulation to both hemispheres. Satellite (OMPS, SAGEIII/ISS and CALIOP) and in situ (POPS) observations show that the background aerosol is still enhanced one year after the July eruption (in the tropics and Northern Hemisphere). Radiative forcing calculations show that the Ambae eruption had the strongest climatic impact of the year 2018. This forcing is of the order of magnitude of other recent moderate volcanic eruptions, like that of Sarychev, Russia, in 2009. Thus, the Ambae eruption in 2018 has to be taken into account when studying the decadal lower stratospheric aerosol budget and in climate studies.

1 Introduction

Major volcanic eruptions and the subsequent injection of sulfur compounds into the stratosphere are episodic events and their occurrence is currently unpredictable. Sulphur-containing gaseous emissions from volcanoes, in particular sulphur dioxide (SO$_2$), are subsequently converted to secondary sulphate aerosols (e.g. Kremser et al. (2016)). These particles have a large lifetime because of their small average size and for the very limited wet deposition sink in the stratosphere. Additionally, they are very reflective and therefore have a big potential of cooling the climate system by the scattering of short-wave radiation. Depending on the magnitude of an eruption and geographical position of the volcano, the possible increased aerosol load in the stratosphere can have a strong impact on the Earth's climate (e.g. Robock et al. (2007), Kremser et al. (2016)). For example, the geographical extent of the impact of a major tropical volcanic eruption is usually larger than that of an eruption at higher latitudes. In this case, aerosols formed in the tropical lower stratosphere can be transported within the stratospheric large-scale circulation (the Brewer-Dobson circulation, BDC (Butchart, 2014)) to higher latitudes. In this way, aerosols resulting from a single eruption can be widely distributed around the globe, causing a significant 'global cooling' of the Earth’s climate. The meridional dispersion is closely related to the phase of the quasi-biennial oscillation (QBO) (Trepte & Hitchman, 1992; Punge et al., 2009). While an easterly shear leads to the confinement of aerosols and a stronger ascent over the equator, the westerly shear reduces the ascent and favors dispersion to mid-latitudes. Even without the occurrence of major (Pinatubo-sized, as defined in Robock et al. (2007)) eruptions, it is known that during the past two decades the stratospheric aerosol load was still dominated by smaller to medium sized volcanic eruptions (Solomon et al., 2011; Vernier et al., 2011; Ridley et al., 2014). Multiple moderate volcanic eruptions took place during that period, with stratospheric injection and stratospheric aerosol measured perturbation (Ridley et al., 2014). For example, during the Sarychev eruption (48°N and 153°E on the 12th of June 2009) 1.2 ± 0.2 Tg of SO$_2$ were injected into the upper troposphere and lower stratosphere (UTLS). The most recent examples for moderate volcanic eruptions are the eruptions of Raikoke (48°N and 153°E on the 22nd of June 2019) and Ulawun (5°S and 151°E on the 26th of June 2019), injecting sulfate material at 17 km (Marder, 2019) and 19.2 km (Allon, Aug 4 2019), respectively, into the stratosphere. Here, we study the impact of the Ambae (Vanuatu, 15°S and 167°E) eruptions of April and July 2018, on the global UTLS aerosol load and radiative balance. A special focus is given to the larger eruption of July 2018. Up to our knowledge, and even though the eruptions (especially the one in July) were quite intense, their impact on the atmosphere and the climate system have not been investigated yet. The paper is structured as follows. Methods and data sets used in the present study are described in Section 2. The April and July 2018 eruptions at Ambae are de-
scribed in Section 3. The stratospheric aerosol evolution during the year following the eruptions is analyzed in Section 4, including in situ observation of the plume. The climate impact of this stratospheric aerosol perturbation is estimated and discussed in Section 5. Conclusions are drawn in Section 6.

2 Methods

2.1 OMPS-LP aerosol extinction satellite data set

The Ozone Mapping Profiler Suite Limb Profiler (OMPS-LP), onboard the Suomi National Polar-orbiting Partnership satellite, is a limb instrument part of a limb-nadir suite, initially developed for the three-dimensional monitoring of the atmospheric ozone (Loughman et al., 2018; Bhartia & Torres, 2019). Due to its measurement geometry the relative strength of the aerosol backscattering signal is much larger for the northern hemisphere (NH) than for the southern hemisphere (SH). Cloud-filtered aerosol extinction profile measurements at 675 nm are provided from 2012 to now, in the 0-80 km altitude range, with a vertical resolution of ~1.6 km (Bhartia & Torres, 2019). A global coverage is produced within 3-4 days. Here, we use the 1.5 data version (Chen et al., 2018).

