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ABSTRACT

We extend the application of the nonlocal theory of Mahan and Claro [Phys. Rev. B 38, 1963 (1988)] to solve the steady-state Boltzmann–
Peierls transport equation within the framework of the single mode relaxation time approximation using the modified Debye–Callaway model.
We consider the case of a semi-infinite semiconductor (SC) crystal with a boundary condition at its top surface that can be considered
reasonably representative of time domain thermoreflectance (TDTR) and frequency domain thermoreflectance (FDTR) techniques. The
approach allows us to obtain three different contributions to the heat flux density current that shed further light on the fundamental role of
nonlocality and nonlinearity in heat transport by phonons in SC crystals. Through their intrinsic and implicit shuffling effect of the crystal
momentum, phonon–phonon Normal scattering processes play a key role in the onset of thermal conduction as they introduce the temperature
Laplacian as a second driving potential force for the heat flux density current in addition to the conventional Fourier’s temperature gradient.
The developed model suits quite fairly to interpret the frequency behavior of the reduced effective thermal conductivity of SC crystals that is
observed in TDTR and FDTR experiments. We obtain an expression of the effective thermal conductivity of the SC crystal that is characterized
with a universal spectral suppression function that captures and describes the role, the weight, and the contribution of quasi-ballistic and
non-diffusive phonons. The spectral suppression function only depends on the ratio between the phonon mean free path and the thermal
penetration depth as defined based on the diffusive Fourier’s law.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0017188

I. INTRODUCTION

Due to the continuous development in nanotechnology and
the rapid evolution in the synthesis and fabrication of different
solid materials at a nanometer scale, understanding and controlling
heat transport at very short length scales has become very crucial
and challenging. Indeed, the length scales at which heat transport
starts taking place in all types of conductor materials, e.g., metals,
semiconductors (SCs) and dielectrics, undertake a continuous
reduction to almost approach the intrinsic characteristic micro-
scopic lengths of the material.1,2 For the purpose of heat transport
in SC and dielectric materials, the main characteristic intrinsic
length is the mean free path (MFP) of phonons that are the main
energy (heat) carriers in these materials.3,4 In a local theory, heat
transport depends only on the material properties and temperature
gradient at a single point in space and is not affected by the proper-
ties and temperature profiles at other locations. The local theory of
heat transport is valid as long as the MFP is short compared to the
spatial variations in temperature. Nevertheless, because of the

phonon dispersion relation, its MFP is inversely proportional to a
certain power of its frequency ω,5,6 and thus, no matter what dis-
tance scale one has for the temperature variation, there are always
phonons of small ω with a longer MFP. Hence, the nonlocal theory
would actually be needed in the analysis of all aspects of heat trans-
port by phonons in SC and dielectric crystals, particularly when
low frequency phonons have a significant contribution to the
process.

The question of energy and heat transport mechanisms in
solid materials at short time and length scales has been the basis of
numerous theoretical and experimental papers. A part of the
research has continued to exploit the conventional local/linear non-
equilibrium thermodynamics theory (LLNETT),7–47 while the
second part has considered going beyond this theory and has inves-
tigated the nonlocal/nonlinear effects using different approaches,
especially in the presence of large temperature gradients.48–71 The
difference between the two approaches resides in the relation
between the temperature disturbance and the heat flux density
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current. In the LLNETT, the heat flux density current is a local and
linear function of the temperature gradient ∇T that constitutes the
only driving potential force. On the other hand, when nonlocal
and nonlinear effects are considered, other driving potential forces
come to play with two kinds of terms ∇nT and (∇T)n with n > 1;
the former are nonlocal while the latter are nonlinear.48 Therefore,
the difference lies in the nature of the driving potential forces and
not in the inherent temperature dependence of their coefficients.
This latter dependence leads to nonlinearity effects even in the con-
ventional Fourier’s law, which is a local/linear theory in the sense
described above.

Among the different studies, the one of non-diffusive and quasi-
ballistic phonon transport in SC and dielectric crystals including the
transition between the ballistic and diffusive regimes has attracted a
growing interest in the last decade.10,12,14–17,20–47,57–63,65,68–71 In fact,
some recent works have shown that the average MFP of phonons in
SC crystals can be up to two orders of magnitude longer than the
prediction of the kinetic theory at room temperature.5,6 This has
raised the fundamental question about the real contribution of low
frequency phonons to the effective thermal conductivity of SC crystals
that has been measured by several photothermal methods, mainly
time domain thermoreflectance (TDTR),10,16,21,29,30,59,60,62,70 fre-
quency domain thermoreflectance (FDTR),22,25 and transient thermal
grating (TTG)17,20,31,35,41,45 techniques. The exploitation of these tech-
niques has allowed obtaining the key and relevant information about
the phonon MFP spectral distribution in SC crystals, especially at
room temperature.16,17,20–22,25,29–31,35,41,45 The thermal conductivity
accumulation function and the suppression function are two elegant
metrics that have been used in the analysis of the experimental data
in these configurations. The former is used for understanding which
phonon MFPs contribute predominantly to heat transport in a mate-
rial,32 while the latter is used to quantify the reduction or suppression
of the thermal conductivity.14,27,39 The two metrics are actually
related. The suppression function provides the ability to extend the
notion of thermal conductivity beyond the diffusive regime in which
it is defined from Fourier’s law.14,27,39 By utilizing the suppression
function for a given experimental geometry, one can obtain through
a reconstruction method, such as the one proposed by Minnich,17 the
material’s phonon MFP spectral distribution from the experimentally
measured thermal conductivity.17,22,25,29–31 To obtain the effective
thermal conductivity, the thermal signal from the experiment is fitted
to the results of Fourier’s law. The suppression function is calculated
through modeling of the given experimental geometry with the
Boltzmann–Peierls transport equation (BPTE). As pointed out by
Chiloyan et al., a key assumption in this method is the universality of
the suppression function; the ability to express this function as a
function of a single parameter, i.e., the ratio of the phonon MFP to a
characteristic length for the given experimental configuration and not
otherwise of the material properties.39

The motivation behind the present work is twofold. First, we
extend the application of the nonlocal theory of Mahan and
Claro48 to solve steady-state BPTE using the Callaway approxima-
tion of the collision operator. This will allow us calculating and
developing a compact formula of the heat flux density current that
shed further light on the fundamental role of nonlocality and non-
linearity in heat transport by phonons in SC crystals and therefore
go beyond the conventional Fourier’s law. A particular attention

will be addressed toward the critical role of phonon–phonon
Normal scattering processes. Second, we derive an analytical
expression of the spectral suppression function of the effective
thermal conductivity in TDTR and FDTR configurations and
emphasize its universal character and features.

