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Efficient uncertainty propagation for photonics:
combining Implicit Semi-analog Monte Carlo (ISMC)

and Monte Carlo generalised Polynomial Chaos (MC-gPC)

Gaël Poëttea

aCEA DAM CESTA, F-33114 Le Barp, France

Abstract

In this paper, we build wellposed intrusive generalised Polynomial Chaos (gPC) based reduced
models for uncertain photonics. We solve the reduced models with a Monte-Carlo (MC) scheme.
Care is taken to highlight under which condition a reduced model (gPC based or not) is wellposed.
The analysis is carried out thanks to an analogy between the construction of reduced models
for uncertainty quantification and the construction of reduced models for kinetic equations. In
order to enforce the aforementioned wellposedness conditions, several strategies, inspired from the
hyperbolicity-preserving ones [1, 2, 3, 4, 5, 6, 7, 8] are reviewed, adapted and analysed. The
resolution of the reduced models is performed thanks to an astute combination of the Implicit
Semi-analog MC (ISMC, see [9]) scheme for photonics and of MC-gPC (see [10]) for uncertainty
propagation. This work demonstrates that MC-gPC can be efficiently applied to a stiff nonlinear
set of partial derivative equations if the MC resolution allows a fast convergence with respect to
both the time and spatial discretisation (the latter properties being allowed by ISMC). Several
benchmarks are investigated in the last section, they allow putting forward important aspects of
the new ISMC-gPC solver for uncertain photonics.

Keywords: Transport, Monte-Carlo, Numerical scheme, Photonics, ISMC, Uncertainties,
Sensitivity Analysis, MC-gPC

1. Introduction

In this article, we are interested in propagating uncertainties through the time-dependent, non-
linear, radiative transfer equations. The model has general form (see [11]):

1

c
∂tI(x, t, ω, ν) + ω · ∇I(x, t, ω, ν) + σt(T (E(x, t)), ν)I(x, t, ω, ν)

= σa(T (E(x, t)), ν)B(T (E(x, t)), ν) + σs(T (E(x, t)), ν)

∫
I(x, t, ω′, ν) dω′,

∂tE(T (x, t)) =

∫∫
cσa(T (E(x, t)), ν′) (I(x, t, ω′, ν′)−B(T (E(x, t)), ν′)) dω′ dν′.

(1)
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System (1) is relevant to describe the behaviour of photons incoming into cold media and is inten-
sively used for, amongst others, astrophysical applications [11, 12, 13, 14], atmospheric physics [15]
and optical imaging [16]. In the above equations, I and E are the unknowns of the system and
stand respectively for the intensity of radiation energy and the material energy. Variables t ≥ 0,
x ∈ Ω ⊂ R3, ω ∈ S2 and ν ∈]0,∞[ are respectively the time, space, angle1 and frequency variables.
The opacities σt, σa and σs are given functions of (x, t) or depend on E, often more commonly
expressed via T , the material temperature. They stand for the total, absorption and scattering
opacities. In particular, we have σt = σa + σs. Quantity c denotes the speed of light. Quantity

B(T, ν) = 2hν3

c2 (e
hν
kT − 1)−1 is the Planck function where h is the Planck constant and k is the

Boltzmann constant. The density of internal energy E(T ) depends on the material temperature
T (x, t) via an equations of state (eos) dE = ρCv(T ) dT with ρ the mass density and Cv > 0 the
heat capacity2 (constant for a perfect gas). Initial and boundary conditions must be supplemented
to system (1):

I(x, 0, ω, ν) = I0(x, ω, ν), E(x, 0) = E0(x), x ∈ Ω, ω ∈ S2, ν ∈]0,∞[, (2)

I(x, t, ω, ν) = Ib(t, ω, ν), t ≥ 0, x ∈ ∂Ω, ω · ns(x) < 0, ν ∈]0,∞[, (3)

where ns is the outward normal to Ω at x. System (1) together with initial and boundary conditions
(2) + (3) define the well-posed [17] mathematical problem we want to solve. In fact, in this paper,
we are going to consider a slightly simpler model commonly called the grey approximation. It
is obtained assuming the opacities are independent of ν and focuses on unknowns I(x, t, ω) =∫
I(x, t, ω, ν) dν and E(x, t):

1

c
∂tI(x, t, ω) + ω · ∇I(x, t, ω) + σt(E(x, t))I(x, t, ω)

= σa(E(x, t))B(E(x, t)) + σs(E(x, t))

∫
I(x, t, ω′) dω′,

∂tE(T (x, t)) = cσa(E(x, t))

∫
(I(x, t, ω′)−B(E(x, t))) dω′,

I(x, 0, ω) = I0(x, ω), E(x, 0) = E0(x), x ∈ Ω, ω ∈ S2,

I(x, t, ω) = Ib(t, ω), t ≥ 0, x ∈ ∂Ω, ω · ns < 0.

(4)

For the grey approximation, the Planck function resumes to B(E, ν) = B(T (E), ν) = B(T (E)) =
B(E) = aT 4(E) with a the radiative constant. In this paper, we are going to focus on (4) instead
of (1): considering (4) eases the next analysis and calculations without loss of generalities.

Now, in this paper, we are even interested in being able to accurately take uncertainties, in a broad
sense3, into account in system (4). When dealing with an uncertainty quantification problem, it is
common to explicit the dependence of the solution with respect to the uncertain parameters denoted
here by X. Without loss of generality in the following sections, we consider that X is a vector
X = (X1, ..., XQ)t of Q independent random variables of probability measure dPX =

∏Q
i=1 dPXi .

1Here, note that we use an abusive but concise notation in order to denote the integration on the unit sphere S2

with dω = 1
|S2|1S2 (w) dw. It is such that

∫
dω = 1.

2The heat capacity being strictly positive, T → E(T ) defines a bijection and can be inversed. Function E → T (E)
denotes this inverse.

3geometrical, in the opacities, in the heat capacity, in the eos, in the boundary conditions etc.
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It is always possible to come back to such framework4. As a result, solving the uncertain counterpart
of (4) resumes to solving the Stochastic PDE (SPDE)

1

c
∂tI(x, t, ω,X) + ω · ∇I(x, t, ω,X) + σt(E(x, t,X), X)I(x, t, ω,X)

= σa(E(x, t,X), X)B(E(x, t,X)) + σs(E(x, t,X), X)

∫
I(x, t, ω′, X) dω′,

∂tE(x, t,X) = cσa(E(x, t,X), X)

∫
(I(x, t, ω′, X)−B(E(x, t,X))) dω′,

I(x, 0, ω,X) = I0(x, ω,X), E(x, 0, X) = E0(x,X), x ∈ Ω, ω ∈ S2,

I(x, t, ω,X) = Ib(t, ω,X), t ≥ 0, x ∈ ∂Ω, ω · ns < 0,

X ∼ dPX .
(5)

System (5) is assumed wellposed5 ∀X ∼ dPX : in fact, we suppose that dPX is such that no
realisation X can lead to a singular problem (5). Under such condition, system (5) then even
respects a maximum principle, pointwise with respect to X ∼ dPX , see [17]. In the above problem,
we are mainly interested in the statistics6 of X → I(x, t,X) =

∫
I(x, t, ω,X) dω = aT 4

r (x, t,X)
where Tr is the radiative temperature, X → E(x, t,X) and X → T (x, t,X) at specified locations
x ∈ Ω and times t ∈ [0, t∗].

Of course, different values of X correspond to different fully decoupled deterministic equations:
in principle, there is no difficulty in solving such uncertain problems. The main issue comes from the
fact that exact propagation of uncertainties is very expensive from the computational point of view:
system (4) is often solved thanks to a Monte-Carlo (MC) scheme [24, 25, 26, 27, 28, 29]. MC schemes
imply tracking (NMC) particles on a geometry of interest and tallying their contributions in order
to solve (4). This resolution method is known to be efficient for high (3(x) + 1(t) + 2(ω) + 1(ν) = 7)
dimensional problems but costly. Running several deterministic MC computations for several (N)
values of X to propagate (non-intrusively) the uncertainties can consequently be prohibitive.

In [10, 30], a P -truncated generalised Polynomial Chaos (gPC) based reduced model of the
instationary uncertain linear Boltzmann equation has been introduced7. It is solved thanks to an
astute converging Monte-Carlo (MC) scheme [10]: the idea is to make the MC particles not only
solve the physical fields (x, t, ω) but also the uncertain one X. The uncertain counterpart is solved
on-the-fly during the MC resolution: instead of tracking N×NMC particles discretising the physical
space of variables (x, t, ω) in a non-intrusive way8, the methodology ensures about the same order
of accuracy with only NMC particles by discretising the whole space of variables (x, t, ω,X) with
an MC method to approximate the gPC coefficients. Similar approaches have been developed
for the Fokker-Planck equation [31] or for the quadratic Boltzmann equation [32, 33] or in an
eigenvalue/eigenvector computation (keff) context [34] and give promising results on other (usually
MC solved) physical models. For the linear transport equation, the spectral (i.e. fast) convergence

4At the cost of more or less tedious pretreatments leading to a controled approximation [18, 19, 20] and decorre-
lation [21, 22].

5Existence and uniqueness of the solution is ensured.
6i.e. mean, variance, histogram, sensitivity indices [23] etc.
7Note that the instationary uncertain linear Boltzmann equation is a particular case of (5) when ∂tE ∼ 0, i.e.

Cv � 1 for example.
8Hence tensorising the set of points for X and for (x, t, ω).
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of the built hierachical models has been numerically [10] and theoretically [30] demonstrated. The
approach in [10, 31, 33, 30], denoted by MC-gPC in the following, enters the class of intrusive9

gPC methods. It consequently demands some code modifications. To sum-up, with MC-gPC
(see [10, 30]), important gains with respect to non-intrusive methods have been observed in low to
moderate stochastic dimensions10 Q ∼ 1 − 10 with simple code modifications of an existing MC
code and without changing the HPC strategy11 of the code. The questions now are: is it possible
to generalise the methodology used in these papers to be able to solve a stiff nonlinear uncertain
transport equation such as (5)? Is the intrusive MC-gPC [10, 31, 33] solver still more efficient than
a non-intrusive solver for problem (5)? This paper documents and presents our efforts in order to
answer the latter questions. In this paper, we design an ISMC-gPC solver. It relies on the combined
material of [10] (for MC-gPC) and [9] (for ISMC12) plus some additional key ingredients proper to
the photonic problem we aim at addressing in this paper (mainly positiveness, boundedness and
moment preserving strategies).

The paper is organized as follows: in section 2, we study the conditions we must enforce for
the construction of a wellposed reduced model of (5) capturing the uncertainties. Wellposedness
preserving strategies, i.e. numerical strategies allowing to ensure the latter conditions remains
fulfilled during every computations, are also discussed in this section. Those are mainly inspired
from the hyperbolicity-preserving strategies of the literature [1, 2, 3, 4, 5, 6, 7, 36, 8] as similar
difficulties are encountered for the reduced models we build in this paper. In section 3, we recall
the ISMC solver from [9] and explain in which way we think it is a good candidate to be combined
to MC-gPC. The general sketch of an ISMC solver is also recalled. In section 4, the gPC based
reduced model of (5) is built and its MC resolution is presented. Care is taken to put forward where,
with respect to the algorithm described in section 3, modifications of a deterministic ISMC solver
must be made to take into account uncertainties on-the-fly during the MC resolution. Following
the descriptions of the next sections should allow the interested reader to perform the relevant
modifications to his own ISMC implementation. Section 5 is devoted to benchmarks and numerical
test-cases, section 6, to concluding remarks.

2. A well-posed reduced model for (5)

In [30], in a similar context but for the linear transport equation, efficient and competitive hier-
archical P -truncated gPC based reduced models are built. To do so, the stochastic Galerkin gPC
(sG-gPC) method [37, 38, 39, 40, 41, 42, 43, 44, 45, 46] is used. In the linear case, it is proven enough
to ensure wellposedness of the P−truncated models independently of the truncation order P . On
another hand, sG-gPC is known to fail for some nonlinear models, see [47, 8, 36, 5, 6, 7, 1, 2, 3, 4].
Numerical/robustness difficulties [8] are encountered and may question a code architecture if not a
priori taken into account and clearly understood. The efficient strategies to ensure by construction
the wellposedness of the reduced model are problem dependent, see [8, 5, 6, 1, 2, 3, 4]: they depend
on the structure of the nonlinear problem (elliptic, parabolic, hyperbolic etc.) and on its properties

9It does not propagates the uncertainties by relying on several runs of a black-box code.
10MC-gPC is based on gPC which is sensitive to the curse of dimension, see [10, 30].
11The HPC strategy we have in mind is commonly called replication domain, see [35]. It consists in replicating

the geometry on several processors and tracking several MC particles populations with different initial seeds in every
replicated domains. At the end of the time steps, the contribution of every processors are averaged. This parallel
strategy is particularly well suited to MC codes, taking advantage of the independence of the MC particles.

12ISMC is for Implicit Semi-analog Monte-Carlo.
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(maximum principle, regularity of the solution etc.). The strategies to enforce some of the desired
properties for the reduced model range from gPC-wavelet combination [47], Multi-Element gPC
[48], basis adaptation [49], nonlinear transformations [8, 5, 1, 4], filtering [3, 50], weighting [51, 7]:
in other words, many levers are now at hand, one mainly has to make sure choosing the relevant one
for its problem13. In this section, we want to anticipate and avoid beforehand14 potential numerical
difficulties such as the ones encountered in the aforementioned papers. This is why we here aim at
being able to build uncertainty capturing wellposed reduced model for (5). The questions now are:
is it possible to do so for nonlinear system (5)? Are there compatibility conditions? If yes, which
are they and how can we enforce them during the numerical resolution?

In order to answer the above questions, we are going to intensively use the material of paper [17].
Let us sum it up in the next lines. In [17], the author is interested in the wellposedness (existence,
unicity and uniform convergence) of system (1). In order to prove the property, the author builds
a Cauchy problem of unknown u = (I, E){

∂tu+Au+ Bu = 0,
u(t = 0) = u0,

(6)

where A is an accretive operator (see [52, 17]) and B is (at least) Lipshitz or (at best) Lipshitz and
accretive. With those properties for A,B, Crandall-Liggett theorem [52] states that the solution of
the time-discretised counterpart of (6) converges uniformly toward the unique existing continuous
solution of (6) for any given final time t∗ > 0. Now, in [17], A and B are not such that (6) exactly
coincides with (1): this is due to the introduction of a truncation ψ(I) of I within operator B.
The author needs this truncation ψ for operator B to have the desired properties: in a nutshell
(see [17]), operator B is Lipshitz if ψ is bounded and positive. This leads the author in [17] to
choosing a truncation of the form ψ(I) = max(0,min(I,B(ν,M))) where M > 0 is a constant. As
a consequence, if 0 ≤ I ≤ B(ν,M), then I = ψ(I) and (6) coincides with (1). The author then
only needs to be able to choose a relevant M in order to impose the previous inequality: thanks
to a maximum principle for (6), the author identifies a priori, thanks to the initial and boundary
conditions, the magnitude of the truncation constant M such that I = ψ(I). Once a proper M
chosen a priori, solving (6) is equivalent to solving (1) if fine enough computations are carried out,
see [17]. In the next paragraph, we are going to use the same kind of reasoning in order to build a
wellposed reduced model for (5).