2.2 SAGE III/ISS aerosol extinction satellite data set

SAGE III/ISS (The Stratospheric Aerosol and Gas Experiment on the International Space Station) is a solar (and lunar) occultation measurement instrument onboard the International Space Station (ISS). We use the aerosol extinction data set version 5.1 at different wavelengths (384, 449, 521, 676, 756, 869, 1020 nm). Data are available from June 2017 onwards, with about 30 measurement profiles per day, between 60°S and 60°N. Aerosol extinction profile values are given on a vertical 0.5 km grid, between 0.5 and 40.0 km altitude with a vertical resolution of ~1 km. Along the line of sight between the instrument and the sun, the horizontal resolution is ~200 km, which is additionally extended by ~200 km along the direction of motion of the ISS. As we are focusing on altitudes above the tropopause, we use the cloud-unfiltered data set. The tropopause information is derived from MERRA-2 (Modern-Era Retrospective analysis for Research and Applications, Version 2) reanalysis.

2.3 Himawari brightness temperature

Himawari-8 is a geostationary satellite, stationed at 140°E, to cover East Asia and the Western Pacific region (Da, 2015). In this study, we make use of the infrared brightness temperature (BT) 6-hourly observations (Uesawa, 2009), which is part of the CSR (Clear Sky Radiance) product.

2.4 CALIOP

The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard the CALIPSO satellite is a nadir-viewing active sounder, operating since 2006. It measures the elastic backscatter at 532 nm and 1064 nm and the depolarization at 532 nm (Winker et al., 2010). It has a vertical resolution of 60 m below 20.3 km altitude and 180 m in the stratosphere (Winker et al., 2006).

2.5 POPS BATAL in situ observations

The Printed Optical Particle Spectrometer (POPS) was operated during the BATAL (The Balloon Measurements of the Asian Tropopause Aerosol Layer) campaign in 2019 in Hyderabad (17°N, 78°E), India. The primary goal of this campaign is the investigation of the ATAL (Asian Tropopause Aerosol Layer) (Vernier et al., 2018). Here, we use
POPS observations from one balloon flight on July 17th 2019. The instrument weighs around 800g and uses a 405 nm diode laser. POPS delivers aerosol number concentration and size distribution measurements in the size range 140-3000 nm (Gao et al., 2016). In this work, we make use of the cumulative concentration (cm\(^{-3}\)) for particle sizes from 0.15-0.18µm.

2.6 Radiative transfer modelling: UVSPEC radiative forcing

The daily-average regional shortwave surface and top of the atmosphere (TOA) direct radiative impacts are estimated using the UVSPEC (UltraViolet SPECTrum) radiative transfer model, as implemented within the LibRadtran Mayer and Kylling (2005) package (available at: http://www.libradtran.org/doku.php). Surface and TOA direct and diffuse shortwave spectra are computed in the range 300.0 to 3000.0 nm, at 0.1 nm spectral resolution. The solar flux spectra of Kurucz are used to force the simulations. The atmospheric state (vertical profiles of temperature, pressure, humidity and gas concentration) is set using the AFGL (Air Force Geophysics Laboratory) climatological standards for: 1) a summer mid-latitude atmosphere for simulations representing the average southern and northern hemispheric dispersion of the Ambae plume, and 2) a tropical atmosphere for the simulation representing the average early tropical dispersion following the initial Ambae stratospheric injection. Molecular absorption is parameterized with the LOWTRAN band model, as adopted from the SBDART code. The SDISORT method (the pseudo-spherical approximation of the discrete ordinate method (DISORT)) is then used to solve the radiative transfer equation. We perform clear-sky simulations. A baseline simulation is carried out, with the mentioned setups and a background atmosphere without volcanic aerosols. Then, we add the measured volcanic aerosols spectral extinction coefficient profiles from SAGEIII/ISS. The altitude ranges affected by the Ambae plume have been identified using the vertical profiles of the Angström exponent, as described in Sect. 5. In a similar manner as in Sellitto et al. (2016) and Kloss et al. (2019), for both the baseline and volcanic plumes configurations, we multiple-run the radiative transfer simulations at different solar zenith angles (SZA). Then, the daily-average shortwave TOA radiative forcing for the volcanic aerosol layer is calculated as the SZA-averaged upward diffuse irradiance for a baseline simulation without the investigated aerosols minus that with aerosols, integrated over the whole shortwave spectral range. Analogously, the shortwave surface radiative forcing is calculated as the SZA-averaged downward global (direct plus diffuse) irradiance with aerosols minus the baseline, integrated over the whole spectral range.