We present the main steps of the theoretical modeling in
Sec. II. In Sec. III, we discuss the results of this approach in appli-
cation to TDTR and FDTR results by analyzing the effect of
varying different experimental parameters. We summarize and
establish our concluding remarks in Sec. IV.

II. THEORY

In this section, we present the method that allows deriving the
full expression of the phonon heat flux density current in cubic
SC crystals that gives a clear insight into the fundamental role of
nonlocality and nonlinearity effects. We assume the temperature
profile to vary in only one dimension and consider a semi-infinite
geometry for the SC crystal that corresponds to TDTR and FDTR
experimental configurations. This permits obtaining a flexible and
rather smooth analysis, as we shall see below.

A. Boltzmann–Peierls transport equation

The starting point of our modeling is steady-state Boltzmann–
Peierls transport equation (BPTE) in the framework of the single
mode relaxation time approximation and using the modified
Debye–Callaway model in which both longitudinal and transverse
phonon modes are included explicitly.72–79 The SC crystal is
assumed to have a cubic symmetry and is treated as a continuum,
elastic, and isotropic medium characterized by a linear (Debye-like)
phonon spectrum for each phonon branch polarization so that one
considers heat transport due only to acoustic phonons and ignore
any contribution from optical phonons.72–79 Callaway’s approxima-
tion of the collision operator in BPTE captures quite fairly and
respectfully the peculiar effects of phonon–phonon Normal scatter-
ing processes (N-processes) that distinguish them from the rest of
phonon scattering processes including phonon–phonon Umklapp
scattering processes (U-processes). Thus, it allows a simple separa-
tion of N-processes and U-processes.72 The pioneer purely intuitive
work of Callaway72 was investigated in detail by many authors, and
more robust theoretical foundations have been found.4,75,76 For
their algebraically convenient forms, the Callaway72 and Holland74

methods have been the most and widely used formulations for the
steady-state local/linear (Fourier’s law based) thermal conductivity
that enable fitting of the experimental data for a large number of
materials in which heat is carried by phonons, with only a few
adjustable parameters.

Despite its simplicity, the Debye–Callaway model has been
proven to be very robust and effective in the study and prediction
of the temperature behavior of the thermal conductivity of SC crys-
tals within the conventional local/linear non-equilibrium thermo-
dynamics theory.72–79 Although this model might not be very
rigorous, the treatment is to some extent justified by the reasonable
agreement with the experiment that has been obtained with it in
the steady-state regime.77,78 In this approach, the contributions of
longitudinal and transverse acoustic branch polarizations are con-
sidered separately; furthermore, any conversion of normal modes
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between both acoustic polarizations (inter-transitions) is neglected;
only transitions within the same acoustic branch polarization
(intra-transitions) are considered. This approach was first used by
Holland74 in his extension of the Callaway’s model.72

We assume application of a temperature disturbance along the
direction ~x. In addition, we consider local thermal equilibrium
throughout, which is required to define a temperature.3,4 Under the
single mode relaxation time approximation, the steady-state Callaway’s
form of the BPTE along the x axis can be written as follows:

vpm
dUm

q,p

dx
¼ �Um

q,p � U0
q,,p

τCq,p
þ gmq,p
τCq,p

, (1)

where we have introduced the deviational spectral energy density per
phonon mode (phonon wave-packet) of wave-vector q and polariza-
tion p as U(x, m, q, p) ; Um

q,p ¼ �hωp(nmq,p � nEqq,p). nmq,p is the phonon
distribution function at the absolute local thermal equilibrium temper-
ature T, and U0

q,p ¼ �hωp(n0q,p � nEqq,p) is therefore the deviational equi-
librium spectral energy density per phonon mode with n0q,p and nEqq,p
denoting the equilibrium phonon Planck distribution functions, at
temperatures T and T0, respectively, where T0 represents an absolute
reference temperature.27,39

(τCq,p)
�1 ¼ (τRq,p)

�1 þ (τNq,p)
�1 is the “combined” relaxation

time,72,73 with τRq,p representing the single relaxation time with
which all resistive phonon scattering processes (all scattering
processes that change the total phonon wave-vector: Umklapp,
boundary, defects, imperfections) tend to return the phonon
system to its thermal equilibrium state. τNq,p is the single relaxation
time due to N-processes (scattering processes that do not change
the total phonon wave-vector). As pointed out by Callaway72

and others,73–76 N-processes tend to return the phonon system
to a displaced (drifted) Planck distribution function

n
λp
q,p ¼ exp (�hωP(q)�λp:q)

kBT

h i
� 1

n o�1
where, by symmetry consider-

ation in cubic SC crystals, λp is a constant vector in the direction of
the applied temperature disturbance which has the dimension of a
velocity times Planck constant ħ.72–79 ωp(q), vp, and m are, respec-
tively, the dispersion relation of the phonon in state (q, p), group
velocity of a p-polarization phonon and directive cosine; cosine of
the angle between the x axis and the phonon wave-vector q. We
assume in our analysis the heat transport to be in the same direc-
tion as the applied temperature disturbance.