Let us define what we call a reduced model: to reduce unknown (I(x, t, ω,X), E(x, t,X)), we
would like to look for unknowns of the form15

(IP (x, t, ω,X), EP (x, t,X)) = (IP (λI(x, t, ω), X), EP (λE(x, t), X)),
with λI(x, t, ω) = (λI0(x, t, ω), ..., λIP (x, t, ω)) and λE(x, t) = (λE0 (x, t), ..., λEP (x, t)).

(7)

In the previous expression, λI , X → IP (λI , X) and λE , X → EP (λE , X) are arbitrary at this
stage of the discussion. They will be chosen at the appropriate moment in this paper to enforce
wellposedness. Of course, amongst the possibilities for (IP , EP ) we can count

13Which is far from being simple nor obvious.
14Note that this anticipation gains relevance in section 5: robustness difficulties are encountered in practice with

sG-gPC if the material of this section is not applied, see section 5.3.
15In the next expression, we introduce equivalent notations which will be used all along the paper.
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– polynomials, i.e. gPC based approximations (i.e. sG-gPC). After all, in [10, 30], we had
no reason to resort to more elaborate reduced models. For linear problems, sG-gPC already
builds wellposed ones and is theoretically (spectral convergence [30]) and numerically (thanks
to MC-gPC [10]) efficient.

– But also more elaborate and more or less complicated ansatz such as nonlinear functions of
polynomials [8, 1, 4, 6], relaxation schemes [50], filtered polynomials [1, 3], piecewise poly-
nomials [48], weighted piecewise polynomials [51, 7], compositions of neurons (deep or not
neural networks) [53] etc.

When looking for an unknown of the form (7), we implicitly aim at trading dimensionality for size
in the sense that solving our reduced model now only supposes finding (λI(x, t, ω), λE(x, t)): the
vector of unknowns depends on (Q) less dimensions (i.e. they depend only on x, t, ω instead of
x, t, ω,X), but is now of size16 (P + 1) × 2 = (p1D + 1)Q × 2 instead of 2. Of course, in high
stochastic dimensions, P may be important (curse of dimensionality). In the following, (IP , EP ) is
called a truncation17 of (I, E) to insist on the analogy made with the material of [17].

Now, we would like truncation (IP , EP ) to be close to (I, E) solution of (5). We want to
identify conditions for (IP , EP ) to be an existing and unique solution of reduced model (we drop
the dependences with respect to x, t, ω for conciseness here)


1
c ∂tI

P (λI , X) + ω · ∇IP (λI , X) + σt(λ
E , X)IP (λI , X)

= σa(λE , X)B(EP (λE , X)) + σs(λ
E , X)

∫
IP (λI , X) dω′,

∂tE
P (λE , X) =

∫
cσa(λE , X)

(
IP (λI , X)−B(EP (λE , X))

)
dω′,

(8a)

X ∼ dPX . (8b)

Of course, (8) must be supplemented by initial and boundary conditions but we abusively omit them
in the later paragraphs for the sake of conciseness. In the above expression, we have only 2 equations
and 2× (P +1) unknowns. We have to build the equations that unknowns λI0, ...λ

I
P , λ

E
0 , ..., λ

E
P must

satisfy for (IP , EP ) to be a relevant reduced model for (5). Let us introduce the jacobian vectors
∇λIP and ∇λEP of general terms[

∇λIP
]
i

= ∂λIi I
P (λI0, ..., λ

I
P , X) and

[
∇λEP

]
i

= ∂λEi E
P (λE0 , ..., λ

E
P , X). (9)

Developping (8) and using the previous vector notation leads to



[
∇λIP

]t 1
c ∂t

 λI0
...
λIP

+
[
∇λIP

]t
ω · ∇

 λI0
...
λIP

+ σtI
P = σaB(EP ) + σs

∫
IP dω′,

[
∇λEP

]t
∂t

 λE0
...
λEP

 =

∫
cσa

(
IP −B(EP )

)
dω′,

(10a)

X ∼ dPX . (10b)

16where p1D denotes the order of the monodimensional in each stochastic directions.
17In an Uncertainty Quantification (UQ) context, it is more commonly called a metamodel or a surrogate model.
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The above system of equation is still of size 2. Let us now introduce additional hypothesis on the
truncation (IP , EP ). Let us assume that we have

IP (λI0, ..., λ
I
P , X) = fI(

∑P
l=0 λ

I
l φl(X)) and EP (λE0 , ..., λ

E
P , X) = fE(

∑P
l=0 λ

E
l φl(X)), (11)

where18 i ∈ R → fI(i) ∈ R and e ∈ R → fE(e) ∈ R are measurable scalar functions and
(φl(X))l∈{0,...,P} is orthonormal1920 with respect to the scalar product defined by dPX . With
this truncation hypothesis (10) becomes


f ′I(
∑
l λ
I
l φl)(φ0, ..., φP )

1
c ∂t

 λI0
...
λIP

+ ω · ∇

 λI0
...
λIP

+ σtI
P = σaB(EP ) + σs

∫
IP dω′,

f ′E(
∑
l λ
E
l φl)(φ0, ..., φP )∂t

 λE0
...
λEP

 =

∫
cσa

(
IP −B(EP )

)
dω′,

(12a)

X ∼ dPX . (12b)

Assume now that both f ′I , f
′
E are non-zero, then we can rewrite (12) as


(φ0, ..., φP )

1
c ∂t

 λI0
...
λIP

+ ω · ∇

 λI0
...
λIP

+ ΣtI
P = ΣIaB(EP ) + Σs

∫
IP dω′,

(φ0, ..., φP )∂t

 λE0
...
λEP

 =

∫
cΣEa

(
IP −B(EP )

)
dω′,

(13a)

X ∼ dPX , (13b)

where ΣIa,Σ
E
a ,Σt,Σs are related to σa, σt, σs. Due to the introduction of ΣIa and ΣEa , system (13)

is not necessarily (this depends on the choice of fI , fE) written in term of conservative variable
anymore. Independently of the above choice for fI , fE , we can now easily perform a Galerkin
projection by multiplying (13) by vector (φ0, ..., φl)

t and integrating the whole set of equations
with respect to dPX . Vector (λI , λE) must satisfy

1

c
∂t

 λI0
...
λIP

+ ω · ∇

 λI0
...
λIP

+

∫
ΣtI

P

 φ0

...
φP

 dPX = (14a)

∫
ΣIaB(EP )

 φ0

...
φP

 dPX +

∫
Σs

∫
IP dω′

 φ0

...
φP

 dPX , (14b)

∂t

 λE0
...
λEP

 =

∫∫
cΣEa

(
IP −B(EP )

) φ0

...
φP

 dPX dω′. (14c)

18At this stage, fI an fE are from R into R but we will see that wellposedness imposes some restrictions on the
output spaces.

19i.e. we have

∫
φl(X)φk(X) dPX = δk,l, ∀(k, l) ∈ {0, ..., P}2.

20Note that (φl)l∈{0,...,P} may be a gPC basis or not. It only needs the orthonormality condition at this stage of
the discussion.
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System (14) has the structure of a nonlinear multigroup transport system, see [54, 26]. The system
is closed once i → fI(i), e → fE(e) chosen and defined. Let us now sum up our logical chain of
thinking: we want to be able to choose truncation21 (IP , EP ) such that reduced model (10), in
which (λI , λE) satisfies (14), is wellposed. But before looking for the properties on (IP , EP ) for
wellposedness to hold, let us discuss on the interest of relying on a quite general methodology:

– If i→ IP (i) = i, e→ EP (e) = e then the above methodology builds the same reduced model
as in a classical sG-gPC framework [37, 38, 39, 40, 41, 42, 43, 44, 45, 46].

– If i → IP (i) = [∇λIs]−1
(i, e), e → [∇λEs]−1

(i, e) where i, e → s(i, e) is a strictly convex
function, then the methodology recovers the Intrusive Polynomial Moment (IPM) method
[8, 1, 4].

– If IP , EP are piecewise continuous functions then we recover ME-gPC [48, 49, 7].

– Other choices may lead to strategies closely related to the filtered gPC solver of [3, 50],
the maximum-principle satisfying moment one of [1, 4], the weighted ones of [51, 7] or the
hyperbolicity-preserving one of [5, 6]. Some of them will be discussed later on.

At this stage, the reader may wonder why all these remarks and analogies? Because if several
choices are available, some code architecture may be easier to modify. And, at this stage of the
discussion, we still do not know how to choose IP , EP for the resolution of the reduced model (8)
to be mathematically wellposed22, physically relevant23 and numerically efficient24.

We first would like to express conditions on truncation (IP , EP ) for (8) (complemented with
(7) and (14)) to be wellposed. For this, we intensively rely on an analogy between (8) and the
frequency dependent model (1) whose wellposedness is discussed in [17]. Between (1) and (8), there
are

– some similarities: the frequency ν ∈]0,∞[ in the first equation of (1) is replaced by X ∼ dPX
in the first equation of (8).

– And some differences: the second equation of (1) is integrated with respect to ν whereas the
second equation of (8) is not integrated with respect to X.

This analogy between the uncertain reduced model (8) and the kinetic model (1) is going to help us
identify relevant mathematical tools and theorems to identify the wellposedness conditions we aim
at characterising. Note that the analogy between uncertainty propagation via reduced models and
kinetic theory has already been put forward in several papers, see [1, 2, 33, 8, 36]. In a sense, this
section is one additional argument encouraging such analogy in order to obtain theoretical results
and have a better understanding of the uncertainty capturing models we build.

21or equivalently (fI , fE).
22this is the purpose of the current section 2.
23We will only verify experimentally that we build physically relevant reduced models in the numerical section 5.
24The preservation of the desired ISMC and MC-gPC numerical properties with respect to efficiency will be

discussed in sections 3–4 and will be numerically verified in section 5.
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As explained above, in order to characterise the wellposedness conditions for our reduced model,
we rely on a analogy between (1) and (8) and on the theory of accretive operators [17, 52]. The
first step is to define operators A,B such that (8) can be put under the form{

∂tu
P +AuP + BuP = 0,

uP (0) = uP0 ,
(15)

where uP ≡ uP (x, t, ω,X) = (IP (x, t, ω,X), EP (x, t,X)). Let us first define the norm we are going
to work with:

‖uP ‖(t) = 1
|Ω|
∫∫∫

Ω

∣∣IP (x, t, ω,X)
∣∣ dω dx dPX +

1

|Ω|

∫∫
Ω

∣∣EP (x, t,X)
∣∣ dxdPX . (16)

With the above choice of norm, having uP bounded is equivalent to having25 IP ∈ L1(Ω,S2, dPX)
and26 EP ∈ L1(Ω, dPX). But more importantly, if IP , EP are both positive, the norm of uP stands
for the total energy at time t in the whole geometry Ω of the system ’photon+matter’ for reduced
model (8).

According to [17, 52], it is enough characterising conditions for A to be accretive and for B
to be at least Lipshitz, at best Lipshitz and accretive, for system (15) to be wellposed. Crandall-
Liggett’s theorem [52] then ensures that for any given t∗ > 0, problem (15) has a unique solution
uP ∈ C0

(
[0, t∗] : L1(Ω,S2, dPX)× L1(Ω, dPX)

)
. In other words, if the above properties hold for

operators A,B, the solution of the built reduced model will be continuous: we would be in desider-
able conditions for gPC based reduced models to exhibit fast convergence rates [55, 30, 8].

Let us now decompose (15) into several operators and study them successively:

– Let us first rewrite A as A = L −D with

LuP =

(
cω · ∇IP

0

)
and DuP =

 cσs

∫
IP dω′ − cσsIP

0

 .

Defining A as above is convenient in practice because it corresponds exactly with operator
A of [17]: in [17], the author shows that L is accretive and D is Lipshitz, implying that A is
accretive.

Remark 2.1. Note that if B = 0 (i.e. ∂tE = 0), reduced model (15) coincides with the
balanced (σa ≡ 0) reduced model of the linear Boltzmann equation, see [10]. If σa 6= 0, it is
enough working with truncation ĨP = IP e−cσat in A to be in balanced conditions. In other
words, if B = 0, we are in the same conditions as in [10, 30]. The accretiveness of A here
introduce a new proof of the wellposedness of the sG-gPC reduced model studied in [10, 30]:
no particular conditions are needed on the truncation IP for wellposedness. It explains why
we can choose IP to be a gPC expansion IP =

∑P
l=0 Ikφl just as in [10, 30] without triggering

particular numerical difficulties.

25We have IP ∈ L1(Ω, S2, dPX) if 1
|Ω|

∫∫∫
Ω

∣∣IP (x, t, ω,X)
∣∣ dω dxdPX <∞

26We have EP ∈ L1(Ω, dPX) if 1
|Ω|

∫∫
Ω

∣∣EP (x, t,X)
∣∣ dxdPX <∞.
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– Let us now define operator B. Note that B is different from the one of [17]. Some work
consequently remains to be done. If B is (at least) Lipshitz, then system (15) is accretive.
Let us choose B as

BuP = B
(

IP

EP

)
=

 σa(EP )((IP −B(EP ))

−
∫
σa(EP )((IP −B(EP ) dω

 .

By definition, an operator R is Lipshitz if there exists a constant 0 < L < ∞ such that
∀(u1, u2) ∈ L1(Ω,S2, dPX)× L1(Ω, dPX),

‖Ru1 −Ru2‖ ≤ L‖u1 − u2‖.