3 The Ambae volcanic unrest in 2017-2018 and the eruptions of April and July 2018

The Ambae or Aoba volcanic island (167° E, 15°S) is part of the Vanuatu archipelago, and located in its central sector. The explosive volcanic activity of Ambae results from the subduction of the Australian plate underneath the Pacific plate (Daniel et al., 1989). Its summit volcano reaches an altitude of almost 1500 m above sea level and includes 3 acid crater lakes. The volcano poses a significant volcanic hazard to the 11000 local inhabitants of the island (Bani et al., 2009). After an estimated 350-year volcanic quiescence (except for fumarolic and other hydrogeologic manifestation of its internal activity), a low-level activity resumed during the 1990s, followed by a strong eruptive phase starting from September 2017 (Moussallam et al., 2019). In 2018, a first paroxysm occurred on the 5th of April around 14 UTC, when a SO\(_2\)-rich eruption occurred with an estimated sulfur load of 0.10-0.15 Tg of SO\(_2\) (Carn, Apr 6 2018). Himawari observations show a plume with a core brightness temperature (BT) of 193 K, for this event (Fig. S1a). Co-located temperature profiles from ERA5 reanalyzes (Fig. S1b) indicate that this temperature corresponds to an altitude of about 17 km, which is taken here as a lower bound of the injection altitude which might be higher as the volcanic plume top is often colder.
than the ambient air (Woods & Self, 1992). In April, this was still the largest stratospheric volcanic sulfur emission since 2015. In July, however, the activity increased and entered its peak phase (activity phase 4, Moussallam et al. (2019)). A peak in sulfur emissions was observed on the 27th of July (Marder, 2019). During this peak eruptive phase, about 0.4 Tg of SO$_2$ was emitted into the UTLS (Marder, 2019). It hit the news as the largest eruption, in terms of atmospheric sulfur injection during 2018, emitting already three times more sulfate than all eruptions combined in 2017. The eruptive phase, even if declining in magnitude, lasted until September 2018. The maximum VEI (Volcanic Explosivity Index) was 3 during the peak activity (GVP, 2017 Sep 6 - 2018 Oct 30). We set our focus on the July eruption, which is the strongest in terms of emission burden and injection altitude for the 2018 active Ambae eruption phase. In Fig. 1 we show Himawari hourly BT in the 10.4 µm window around the Ambae volcano location on July 27th, 2018. The cold plume is apparent starting from 01:00, developing in the following hours with a fairly clear sky environment and dispersing eastwards due to the dominant UTLS easterly winds until it is unrecognizable as it merges with clouds (Fig. 1a). Fig. 1a likely shows the initial ash injection and/or condensed volcanic water clouds in this initial phase. In Fig. 1b, an enlarged view of the initial plume at 02:00 of July 27th is given, showing that the lowest BT at the core of the plume is around 205 K. Co-located ERA5 temperature profiles show that this temperature is found around the tropopause and lower-stratosphere, either at 14 or 18 km altitude. We thus conclude that this injection was at least partly stratospheric. Observations of SO$_2$ plume altitude with IASI (Infrared Atmospheric Sounding Interferometer) confirm a plume injection above 15 km, for this event (Aeris, Jul 2018). Unfortunately, there were no conveniently located orbits of CALIPSO that day.