By using Callaway analysis and Debye-like phonon dispersion
ωp(q) ¼ vpq,

72–79 we can easily show that the term gmq,p is given by

gmq,p ¼ �βp
τCq,p
τNq,p

mvpC
p
q
dT
dx

: (2)

βp is Callaway parameter that has the dimension of a relaxation

time72–79 and Cp
q ¼ @U0

q,p

@T ¼ �hωp
@n0q,p
@T is the specific heat or heat capac-

ity per phonon normal mode.79 The Callaway pseudo-relaxation
time βp describing the effect of N-processes is calculated as in the
conventional steady-state local/linear treatment, by recalling that
N-processes cannot change the total phonon wave-vector (total
crystal momentum).72–79

It is worthwhile mentioning here that the expression of

the drift velocity λp
�h of a phonon (q, p) is proportional to

dT
dxð Þ
T . Nevertheless, because of the smallness of Callaway
pseudo-relaxation time βp,

72,73 the proportionality constant is very
small over almost the whole temperature range considered in our
study. Therefore, we continue to suppose there is no need to use
higher orders in the Taylor’s expansion of nλPq,p even in the case of

very high values of
dT
dxð Þ
T .

Equation (1) is a simple one variable inhomogeneous partial
differential equation. Its solution can readily be obtained and we
can easily show that we get the following solution:

Um
q,p(x) ¼ (U0

q,p þ gmq,p)(x)þ e�
ξq,p (x)

m [Um
q,p(0)� (U0

q,p þ gmq,p)(0)]

�
ðx
0
dx0 e�

ξq,p (x)�ξq,p (x
0 )

m
d
dx0

[(U0
q,p þ gmq,p)(x

0)] (3)

where the function ξq,p is defined as ξq,p(x) ¼
Ð x
0

1
(vpτCq,p)

dx0.
A physically meaningful form of Eq. (3) is conditioned by the

behavior of the exponential term that can grow to infinity when
x ! +1 depending on the sign of the cosine m. Therefore, the
boundary condition Um

q,p(0) plays a key role in the mathematical
treatment. According to Mahan and Claro, Um

q,p(0) is selected to
make the factor of the exponential term vanish at infinity48 and its
exact form depends on the geometrical configuration: semi-infinite
or infinite.

B. Case of a semi-infinite geometry: TDTR and FDTR
configurations

The semi-infinite geometry of the SC crystal suits very
well both TDTR and FDTR experimental configura-
tions.10,16,21,22,25,29,30,59,60,62,70 For these configurations, we will
provide a theoretical framework to analyze the reduction of the
effective thermal conductivity of a semi-infinite cubic SC crystal, at
high frequencies of the oscillating heat source applied to its top
surface. We assume the heating frequency to be much smaller than
the average dominant phonon scattering rate over all branch polari-
zations. Hence, we neglect the time-scale effect and the steady-state
form of the BPTE as given by Eq. (1) can describe the phonon
transport process. In this case, ξq,p represents the distance x from
the top surface normalized by the phonon MFP lq,p(x) ¼ vpτCq,p.

As we shall see in Sec. III, this assumption is consistent with
the previous assertion by Koh et al.10,60 The latter states that the
reduction of the thermal conductivity of SC alloys in room temper-
ature TDTR experiments at heating frequencies <20MHz is
primary an effect of length scales, i.e., mean free paths and thermal
penetration depths and not an effect of time scales, i.e., phonon
lifetimes and the period of the modulated heat source.

In this case, the SC crystal is assumed to be characterized by a
fixed Um

q,p(0) at its top surface (x = 0) that we assume to be coated
with a thin metallic layer at (x < 0) that plays the role of a heat
transducer in TDTR and FDTR experiments. From this surface,
heat will flow to the interior of the SC crystal along the x axis. A
very instructive illustration of the semi-infinite geometry applied to
TDTR and FDTR configurations is reported in the paper of Koh
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et al.60 As mentioned by Mahan and Claro48 and Koh et al.,60

Um
q,p(0) may depend on many factors mainly related to the scatter-

ing, transmission, and reflection of phonons at this top boundary
( junction between the metallic transducer and the SC substrate).
We distinguish two classes of phonons; phonons that propagate to
the surface (m < 0) and phonons that propagate from the surface
(m > 0).60 Therefore, the analysis requires a special care in order to
distinguish forward propagating phonons and “reflect” back-traveling
phonons reaching the top surface back into the medium. For the
backward phonons (m < 0), we follow Mahan and Claro48 and choose
the expression of Um,0

q,p (0) that makes the factor of the exponential

term e�
ξq,p (x)

m in Eq. (3) tends to zero as x ! þ1. Using the boundary
condition Um

q,p(x ! þ1) ¼ 0 and (U0
q,p þ gmq,p)(x ! þ1) ¼ 0, we

obtain

Um,0
q,p (0) ¼ (U0

q,p þ gm,0
q,p )(0)

þ
ðþ1

0
dx0e

ξq,p(x
0 )

m
d
dx0

[(U0
q,p þ gm,0

q,p )(x0)]: (4)

By inserting Eq. (4) into Eq. (3), we directly obtain the general
solution for backward propagating phonons (m < 0) as

Um,0
q,p (x) ¼ (U0

q,p þ gm,0
q,p )(x)

þ
ðþ1

x
dx0e�

ξq,p(x)�ξq,p (x
0 )

m
d
dx0

[(U0
q,p þ gm,0

q,p )(x0)]: (5)

To determine the expression of Um.0
q,p (0) for phonons that

propagate away from the top surface (m > 0), we shall, in a rigorous
treatment of the transient phonon transport regime, consider the
scattering, transmission, and reflection of phonons at the junction
between the metallic film transducer and the SC substrate that is
responsible of the interface thermal resistance (ITR) at this junc-
tion. The ITR is undoubtedly one of the most fundamental ele-
ments in the study of heat transport in TDTR and FDTR
experiments.1,2,21,59,65,70,80–82 Nonetheless, since we are considering
only the steady-state regime, and although the phonon distribution
at the interface (including both sides) might be in a nonequilibrium
state, we could assume each side of this interface to be in local
thermal equilibrium and as such is characterized by a constant
temperature. We note TS the temperature for the SC side.
Furthermore, we can treat the junction as an independent system,
which will allow us decoupling the process of phonon transport
within it from the intrinsic phonon transport process inside the SC
substrate. As an independent system, the junction has a characteris-
tic size that spans over both sides of the interface. In order to
emphasize the analysis of the intrinsic phonon transport process
inside the SC substrate, the condition x = 0 corresponds to the part
of the junction within the SC side. Therefore, at x = 0, there is no
phonon reflection, but instead a phonon exchange process that we
assume to be elastic and can be treated independently for each
phonon. Yet simple, this model is based on a realistic boundary
condition that could be reasonably representative of the phonon
physics occurring in the steady-state regime at the interface in
TDTR and FDTR experiments.60