Let (u1, u2) ∈ L1(Ω,S2, dPX)× L1(Ω, dPX), then

‖Bu1 − Bu2‖(t) = 1
|Ω|
∫∫∫

Ω

∣∣σa(EP2 )((IP2 −B(EP2 ))− σa(EP1 )((IP1 −B(EP1 ))
∣∣ dω dxdPX

+ 1
|Ω|
∫∫

Ω

∣∣∣∣∫ σa(EP2 )((IP2 −B(EP2 )) dω −
∫
σa(EP1 )((IP1 −B(EP1 )) dω

∣∣∣∣ dx dPX ,

≤ 2
|Ω|
∫∫∫

Ω

∣∣σa(EP2 )((IP2 −B(EP2 ))− σa(EP1 )((IP1 −B(EP1 ))
∣∣︸ ︷︷ ︸

|q(u1)−q(u2)|

dω dxdPX .
(17)

Now, let us assume that

Hypothesis 1. ∃C > 0 and La > 0 such that |σa(EP )| ≤ C and |σa(EP2 ) − σa(EP1 )| ≤
La|EP2 − EP1 |,

then

|q(u1)− q(u2)| =

∣∣∣∣ σa(EP2 )((IP2 − IP1 ) + (σa(EP2 )− σa(EP1 ))IP1
+σa(EP2 )(B(EP1 )−B(EP2 )) + (σa(EP1 )− σa(EP2 ))B(EP1 )

∣∣∣∣ ,
≤
∣∣σa(EP2 )(IP2 − IP1 )

∣∣+
∣∣(σa(EP2 )− σa(EP1 ))IP1

∣∣
+
∣∣σa(EP2 )(B(EP1 )−B(EP2 ))

∣∣+
∣∣(σa(EP1 )− σa(EP2 ))B(EP1 )

∣∣ ,
≤
∣∣σa(EP2 )

∣∣ ∣∣IP2 − IP1 ∣∣+
∣∣σa(EP2 )− σa(EP1 )

∣∣ ∣∣IP1 ∣∣
+
∣∣σa(EP2 )

∣∣ ∣∣B(EP1 )−B(EP2 )
∣∣+
∣∣σa(EP1 )− σa(EP2 )

∣∣ ∣∣B(EP1 )
∣∣ ,

≤ C
∣∣IP2 − IP1 ∣∣+ La

[∣∣IP1 ∣∣+
∣∣B(EP1 )

∣∣]× ∣∣EP2 − EP1 ∣∣+ C
∣∣B(EP1 )−B(EP2 )

∣∣ .
(18)

Let us first study the B(EP1 ) = aT 4(EP1 ) term. As dT
dE = 1

ρCv(T ) > 0, E → T (E) is strictly

increasing and T → B(T ) = aT 4 or E → aT 4(E) are strictly increasing: nothing prevents
them from going to infinity. Let us assume that

Hypothesis 2. ∃β0, β1 such that 0 < β0 ≤ ρCv ≤ β1 <∞.

Then dE = ρCv dT ensures that E − E0 =
∫ T
T0
ρCv(α) dα so that

β0 ≤ ρCv(α) ≤ β1,

β0(T − T0) ≤
∫ T

T0

ρCv(α) dα ≤ β1(T − T0),

β0(T − T0) ≤ E − E0 ≤ β1(T − T0).
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As a consequence, we have |T − T0| ≤ 1
min(β0,β1) |E − E0|. Let us introduce β = min(β0, β1),

we then have∣∣B(EP1 )−B(EP2 )
∣∣ = a

∣∣T 4(EP1 )− T 4(EP2 )
∣∣ ,

= a
∣∣T (EP1 )− T (EP2 )

∣∣× ∣∣T (EP1 ) + T (EP2 )
∣∣ (T 2(EP1 ) + T 2(EP2 )),

≤ a
β

∣∣EP1 − EP2 ∣∣× ∣∣T (EP1 ) + T (EP2 )
∣∣ (T 2(EP1 ) + T 2(EP2 )).

Using the above inequality in (18) yields

|q(u1)− q(u2)| ≤ C
∣∣IP2 − IP1 ∣∣

+La

[∣∣IP1 ∣∣+
∣∣B(EP1 )

∣∣+
Ca

β

∣∣T (EP1 ) + T (EP2 )
∣∣ (T 2(EP1 ) + T 2(EP2 )

)]
︸ ︷︷ ︸

K(EP1 ,E
P
2 )

×
∣∣EP2 − EP1 ∣∣ . (19)

In order to have the desired Lipshitz property, we need K(EP1 , E
P
2 ) to be finite and non-zero.

For this, it is enough having

min(|IP1 |, |B(EP1 )|, T (EP1 ), T (EP2 )) > 0 and max(|IP1 |, |B(EP1 )|, T (EP1 ), T (EP2 )) <∞.

Using the fact that B(E) = B(T (E)) = aT 4(E), we show that having

min(T (EP )) > 0 and max(|IP |, T (EP )) <∞, (20)

is proven enough.

Remark 2.2. In inequalities (20), the upperbounds may be easily earned: indeed, assume
X is a uniform random variable on [0, 1]27, then IP and EP are (nonlinear functions of)
polynomials on a bounded interval and are consequently bounded. The upperbound in (20)
mainly depends on EP → T (EP ) = TP , just as the lower bound in (20). So, in a nutshell,
the main effort consists in designing the truncation TP = T (EP ) of the material temperature.

In order to impose relevant conditions on the truncation (IP , EP , TP ) for (8) to be a relevant
reduced model for (5), we are going to intensively use the properties of system (5) and in
particular the maximum principle. The maximum principle for (5) states that if ∀X ∼ dPX ,
there exists Em(X), EM (X) such that

Em(X) ≤ E0(x,X) ≤ EM (X),∀x ∈ Ω, X ∼ dPX ,
B(Em(X)) ≤ I0(x, ω,X) ≤ B(EM (X)),∀x ∈ Ω, ω ∈ S2, X ∼ dPX ,
B(Em(X)) ≤ Ib(t, ω,X) ≤ B(EM (X)),∀t ∈ [0, t∗], ω ∈ S2, X ∼ dPX ,

(21)

then

Em(X) ≤ E(x, t,X) ≤ EM (X),∀x ∈ Ω, t ∈ [0, t∗], X ∼ dPX ,
B(Em(X)) ≤ I(x, t, ω,X) ≤ B(EM (X)),∀x ∈ Ω, t ∈ [0, t∗], ω ∈ S2, X ∼ dPX . (22)

We suggest using this a priori information to choose a relevant truncation IP , EP , TP for (8).

27In practice we can always come back to such condition.
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– From the maximum principle stated above, for any configuration of interest (i.e. for any set
of initial and boundary conditions) we can define a priori bounds with respect to X ∼ dPX :

Em = min
X∼ dPX

(Em(X), EM (X)) and EM = max
X∼ dPX

(EM (X), Em(X)), (23)

and use them in inequalities (20). Our candidate truncations (IP , EP , TP ) are going to be
chosen according to both (20) and (23).

– Finally, the conditions for a wellposed reduced model are not very constraining: we only have
to choose IP , EP , TP such that

λI0, ...λ
I
P , X → IP (λI0, ..., λ

I
P , X), (no particular additional hypothesis, see remark 2.2),

λE0 , ...λ
E
P , X → EP (λE0 , ..., λ

E
P , X), (no particular additional hypothesis, see remark 2.2),

λE0 , ...λ
E
P , X → TP (λE0 , ..., λ

E
P , X), satisfies (20).

(24)

Final condition (24) on truncation (IP , EP , TP ) is general enough: many relevant, with respect to
wellposedness, truncation candidates are at hand. We can not go through every of them. In this
paper, we are mainly going to consider two different ones:

– the most classical and obvious one is certainly to use some gPC expansions for IP and EP

IP =
∑P
l=0 λ

I
l φl,

EP =
∑P
l=0 λ

E
l φl,

TP = T (max(Em, E
P ))),

(25)

together with a truncation of TP inspired by the one in [17].

Remark 2.3. In truncation (25), we did not exactly take advantage of all the a priori knowl-
edge the maximum principle offers. We can also limit I and E from above, for example
with

IP = min(max(Im,
∑P
l=0 λ

I
l φl), IM ),

EP = min(max(Em,
∑P
l=0 λ

E
l φl), EM ).

(26)

These strategies will be considered and investigated later on. With truncation (25), we wanted
to insist on the less stringent conditions for our reduced model to be wellposed.

With truncations (25) and even (26), if the gPC expansion of E is accurate enough, then
EP remains superior to Em and TP = T (EP ) > Tm > 0: in every configurations in which
TP = T (EP ) holds, and using truncations (25) or (26) is equivalent to applying sG-gPC
(hence, in this case λIk = Ik =

∫
Iφk dPX , λEk = Ek =

∫
Eφk dPX ,∀k ∈ {0, ..., P}). Of course,

as soon as the gPC expansions do not satisfy bounds (23), the truncation is activated and
the methodology becomes singular, different from sG-gPC. This strategy can be compared to
the one presented in [6]: in [6], an hyperbolicity-preserving strategy is suggested. The idea
is to limit the gPC expansion by limiting the fluctuations around the mean when leading to
excursions of the hyperbolicity set. The θ-limitation used in [6] leads to a truncation of the
form

IP = I0 + θI
∑P
l=1 λ

I
l φl with θI such that Im ≤ IP ≤ IM ,

EP = E0 + θE
∑P
l=1 λ

E
l φl with θE such that Em ≤ EP ≤ EM .

(27)

With truncations (25), (26) and (27), we, in a sense, designed several accretive-preserving
strategies.
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– Another possibility is to apply IPM, see [8, 36]. We can choose what we call an entropy28 s
defined as

s(α) = (α− αm) ln(α− αm)− α+ αm + (αM − α) ln(αM − α)− αM + α,∀α ∈ {I, E}. (28)

The above function is commonly called the Bounded-Barrier entropy and is thoroughly studied
in [1]. The above entropy s is strictly convex in [Em, EM ]. Minimising entropy (28) under
constraints E0, ..., EP (defined as the gPC coefficients of the expansion) leads to looking for
IP , EP , TP as

IP (λI0, ..., λ
I
P , X) =

Im + IM exp

[
P∑
l=0

λIl φl(X)

]

1 + exp

[
P∑
l=0

λIl φl(X)

] ∈ [Im, IM ],

with λI0, ..., λ
I
P such that



I0 =

∫
IP (λI0, ..., λ

I
P , X)φ0(X) dPX ,

...,

Ik =

∫
IP (λI0, ..., λ

I
P , X)φk(X) dPX ,

...,

IP =

∫
IP (λI0, ..., λ

I
P , X)φP (X) dPX ,

EP (λE0 , ..., λ
E
P , X) =

Em + EM exp

[
P∑
l=0

λEl φl(X)

]

1 + exp

[
P∑
l=0

λEl φl(X)

] ∈ [Em, EM ],

with λE0 , ..., λ
E
P such that



E0 =

∫
EP (λE0 , ..., λ

E
P , X)φ0(X) dPX ,

...,

Ek =

∫
EP (λE0 , ..., λ

E
P , X)φk(X) dPX ,

...,

EP =

∫
EP (λE0 , ..., λ

E
P , X)φP (X) dPX ,

TP (λE0 , ..., λ
E
P , X) = T (EP (λE0 , ..., λ

E
P , X)).

(29)

Truncation strategy (29) is closely related to the maximum-principle preserving strategy sug-
gested in [1] for scalar nonlinear hyperbolic equations. It does define an accretive-preserving
strategy as, by construction, it leads to having 0 < Tm ≤ TP . The main difference with
the accretive-preserving strategies of the previous bullet is that with truncation (29), efforts
are made for the truncations IP , EP , TP to preserve the moments (Ik)k∈{0,...,P} of I and the
ones of (Ek)k∈{0,...,P} of E. Care will be taken to highlight this difference in the numerical
examples of section 5.

28Note that it is not a mathematical entropy as in [8].

13



Many other candidates could be imagined for the truncation. We suggest focusing on the three
((26), (27), (29)) above as they can be put quite easily in the same code framework and imple-
mented within the same MC architecture (at least for the photonic system we consider in this paper).

We would like to end this section by two concluding remarks:

– first, we insist on the fact that the reduced model we build here is reduced in the sense one
cannot expect to satisfy the maximum principle as stated for (5): indeed, the maximum
principle for (5) states, for example for E, that

Em(X) ≤ E(x, t,X) ≤ EM (X),∀x ∈ Ω, t ∈ [0, t∗], X ∼ dPX ,
whereas the solution of reduced model (8) with condition (20) only ensures

Em ≤ EP (x, t,X) ≤ EM ,∀x ∈ Ω, t ∈ [0, t∗], X ∼ dPX .
In other words, if for some particular X0 ∼ dPX , Em � Em(X0), then nothing prevents EP

to predict Em ≤ EP (x, t,X0) ≤ Em(X0) ≤ E(x, t,X0).

Remark 2.4. We can not expect the pointwise maximum property with the truncations/re-
duced models considered in this paper.

– Finally, this section focused on conditions in order to build wellposed reduced models. But
nothing ensures these reduced models will be relevant for the physical applications of interest.

Remark 2.5. To convince oneself, consider a bad choice of Em, EM (for example chosen
independently of the maximum principle). Then B is still Lipshitz. The reduced model is
wellposed: the solution exists and is unique. But it is not necessarily converging toward the
solution of (5) as P grows. This will be emphasized in the numerical section 5.

The theoretical proof of the converging behaviour of reduced model (8) with truncations respecting
(20) is beyond the scope of this paper. We rely on the experiments of section 5 to numerically
tackle this point.
Until now, we intensively focused on conditions the truncation IP , EP , TP must satisfy for reduced
model (8) to be wellposed. Now that they are characterised, we are going to focus, in sections 3–4,
on how the coefficients λI , λE can be computed in practice.

3. The Implicit Semi-analog Monte-Carlo (ISMC) solver

As explained in the previous section, we, until now, focused on the conditions (20) the trun-
cations λI , X → IP (λI , X), λE , X → EP (λE , X) must satisfy in order to make sure wellposed
reduced models are built for any chosen gPC order P . We are going to focus on more practical
considerations here and tackle how the λI , λE are calculated. In particular, we would like to be
able to apply the MC-gPC solver and preserve some of its interesting properties, namely:

– MC-gPC in [10] can be implemented with simple modifications of an existing MC solver. We
would like to preserve this property. Now, if for the linear Boltzmann equation, every MC
schemes are almost equivalent29, this is not necessarily the case for MC codes solving the

29The semi-analog (intensively used for neutronic applications) and the non-analog (intensively used in photonic
applications) schemes are almost equivalent in term of accuracy, parallel efficiency, and code architecture for the
linear Boltzmann equation [36].
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photonic system (1). For such nonlinear problem, a relevant linearisation must be selected
before relying on an MC scheme. The choice of the linearisation considerably affects the
structure of the code and the choice of the MC scheme. Several linearisations can be chosen
(explicit MC [56], IMC [57, 58], titled-IMC [59, 29, 27], SMC [60], ISMC [9]). We would
like, the more possible, to preserve the relevant properties of the chosen linearisation once
combined with MC-gPC.