4 Global aerosol dispersion of the Ambae plume in the lower stratosphere

To study the horizontal, global distribution of the enhanced aerosol layer in the lower stratosphere, an overview of OMPS-LP aerosol extinction observations, over the course of one year after the main eruption in July 2018, is shown in Fig. 2. For the first sulfur rich eruption at Ambae on April 5th 2018, we see a residual aerosol extinction enhancement in the lower stratosphere (up to 18 to 19 km altitude) 30° in longitude further west of the Ambae location (Fig. 2a). The volcanic plume was likely transported westwards at around 17 km altitude. For the more intense Ambae eruption on July 27th, a first aerosol extinction enhancement at 19-20 km altitude (reaching 1 km higher than the previous Ambae eruption) is observed around 10° further east at latitudes consistent with the Ambae location (15°S) in the end of July (Fig. 2b). We suspect that there has been a Kelvin wave that had the right phase at the same time. This is consistent with the fact that the eruption occurred in a clear sky area with convective activity concentrated eastward (to be checked/changed, Bernard). One month later the plume has been distributed in both directions East and West (Fig. 2c). With the dominating eastward transport, the plume propagated fast over the Pacific. The westward propagation over the Indian Ocean has been quite slow and the plume has stayed a long time over New Guinea. Within two months (by the end of September, Fig. 2d), the tropics in the SH, but also a part of the NH tropics, are filled with a dense enhanced aerosol layer. Fig. 3 shows CALIOP vertical profile observations and the latitudinal distribution of aerosols, at this stage of the dispersion of the plume (in early September). A dense, vertical localized, aerosol layer between about 17 and 21 km is observed, between around 15°S and 5°N. CALIOP vertical and horizontal distributions of the Ambae volcanic aerosol plume at the end of September is shown in Fig. S2. At this time, most of the global tropics, especially in the SH, are affected by this UTLS plume. At these altitudes, a typical expected time scale of sulfates formation from SO$_2$ emissions is a few weeks (e.g. Stevenson et al. (2003)), which is consistent with OMPS-LP observations. From there, the newly formed aerosol layer is slowly distributed to higher latitudes, in both hemispheres, within the shallow branches.
Figure 1. (a) Himawari infrared brightness temperature (BT) hourly observations around Ambae volcano location (black triangle in the upper-left panel) on July 27th, 2018, from 00:00 (upper-left panel) to 14:00 LT (lower-right panel). All times are indicated in local time, LT. (b) Zoomed-in BT, with enhanced color scale, around Ambae for July 27th, 02:00. (c) ERA5 temperature profile at the location of the minimum BT of Fig. 1b (blue line) and a reference vertical line (yellow line) for 205 K.
Figure 2. OMPS Aerosol extinction distribution between 19 and 20 km (18-19 for a) altitude from summer 2018 to summer 2019 at 675 nm. Extinction values are averaged over the respective time frames. The red box indicates the position of the BATAL campaign 2019 (see BATAL observations in Fig. 4a).

of the BDC (Nov 2018-Feb 2019, Fig. 2e-g). Even though the eruption occurred in the SH, by February 2019 (Fig. 2g) the largest part of the enhanced aerosol signature on 19-20 km altitude is observed in the NH. This can be linked to the occurring phase of the QBO and the seasonal cycle. During summer 2018 the QBO was in its easterly phase in the lower stratosphere Newman et al. (Dec 2 2019). According to Trepte and Hitchman (1992) when the easterly shear is present, confinement within the tropical band is favored with respect to the dispersion to the mid-latitudes. Nevertheless, there is a seasonal displacement to the winter hemisphere during solstitial season (Punge et al., 2009) which on the contrary favors dispersion. Hence, the mid-latitude dispersion occurs mostly in the NH.

Six months after the eruption (Dec 2018, 6th, in Fig. 2f), when the tropical UTLS is filled with volcanic aerosol from Ambae, values are in average increased by 80% at 19-20 km altitude compared to the conditions prior to the eruption. In July 2019 (one year after the Ambae eruption, Fig. 2i) the mean aerosol extinction at 19-20 km is still enhanced by around 50%, however it cannot be excluded that other volcanic eruptions (e.g. Raikoke and Ulawun) and wildfires can have contributed at that point to the background aerosol. The enhanced aerosol extinction areas above south America (at 0-10°S and 50-130°W) in Fig. 2i might be linked to the Ulawun eruption, which occurred at 5°S and 151°E on June 27th 2019 and was then (as the Ambae plume) transported to the East.