In such a scenario, the average number of phonons of fre-
quency ω at x = 0 (including both backward phonons with m < 0
and forward phonons with m > 0) is given by the Planck equilib-
rium distribution function,60

1
2
[Um,0

q,p (0)þ Um.0
q,p (0)] ¼ U0

q,p(0): (6)

By doing so, we can easily show that

Um.0
q,p (0) ¼ (U0

q,p þ gm.0
q,p )(0)

�
ðþ1

0
dx0e�

ξq,p (x
0 )

m
d
dx0

[(U0
q,p � gm.0

q,p )(x0)]: (7)

Therefore, the general solution for forward propagating
phonons (m > 0) is given by

Um.0
q,p (x)¼ (U0

q,pþgm.0
q,p )(x)�

ðx
0
dx0e�

ξq,p (x)�ξq,p (x
0 )

m
d
dx0

[(U0
q,pþgm.0

q,p )(x0)]

�
ðþ1

0
dx0e�

ξq,p(x)þξq,p(x
0 )

m
d
dx0

[(U0
q,p�gm.0

q,p )(x0)]: (6)

It is worth mentioning that the stringent boundary equilib-
rium condition on the SC side as given by Eq. (6) fulfills the energy
conservation requirement dJQ

dx ¼ 0 at x = 0 where JQ is the heat flux
density current along the direction ~x of the applied temperature
disturbance. This condition may not be rigorously valid but can be
justified by the final result that we shall discuss in Sec. III.

In the framework of Debye’s model of the phonon dispersion
relation, JQ is defined as3,4,72,73

JQ(x)¼ 1
4π2
X

p
vp

ðqPD
0
q2
ð1
�1

mU(x,m, q, p)dm

� �
dq

¼ 1
4π2
X

p
vp

ðqPD
0
q2
ð0
�1

mUm,0
q,p (x)dmþ

ð1
0
mUm.0

q,p (x)dm

� �
dq,

(9)

where qPD denotes Debye’s cutoff wave-vector of the acoustic branch
polarization p.3,4,72,73 The equilibrium phonon Planck distribution
functions n0q,p and nEqq,p are symmetrical in the wave-vector q space
while the group velocity is an algebraic function of q. The disper-
sion relation and the relaxation times depend on the module of the
wave-vector q and as such are even functions of q. Therefore, the
deviational equilibrium spectral energy density per phonon mode
U0
q,p has no contribution to JQ.

3,4,72,73 After some manipulations,
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we can straightforwardly write the expression of JQ(x) as

JQ(x) ¼ 1
4π2

X
p

vp

ðqPD
0

q2
ð1
�1

mgmq,p(x)dm

�

�
ð1
0
m
ðþ1

x
dx0e

ξq,p (x)�ξq,p (x
0 )

m
d
dx0

[(U0
q,p � gmq,p)(x

0)]
� �

dm

�
ð1
0
m
ðx
0
dx0e�

ξq,p (x)�ξq,p (x
0 )

m
d
dx0

[(U0
q,p þ gmq,p)(x

0)]
� �

dm

�
ð1
0
m
ðþ1

0
dx0e�

ξq,p (x)þξq,p (x
0 )

m
d
dx0

[(U0
q,p � gmq,p)(x

0)]
� �

dm

�
dq:

(10)

By taking into account the expression of gmq,p as given by
Eq. (2) and the fact that U0

q,p depends on the position only through

temperature
dU0

q,p

dx0 ¼ dU0
q,p

dT

� 	
dT
dx0

 �

, we easily identify the first term in

Eq. (10) as describing the spatially local/linear contribution to the
heat flux density current JQ. On the other hand, the three other
terms constitute the inherent spatially nonlocal/nonlinear contribu-
tions including two different driving potential forces; the conven-
tional Fourier’s temperature gradient dT

dx and the temperature

Laplacian d2T
dx2 , respectively, as we shall see below.

Moreover, if one assumes small temperature perturbations at
all locations of the SC crystal, the phonon relaxation times could be
considered to be independent of x. Thus, ξq,p(x) ¼ x

vpτCq,p
¼ x

lq,p
. The

nonlinearity effects due to driving potential forces of the kind
(∇T)n disappear and only remain the nonlocal effects. After some
algebra and performing simple calculations, we obtain directly the
final compact expression of JQ that we display in terms of the
different driving potential forces as

JQ(x) ¼

�κN
Loc(T)

dT
dx

�
ðþ1

0
dx0[KNonloc

1 (x � x0)þ KNonloc
1 (x þ x0)]

dT
dx0

�
ðþ1

x
dx0KNonloc

2 (x � x0)
d2T

dx02

þ
ðx
0
dx0KNonloc

2 (x � x0)
d2T

dx02
�
ðþ1

0
dx0KNonloc

2 (x þ x0)
d2T

dx02

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
: (11)

κN
Loc denotes the spatially local/linear thermal conductivity due

to the peculiar shuffling effect of the crystal momentum by
phonon–phonon Normal scattering processes,

κN
Loc(T) ¼

1
6π2

X
p

βpv
2
p

ðqpD
0

CP
q

τCq,p
τNq,p

q2dq: (12)

We have also introduced two functions (thermal conduction
kernels) KNonloc

1 and KNonloc
2 that are defined as

KNonloc
1 (x) ¼ 1

4π2
X
p

vp

ðqPD
0

CP
q q

2E3
jxj

vpτCq,p

 !
dq

KNonloc
2 (x) ¼ 1

4π2
X
p

βpv
2
p

ðqPD
0

CP
q

τCq,p
τNq,p

q2E4
jxj

vpτCq,p

 !
dq

8>>>>><
>>>>>:

, (13)

where Eν(z) ¼
Ð 1
0 m

ν�2e�
z
mdm is the exponential integral function

of order ν.