– In [10], the author put forward the fact that the cost of the tracking of the uncertain MC
particles is relatively independent of the stochastic dimension Q. What is strongly sensitive
to the number of uncertain parameters Q is the tallying phase: each uncertain MC particle
contribution must be tallied in an array of size P = (p1D + 1)Q in each cell. The highest
the stochastic dimension Q or the polynomial order per direction p1D, the more costly the
tallying phase and the parallel reduction. So for MC-gPC to be efficient, we need to be able
to avoid the more possible the number of tallying phases and of parallel reductions. This
can be done in practice if we can take large enough time steps. For this reason, explicit MC
solvers [56, 60] are discarded (note that they usually are, even in a deterministic context).

– Furthermore, as explained in the previous point, the number of coefficients per cell P can
be large. This can have a strong impact on the memory consumption, especially if the
linearisation/solver demands a large number of cells in order to restitute accurate results. For
this reason, the seminal IMC [57] linearisation is discarded.

As a result, amongst the list of possible linearisations on which MC-gPC is going to be based, only
remains the recent nssIMC solver [58], tilted IMC ones [59, 28, 25, 59, 27] and the ISMC one [9].
In the following lines, we explain why we think ISMC is the best candidate and which interesting
properties of ISMC we would like to preserve for our ISMC+MC-gPC=ISMC-gPC solver.

The ISMC solver is based on a particular linearisation of (4) which integrates the source term
σaB(T ) into the scattering part. It is based on rewriting (4) with respect to E as (we drop the
dependences for the sake of conciseness)

1

c
∂tI + ω · ∇I + σtI = σaη(T (E))E + σs

∫
I dω′,

∂tE =

∫
cσa (I − η(T (E))E) dω′.

(30)

In (30), we have B(T (E)) = B(T (E))
E E = η(T (E))E. If we now introduce variable e(x, t, ω) defined

by
∫
e(x, t, ω) dω = E(x, t), system (30) can then be rewritten in term of unknowns (I, e) as:

1
c∂tI + ω · ∇I = +σaη(T (E))

∫
edω′ − σtI + σs

∫
I dω′,

∂te = −cσaη(T (E))e+

∫
cσaI dω′.

(31)

This system is still nonlinear. The ISMC solver linearises (31) by choosing and fixing astutely η
during time step t ∈ [tn, tn + ∆t]. The equation satisfied by η is

∂tη(T (E)) = ζ(T (E))cσa

(∫
I − η(T (E))E

)
, with ζ(T (E)) = Eη′(T (E)). (32)
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In [9], an explicit-implicit time discretization is chosen for ζn, ηn+1 leading to

∂tη = ζncσna

(
1
E

∫
I dω − ηn+1

)
. (33)

Once the above expression integrated and inversed, we obtain an estimation of ηn+1 given by

ηn+1 = ηnχn + (1− χn) 1
E

∫
I, (34)

with χn = 1
1+cσna ζ

n∆t called the modified Fleck factor [57, 9]. With this approximation, one can

rewrite the transport equation using the new estimation of η on the time step:
1

c
∂tI + ω · ∇I +σnt I =χnσnaη

n

∫
e+ ((1− χn)σna + σns )

∫
I dω′,

∂te +χncσna e =χncσna

∫
I dω.

(35)

System (35) is closed, linear, explicited (i.e. only quantities at time tn appear) and exactly conser-
vative in total energy in time step [tn, tn + ∆t].

Remark 3.1 (First point in favor of ISMC to be combined with MC-gPC). As briefly ex-
plained in the above lines, ISMC relies on an implicit hypothesis. In practice, this astute implicit
strategy allows taking bigger time step with respect to the (explicit) SMC scheme of [60] (which is
unaffordable) and bigger time steps than for nssIMC [58]. In [61, 35], some HPC studies have been
carried out with respect to the replication domain30 parallel strategy (intensively used in [10] in an
MC-gPC context). One of the main conclusion is that in order to make sure replication domain is
efficient, one has to be able to take big time steps. Otherwise, the rythm of the parallel reduction
(i.e. communication) may become prohibitive, especially if the vector to be reduced is of important
size (P = (p1D + 1)Q here).

Let us now build a new unknown ψ(t, x, ω, v) for system (35), depending on one more di-
mension and on unknowns (I, e) solutions of (35). Variable v is chosen such that ψ(x, t, ω, v) =
I(x, t, ω)δc(v) + e(x, t)δ0(v)31. In fact, v is nothing more than a velocity which can be c for photons
or 0 for matter. The equation satisfied by ψ is given by

∂tψ(x, t, ω, v) + vω∇ψ(x, t, ω, v) + cΣnt (x, v)ψ(x, t, ω, v) =

∫
V

∫
cΣns (x, v, v′)ψ(x, t, ω′, v′) dv′ dω′,

(36)

30Replication domain consists in replicating the geometry on several processors and tracking several MC particles
populations with different initial seeds in every replicated domains. At the end of the time steps, the contribution
of every processors are averaged. This parallel strategy is particularly well suited to MC codes, taking advantage of
the independence of the MC particles.

31In the latter expression, δ0, δc are such that∫
{V }

δc(v) dv = δV,c and

∫
{V }

δ0(v) dv = δV,0,

where δV,k is the Kronecker symbol, i.e. is such that δV,k = 0 if V 6= k and δV,k = 1 if V = k and {V } denotes the
singleton V .
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where V = {0, c} and

Σnt (x, v) = σtδc(v) + σna (x)χn(x)ηn(x)δ0(v),
Σns (x, v, v′) = Σns (x, v)Pns (x, v, v′),
Σns (x, v) = χn(x)σna (x)ηn(x)δc(v) + ((1− χn(x))σna (x) + σns (x))δc(v)

Pns (x, v, v′) = δ0(v)δc(v
′) + δc(v)

[σns (x) + (1− χn(x))σna (x)] δc(v
′) + σna (x)χn(x)δ0(v′)

σnt (x)
.

Note that in the above expression, the dependence with respect to x is piecewise constant per
cell: for example, introduce the grid/set of Nx non-overlapping cells D = ∪Nxi=1Di, then σna (x) =∑Nx
i=1 σ

n
a,i1Di(x) where 1Di(x) denotes the indicatrix of cell Di. The same applies for ηn(x), χn(x),

σns (x), σnt (x).
The identification of Σnt ,Σ

n
s , P

n
s as above allows being in the conditions of theorem 3.2.1 of [24]:

it ensures we can build a converging32 MC scheme toward system (35) on time step [tn, tn + ∆t].
Equation (36) has the structure of a linear (multigroup) transport equation just as the very first
equation in [10, 30] on which MC-gPC is derived. More importantly in this paper, it allows being
in the conditions of theorem 1 of [30] for (36) for which spectral convergence is ensured.

Remark 3.2 (Second point in favor of ISMC to be combined with MC-gPC). The second
point in favor of ISMC concerns the fact that even once implicited, the system we have to solve
during time step [tn, tn+∆t] can be put under the form of a linear Boltzmann equation (35): during
any time step [tn, tn + ∆t], we are in the conditions of [10, 30] for which MC-gPC proved to be
numerically and theoretically efficient. In other words, the material of [10, 30] is almost straight-
forward to apply. Of course, this does not mean spectral convergence necessarily holds for the full
nonlinear uncertain problem nor that numerical efficiency will be easily earned. These properties
will (only) numerically be investigated in section 5.

Finally, system (4) is often studied together with a particular regime, commonly called the
equilibrium diffusion limit. Introduce δ ∼ 0, a small parameter together with a characteristic
length X , a characteristic time T and a characteristic collision rate λ. Then the equilibrium
diffusion regime is characterised by {

cTD = O( 1
δ ),

cσ Tλ = O( 1
δ2 ).

(37)

Under condition (37), system (4) behaves, at leading order with δ, like the nonlinear diffusion
equation on Φr(Tr) = aT 4

r =
∫
I dω given by{

∂t(Φr(Tr) + E(Tr))−∇ ·
(

c
3σt
∇(Φ(Tr)

)
= O(δ),

Φr(Tr) =
∫
I dω = B(T ) +O(δ).

(38)

With
∫
B(T ) dω = aT 4 and Φr(Tr) = aT 4

r , the second equation is equivalent to T = Tr: the
radiative and matter temperatures are at equilibrium. For more details on the stakes of being able
to capture efficiently this regime we refer to [11, 13, 62, 27, 25].

32with respect to the number NMC of MC particles which, at this stage of the discussion, remain to be defined.
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Remark 3.3 (Third point in favor of ISMC to be combined with MC-gPC). The last point
in favor of ISMC to be combined with MC-gPC concerns its fast (spatial) converging property in
the equilibrium diffusion regime33 [9]. We hope the ISMC-gPC solver to inherit this good property.
This will be verified numerically in section 5.

We finally end this section with few words on the general sketch of an ISMC solver. This will
ease the identification of the modifications needed in order to modify the original ISMC code in
order to implement the MC resolution of the gPC based reduced model of section 2. Algorithms
1–2–3 present the tracking phase. They assume a population of MC particles discretizing the initial
solution has been built. We insist on the fact that both the radiation intensity and the matter
energy are described by MC particles (of respectively, velocities c and 0).

33In particular, it is not sensitive to the teleporation error, see [25, 26, 27, 28, 29].
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#BEGINNING OF TIME STEP [tn, tn + ∆t]
for i ∈ {1, ..., Nx} do

# Keep the material energy per cell of the previous time step in memory
Ei0 = Ei

#Set to zero the (mesh) arrays in which will be tallied the MC particle contributions
U i = 0, Ei = 0

end
for p ∈ {1, ..., NMC} do

set sp = 0 #this will be the current time of particle p
#ip is such that 1Ωip

(xp(sp)) = 1 (current cell for particle p)

while sp < ∆t do
if xp /∈ D then

apply boundary conditions(xp, sp, vp)
end
#sample the collision time from an uniform sampling U
τ = − ln(U)

cΣ(xp, sp, vp, E
ip
0 )

if τ > ∆t then
#move the particle p, update sp to end the treatment of the current particle
xp = xp + vpωp × (t− τ), sp ←− t
#tally the contribution of particle p in the cell array in which it ends:
if vp == c then

U ip+ = wp
end
else

Eip+ = wp
end

end
else

#move the particle p, update the life time of particle p
xp ←− xp − vpωpτ , sp ←− sp + τ < t
#Sample the angle W ′ and ’group’ of particle p after the collision
W ′, V ′ = sample angle and group(xp, sp, ωp, vp, E

ip
0 )

ωp = W ′, vp = V ′

end

end

end
Algorithm 1: Pseudo-code for an ISMC implementation.

Algorithm 1 presents the tracking of the MC particles: note that the structure of the algorithm
is close to the one described in [10] for the linear Boltzmann equation, see remark 3.2. In algorithm
1, the material energy in each cell is stored at the beginning of the time step and the radiation
intensity and the material energy per cells arrays are intialised to 0. The particle contributions are
going to be tallied in these arrays. Then comes the treatment of the MC particles: the life time
of the particles is set to zero: it is going to be gradually incremented until reaching the value ∆t.
While sp < ∆t, a collision/emission time is sampled depending on the particle field (i.e. whether it
is a photon or a material particle). The opacity used in order to sample the collision/emission time

19



depends on the nature of the particle: it is detailed in algorithm 2 and will be discussed later on.

Data: xp, sp, vp, E
ip
0

Result: Σ(xp, sp, vp, E
ip
0 ), the opacitiy Σ seen by particle p

begin
Σ = 0
#E

ip
0 is the material energy in cell ip at the beginning of the time step.

T ip = T (E
ip
0 )

if vp == c then
Σ = σt(xp, sp, T

ip)
end
else

#Here, η is explicited in the case of a perfect gas

η = a
(T ip)3

ρipC
ip
v

#χn is the modified Fleck factor [9]

χ = 1
1 + 3cσa(xp, sp, T

ip)η∆t
Σ = ησa(xp, sp, T

ip)χ
end

end
Algorithm 2: Pseudo-code for the computation of the opacity seen by particle p.

If the particle collides/is emitted, its life time is updated, it moves of a distance34 vpτ in the
direction ωp, it changes of nature (from photon to matter or matter to photon) and its angle is
sampled as detailed in algorithm 3. Finally, when sp reaches ∆t, the particle moves at its last
location for the time step. The cell in which it ends is ip, its contribution is tallied in the arrays
Eip or Iip depending on the value of its velocity field vp.

34For material particles, vp = 0, for photons vp = c.
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Data: xp, sp, ωp, vp
Result: angle W ′ and velocity V ′ of particle p after a collision
begin

# sample angle and group
#E

ip
0 is the material energy in cell ip at the beginning of the time step.

T ip = T (Ei
p

0 )
#Here, η is explicited in the case of a perfect gas

η = a
(T ip)3

ρipC
ip
v

#χn is the modified Fleck factor [9]

χ = 1
1 + 3cσa(xp, sp, T

ip)η∆t
if vp = c then

# U ′ is an uniform random variable in [0, 1]
if U ′ × σt(xp, sp, T ip) < σs(xp, sp, T

ip) + (1− χ)σa(xp, sp, T
ip) then

# Scattering: vp does not change, it remains equal to c
W’ = sample scattering angle(xp, sp, ωp, T

ip)
end
else

# Absorption: vp = c becomes vp = 0
V ′ = 0

end
else

# Emission: vp = 0 becomes vp = c
W’ = sample emission angle(xp, sp, ωp, T

ip)
V ′ = c

end

end

end
Algorithm 3: Pseudo-code for the computation of the angle and group of particle p after a
collision.

Algorithm 2 focuses on the computation of the opacity Σ used to sample the collision/emission

time for any MC particle. First, a material temperature T ip in cell ip is built from E
ip
0 . Then,

depending on the nature (photon or matter) of the particle, the total opacity (photon case) or an
artificial scattering (matter case) opacity is reconstructed from the modified Fleck factor χ and
the local temperature T ip . The reconstructed opacity is then simply used to sample a classical
exponential collision/emission time τ during the tracking phase (see algorithm 1). Algorithm 3
presents how an MC particle is scattered/absorbed (photon) or emitted (matter) when τ < ∆t. The
computation once again needs the reconstruction of a local temperature in the cell ip in which MC
particle p encounters a collision/emission/absorption. Of course, this reconstruction (together with
the one of the modified Fleck factor) is redundant and can be mutualised in practice with what is
done in algorithm 2. A photon particle can either encounter an artificial scattering or an absorption
(i.e. become matter) whereas matter can only be emitted. If a photon is (artificially) scattered,
its angle is resampled (see function sample scattering angle, the sampling can be isotropic or not
without additional difficulties) and it remains in a photon state. If it is absorbed, it stops at the
collision location and becomes matter. A matter particle can be emitted: its angle is resampled (see
function sample emission angle, the emission can be isotropic or not without additional difficulties)
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and it becomes a photon particle.
This ends the brief description of the general sketch of an ISMC resolution. We now have to

find a way to combine efficiently ISMC and MC-gPC while keeping the aformentioned properties
(fast gPC convergence, big stable time steps, equilibrium diffusion limit, simplest modifications
possible).