In-situ POPS aerosol concentration measurements coupled with the mean OMPS aerosol extinction data for the red area in Fig. 2 confirm the temporal evolution (from Fig. 2) and add vertical information for the main event of July 2018 (Fig. 4). Fig. 4a shows enhanced aerosol concentration values in mid-July 2019 from balloon-borne in situ measurements on altitudes between ~16 and 24 km altitude. The measurements are representative for particle sizes from 0.15 to 0.18um. These aerosol enhancements are consistent with co-localized observed OMPS vertical profiles (Fig. 4b). This agreement helps tracing back the stratospheric aerosol enhancements in POPS measurements to the July Ambae eruption. Vertical-localized enhancements in Fig. 4a, below 20 km altitude can point to the presence of enhanced aerosol in the Asian monsoon anticyclone (i.e. the ATAL: Asian Tropopause Aerosol Layer, Vernier et al. (2015), Fadnavis et al. (2013)). Based on OMPS observations in Fig. 4b, an enhanced aerosol layer reaches the red area already
in October 2018 in the lower stratosphere at altitudes of around 18 km. The main bulk of the enhanced aerosol layer arrives in December 2018 at around 20 (± 2 km). In October and November 2018, the aerosol layer reaches the respective area on different altitudes, equivalent to an uplifting feature of ~0.6 mm/sec (3 km within 2 months). The velocity calculation is based on aerosol extinction values between 4 and 6 \(10^{-3}\) km\(^{-1}\).

This is in good agreement with the tropical upwelling velocity as analyzed in Abalos et al. (2015) and is very similar to what has been observed for aged forest fire aerosols for a similar area (0.64 mm/sec in Kloss et al. (2019)). No diabatic, radiative-based self-lifting of the plume is expected for this event, due to the very likely non-absorbing aerosols in the plume (Ditas et al., 2018). Between December and June, the aerosol layer remains on the same altitude range. Similar conditions are observed on the same latitudes around the globe. The April eruption on Ambae is not expected to play a significant role for the enhancements observed in Fig. 4b., due to its lower stratospheric impact (c.f. Section 3).

Figure 5 shows the zonal mean distribution as a function of latitude (60°S to 60°N) in mid-February 2019. The longitude range is chosen to exclude enhancement of tropospheric aerosols due to regional sources. At this time, 5 months after the eruption, the tropics are filled with an enhanced aerosol signal at 19-20 km altitude (Fig. 2g) and the aerosol plume is already globally, largely distributed and dispersed. Enhanced aerosol air masses already start descending in the extra-tropics at latitudes > 40°. The observed transport of the Ambae aerosols towards higher latitudes and descent nicely follow the mid-latitude descending lower branch of the BDC in the winter hemisphere. Enhanced aerosol extinction values are still observed above around 15°S (±10), the latitude band of injection at around 21 km (±2 km) altitude. This shows that while the plume has already efficiently been transported towards the north within the BDC, by February large air masses have still remained at injection latitudes. The observed descent within the lower branch of the BDC of 10 km within 3 months (1.3 mm/s) matches well the values given in Abalos et al. (2015). Fig. 5 shows a more substantial distribution towards...
Figure 4. (a) In situ POPS aerosol concentration measurements at 17.5°N and 78.2°E, observed during the BATAL campaign in 18/07/2019 for particle sizes from 0.15 to 0.18 µm. (b) OMPS aerosol extinction measurements (at 675 nm) averaged over 17-21°N, 76-82°E (location indicated with a small red area in Fig. 2) with 5-days averages. The point in time of the in situ profile from (a) is indicated with the black dotted line. White plus signs represent the mean tropopause altitude for the averaged profiles.