III. RESULTS AND DISCUSSION

In the current analysis, we seek to study the relevance and
implications of nonlocal effects on the steady-state one-
dimensional transport behavior of the phonon gas in a region of a
semi-infinite SC crystal subject to an external heat source applied

to its top surface, giving rise to different heat driving potential
forces.

In Sec. II, we made the assumption that the Callaway
pseudo-relaxation time βp, describing the implicit effect of
N-processes, does not depend on space and that this approximation
should preserve the essential features of thermal conduction by
phonons. This means that the dependence of the phonon gas drift
on space is contained in the expression of the drift velocity λp

�h and
thus in the one of gmq,p, only through the temperature gradient dT

dx .
73

βp is a complicated quantity, depending on τNq,S and τRq,S. This com-
plication is necessary because of the behavior of N-processes,
which shuffle crystal momentum back and forth between normal
modes, and then contribute implicitly to the lattice thermal con-
duction (resistance) process of a given SC crystal material.72,73

As one can see in Eq. (11), the peculiar implicit shuffling
effect of the crystal momentum by phonon–phonon Normal scat-
tering processes plays a key and central role in the onset of thermal
conduction. Taking into account the inherent spatial nonlocality
effects tends to accentuate the role of phonon–phonon scattering
N-processes, as the latter are at the origin of existence of the tem-
perature Laplacian as a second driving potential force for the heat
flux density current in addition to the conventional Fourier’s tem-
perature gradient. A similar feature has been shown in the past in
the seminal work of Guyer and Krumhansl.83

A first trivial result that we can issue from the theory devel-
oped above deals with the effect of a constant temperature gradient
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on the expression of the heat flux density current. In this particular
case, the temperature Laplacian vanishes and all nonlocality effects
disappear; the process of phonon heat transport becomes totally
local in a Fourier’s sense. Indeed, we can easily show that the inte-
gral of the first thermal conduction kernel KNonloc

1 in Eq. (11)
becomes a local quantity independent of x, and we obtain an effec-
tive thermal conductivity given exactly by the expression of the
conventional Fourier’s thermal conductivity here and henceforth
noted κC

Four ,
72–79

κC
Four(T) ¼

1
6π2

X
p

v2p

ðqpD
0

CP
q τ

C
q,p 1þ βp

τNq,p

 !
q2dq: (14)

A. Phonon transport in TDTR and FDTR configurations

TDTR and FDTR techniques constitute the first set of experi-
mental configurations that have been used to investigate non-
diffusive phonon transport in dielectric and SC crystal materi-
als.10,16,21,22,25,29,30,59,60,62,70 One of the pioneer works is Koh and
Cahill’s back in 2007.10 By varying the frequency of modulation of
the pump beam in their TDTR experiment, Koh and Cahill
explored the onset of quasi-ballistic phonon transport in SC crys-
tals. Indeed, the measured apparent or effective thermal conductiv-
ity κEff of the SC crystals they studied has shown a monotonic
decrease as a function of this frequency. Over the frequency range
used in their experiments (0.6–10MHz), the results show κEff of
SC alloys to undergo a substantial decrease while, for single SC
crystals, κEff manifested a plateau at room temperature. In the dif-
fusive regime, a characteristic length of the temperature profile that
plays a key role in this configuration is the thermal penetration
depth as defined based on Fourier’s law μ ¼ ffiffiffiffi

α
πF

p
, where α is the

thermal diffusivity and F is the frequency of the applied oscillating
heat source. μ characterizes the distance over which heat can
diffuse in one period of oscillation. At fixed T and depending on F,
μ can indeed be shorter than the dominant phonon MFP.10

Since then, few theoretical approaches have been suggested in
order to explain the experimental observations. In their first inter-
pretation of the results, Koh and Cahill used the BPTE in the
steady-state regime with the modified Debye–Callaway model in
which they assumed a boundary scattering process that phonons
would undergo at a virtual interface. This virtual interface is actu-
ally the surface of a hemisphere whose radius is the thermal pene-
tration depth μ.10 The authors found a good and satisfactory
agreement between experimental data and the results of this phe-
nomenological approach. Da Cruz et al. suggested that the reduc-
tion in the measured apparent thermal conductivity could instead
be due to the insensitivity of TDTR experiments to phonons with
lanh . 3μ, where lanh is the MFP of phonons due to anharmonic
scattering only.18 Their calculations using the fitted cutoff of 3μ
agreed well with the frequency-dependent TDTR measurements.18

A “two-fluid” or “two-temperature” model approach based on con-
ventional Fourier’s heat diffusion equation has also been presented
by Wilson et al.21 In this approach, phonons are divided into two
subsystems, low-frequency phonons and high frequency phonons,
characterized by two different temperatures and interacting
through a coupling parameter. This approach was also capable of

explaining satisfactorily the experimental observations in terms of
an interfacial nonequilibrium conductance.21 Wilson and Cahill
also developed a ballistic/diffusive nonlocal model that kept the
same guidelines of the “two-temperature” model but added more
details in analyzing the reduced apparent cross-plane thermal con-
ductivity of SC alloys as essentially due to an inhomogeneous effec-
tive thermal conductivity near the top surface of the samples that is
caused by the transmission and reflection of long MFP phonon at
the interface between the metal transducer and the SC substrate.59