4. Combining ISMC [9] to MC-gPC [10, 30, 31, 33]: the ISMC-gPC solver

In this section, we highlight the modification one has to perform to an ISMC implementation
in order to take uncertainties into account on-the-fly during the MC resolution. The material is a
combination of both the MC-gPC scheme described in [10] for the transport equation and of the
truncation of the previous section 2. In order to explain how we combine the construction of a
wellposed reduced model (14) (see section 2) and the ISMC scheme (see section 3), we need to
insist on two points:

– on how an ISMC implementation is modified to become an ISMC-gPC with minimal devel-
opment effort, just as in [10].

– On how the truncation preserving wellposedness is introduced.

The best way to do so, in our opinion, remains to highlight where we need to modify the algorithms
of section 3 to describe both the reduced model and the MC scheme.
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#BEGINNING OF TIME STEP [tn, tn + ∆t]
for i ∈ {1, ..., Nx} do

for k ∈ {0, ..., P} do
# Keep the previous material energy gPC coefficients per cell in memory
Eik,0 = Eik
#Set to zero the (mesh) arrays in which will be tallied the MC particle contributions
U ik = 0, Eik = 0

end

end
for p ∈ {1, ..., NMC} do

set sp = 0 #this will be the current time of particle p
#ip is such that 1Ωip

(xp(sp)) = 1 (current cell for particle p)

while sp < ∆t do
if xp /∈ D then

apply boundary conditions(xp, sp, vp, Xp)
end
#sample the collision time from an uniform sampling U
τ = − ln(U)

cΣ(xp, sp, vp, E
ip
0,0, ..., E

ip
P,0, Xp)

if τ > ∆t then
#move the particle p, update sp to end the treatment of the current particle
xp = xp + vpωp × (t− τ), sp ←− t
#tally the contribution of particle p in the in which it ends: for k ∈ {0, ..., P} do

if vp == c then

U
ip
k + = wpφk(Xp)

end
else

E
ip
k + = wpφk(Xp)

end

end

end
else

#move the particle p, update the life time of particle p
xp ←− xp − vpωpτ , sp ←− sp + τ < t
#Sample the angle W ′ and ’group’ of particle p after the collision
W ′, V ′ = sample angle and group(xp, sp, ωp, vp, E

ip
0,0, ..., E

ip
P,0, Xp)

ωp = W ′

vp = V ′

end

end

end
Algorithm 4: Pseudo-code for an ISMC-gPC implementation (only the tracking of MC particles
is detailed).

Algorithm 4 presents the modifications to algorithm 1 that one has to do in order to transform its
ISMC implementation into an ISMC-gPC one. Those modifications are highlighted in blue. First,
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just as in [10], an uncertain MC particle has an additional field Xp ∼ dPX besides the more classical
ones which are xp, sp, vp, ωp. The main modification of this tracking step consists in dealing with
arrays instead of scalars, i.e. dealing with (Iik, E

i
k)k∈{0,...,P},i∈{1,...,Nx} instead of (Ii, Ei)i∈{1,...,Nx}.

Note that in (Iik, E
i
k)k∈{0,...,P},i∈{1,...,Nx} are tallied the projections on the components of the gPC

basis (φk(X)k∈{0,...,P} of the contribution of each uncertain MC particle at the end of the time step.
The calls to apply boundary conditions, Σ and sample angle and group have one more argument
Xp and the scalar dependency with respect to Eip becomes vectorial, with respect to E

ip
0 , ..., E

ip
P .

Data: xp, sp, vp, E
ip
0,0, ..., E

ip
P,0, Xp

Result: Σ(xp, sp, vp, E
ip
0,0, ..., E

ip
P,0, Xp), the opacitiy Σ seen by particle p

begin
Σ = 0
#E

ip
0,0, ..., E

ip
P,0: gPC coefficients of the material energy in cell ip at the beginning of the

time step.
T ip = TP (Ei

p

0,0, ..., E
ip

P,0, Xp)

if vp == c then
Σ = σt(xp, sp, T

ip , Xp)
end
else

#Here, η is explicited in the case of a perfect gas

η = a
(T ip)3

ρip(Xp)C
ip
v (Xp)

#χ is the modified uncertain Fleck factor [9]

χ = 1
1 + 3cσa(xp, sp, T

ip , Xp)η∆t
Σ = ησa(xp, sp, T

ip , Xp)χ
end

end
Algorithm 5: Pseudo-code for the computation of the uncertain opacity seen by particle p.

Let us now explicit the dependences of Σ with respect to (Eik,0)k∈{0,...,P},i∈{1,...,Nx}. These
are detailed in algorithm 6 which focuses on the modifications one has to perform to algorithm
3: the truncation of the material temperature TP is used mainly in this function. From the gPC
coefficients of the material energy (Eik,0)k∈{0,...,P},i∈{1,...,Nx} at the beginning of the time step (i.e.
the scheme remains explicit) and the uncertain parameter Xp of particle p, an uncertain material
temperature T ip is reconstructed. Once this step done, it remains to add one additional dependence
with respect to Xp on Cv, (σα)α∈{s,t,a}, ρ depending on whether they are considered uncertain or
not.
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Data: xp, sp, ωp, vp, E
ip
0,0, ..., E

ip
P,0, Xp

Result: angle W ′ and velocity V ′ of particle p after a collision
begin

# sample angle and group
#E

ip
0,0, ..., E

ip
P,0 gPC coefficients of the material energy in cell ip at the beginning of the

time step.
T ip = TP (Ei

p

0,0, ..., E
ip

P,0, Xp)
#Here, η is explicited in the case of a perfect gas

η = a
(T ip)3

ρip(Xp)C
ip
v (Xp)

#χ is the uncertain modified Fleck factor [9]

χ = 1
1 + 3cσa(xp, sp, T

ip , Xp)η∆t
if vp = c then

# U ′ is an uniform random variable in [0, 1]
if U ′ × σt(xp, sp, T ip , Xp) <
σs(xp, sp, T

ip , Xp) + (1− χ(xp, sp, T
ip , Xp))σa(xp, sp, T

ip , Xp) then
# Scattering: vp does not change, it remains equal to c
W’ = sample scattering angle(xp, sp, ωp, T

ip , Xp)
end
else

# Absorption: vp = c becomes vp = 0
V ′ = 0

end
else

# Emission: vp = 0 becomes vp = c
W’ = sample emission angle(xp, sp, ωp, T

ip , Xp)
V ′ = c

end

end

end
Algorithm 6: Pseudo-code for the computation of the angle and group of uncertain particle p
after a collision.

The dependences with respect to (Eik,0)k∈{0,...,P},i∈{1,...,Nx} of sample angle and group are de-
tailed in algorithm 6. The modifications needed for this function are of the same nature as for
algorithm 5. Note that the lines computing η and χ may be redundant as they can easily be
mutualised during the computation of Σ and avoid few additional operations per treatment of an
uncertain MC particle. Still, they are recalled here in order to ease the understanding of the algo-
rithm.

As expected (see remark 3.2), the modifications needed to go from an ISMC implementation to
an ISMC-gPC one are fairly the same as the one in [10] for the linear Boltzmann equation. In a
sense, our first objective to suggest as simple modifications as in [10] to an ISMC solver is reached.
The truncation is only needed locally during the tracking phase. In the next section, we suggest
presenting few results obtained with the ISMC-gPC solver we just described.
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5. Numerical results

In this last section, we present numerical results obtained with the ISMC-gPC solver we de-
scribed in the previous sections. The results with ISMC-gPC are compared with the results obtained
with non-intrusive ISMC (ni-ISMC) simulations. ni-ISMC supposes choosing a quadrature rule
(Xi, wi)i∈{1,...,N} consistently discretising (X, dPX) and running N times an ISMC code solving
(4) at the prescribed points (Xi)i∈{1,...,N}. Once the runs performed, it only remains to post-process
the results ((I(x, t, ω,Xi), E(x, t,Xi), T (x, t,Xi), Tr(x, t,Xi)), wi)i∈{1,...,N} in order to estimate the
statistics of the observables of interest X → (I(x, t, ω,X), E(x, t,X), T (x, t,X), Tr(x, t,X)) by nu-
merical integration. Now, MC codes are known to be efficient but costly and relying on many
(N � 1) runs is not always possible. As a consequence, the benchmarks of this section remain
quite simple in order to make sure we can have converged statistics35 with relatively small36 N .

The next benchmarks are, to our opinion, progressive in complexity. The first test-cases corre-
spond to uncertain relaxation problems. For these, it is easy producing accurate reference solutions
and performing convergence studies: indeed, in these cases, problem (5) degenerates toward solving
several times a set of Ordinary Differential Equations (ODEs). The second one is built from the
commonly known Heaviside problem [14, 9, 58]. It is made uncertain by considering a fluctuating
opacity. This test-case allows testing the capabilities of the ISMC-gPC solver with respect to the
equilibrium diffusion limit. The last test-case is an uncertain Marshak wave on which are going
to be tested and analysed several of the admissible (with respect to wellposedness) truncations of
section 2. For each benchmark, care is taken to carry out fair performance studies. In all the
test-cases, the opacities and equations of state satisfy hypothesis 1 and 2.

5.1. Uncertain infinite medium problems: uncertain relaxations

In this section, we consider uncertain infinite medium problems without scattering (σs ≡ 0). In
such conditions, (5) degenerates toward the Stochastic system of ODEs{

∂tI(t,X) = cσa(E(t,X), X)(B(E(t,X))− I(t,X)),

∂tE(t,X) = cσa(E(t,X), X)(I(t,X)−B(E(t,X))),
(39)

with c = 1, I(t = 0, X) = I0(X) = I0 = 1, E(t = 0, X) = E0(X) = E0 = 10−3. Furthermore, we
assume that Cv(T,X) = Cv(X) (uncertain perfect gas) so that E(t,X) = Cv(X)T (t,X). Finally,
B(E(T )) = aT 4 with a = 1.

System (39) can easily be solved with an explicit Euler scheme with a fine time dicretisation
for several values of X ∼ dPX . In practice we take ∆t = 10−6 for each (Xi, wi)i∈{1,...,N} with
N = 15 Gauss-Legendre quadrature points. This set-up is proven enough to produce accurate
results on the means and variances of I, E, T, Tr. In the next paragraphs and figures, we compare
the reference results obtained with non-intrusive ISMC (ni-ISMCN ) with the N Gauss-Legendre
points to ISMC-gPCP , for several time discretisations ∆t, several number of NMC of MC particles
and several gPC orders P .

In section 5.1.1, we consider an uncertain absorption opacity σa(E(t,X), X) = σa(X) = σa +
σ̂aX with σa = 1, σ̂a = 1

2 and37 X ∼ U([−1, 1]) together with a deterministic heat capacity

35i.e. reliable references.
36Note that this is also a point in favor of an easy reproducibility of the results of this paper.
37X ∼ U([−1, 1]) must be read: X follows an uniform distribution on [−1, 1].
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Cv(X) = Cv = 3
2 . In section 5.1.2, the opacity is deterministic, given by σa(E(t,X), X) = σa = σa

with an uncertain heat capacity Cv(X) = Cv + ĈvX with Cv = 3
2 , Ĉv = 1

2 and X ∼ U([−1, 1]).
In section 5.1.3, a 2D (Q = 2) stochastic test problem is considered in which the two previous
uncertain parameters are combined.

5.1.1. Uncertain infinite medium problems: uncertain absorption opacity σa
In this section, we consider an uncertain absorption opacity σa(E(t,X), X) = σa(X) = σa+σ̂aX

with σa = 1, σ̂a = 1
2 and X ∼ U([−1, 1]). Figure 1 compares the results obtained from the reference
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realisations I ODE
realisations I ISMC-gPC

mean I ODE
mean I ISMC-gPC

variance I ODE
variance I ISMC-gPC

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12
0

0.002

0.004

0.006

0.008

0.01

0.012

t

realisations E ODE
realisations E ISMC-gPC

mean E ODE
mean E ISMC-gPC

variance E ODE
variance E ISMC-gPC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10 12
0

0.002

0.004

0.006

0.008

0.01

0.012

t

t,X → TP=5
r (t,X) t,X → TP=5(t,X)

realisations Tr ODE
realisations Tr ISMC-gPC

mean Tr ODE
mean Tr ISMC-gPC

variance Tr ODE
variance Tr ISMC-gPC

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12
0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

t

realisations T ODE
realisations T ISMC-gPC

mean T ODE
mean T ISMC-gPC

variance T ODE
variance T ISMC-gPC

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12
0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0.005

t

Figure 1: Mean, realisations at the N = 15 Gauss-Legendre points and variance with respect to time of the ni-ISMC
approximations and the ISMC-gPCP=5 ones. In particular, we present the results in term of intensity of radiation
I, matter energy E and material and radiative temperatures T, Tr. The numerical parameters for ISMC-gPC are
∆t = 10−2, NMC = 106, P = 5.

ni-ISMCN=15 and ISMC-gPCP=5 for ∆t = 10−2 and NMC = 106. Several statistical quantities are
displayed:

– the mean with respect to time of the radiation intensity, the matter energy and the material
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and radiative temperatures:

t→ E[I](t) =
∫
I(t,X) dPX ,

t→ E[E](t) =
∫
E(t,X) dPX ,

t→ E[Tr](t) =
∫
Tr(t,X) dPX ,

t→ E[T ](t) =
∫
T (t,X) dPX .

– The realisations t → α(t,Xi) for α ∈ {I, E, T, Tr} at the N = 15 Gauss Legendre points for
ni-ISMC and ISMC-gPCP=5.

– The variances of I, E, T, Tr with respect to time

t→ V[I](t) =
∫

(I(t,X)− E[I](t))
2

dPX ,
t→ V[E](t) =

∫
(E(t,X)− E[E](t))

2
dPX ,

t→ V[Tr](t) =
∫

(Tr(t,X)− E[Tr](t))
2

dPX ,
t→ V[T ](t) =

∫
(T (t,X)− E[T ](t))

2
dPX .