Figure 5. OMPS aerosol extinction data (at 675 nm) averaged for each 1° latitude bin between 10-15°N of Feb at 26-32°W.

the NH for the chosen time, suggesting a more efficient transport towards the north (as also suggested in Fig. 2). Figure 6 presents the time series of the mean aerosol extinction at two altitude levels respective to the tropopause altitude (1 to 2 km and 3 to 4 km above the tropopause) for four latitude bands (representative for the tropics, the mid-latitudes in the SH and NH and the North), from April 2017 to August 2019. The extended time interval prior to the Ambae eruptions displays the ‘background’ conditions. A non-volcanic event, the wildfires in British Columbia in mid-August 2017 that induced strong pyro-convection, shows up as a sudden smoke particle enhancement in the lower stratosphere (Khaykin et al., 2018). A distinguished transport pathway of this fire plume to the tropical lower stratosphere via the circulation of the Asian monsoon anticyclone is demonstrated in Kloss et al. (2019). Due to the large area averaged in Fig. 6, the impact of those smoke particles on the tropical lower stratosphere is hardly identified here. However, Fig. 6 suggests that the lower stratosphere at 30-90°N was still impacted by the 2017 Canadian fires in the end of June 2018, about two months longer than suggested by Yu et al. (2019). From the end of April to the end of June 2018, Fig. 6 shows enhanced aerosol extinction values in the mid-latitudes in the SH (30-50°S, blue line), that we attribute to the first intense Ambae eruption of April 2018. The increase in aerosol extinc-
tion is visible within both chosen altitude ranges (1-2 and 3-4 km above the tropopause, blue line in Fig. 6). Furthermore, a slightly enhancement of the background aerosol in the tropics at 1-2 km above the tropopause is visible (red line, April-July 2018 in Fig. 6b). The peak in aerosol extinction values in the tropics and SH, starting end of July 2018 at both altitude ranges shown in Fig. 6, is due to the stronger July eruption at Ambae. The aerosol enhancement reaches a maximum in the beginning of October 2018 with almost four times higher mixing ratios than prior to the main eruptive phase of Ambae. In the tropics and SH mean mixing ratios decrease and are back to ‘normal’ (i.e. prior to Ambae 2018 eruptions) 1-2 km above the tropopause, within 9 months (by March 2019). At higher altitudes (3-4 km above the tropopause in Fig. 6a) the decrease is lower and especially in the tropics, aerosol extinction values still double ‘background conditions’ in June 2019. The mean mixing ratios at northern higher latitudes increase and remain enhanced for more than 11 months, until July 2019 (1-2 km above the tropopause, Fig. 6b). This can be explained by the transport of plume air masses from the lower stratosphere in the tropics towards the poles within the BDC. While the July eruption shows a global impact on the lower stratosphere (i.e. increasing signatures in the tropics, SH and NH), only the SH seems to be impacted for the April eruption. Two factors play a role in explaining why the second eruption in July 2018 shows a globally bigger influence than the eruption in April 2018: 1st the sulfur emissions of the July eruption is by a factor of ∼4 higher and 2nd the injection altitude in April was lower (by at least 1 km, this is also confirmed by Fig. 6) and therefore the chances of a long-range transport within the BDC are lower. The enhanced aerosol extinction values in the NH have not yet decreased back to ‘prior’-Ambae conditions, when two new volcanic eruptions occur at the right end of the time interval displayed in Fig. 6. The increase in aerosol extinction values in the tropics and, in particular the SH, 1-2 km above the tropopause is associated with the Ulawun eruption (Papua New Guinea, June 2019). The distinct enhancement in the NH is associated with the strong Raikoke eruption (Russia, June 2019). The direct and fast injection of ashes followed by a decay is distinct of the Ambae case, for which the slow increase from end of July to the beginning of October 2018 (as well as from the beginning of April to the beginning of May 2018, for the April eruption) rather points to the in situ production of secondary aerosol. A direct injection of ash particles would result in a sudden aerosol increase, as it is observed for the Raikoke eruption. At its latitude (48°N), the tropopause is low and a direct injection of ash particles into the UTLS is very likely to happen, even from a moderate volcanic eruption. Other primary aerosol injections, like fire aerosols from the Canadian wildfire in summer 2017, produce a similar steep temporal signature followed by a decay (also visible in Fig. 6).