Later, Koh et al.60 used the Mahan and Claro nonlocal theory48 to
build a more robust framework and by doing so, the authors have
brought more elements to explain their experimental observations
regarding the frequency dependence of the measured κEff in TDTR
experiments. Yang and Dames used a two-flux model to solve the
conventional single mode relaxation time approximated BPTE
without Callaway’s collision operator (standard relaxation time
approximation, RTA).32 They obtained an analytical solution for
the suppression function of κEff in the gray spectrum approxima-
tion.32 Another approach explored by Vermeersch et al. took a
completely different path as it used Lévy flights random walk for-
malism.61,62,71 The latter formalism turns out to be very successful
in the interpretation of the experimental results of TDTR experi-
ments.62 Last but not least is the work of Hua et al., who presented
recently a very interesting and detailed model based on the stan-
dard RTA of the BPTE in the transient regime, in which they
derived a generalized Fourier’s law to study non-diffusive thermal
transport in general geometries.70 Besides the inherent nonlocality,
the model includes inhomogeneous nonlocal terms arising from
the heat source or the boundary conditions. The model looks very
robust and allowed obtaining a very good agreement between the
theoretical predictions and TDTR thermal responses.70

In the present work, we show that application of the nonlocal
theory of Mahan and Claro48 to the steady-state single mode relax-
ation time approximated BPTE using Callaway’s collision operator
allows indeed obtaining an analytical expression of the apparent or
effective thermal conductivity κEff that would be measured in
TDTR and FDTR experiments. The integrand of κEff includes a
spectral suppression function which captures elegantly how the fre-
quency of the applied oscillating heat source at the top surface of a
semi-infinite SC crystal intervenes in the onset of the quasi-ballistic
heat transport regime. The relation between the spectral phonon
MFP and the thermal penetration depth μ conditions this regime,
as we shall see next.

In a TDTR or FDTR experiment, the sample is heated at the
surface and the thermal response of the sample is measured at the
same surface and used to determine the thermal properties.10,60

When a semi-infinite solid is subjected to a periodic heat source of
the form Pe�2πFt where P is the power per unit area, it is very
straightforward to show that the generated oscillating temperature
field within it is given by

T(x, t) ¼ Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κCV2πF

p e�
x
μ

1þ iffiffiffi
2

p
� �

e�i 2πFt�x
μð Þ, (15)

where ε ¼ ffiffiffiffiffiffiffiffiffi
κCV

p
denotes the thermal effusivity that we assume to

include the contribution from all phonons, diffusive and non-
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diffusive (quasi-ballistic), and as such does not depend on the
applied modulation frequency in the experiment.10

In order to extract the expression of the apparent or effective
thermal conductivity κEff that would be measured in TDTR and
FDTR experiments, we consider the exponentially decaying envelop
or amplitude of the oscillating temperature field of Eq. (15) given
by TSe

�x
μ where TS ¼ P

ε
ffiffiffiffiffiffi
2πF

p designates the magnitude of T at x = 0
as we mentioned earlier. We assume this envelop to contain suffi-
cient information to provide insights into the frequency depen-
dence of κEff measured in these experiments. It is important to
note however that the frequency dependence of the temperature
and the heat flux density current at the surface of the semi-infinite
SC crystal does not conflict with the steady-state assumption we
made in Sec. II regarding these two quantities as long as the
applied modulation frequency in the experiment is much lower
than the average dominant phonon scattering rate over all branch
polarizations.

We inject this expression of the temperature profile into the
expression of the heat flux density current calculated for the 1D
semi-infinite geometry as given by Eq. (11). It is very straightfor-
ward to carry out all different integral calculations involved in this
equation. We perform the integration calculations in two steps:
first, with respect to the space variable x0, we take the result at x = 0
and then we integrate with respect to the directive cosine m. An
alternative way is to use directly the definition of JQ at x = 0 in
combination with the expressions of Um,0

q,p (0) and Um.0
q,p (0) as

given by Eqs. (4) and (7), respectively.
We define κEff using Fourier’s law expressed at the top surface

(x = 0) as

JQ(0, T) ¼ �κEff
dT
dx

�
x¼0

¼ TS

μ
κEff : (16)

After some mathematical manipulations, we get directly the
final compact expression of κEff as

κEff (T , F) ¼ 1
2π2

X
p

v2p

ðqpD
0

CP
q τ

C
q,p 1þ βp

τNq,p

 !
Ξ

vpτCq,p
μ

 !
q2dq

Ξ(z) ¼ 1
2z

� 1
z2

þ Log[1þ z]
z3

; z ¼ vpτCq,p
μ

and μ(F) ¼
ffiffiffiffiffiffi
α

πF

r
8>>>><
>>>>:

:

(17)

Ξ is the spectral suppression function in TDTR and FDTR
configurations that allows quantifying the reduction of the thermal
conductivity as a function of the modulation frequency F. It is
worth mentioning that we can obtain the same spectral suppression
function using the standard RTA of the BPTE and following the
same mathematical steps and assumptions as above. In this case, JQ
will be given by solely the second term of Eq. (11). All other terms
of Eq. (11) related to Callaway’s parameter gmq,p vanish as they repre-
sent the manifestation of the peculiar effects of phonon–phonon
N-processes that distinguish them from the rest of phonon
scattering processes including phonon–phonon U-processes. The
standard RTA usually used does not take this difference into con-
sideration, which can be justified at high temperatures where

U-processes dominate N-processes, but not in the low temperature
regime.3,4,72,73

The first remarkable feature of Ξ is its universal character as it
depends only on the ratio of the phonon MFP and the thermal
penetration depth μ that is the characteristic length scale in this
case. μ as defined based on the diffusive Fourier’s law appears natu-
rally in the calculation once an analogy with Fourier’s based
thermal conductivity is sought. Ξ is a monotonically increasing
(decreasing) function of thermal penetration depth (nondimen-
sional parameter z). It is easy to check under the condition of cons-
tant α that Lim

F!0
Ξ(T , F) ¼ 1

3 so that κEff will tend exactly to the
expression of the conventional Fourier’s thermal conductivity κC

Four
[Eq. (14)] of a bulk SC crystal in the framework of the modified
Debye–Callaway model.78,79 On the other hand, Lim

F!þ1
Ξ(T , F) ¼ 0

and κEff will tend ultimately to zero; in the very high frequency
regime, the SC crystal becomes completely insulating to phonon
transport and no thermal conduction process can take place.
Indeed, in the regime of high frequencies, κEff decreases according
to 1

F power law.
79

It is very interesting to note that even though the high fre-
quency regime (modulation frequencies much higher than the
average dominant phonon scattering rate over all branch polariza-
tions) is out of the domain of validity of the assumptions men-
tioned in the theoretical approach as presented above in Sec. II, the
limiting behavior of Ξ in this regime leads to the correct and sound
physical result for κEff . Nevertheless, while the limiting behavior
will be the same, the real asymptotic behavior of κEff as a function
of the modulation frequency in the high frequency regime will
necessitate solving the full transient BPTE including both time and
space derivatives which is out of the scope of the present work.