Note that the vertical axis on the right hand side must be used for the variances.

Let us first describe briefly the test-case: the uncertainty on the opacity makes the transient regime
uncertain while leaving the stationary one deterministic: the variance drops to zero after t ≈ 6
here. The temperatures Tr, T are at equilibrium after this time, independently of the realisation
X. For early times, there is a quite important variability of the different quantities. Now, the two
different solvers (the non-intrusive and the intrusive one we suggest in this paper) are in excellent
agreement: for the means, the variances, but also for the pointwise approximations at the Gauss-
Legendre points.

Figure 2 presents a qualitative convergence study with respect to P ∈ {0, ..., 7} on the radiation
intensity I. For P = 0, figure 2 (top left) the ISMC-gPCP=0 predicts a zero variance and only the
mean t → E[IP=0](t) is (nonetheless accurately) captured by the ISMC-gPCP=0 approximation.
For P = 1, figure 2 (top right), the mean t → I(t,X) is still well captured and the solver predicts
a non-zero variance. But it is not accurate enough to restitute equivalent results as ni-ISMC. As P
increases, the results are better and better in term of variance and pointwise realisations. As soon
as P = 3, the results from the two solvers are not anymore discernable on the figures attesting for
a qualitatively fast (spectral?) convergence of the ISMC-gPC solver with respect to P .

Let us now consider a more quantitative convergence study: to this purpose, in figure 3, we
display the curves38 P → ln(‖α−αP ‖)(t) for different α ∈ {I, E, T, Tr}, different times t ∈ {1, 2, 4},
different values of the numerical parameters ∆t ∈ {10−2, 10−3} and different MC discretisations
NMC ∈ {104, 105, 106}. Figure 3 (top left) presents a convergence study with respect to P on
I, E, T, Tr at time t = 1 for ∆t = 10−3 and NMC = 106. Independently of the observable of
interest, i.e. ∀α ∈ {I, E, T, Tr}, the curves P → ln(‖α − αP ‖) present two regimes: a converging
regime for P ∈ {0, ..., 3}, and a stagnating one for P > 3. The errors reach a plateau which is
in agreement with the MC error, i.e. parameter NMC . This is emphasized by figure 3 (top right)
where39 P → ln(‖Tr − TPr ‖) is plotted for several MC discretisations NMC ∈ {104, 105, 106}: the
finer the MC resolution, the lower the stagnation plateau. Note that the MC error is known to be

38The norm is as defined in section 2, see (16).
39We insist that the behaviour is the same for the other observables I, E, T . Plotting them would be redundant.
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t,X → IP=0(t,X) t,X → IP=1(t,X)
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Figure 2: A qualitative convergence study with respect to P on the mean, realisations at the N = 15 Gauss-Legendre
points and variance with respect to time of the ISMC-gPCP approximations of the radiation intensity I. The
remaining numerical parameters for ISMC-gPC are ∆t = 10−2, NMC = 106.
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O( 1√
NMC

) and the errors on figure 3 are all stagnating around 10−3 which is in agreement with the

MC error being O( 1√
NMC

) ≈ 1√
106

= 10−3. Figure 3 (bottom left) presents the convergence curves40
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Figure 3: A quantitative convergence study with respect to P of the ISMC-gPCP approximations of I, E, Tr, T for
several times t ∈ {1.0, 2.0, 4.0}, several time discretisations ∆t ∈ {10−2, 10−3} and several number of MC particles
NMC ∈ {104, 105, 106}.

for P → ln(‖T −TP ‖) for several time discretisations ∆t ∈ {10−2, 10−3} at time t = 2.0: the results
of the convergence study are not sensitive to a change of time step: the time step is fine enough and
is not the constraining numerical parameter here (NMC is). Note that the time step is way coarser
than for the explicit Euler resolution used as a reference: this is the purpose of ISMC41 [9] to be
able to provide affordable stable and accurate time steps for the resolution of (1). We recover this
desiderable property for ISMC-gPC here. Finally, figure 3 (bottom right) presents the convergence
curves for E at several times. The spectral convergence, i.e. linear curve P → ln(‖E − EP ‖), is
discernable for early polynomial orders P ∈ {0, ..., 4} before reaching the plateau related to the
MC resolution O( 1√

NMC
). It is interesting noticing that this plateau is the same for every times

40We insist that the behaviour is the same for the other observables I, E, Tr at the other times t ∈ [0, t∗ = 10].
Plotting them would be redundant.

41The ’I’ of ISMC stands for ’Implicit’.
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t ∈ {1.0, 2.0, 4.0}: it attests that, at least for this problem, the ISMC-gPC solver is not sensitive to
the long-term behaviour of gPC42 (encountered numerically in several publications [63, 49, 30] and
theoretically recovered in [30] for the uncertain linear Boltzmann equation in multiplicative media).

With this set of convergence studies, we notice that the MC accuracy is the constraining one:
MC-gPC is interesting in an MC context because the fast gPC convergence with respect to P en-
sures reaching the MC constraining numerical accuracy with low polynomial orders. Of course, the
previous statement tacitly assumes that the P -truncated reduced model we solve here converges as
P grows: spectral convergence with respect to P has been proved for the uncertain linear equation,
see [30], but the proof for the nonlinear photonic system remains out of the scope of this paper.

For this test-case, truncation (26) has been used. During the run of ISMC-gPC, we monitored
whether or not the truncation is activated (i.e. whether or not sG-gPC would have been enough).
With the numerical parameters used in this section, the truncation has not been activated.

Let us finish by simple performance considerations. For this test case, the average cost of one
ISMC run is approximately ≈ 1845.4s. whereas one run of ISMC-gPCP=3 costs ≈ 2023.9s.. As
a consequence, in order to produce the same results as in figure 2 with ni-ISMCN=15 and ISMC-
gPCP=3 with equivalent accuracies, the gain is of about ×N×1845.4

2023.9 = 15×1845.4
2023.9 = 13.67 in favor of

the intrusive ISMC-gPC solver. We can see that an ISMC-gPC run costs more than an (average)
ISMC one: this is mainly due to the additional cost induced by the evaluation of the truncation of
T in order to evaluate the opacities during the tracking together with an overall cost of the tallying
phase (just as in [10]). Still, a factor ×13.67 is gained as only one run of ISMC-gPC is needed
instead of N = 15 in this case.

In the next section, we consider the same test-case but with an uncertain heat capacity Cv
instead of an uncertain absorption opacity.

5.1.2. Uncertain infinite medium problems: uncertain heat capacity Cv
In this section, we slightly change the previous test-case: the opacity is now deterministic, given

by σa(E(t,X), X) = σa = σa but the heat capacity is considered uncertain, given by Cv(X) =
Cv + ĈvX with Cv = 3

2 , Ĉv = 1
2 and X ∼ U([−1, 1]).

Figure 4 presents the results obtained with ni-ISMCN=15 and ISMC-gPCP=3 on this test-
problem. Here, the steady state is not anymore deterministic and the problem ends with non-zero
variances for the different quantities of interest I, E, T, Tr. Figure 4 (top left) presents the time
evolution of the mean, the variance and some realisations of the radiation intensity t → I(t,X).
In average, the radiation intensity decreases until it reaches a steady state. On another hand, as
time passes, the variance of the radiation intensity grows until reaching a plateau. The figure also
displayes the realisations t→ I(t,Xi) at the N = 15 Gauss-Legendre points to give an idea of the
dispersion around the mean. Note that both ni-ISMC and ISMC-gPC are in good agreement. This
is also the case for the other outputs of interest, E, T, Tr, displayed in the other pictures of figure
4. The middle-right picture of figure 4 presents the results on the material temperature T . It is
interesting noticing the singular behaviour of this observable with respect to uncertainty: a peak
of uncertainty is observed during the transient regime. Finally, the last line of figure 4 presents
some convergence studies with respect to P . The behaviour is overall the same as in the previ-
ous test-case (fast convergence for P ∈ {0, ..., 3} then a plateau of level ≈ O( 1√

NMC
) is reached)

42Characterised by a degradation of the gPC accuracy as time increases and the need to resort to higher polynomial
order P for later times t in order to restitute the same level of accuracy, see [63, 49].
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t,X → IP=3(t,X) t,X → EP=3(t,X)
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Figure 4: The four top pictures: mean, realisations at the N = 15 Gauss-Legendre points and variance with
respect to time of the ni-ISMC approximations and the ISMC-gPCP=3 ones. In particular, we present the results
in term of intensity of radiation I, matter energy E and material and radiative temperatures T, Tr. The numerical
parameters for ISMC-gPC are ∆t = 10−2, NMC = 106, P = 3. The two bottom pictures: quantitative convergence
study with respect to P of the ISMC-gPCP approximations of I, E, Tr, T (bottom-left) and for I for several times
t ∈ {1.0, 2.0, 4.0} (bottom-right).
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except for the behaviour of the convergence curves with respect to times, see figure 4 (bottom-
right). For this benchmark, the error seems to increase for later times: for example for P = 1,
‖I−IP=1‖(t = 1) ≤ ‖I−IP=1‖(t = 2) ≤ ‖I−IP=1‖(t = 4). It seems that the long-term behaviour
of gPC depends strongly on the configuration of interest (this is in agreement with the observations
of [49, 30]). Still, fast convergence rates are observed and the MC constraining error (the plateau)
is reached as soon as P ≥ 3.

5.1.3. Uncertain infinite medium problems: uncertain absorption opacity σa and heat capacity Cv
The test-case of this section is a combination of the two previous ones: both the opacity and

the heat capacity are uncertain. They are given by σa(E(t,X), X) = σa = σa+ σ̂aX1 and Cv(X) =
Cv + ĈvX2 with Cv = 3

2 , Ĉv = 1
2 with X1, X2 ∼ U([−1, 1]). In other words, this problem is 2D

(Q = 2) with respect to the stochastic dimension.

t,X → Ip1D=4(t,X) t,X → Ep1D=4(t,X)
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Figure 5: Time evolutions of the mean t → E[αp1D=4](t), the variance t → V[αp1D=4](t)and the 25 realisations
t → αp1D=4(t,Xi) (at the Gauss-Legendre points i ∈ {1, .., 25}) of the radiation intensity, the material energy, the
radiation temperature and of the material temperature (i.e. for α ∈ {I, E, Tr, T}).

Figures 5–6 present the results obtained with ni-ISMCN1D=5 and ISMC-gPCp1D=4 on this test-

problem. Note that N1D = 5 for ni-ISMC means that N = NQ
1D = 52 = 25 tensorised Gauss-

Legendre points are used in practice. For ISMC-gPC, p1D = 4 means that P = (p1D + 1)Q =
(4 + 1)2 = 25 gPC coefficients are evaluated during the intrusive resolution.
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Figure 5 presents the time evolutions of the mean t→ E[αp1D=4](t), the variance t→ V[αp1D=4](t)
and the 25 realisations t→ αp1D=4(t,Xi) (at the Gauss-Legendre points i ∈ {1, .., 25}) of the radia-
tion intensity, the material energy, the radiation temperature and of the material temperature (i.e.
for α ∈ {I, E, Tr, T}) obtained by both ni-ISMC and ISMC-gPC. For this test-case, neither the
transient state nor the steady state are anymore deterministic. The variance is non-zero as soon as
t > 0 for the different quantities of interest I, E, T, Tr. If one compares the results (for example the
variances) of the two previous sections, one can observe that the variances in the transient regime
are close to the ones of figure 1 whereas the variances in the steady state phase are more like the
ones of figure 4. Let us analyse more precisely this behaviour thanks to figure 6.
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Figure 6: Time evolutions of the partial variances t → Vσa [αp1D=4](t), t → Vσa [αp1D=4](t) and the total variance
t→ V[α1D=4](t) and the Sobol indices t→ Sσa [αp1D=4](t) and t→ Sσa [αp1D=4](t) of the radiation intensity and of
the material temperature (i.e. for α ∈ {I, T}).

Figure 6 (top) presents the time evolutions of the partial variances, cf. [23, 64, 10], t →
Vσa [αp1D=4](t) and t→ VCv [αp1D=4](t) together with the one of the total variance t→ V[αp1D=4](t)
for α ∈ {I, T}. The time evolutions of the partial variance with respect to σa is the same as in
section 5.1.1 whereas the time evolutions of the partial variance with respect to Cv is the same as
in section 5.1.2. They sum-up to the total variance.

Figure 6 (top) displayes the Sobol indices t → Sσa [αp1D=4](t) and t → Sσa [αp1D=4](t) of the
radiation intensity and of the material temperature (i.e. for α ∈ {I, T}). The Sobol indices, cf.
[23, 64, 10], express the percentage of the total variance explained by the two uncertain parameters
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σa, Cv. For this test-case, the two uncertain parameters only slightly interact during a very narrow
window of time t ∈ [1, 4]. Otherwise, before t ∈ [0, 1], the variance is only explained by the
uncertainty on σa whereas it is only explained by Cv for t ∈ [4, 10]. Such statistical tools are very
powerful: thanks to them, for example, we can help design experiments to calibrate σa and Cv.
Thanks to them, we know σa (early times) and Cv (later times) can be identified with the same
configuration and without too much interferences.

The previous statistical tools, i.e. the partial variances and the Sobol indices, give precious in-
formation concerning the relative behaviour of the uncertain parameters on the outputs of interest.
Their interpretation is easy and straightforward. Sobol indices are amongst the most efficient and
reliable sensitivity indices but also amongst the most costly, see [23]. Now, with ISMC-gPC, we can
have access to accurate evaluations of these indicators with only one run of a code. For this study,
one ISMC-gPC run costs ≈ 1050s. The pick-and-freeze strategy needed to approximate the Sobol
indices (see [65]) in a non-intrusive manner implies (Q + 2) × N runs of a code with N ranging
from 100 to 1000, see [23]. With respect to such integration scheme, the gain is important. But the
comparison would not be fair: in our case, accurate results on the same statistical observables can
be obtain by applying non-intrusive gPC (ni-gPC) with p1D = 4: it consists in using the Gauss-
Legendre experimental design to estimate gPC coefficients and deduce the partial variances and
Sobol indices from them (see [66]). In this case, suppose one needs p1D as a polynomial order in
each direction, then ni-gPC needs NQ = (p1D +1)Q non-intrusive runs. Let us take p1D = 4, just as
for ISMC-gPC, then ni-gPC needs (4 + 1)2 = 25 independent runs of a black-box ISMC code. For
this study, the cost of the ni-ISMC runs ranges from ≈ 360s. to ≈ 401s.. ISMC-gPC hence ensure
a gain ranging from × 25×360

1050 ≈ 8.57 to × 25×401
1050 ≈ 9.54 for this study. Of course if one has access

to 25 computational units than the restitution time for ni-ISMC becomes 401s, the maximum time.
But with several processors, ISMC-gPC can also be accelerated, thanks, for example, to domain
replication (this will be emphasized in the next sections).