5 Optical properties of the volcanic plume and the global impact on the radiative balance

The Ambae plume evolution has also been observed with SAGEIII/ISS. This instrument, though providing sparser observations with respect to OMPS-LS due to its solar occultation geometry, has a better signal-to-noise ratio. In addition, spectrally-resolved observations are provided, i.e. at 7 different wavelengths between 380 and 1020 nm. This allows a further characterization of the plume’s optical properties. The spatial dispersion of the plume (Fig. S3a), and its vertical (Fig. S3b) and latitudinal evolution (Fig. S3c) are very similar to OMPS-LP observations discussed in Sect. 3. Based on this agreement, we use SAGEIII/ISS data to study the spectral dependency of the plume’s extinction. Figure 7a shows the aerosol optical depth (AOD) for the averaged plume observations from SAGEIII/ISS in three latitude bands: the tropics (20°S-20°N), the NH (50-90°N) and the SH (30-50°S), as also chosen in Fig. 6. The latitude band in the NH 50-60°N, rather than 50-90°N is due to the fact that SAGEIII/ISS does not perform measurements poleward of 60°. Different time intervals are chosen based on the picture drawn by OMPS-LP observations of Fig. 6, to represent the plume dispersion and the characteristic perturbation of the Ambae plume in the three latitude bands: from September
Figure 6. Mean aerosol extinction values 3-4 km and 1-2 km above the tropopause in the tropics (20°S-20°N: blue), in the mid-latitudes (30°-50°S and 30°-50°N) and in the North (50°-90°N).
28th 2018 to October 19th 2018 in the tropics, from March 1st 2019 to April 15th 2019 in the NH and from September 9th 2018 to November 4th 2018 in the SH. The plume has been identified, in the average SAGEIII/ISS vertical profiles, using a criterion based on the vertical variability of the computed Angström exponent (AE), using the aerosol extinction values at 449.0 and 869.0 nm. The AE is an optical proxy for average size particles, bigger AE point to the presence of smaller particles and vice-versa (Hulst & van de Hulst, 1981). Altitudes impacted by the volcanic plume are chosen where vertically-isolated regions with larger aerosol extinction (linked to an aerosol perturbation from the background conditions) and large AE (linked to smaller particles than background conditions) are simultaneously found. For the three averaged profiles, in the tropics, NH and SH, abrupt variations of the AE (larger values, generally >1.5, than at lower or higher altitudes) are found (Fig. 8), which are co-localized with unusual peaks in the aerosol extinction. This is a strong indication that these altitudes are linked to the Ambae plume. Large values of the AE (e.g. larger than 1.5) and aerosol extinction can be linked to small sulphate aerosol (e.g. Sellitto et al. (2016) and Sellitto et al. (2017)). In the present case, small sulphate aerosols result from the conversion to particles from the SO2 emissions of Ambae. Based on this, we find the vertical regions affected by the Ambae plume: from 16.5 to 21.5 km in the tropics, from 13.0 to 21.0 km in the NH and from 12.5 to 20 km in the SH. The averaged AE at these altitudes are 1.7, 1.8 and 2.0, respectively. During the dispersion, from the tropics to the SH and NH, the AE value increases, indicating further formation of small sulphate particles with time. From this definition of the latitudinal/vertical-dependent perturbation of the Ambae plume, the plume-isolated average AOD at different wavelengths are derived for a selection of wavelengths (Fig. 7a). A Large wavelength variability (much larger values in the near-ultraviolet than near-infrared) mirrors the large AE found and confirms that the plume is mostly composed of small particles, e.g. secondary sulphate aerosols. Larger values are found in the SH at later time frames, which point to a progressive build-up of a secondary aerosol plume from SO2. Typical AOD values of 0.008 to 0.012, in the near-infrared, and 0.006 to 0.008, in the visible, are found, which points to a sensible perturbation of the lower stratospheric aerosol extinction. This AOD perturbation is comparable, even if slightly smaller, to that of the record-breaking Canadian wildfire of 2017 Kloss et al. (2019). Furthermore, we calculated the shortwave radiative forcing (RF) of the Ambae UTLS plume using the UVSPEC radiative transfer model (the setup of the model is described in Sect. 2.7). As input parameters for the model, the SAGEIII/ISS latitudinally-averaged and Ambae-attributed aerosol extinction profiles are used. Some assumptions are needed, regarding the optical properties of the plume. Based on the above discussion, we assume that the plume is dominated by strongly reflective and small sulphate particles. Hence, typical values of the single scattering albedo (SSA, 0.99) and the asymmetry parameter (g, 0.5) for these particles are chosen. As these optical parameters are not measured, we perturbed our RF calculations with smaller SSA (down to 0.98) and larger g (up to 0.7). The perturbed RF estimations are shown in Fig. 7b, for three latitude bands (30-50°S, 20°S-20°N and 50-90°N). The surface and TOA RF are very similar, which is typical for highly-reflective particles. Correspondingly, a very small amount of energy is released to the atmosphere by the interaction of solar radiation and the plume as it is largely non absorbing. However, globally relatively large negative TOA RF values are observed, with values spanning from about -0.45 to -0.60 W/m^2. This is comparable to other previous, recent moderate stratospheric volcanic eruptions, like the ones from Sarychev, Kasatochi and Nabro (e.g. Ridley et al. (2014)).