The true advantage of this spectral suppression function is that
on the one hand, it generalizes the results of Yang and Dames32 and
on the other hand, it constitutes a direct tool that gives more analysis
freedom and easiness for the interpretation of the experimental
reduction of κEff as a function of the modulation frequency in
TDTR and FDTR configurations. Indeed, the utilization of this spec-
tral suppression function does not demand any costly numerical
computations to calculate the full thermal response as it is the case
in some of the other developed approaches.59,60,70

We consider bulk Si and Si0.7Ge0.3 cubic SC crystals to illus-
trate the steady-state behavior of κEff as a function of temperature
and modulation frequency. Si and Si0.7Ge0.3 are representative of
single and alloy SC crystals, respectively. In addition to three
phonon–phonon anharmonic scattering U and N processes, we
assume scattering of phonons by the boundaries of the bulk SC
crystal and by impurities (defects). The expression of the relaxation
times of the different phonon scattering processes considered as
well as the geometrical and physical properties of Si and Si0.7Ge0.3
materials can be found in Tables I and II of Ref. 79. We assume all
physical properties of these SC crystals to be independent of tem-
perature. The total resistive phonon scattering rate (τRq,p)

�1 is
obtained via Matthiessen’s rule.77–79

In order to simplify more the expression of κEff in Eq. (17),
we express it, as it is customary in the modified Debye–Callaway
model, as the sum over one longitudinal (κL

Eff ) and two degenerate
transverse (κT

Eff ) phonon acoustic branch polarizations.77–79 We
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also make use of the usual change of variable y ¼ �hω
kBT

, which allows
us to obtain straightforwardly the final workable and computa-
tional expression of κEff .

Figure 1 reports the computed steady-state behavior of κEff of
bulk Si and Si0.7Ge0.3 cubic SC crystals at room temperature as a
function of the modulation frequency in TDTR and FDTR experi-
ments. At F = 10MHz, κEff of bulk Si decreases by barely 2% with
regard to its value at very low frequency. The reduction rate reaches
10% at F = 1 GHz. On the other hand, κEff of Si0.7Ge0.3 decreases
significantly with frequency. At F = 10MHz, it decreases by almost
27% with regard to its value at very low frequency. The reduction
rate reaches even 48% at F = 1 GHz. We report on the same figure
the experimental TDTR data of Koh and Cahill for the room tem-
perature effective thermal conductivity of Si and Si0.4Ge0.6 in order
to illustrate the relevance of the theoretical prediction. Even though
the experimental data span over a small frequency interval, we can
clearly observe that the computed modulation frequency behavior
of κEff for both Si and Si0.7Ge0.3 reproduces quite fairly the experi-
mental observations of Koh and Cahill for SC single crystals and
alloys, respectively.10 Si0.4Ge0.6 alloy has indeed a higher thermal
conductivity than Si0.7Ge0.3. In addition, its effective thermal con-
ductivity appears to show a higher decreasing rate as a function of
the TDTR modulation frequency.

One key parameter in obtaining the computed graphs in this
figure is the value of the thermal diffusivity α used to calculate the
thermal penetration depth μ. For sake of simplicity, we used the

conventional Fourier’s value of α giving by αC
Four ¼ κC

Four
CV

where κC
Four

is the conventional Fourier’s thermal conductivity and CV desig-
nates the heat capacity per unit volume calculated by taking into
account only acoustic phonon branches and polarizations as it is
the case for κC

Four .
79 The steady-state temperature behavior of α for

both Si and Si0.7Ge0.3 is reported in Fig. 2.
The utilization of this α might raise a consistency question

regarding the intertwining dependency between thermal diffusivity
and conductivity. Meanwhile, it is the most straightforward way to

give an insight into the modulation frequency behavior of κEff

without major numerical iterative integral computations that surely
are not necessary regarding the simplification assumptions used in
the theoretical approach in the first place.

Besides, consideration of the contribution of optical phonons
to CV will decrease α and increasing F leads to a reduction in α as
well. According to the expression of μ, increasing F or decreasing α
have the same action on μ. Therefore, the decreasing rate of κEff as
a function of F is expected to be higher due to an accumulation or
reinforcement effect, but the general behavior will remain the same
as the one reported above in Fig. 1.

The effect of changing the ambient temperature on the modu-
lation frequency behavior of κEff is shown in Figs. 3(a) and 3(b) for
bulk Si and Si0.7Ge0.3 cubic SC crystals, respectively. The decreasing
rate of κEff for both SC crystals tends to increase by decreasing T.
The effect of the modulation frequency on the behavior of the
apparent κEff is thus highly dependent on the ambient temperature.
Indeed, the latter directly influences the phonon relaxation time
and therefore conditions the relation between the phonon MFP
and the thermal penetration depth, which is the characteristic
length in TDTR and FDTR configurations as we mentioned earlier.
We assumed the validity of the steady-state regime theoretical
approach to hold down to 3 K. Of course, this could be question-
able since the average phonon relaxation time tends to increase by
decreasing T.3,4 Nevertheless, the general trend will still remain
correct to a certain frequency threshold.