In the next section, we consider an uncertain spatial benchmark based on the Heaviside problem
[14, 9, 58]. This benchmark is especially used to stress the capabilities of the MC solver with respect
to what is commonly called the teleportation error [28, 29, 25, 59, 27, 26] in the equilibrium diffusion
limit.

5.2. Uncertain Heaviside

Let us here consider a new configuration. Every details (initial conditions, numerical parameter
choices and test-case justifications) of the test-problem are presented in Appendix A. The initial
condition is a Heaviside of (relaxed T = Tr) temperatures in the center of the spatial domain, see
figure A.17. The conditions are exactly the same as in [9, 58] except that the absorption opacity
is uncertain with σa(X) = σa + σ̂aX and X ∼ U([−1, 1]). In practice, we take σa = 1800 and
σ̂a = σa × 75%. For X = 0, the benchmark is the same as in [9, 58]. In other words, for X = 0,
the equilibrium diffusion limit (38) is valid. Otherwise, for this benchmark, equilibrium must be
fulfilled ∀X ∼ dPX but not necessarily the diffusion limit. Note that in all the results of this
section, truncation (26) is considered.

Figure 7 displayes the curve x→ T (x, t∗ = 10−8, X = 0) obtained from

– a deterministic reference code solving directly equation (38) for the equilibrium diffusion limit
(Nx = 2000 cells),

35



– a non-intrusive application of ISMC (ni-ISMC) for X = 0 with ∆t = 10−12, NMC = 3.9× 107

and Nx = 40 cells,

– and the ISMC-gPCP=5 solver of this paper taken at X = 0 in the same numerical conditions
as ni-ISMC.

First, ISMC is able to recover the equilibrium diffusion limit on a coarse mesh (this was already put
forward in [9]). Now, ISMC-gPCP=5 at X = 0 allows recovering the results obtained with ni-ISMC

reference diffusion deterministe
ISMC-gPCP=5, X = 0

ni-ISMC, X = 0
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Figure 7: Comparison of the curve x→ T (x, t∗ = 10−8, X = 0) obtained from a deterministic reference code solving
directly equation (38) for the equilibrium diffusion limit, a non-intrusive application of ISMC for X = 0, and the
ISMC-gPCP=5 solver of this paper taken at X = 0.

at X = 0 with a very good agreement, in the same numerical conditions. With this figure, we put
forward the fact that ISMC-gPC inherits the fast convergence rate of ISMC with respect to spatial
discretisation (see remark 3.3) in the equilibrium diffusion regime: ISMC-gPC (as ISMC) is not
sensitive to the teleportation error. Note also that, this will be discussed more in details later on
when commenting table 1, the computational time (≈8h40min) for ni-ISMC with X = 0 is only
slightly smaller than the one of ISMC-gPC (≈10h, see table 1): the restitution times and accuracies
are comparable together with ISMC-gPC allowing much richer capabilities in term of uncertainty
analysis.

Figure 8 compares the results obtained with ni-ISMCN=15 to the ones obtained with ISMC-
gPCP=5 in term of mean (left axis) and variance (right axis) spatial profiles x → E[α](x, t∗ =
10−8), x → V[α](x, t∗ = 10−8) for α ∈ {I, E, Tr, T}. In term of mean spatial profiles, the solution
at the final time exhibits steep propagation fronts. Less steep than in the deterministic case (see
figure 7 for example) as the averaging process tends to smooth out the spatial profiles but the
gradients remain sharp. The spatial profiles of the variance tend to show that the uncertainty is
mainly located in the center of the domain x = 0.5 and in the vicinities of the propagation fronts
(x ≈ 0.3 and x ≈ 0.7 for this time of interest). The uncertainty does not affect all quantities in
the same manner: if for E, Tr, T the variance is mainly important for the propagation front, this is
not necessarily the case for I: the fluctuations on I due to X are more important in the vicinity
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Figure 8: Comparison of the results obtained with ni-ISMCN=15 to the ones obtained with ISMC-gPCP=5 in term
of mean (left axis) and variance (right axis) spatial profiles x → E[α](x, t∗ = 10−8), x → V[α](x, t∗ = 10−8) for
α ∈ {I, E, Tr, T}.
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x = 0.5. Now, in term of mean and variance spatial profiles, ni-ISMCN=15 and ISMC-gPCP=5

present very good agreements for every observables of interest I, E, Tr, T .
Figure 9 compares the 15 realisations x → α(x, t∗ = 10−8, Xi), α ∈ {I, E, Tr, T} obtained with

ni-ISMC at the N = 15 Gauss-Legendre points (Xi)i∈{1,...,15} to the reconstructed, via truncation
(26), ones from ISMC-gPCP=5 at the same points. The averaged spatial profiles x→ E[α](x, t∗), α ∈
{I, E, Tr, T} are also displayed. Figure 9 attests, for this test-case at least, that very accurate
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Figure 9: Comparison of the 15 realisations x→ α(x, t∗ = 10−8, Xi), α ∈ {I, E, Tr, T} obtained with ni-ISMC at the
N = 15 Gauss-Legendre points (Xi)i∈{1,...,15} to the reconstructed (via truncation (26)) ones from ISMC-gPCP=5

at the same points. The means x→ E[α](x, t∗), α ∈ {I, E, Tr, T} are also displayed.

pointwise approximations can be reconstructed from the solution of our reduced model.
With figures 8–9, we can also see that similar accuracies (≈ 1% difference on the profiles of the

realisations of I and E) are recovered with ni-ISMC and ISMC-gPC on several statistical (mean,
variance, realisations) and physical (I, E, Tr, T ) observables of interest. As a consequence, fair per-
formance comparisons can be made on this benchmark: table 1 presents the sequential runtimes for
the ni-ISMCN=15 and ISMC-gPCP=5. First, of course, with ISMC-gPC, only one run of the code
is necessary. Second, the more important the opacity, the more collisional/diffusive the medium
and the longer the computations: the sequential runtimes range from about 3 hours to more than
15 hours. The reader familiar with MC methods will recognise the classical behaviour of MC codes
in the diffusion regime (characterised by an important number of collisions per time steps). The
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X σa(X) ni-ISMCN=15

X1 = −0.98799252 466.21 03h03min18s
X2 = −0.93727339 534.68 03h15min14s
X3 = −0.84820658 654.92 03h40min52s
X4 = −0.72441773 822.03 04h21min30s
X5 = −0.57097217 1029.1 05h10min53s
X6 = −0.39415135 1267.8 06h10min25s
X7 = −0.20119409 1528.3 07h19min35s
X8 = 0.000000000 1800.0 08h40min29s
X9 = +0.20119409 2071.6 10h07min27s
X10 = +0.39415135 2332.1 11h26min47s
X11 = +0.57097217 2570.8 12h39min56s
X12 = +0.72441773 2777.9 13h56min31s
X13 = +0.84820658 2945.0 15h32min23s
X14 = +0.93727339 3065.3 15h26min49s
X15 = +0.98799252 3133.7 15h42min09s

Total time for the ni-ISMC study 5days 16h34min11s
Average time for the ni-ISMC study 09h06min45s

ISMC-gPCP=5

09h54min32s

Table 1: Sequential runtimes for ni-ISMCN=15 and for ISMC-gPC. The N = 15 Gauss-Legendre points used for the
ni-ISMC and the absorption opacities at those points are displayed.

ISMC-gPC run is only a little more costly in term of runtime than the average computational time
of ni-ISMC. In term of sequential restitution time, the gain between ni-ISMC and ISMC-gPC is of
×13.68 (from about 5 days and 10 hours to only 10 hours). Of course, if one has access to many
more computational units (which is common ground), the N = 15 runs may be run at the same
time: in this case, the gain is only of ≈ 1.58 (maximum runtime over the ISMC-gPC one). But
in this case, the ISMC-gPC restitution time can also easily be accelerated thanks to, for example,
replication domain [35]: when using 15 replicated domains to perform the same computations (i.e.
there are 2.6×106 MC particles per replicated domains/processors) the ISMC-gPC is accelerated of
a factor ×13. In other words, when comparing ni-ISMCN=15 and ISMC-gPC on 15 computational
units, the gain is of about × 56529s.

2744s. = 20.6.

The benchmark of this section presents some promising results: the ISMC-gPC solver seems to
inherit important properties of both the ISMC solver [9] (stable affordable time steps, capture of
the equilibrium diffusion limit on coarse meshes) and of the gPC based reduced model [10] (fast
convergence with respect to P in the uncertain space, computational gain with respect to ni-ISMC).

Finally, for this benchmark, we only used truncation (26): the truncation is activated in practice,
mainly in the vicinities of the steep propagation fronts. The effect of the truncation activation is
mainly visible on the radiation temperature spatial profiles of figure 9 (bottom-left). In the next
sections, other choice of truncation will be made (see section 5.4.1). In particular, we present the
behaviour of the reduced model if a bad minoration/majoration/truncation choice is made.
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5.3. Uncertain test-cases with some bad truncation choices

In this section, we briefly revisit the test-cases of sections 5.1.1–5.2 but instead of relying on
truncation (26) with maximum-principle-based lower and upper bounds, we are going to consider
some bad choices of the extremal bounds. Of course, in practice, the bounds are going to be
totally irrelevant. We here mainly want to highlight the fact that even if bad choices are made, the
wellposedness of the built reduced model is not questioned. But its physical relevance, on another
hand, may be.

5.3.1. Uncertain relaxation case with a bad truncation choice

Figure 10 (top left) presents the results obtained for t,X → T (t,X) with ni-ISMCN=15 and
ISMC-gPCP=5 i.e. in the same conditions as in figure 1 but with a bad truncation: for this test-
case, the initial conditions are within

Im = 10−3 ≤ I0(x, ω,X) ≤ 1 = IM , Em = 10−3 ≤ E0(x,X) ≤ 1 = EM ,∀x ∈ Ω, ω ∈ S2, X ∼ dPX .

Of course, due to the maximum principle holding for (5), the solutions must satisfy the above
inequalities ∀t ∈ [0, t∗]. The above values were the one used in truncation (26) for the computations
of section 5.1.1. Here, instead of choosing Em = 10−3 = Im and EM = IM = 1, we suggest, on
purpose, wrongly choosing half the majorant for EbadM = 1

2EM , I
bad
M = 1

2IM in truncation (26). In
such conditions, see figure 10, the ISMC-gPCP=5 reduced model does not fail to restitute some
results. The reduced model, using a bounded truncation, is wellposed. But it does fail to restitute

relevant physical solutions: the mean solution is truncated as soon as T reaches T badM =
EbadM

Cv
= 1

2
whereas it should reach a plateau at T ≈ 0.57 as testifies the reference (non-intrusive) solution. It
induces some errors also on the variance with respect to time t→ V[T ](t) and on the reconstructed
realisations at the Gauss-points t→ T (t,Xi) for i ∈ {1, ..., 15} as can be seen in figure 10 (top-left).

5.3.2. Heaviside case with a bad truncation choice

In this section, we reconsider the test-case of section 5.2 with two bad truncations: the first
truncation we consider is the sG-gPC one. The second one is similar to the one used in the previous
section.
Recovering the sG-gPC reduced model from truncation (26) consists in choosing Em = −∞ = Im
and EM =∞ = IM . In this case, nothing prevents the truncation TP of the material temperature
from going below zero. If we do not enforce positiveness of TP , i.e. when applying sG-gPC, the
code crashes on this Heaviside case. This testifies of the relevance of the discussion of section 2.
Now, let us, instead of choosing Em = 9.2 × 1011, Im = 2.798 × 105, EM = 9.2 × 1014, IM =
2.798 × 1016 as in section 5.2, choose to take EbadM = 1

2EM , I
bad
M = 1

2IM in truncation (26). The
results are displayed on the top-right and bottom pictures of figure 10. Due to the poor choice
of bounds in the truncation, the solution of the reduced model, even if relatively converged with
respect to the number NMC of MC particle (as the results are far from being noisy) and with
respect to P , does not capture the physical solution.
To sum-up, with the benchmarks of this section, we put forward the fact that

– sG-gPC is not enough to produce wellposed reduced models (leading to robustness issues, just
as for hyperbolic systems of conservation laws, see [8]),

– choosing a bad truncation (bad bounds) can lead to wellposed reduced model (no crash of the
code nor numerical instabilities) but with poor physical relevance.
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Figure 10: The consequences of using a bad truncation on the relaxation problem (see section 5.1.1) on the top left
picture and on the Heaviside problem (see section 5.2) on the other picture: using a bad truncation may lead to a
wellposed problem but its solution may be physically irrelevant.
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From now, a priori relevant (maximum principle based) bounds will be chosen in the benchmarks.
In the next section, we consider one last test-case which allows putting forward one additional
important aspect of the choice of the truncation.

5.4. Uncertain Marshak wave

In this section, we consider an uncertain Marshak wave built from the benchmark of [27]. The
test-case corresponds to the study of a 1D Marshak wave [11] with dimensionless units. A black
body heats the left boundary of the domain x ∈ D = [0, 4] with temperature T (x = 0) = 1.
The radiation constant is a = 1 and so is the speed of light c = 1. There is no scattering (i.e.
σs = 0) and σt(Tm) = σa(Tm) = σa

T 3
m

= 10
T 3
m

. Note that this benchmark will demonstrate that the

ISMC-gPC solver can be used with temperature dependent opacities. Besides, the test-problem
considers a perfect gas eos with ρ = 1 and Cv = 7.14. The medium is initially cold as T (x, t = 0) =
T0(x) = 10−2 ∀x ∈ D = [0, 4]. We are here interested in the (material and radiative) temperature
profiles at t∗ = 500. The previously described configuration is made uncertain by considering an
uncertain absorption opacity σa(Tm, X) = σa+σ̂aX

T 3
m

with X ∼ U([−1, 1]). In practice, we take

σ̂a = 60%σa = 60%× 10 = 6.
In the next three subsections, three different admissible truncations (using relevant bounds) are

going to be considered on this same benchmark.

5.4.1. Uncertain Marshak wave with uncertain σa with truncation (26)

In this section, we consider the test-case described above and compare the results obtained by
ni-ISMCN=15 and with ISMC-gPCP=5 with truncation (26).