6 Conclusions

The volcanic events of Ambae in April and July 2018 injected SO2 into the tropical UTLS, where aerosol particles were formed. The eruption of July 2018 produced a noticeable perturbation in the UTLS aerosol distribution on a global scale. With a dispersion in the lower stratosphere to the NH and SH within the lower branch of the BDC,
Figure 7. (a) Average plume Optical Depth (AOD) for the average SAGEIII ISS observations in the tropics (20°S-20°N: 28/09/2018-19/10/2018), in the Southern Hemisphere (30-50°S: 09/09/2018-04/11/2018) and in the Northern Hemisphere (50-90°N: 01/03/2019-15/04/2019). Time frames are chosen according to the increased aerosol extinction values as seen in Fig 6. (b) Daily average radiative forcing (W/m²) for the surface (SURF) and Top of the atmosphere (TOA) for SAGEIII ISS mean aerosol extinction profiles as described in Fig. 6.

Figure 8. Average vertical profiles of SAGEIII/ISS aerosol extinction at 384 (purple line), 521 (green line) and 869 nm (red line), and Angström exponent (blue line), for the tropics (a), NH (b) and SH (c). The profiles are average over Ambae-plume-impacted periods defined in the text.
it had a substantial impact on the global stratospheric aerosol extinction. It has previously been suggested that the Ambae eruption 2018 has had a very limited impact on the global climate (Marder, 2019). However, we have found a TOA radiative forcing of the same magnitude than previous widely studied moderate volcanic eruptions (e.g. Sarychev, Kasatochi, Nabro). In addition, the Ambae aerosols persisted for several months in the global stratosphere with a significant radiative forcing. We conclude that the Ambae eruption should be considered in future analyses of the integrated climatic impact of moderate stratospheric volcanic perturbations.

Acknowledgments

The authors acknowledge the support of Agence Nationale de La Recherche under grant ANR-17-CE01-0015 (TTL-Xing). Corinna Kloss was funded by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 409585735. The providers of the LibRadtran are gratefully acknowledged. Furthermore, the authors acknowledge the National Aeronautics and Space Administration (NASA), the SAGE III-ISS and OMPS teams, as well as the BATAL campaign coordinators.

Data availability: The SAGEIII-ISS aerosol extinction data set (version 5.1) is available at https://eosweb.larc.nasa.gov, the OMPS aerosol extinction data set (version 1.5) at https://daac.gsfc.nasa.gov/. Himawari and CALIOP data are provided by AERIS/ICARE data centre (https://en.aeris-data.fr/direct-access-icare/), the ERA5 data are available from Copernicus Climate Change Service (https://climate.copernicus.eu/climate-reanalysis). The data for the UVSPEC radiative forcing calculations can be requested from the corresponding author (pasquale.sellitto@lisa.u-pec.fr). POPS measurements have to be requested from the PI (gwenael.berthet@cnrs-orleans.fr).

References

Aeris. (Jul 2018). So2 total column from iasi (level 2). Retrieved 2019-12-14, from https://iasi.aeris-data.fr/so2/

Bhartia, P. K., & Torres, O. O. (2019). OMPS-npp l2 lp aerosol extinction vertical profile swath daily 3slit c1.5. doi: 10.5067/GZJJYA7L0YW2

Vernier, J.-P., Fairlie, T. D., Natarajan, M., Wienhold, F. G., Bian, J., Martin-