TDTR/FDTR and TTG are two different but complementary
experimental techniques in a sense that the former one is more
sensitive to the cross-plane phonon transport while the latter is
more sensitive to the in-plane one. These two techniques have dif-
ferent excitation and detection procedures. Therefore, it is not sur-
prising that the spectral suppression function Ξ of κEff we obtained
herein for TDTR and FDTR configurations as given by Eq. (17)
has a different expression than the one obtained for the TTG

FIG. 1. Computed steady-state room temperature behavior of the effective
thermal conductivity of Si and Si0.7Ge0.3 bulk SC crystals in TDTR and FDTR
experiments as a function of the modulation frequency.

FIG. 2. Computed steady-state behavior of the conventional Fourier’s thermal
diffusivity of Si and Si0.7Ge0.3 bulk SC crystals as a function of temperature.
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configuration.14,27,39 Ξ plays in TDTR and FDTR configurations
the same role it does in the TTG configuration as it captures with
great perspicacity the intrinsic intertwining interaction between low
and high frequency phonons in the onset of quasi-ballistic and
non-diffusive heat transport regime in SC crystals with the thermal
penetration depth being the central characteristic length scale. All
the tools for phonon spectroscopy including the accumulation
function and the thermal conductivity per phonon MFP can be
applied and therefore the phonon MFP distribution spectrum can
be obtained in a similar manner as for the TTG configuration
using an adapted reconstruction method.17,32 It is important to
emphasize that the thermal penetration depth as defined based on
the diffusive Fourier’s law appears naturally in the calculation once
an analogy with Fourier’s based thermal conductivity is sought. On
the other hand, and because of the nature of TTG experimental
excitation and detection, no Fourier’s based thermal penetration
would appear in the calculation, but instead the optical penetration
depth could have an effect as mentioned by Huberman et al.45 In a
TTG configuration, it is rather the thermal grating period that con-
stitutes the central characteristic length scale.14,17,20,27,31,35,39,41,45

A cornerstone hypothesis we used in our modeling is related
to the possibility of decoupling phonon transport process at the
interface within the junction between the metallic film transducer
and the SC substrate from the intrinsic phonon transport process
inside the latter. We assumed this hypothesis to be fully justified in
the steady-state regime. The ability to obtain a universal spectral
suppression function that only depends on the ratio of the phonon
MFP to the thermal penetration depth and that is capable of inter-
preting the reduction of κEff as a function of the modulation fre-
quency in TDTR and FDTR techniques is a powerful and robust
argument to support the validity of our fundamental hypothesis.

Meanwhile, a rigorous treatment of the transient phonon
transport regime shall ineluctably consider the scattering, transmis-
sion, and reflection of phonons at the interface between the metal-
lic film transducer and the SC substrate that is responsible of the

ITR at this junction. In this case, the phonon transport processes
within both the metal film transducer and the SC substrate are
coupled through the inherent phonon scattering processes within
the junction between them which, in addition, lead to a highly
nonequilibrium phonon distribution within this junction. In this
case, the phonon transmission coefficients will undoubtedly be
crucial.65,70 This situation would occur in the regime of high mod-
ulation frequencies or even potentially in the low temperature
regime.

The next step of the study consists in generalizing the theory
developed above to the 3D configuration in order to analyze the
effect of the finite geometry of the pump laser spot in TDTR and
FDTR experiments as well as to explore the case of anisotropic
thermal conduction. This work is under way, and the main results
will be available in a near future.

IV. SUMMARY

An approach based on solving steady-state single mode relaxa-
tion time approximated Boltzmann–Peierls transport equation
(BPTE) by application of the nonlocal theory of Mahan and Claro
within the framework of the modified Debye–Callaway model has
been developed to analyze the steady-state phonon heat transport
in a semi-infinite cubic semiconductor (SC) crystal. A realistic
boundary condition is assigned at the top surface of the SC crystal
that can be considered reasonably representative of time domain
thermoreflectance (TDTR) and frequency domain thermoreflec-
tance (FDTR) experiments. We have obtained an expression of the
heat flux density current that undoubtedly shed light on the crucial
and relevant role of nonlocal spatial effects in steady-state phonon
heat transport in SC crystals. The meticulously implicit shuffling
effect of the crystal momentum by phonon–phonon Normal scat-
tering processes plays a key and central role in the onset of thermal
conduction. Taking into account the inherent spatial nonlocality
effects tends to accentuate the role of phonon–phonon scattering

FIG. 3. Computed steady-state behaviors of the effective thermal conductivity of Si (a) and Si0.7Ge0.3 (b) bulk SC crystals in TDTR and FDTR experiments as functions of
the modulation frequency for different temperatures.
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N-processes, as the latter introduce the temperature Laplacian as a
second driving potential force for the heat flux density current in
addition to the conventional Fourier’s temperature gradient. We
have derived a formula of the effective thermal conductivity of the
SC crystal that is characterized with a spectral suppression function
that captures and describes with great perspicacity the intertwining
interaction between low and high frequency phonons in the onset
of quasi-ballistic and non-diffusive heat transport regime. This
spectral suppression function constitutes a direct tool that gives
more analysis freedom and easiness for the interpretation of the
experimental reduction of the effective thermal conductivity κEff as
a function of the modulation frequency in TDTR and FDTR tech-
niques. Indeed, its utilization does not demand any costly numeri-
cal computations to calculate the full thermal response as it is the
case in some of the other developed approaches and its application
covers all temperature range. The spectral suppression function is a
universal function that only depends on the ratio between the
phonon MFP and the thermal penetration depth as defined based
on the diffusive Fourier’s law and that is the central characteristic
length scale in TDTR and FDTR configurations. Besides, all the
available tools for phonon spectroscopy including the accumulation
function and the thermal conductivity per phonon MFP can be
applied and, hence, the phonon MFP distribution spectrum can be
obtained in a similar manner as for the Transient Thermal Grating
technique using an adapted reconstruction method. This analysis
will therefore allow a better understanding of how thermal length
scales affect which phonons conduct heat in each transport regime
in TDTR and FDTR configurations.

DATA AVAILABILITY

The data that support the findings of this study are available
within the article.
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