Figure 11 compares the results obtained with ni-ISMCN=15 to the ones obtained with ISMC-
gPCP=5 in term of mean (left axis) and variance (right axis) spatial profiles x → E[α](x, t∗ =
10−8), x→ V[α](x, t∗ = 10−8) for α ∈ {I, E, Tr, T} on the Marshak wave test-problem. For I, E, T ,
the means and variances of ni-ISMC and ISMC-gPC are in good agreement. But for Tr, a singular
behaviour is observed. The mean of Tr is overestimated whereas its variance is underestimated: the
differences can not be explained by numerical noise and increasing the polynomial order P improves
only slightly the results. It is easier understanding what happens by analysing figure 12. Figure
12 compares the means and N = 15 Gauss-Legendre realisations obtained by both ni-ISMCN=15

and ISMC-gPCP=5 for the spatial profiles of I, E, T, Tr. If we focus on the N = 15 realisations,
we can see that for I, E, T , even if some spurious oscillations seem to appear for ISMC-gPC (and
not for ni-ISMC), the reconstructed realisations of the spatial profiles of these quantities are quite
well captured by the P -truncated reduced model. Note that those spurious oscillations are closely
related to the fact that no pointwise (in the X-space) maximum principle is ensured by the reduced
model, see remark 2.4. Now, for the spatial profile of Tr, the reconstructed realisations have a
much more oscillating behaviour in the vicinity x ∈ [1.5, 2.5]. In this vicinity, truncation (26) is

often activated in order to obtain a positive quantity under the exponent in Tr(I) = ( Ia )
1
4 : in fact,

truncation (26) can not, natively, preserve the mean (or the higher order moments) of Tr. The main
risk with using such truncation here is to think that, on average, T and Tr have not yet relaxed to
the same value whereas, in practice, this is wrong (as testify the reference ni-ISMC results). This
is all the more unfortunate that truncation (26) is computationally fast to apply and gives good
results in other situations (see for example the benchmark of section 5.2). Let us explore, in the
next subsections, other truncations for the same benchmark.
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Figure 11: Comparison of the results obtained with ni-ISMCN=15 to the ones obtained with ISMC-gPCP=5 in term
of mean (left axis) and variance (right axis) spatial profiles x → E[α](x, t∗ = 10−8), x → V[α](x, t∗ = 10−8) for
α ∈ {I, E, Tr, T} on the Marshak wave test-problem.

43



I E

ISMC-gPCP=5 realisations of I
ni-ISMC realisations of I

mean I ni-ISMCN=15
mean I ISMC-gPCP=5

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5 4
x

ISMC-gPCP=5 realisations of E
ni-ISMC realisations of E

mean E ni-ISMCN=15
mean E ISMC-gPCP=5

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5 3 3.5 4
x

Tr T

ISMC-gPCP=5 realisations of Tr
ni-ISMC realisations of Tr

mean Tr ni-ISMCN=15
mean Tr ISMC-gPCP=5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.5 1 1.5 2 2.5 3 3.5 4
x

ISMC-gPCP=5 realisations of T
ni-ISMC realisations of T

mean T ni-ISMCN=15
mean T ISMC-gPCP=5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4
x

Figure 12: Comparison of the 15 realisations x→ α(x, t∗ = 10−8, Xi), α ∈ {I, E, Tr, T} obtained with ni-ISMC at the
N = 15 Gauss-Legendre points (Xi)i∈{1,...,15} to the reconstructed (via truncation (25)) ones from ISMC-gPCP=5

at the same points. The means x→ E[α](x, t∗), α ∈ {I, E, Tr, T} are also displayed.
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5.4.2. Uncertain Marshak wave with uncertain σa with truncation (27)

In this section, we revisit the previous benchmark but with the θ−truncation (27) instead of
truncation (26). Truncation (27) is built to preserve the first moment (i.e. the mean) of I and
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Figure 13: Comparison of the results obtained with ni-ISMCN=15 to the ones obtained with ISMC-gPCP=5 in term
of mean (left axis) and variance (right axis) spatial profiles x → E[α](x, t∗ = 10−8), x → V[α](x, t∗ = 10−8) for
α ∈ {I, E, Tr, T} on the Marshak wave test-problem. Truncation (27) is used

E, as we have
∫
IP dPX = λI0 and

∫
EP dPX = λE0 . But the θ−truncation does not necessarily

preserve their higher order moments. For example, the variances are given by
∫

(IP )2 dPX =

(θI)2
∑P
k=1(λIk)2 and

∫
(EP )2 dPX = (θE)2

∑P
k=1(λEk )2: they are preserved only if θα = 1,∀α ∈

{I, E}. This will typically not be true if the truncation is activated.
In practice, the θ-limitation on I and E is built at the beginning of every time step (i.e. θα, α ∈

{I, E} is cell and time step dependent). The additional computational is negligible in comparison to
the MC resolution (the media is very collisional). The results in term of mean and variance spatial
profiles are displayed in figure 13 and in term of spatial realisations in figure 14. Astonishingly, the
results are worse than with truncation (26): this is because the θ-limitation, when activated in a
cell during a time step, operates on every realisations Xp of each MC particle p crossing the cell
during the time step. On another hand, truncation (26) of section 5.4.1 was only activated for MC
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Figure 14: Comparison of the 15 realisations x→ α(x, t∗ = 10−8, Xi), α ∈ {I, E, Tr, T} obtained with ni-ISMC at the
N = 15 Gauss-Legendre points (Xi)i∈{1,...,15} to the reconstructed (via truncation (27)) ones from ISMC-gPCP=5

at the same points. The means x→ E[α](x, t∗), α ∈ {I, E, Tr, T} are also displayed.
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particles p of field Xp such that IP , EP , TP did not respect43 (20).
In the next paragraph, we study the effect of truncation (29) which both preserves accretiveness

and the polynomial moments of the different quantities.

5.4.3. Uncertain Marshak wave with uncertain σa with truncation (29)

Finally, in this section, we revisit the same benchmark as in the two previous sections but using,
in an original way which will be detailed later on, truncation (29). Let us first comment on the
results of figures 15 and 16 before giving few implementation details. On figure 15, we can see that
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Figure 15: Comparison of the results obtained with ni-ISMCN=15 to the ones obtained with ISMC-gPCP=5 in term
of mean (left axis) and variance (right axis) spatial profiles x → E[α](x, t∗ = 10−8), x → V[α](x, t∗ = 10−8) for
α ∈ {I, E, Tr, T} on the Marshak wave test-problem. Truncation (29) is used

the truncation allows recovering, with a numerically acceptable agreement, the same mean and
variance as the reference ni-ISMC solver, even on the spatial profile of Tr (which was particularly
problematic in the two previous sections 5.4.1–5.4.2). Figure 16 displayes the spatial profiles of
the realisations at the N = 15 Gauss-Legendre points with ni-ISMC and with the reconstructions

43Note that applying a particle dependent θ-limitation is strictly equivalent to choosing truncation (26).
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Figure 16: Comparison of the 15 realisations x→ α(x, t∗ = 10−8, Xi), α ∈ {I, E, Tr, T} obtained with ni-ISMC at the
N = 15 Gauss-Legendre points (Xi)i∈{1,...,15} to the reconstructed (via truncation (29)) ones from ISMC-gPCP=5

at the same points. The means x→ E[α](x, t∗), α ∈ {I, E, Tr, T} are also displayed.
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obtained from ISMC-gPCP=5. We can see that even if some spurious oscillations are still observ-
able, especially on the spatial profiles of E and T , the oscillations of Tr are better controlled in the
vicinity of x ∈ [1.5, 2.5] for low radiative temperatures.

From the results of figures 15–16, we can attest that the use of

– an accretiveness-preserving strategy is mandatory for mathematical wellposedness (otherwise
the code crashes),

– but a moment-matching one may be important for physical relevance (accuracy).

The IPM (truncation (29)) can ensure both properties (wellposedness and moment-matching) but
is known to be costly [4, 1, 5, 8, 36] as it induces an additional computational cost: truncation (29)
needs the computation of (λI , λE) from the moments of (I, E) which needs a nonlinear inversion.
For the computations of figures 15–16, we claim that the overall cost of the simulations is not
strongly affected by the use of the IPM truncation (29): the cost is the same as the one of the
results of section 5.4.1 obtained with truncation (26). Let us explain how the results of figures
15–16 are produced in practice:

– first, the calculations are performed with truncation (26), just as in section 5.4.1. This
truncation is cheap and ensures wellposedness.

– Second, truncation (29) is used only for the output profiles for which accurate results are
needed (i.e. it is applied offline/non-intrusively). It is used in order to preserve the moments
of the population of MC particles at the times and locations of interest.

In other words, the inversion needed by truncation (29) is not systematically performed within
each cell at each time step as in [8] for example. The idea to resort to the cheapest wellposedness-
preserving strategy (here truncation (26)) together with a moment-matching procedure (truncation
(29)) only where and when needed. In a sense, this kind of optimised strategy is inspired by both
[6] (with a cheap and efficient wellposedness-preserving strategy) and [4] (in which computations
on reduced models obtained from hyperbolic systems are accelerated by only applying IPM when
relevant).

Remark 5.1 (Few implementation details on the offline inversion for truncation (29)).
Even if performed offline, the inversion strategy may be difficult: we encountered few issues which
deserve to be tackled for the sake of reproducibility of the numerical results of this section: due
to the noisy numerical MC integration in certain cells and times of interest, the hessian matrix
within the newton may be ill-conditioned for too important orders P . When this situation occurs
(it is detected if too many newton iterations are performed), the inversion is carried out on less
polynomial moments (P ← P − 1), i.e. on a smaller hessian matrix, until convergence is ensured.

It is interesting noticing that the Marshak wave problem of this section put forward difficulties
which were not encountered in a hyperbolicity-preserving context [5, 6, 1, 4]: this is probably due
to the strong stiffness of the nonlinear system we consider here. Still, an astute combination of the
existing techniques (hyperbolicity-preserving strategy [5, 6] together with a moment-matching one
[8, 1, 4]) allows obtaining mathematically wellposed reduced model which are physically relevant
together with being numerically efficient.
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6. Conclusion

In this paper, we build wellposed generalised Polynomial Chaos (gPC) based reduced models
for photonics and solve them with a Monte-Carlo (MC) scheme. In the first part of the paper, care
is taken to highlight under which conditions a reduced model (gPC based or not) is wellposed. The
analysis is carried out thanks to an astute analogy between the construction of reduced models
for uncertainty quantification and the construction of reduced models for kinetic equations. In
particular, the analysis leads to quite simple conditions for wellposedness: bounds on the material
temperature and on the radiative intensity must be satisfied. Several strategies are tested and anal-
ysed in order to control those bounds. They are mainly inspired from the literature on uncertainty
quantification for hyperbolic systems of conservation laws. For the resolution of the truncated
reduced models, an astute combination of the ISMC scheme and of MC-gPC is performed. The
description of the scheme is made by highlighting where, in an ISMC implementation, the MC-gPC
modifications must be made. These modifications are simple and efficient in practice: we verify, at
least numerically, that the ISMC-gPC scheme preserve interesting properties from both ISMC (no
teleportation error, good behaviour in the equilibrium diffusion limit on affordable meshes, afford-
able time steps) and MC-gPC (fast convergence rates with respect to the truncation order, gain with
respect to efficient non-intrusive methods). In a sense, the work of this paper also demonstrates
that MC-gPC can be efficiently applied to a stiff nonlinear set of partial derivative equations and
that the same parallel strategies as in the linear case can be applied if the MC resolution allows a
fast convergence with respect to both the time and spatial discretisation. Several benchmarks are
investigated in the last section. They emphasize the importance of relying on

– an ansatz preserving the wellposedness to obtain mathematically relevant surrogates (and
avoid robustness difficulties),

– and on the relative importance of relying on a moment-preserving ansatz to obtain physically
relevant models (converging toward the physical solution),

in order to implement computationally efficient codes for uncertainty propagation for photonics in
low to moderate uncertain dimensions.
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[6] J. Dürrwächter, T. Kuhn, F. Meyer, L. Schlachter, F. Schneider, A hyperbolicity-preserving dis-
continuous stochastic galerkin scheme for uncertain hyperbolic systems of equations, Journal of
Computational and Applied Mathematics 370 (2020) 112602. doi:10.1016/j.cam.2019.112602.
URL http://dx.doi.org/10.1016/j.cam.2019.112602

[7] L. Schlachter, F. Schneider, O. Kolb, Weighted essentially non-oscillatory stochastic galerkin
approximation for hyperbolic conservation laws, Journal of Computational Physics 419 (2020)
109663. doi:https://doi.org/10.1016/j.jcp.2020.109663.
URL http://www.sciencedirect.com/science/article/pii/S002199912030437X
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[23] B. Iooss, P. Lemâıtre, A Review on Global Sensitivity Analysis Methods, Dellino, Gabriella and
Meloni, Carlo, Springer US, Boston, MA, 2015, pp. 101–122. doi:10.1007/978-1-4899-7547-8 5.
URL http://dx.doi.org/10.1007/978-1-4899-7547-8 5
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Appendix A. Details about the Heaviside problem of section 5.2 ( initial and bound-
ary conditions, test-case justifications)

In this paper, we intensively make use of the configuration presented in this appendix. The
initial and boundary conditions together with the problem justifications are provided here for both,
the sake of conciseness of the paper and of reproducibility of the results.

The Heaviside problem considered in section 5.2 can be described as follows: let us consider a
1D spatial domain such that x ∈ Ω = [0, 1]. The domain is filled with a diffusive media σt = 2000,
with no (physical) scattering, i.e. σs = 0 and σt = σa. Initially, a Heaviside of temperatures at
equilibrium is set in the middle [0.4, 0.6] of domain Ω = [0, 1]. In other words, we have at t = 0:

Tm(x, t = 0) = Tr(x, t = 0) = 2.3× 1071[0.4,0.6](x) + 2.3× 1041[0,1]\[0.4,0.6](x).

Note that 1Ω(x) denotes the indicatrix of domain Ω. The initial condition is displayed in figure
A.17 together with the solution of system (38) at final time T = 10−8. This reference solution
has been obtained solving (38) with a deterministic solver (with a fine mesh). Note that for time
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Figure A.17: Initial and final spatial profile of the temperatures (Tm = Tr) in the equilibrium diffusion limit for the
Heaviside test-problem of this paper.

t ∈ [0, T ], the solution does not reach the boundaries. The radiative constant is set to a = 10−14,
the speed of light to c = 3×1010. A perfect gas is considered to that E(Tm) = ρCvTm with ρ = 20,
Cv = 4× 107.
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