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Summary

Siderophores are iron-chelating molecules produced
by bacteria to access iron, a key nutrient. These com-
pounds have highly diverse chemical structures, with
various chelating groups. They are released by bacteria
into their environment to scavenge iron and bring it
back into the cells. The biosynthesis of siderophores
requires complex enzymatic processes and expression
of the enzymes involved is very finely regulated by iron
availability and diverse transcriptional regulators.
Recent data have also highlighted the organization of
the enzymes involved in siderophore biosynthesis into
siderosomes, multi-enzymatic complexes involved in
siderophore synthesis. An understanding of side-
rophore biosynthesis is of great importance, as these
compounds have many potential biotechnological appli-
cations because of their metal-chelating properties and
their key role in bacterial growth and virulence. This
review focuses on the biosynthesis of siderophores pro-
duced by fluorescent Pseudomonads, bacteria capable
of colonizing a large variety of ecological niches. They
are characterized by the production of chromopeptide
siderophores, called pyoverdines, which give the typical
green colour characteristic of fluorescent pseudomonad
cultures. Secondary siderophores are also produced by
these strains and can have highly diverse structures
(such as pyochelins, pseudomonine, yersiniabactin,
corrugatin, achromobactin and quinolobactin).

Introduction

Siderophores are a major family of iron-chelating agents
that play a key role in bacterial iron homeostasis. They
generally have a molecular weight between 200 and
2000 Da and are characterized by a very strong affinity
for ferric iron (Fe3+) (Boukhalfa and Crumbliss, 2002).
They are produced and secreted by bacteria under iron-
restricted conditions to scavenge iron from their environ-
ment. In parallel, bacteria express transporters at their
cell surface that are able to capture back these chelators
once they have chelated ferric iron (Schalk et al., 2012).

Fluorescent pseudomonads produce the fluorescent
pyoverdines as their major siderophores (Cornelis and
Matthijs, 2002; Meyer et al., 2002). These chelators are
produced by the bacteria to access iron and also play an
important role in the virulence of Pseudomonad patho-
gens and, in the case of P. aeruginosa, have been
shown to be necessary for the establishment of mature
biofilms (Meyer et al., 1996; Handfield et al., 2000;
Mirleau et al., 2000; Banin et al., 2005; Yang et al., 2009;
Taguchi et al., 2010). In addition, diverse secondary side-
rophores with a lower affinity for Fe3+ are also produced
by Pseudomonads, such as pyochelin (PCH), pseudo-
monin, corrugatins and ornicorrugatins, yersiniabactin
and thioquinolobactin (Cornelis, 2010).

This review will focus on the biosynthesis of the side-
rophores produced by fluorescent Pseudomonads, the
enzymatic biochemistry involved, the cellular organization
of the biosynthetic machinery, and how siderophore syn-
thesis is regulated. Pseudomonas aeruginosa is the arche-
type among fluorescent Pseudomonads and most of the
data found in the literature and presented here will concern
this pathogen; however, parallels will be made with side-
rophore biosynthesis among other fluorescent Pseudomo-
nads, when possible. Pseudomonas aeruginosa strains
produce four distinct pyoverdines, called PVDI, PVDII,
PVDIII and PVDIV, and PCH as a secondary siderophore
(Schalk and Guillon, 2013; Gasser et al., 2015; Ringel and
Brüser, 2018; Ronnebaum and Lamb, 2018). Many
detailed reviews have already been published on PVDI
and PCH biosynthesis (Visca et al., 2007; Schalk and
Guillon, 2013; Gasser et al., 2015; Ringel and Brüser,
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2018; Ronnebaum and Lamb, 2018). Thus, we will provide
a general description of their biosynthesis and highlight
recent and original data concerning the cellular organiza-
tion of the siderophore biosynthetic machinery. Indeed,
high-resolution fluorescence microscopy and approaches
such as fluorescence recovery after photobleaching
(FRAP) or single-molecule tracking with photoactivated
localization microscopy (sptPALM) have provided new
insights into the cellular distribution of the biosynthetic
enzymes within the bacteria, their dynamics in the bacterial
cytoplasm and the possible protein interactions involved
(Guillon et al., 2012; Guillon et al., 2013; Imperi and Visca,
2013; Gasser et al., 2015; Gasser et al., 2020). These
recent data provide a new vision of siderophore
biosynthesis.

Siderophores produced by Pseudomonas strains

Pyoverdines

All fluorescent Pseudomonads produce pyoverdines and
almost 100 distinct pyoverdines, produced by various
strains and species of fluorescent Pseudomonas, have
been identified to date (Demange et al., 1990;
Budzikiewicz, 1997; Fuchs and Budzikiewicz, 2001;
Budzikiewicz, 2004; Budzikiewicz et al., 2007). These
siderophores all have the same structural organization,
consisting of three components (Fig. 1A): (i) a
dihydroquinoline-type chromophore, (ii) a strain-specific
peptide comprised of six to 14 amino acids, and (iii) a
side-chain bound to the nitrogen atom at position C-3 of
the chromophore. The chromophore is (1S)-5-amino-2,-
3-dihydro-8,9-dihydroxy-1H-pyrimido-[1,2-a]quinolone-
1-carboxylic acid and is exactly the same for all
pyoverdines, giving specific spectral characteristics to
these compounds, consisting of an absorbance at
400 nm (at neutral pH) and an emission of fluorescence
at 447 nm when in the apo forms (the ferric form being
non-fluorescent) (Albrecht-Gary et al., 1994;
Folschweiller et al., 2002; Budzikiewicz et al., 2007). The
side chain bound to the chromophore is, in most cases, a
succinamide, succinate or α-ketoglutaric acid or some-
times also malamide, malic acid or succinic acid.
The sequence and length of the peptide moiety differ

between pyoverdines and may contain unusual amino
acids, such as D-isomers and amino acids that are not
usually found in proteins (such as N5-
hydroxycycloornithine or L-2,4-diaminobutyrate)
(Budzikiewicz, 1997; Fuchs and Budzikiewicz, 2001;
Meyer et al., 2002). This peptide moiety can also be
cyclic in some pyoverdines. Each pyoverdine is charac-
terized by its sequence, which gives each Pseudomonas
strain the ability to access iron using only the pyoverdine
produced by itself. This is due to the fact that

Pseudomonas strains produce a specific pyoverdine and
express a corresponding specific transporter at the outer
membrane that is able to recognize and capture back only
the ferric form of the produced pyoverdine or one that is
structurally related (with a similar peptide sequence)
(Greenwald et al., 2009; Schalk et al., 2012). The peptide
moiety plays a key role in such transporter recognition, as
shown by the x-ray structures of a pyoverdine transporter in
complex with several different ferric–pyoverdine complexes
(Greenwald et al., 2009). As already mentioned in the Intro-
duction, four distinct pyoverdines are produced by P.
aeruginosa strains—PVDI, PVDII, PVDIII and PVDIV. Each
is characterized by a different peptide chain (Fig. 1A)
(Meyer et al., 1997; Ruangviriyachai et al., 2001) and each
has a corresponding outer membrane transporter FpvAI,
FpvAII, FpvAIII and FpvAIV. Overall, almost 100 pyoverdines
produced by all fluorescent Pseudomonads are divided into
four groups or families based on the structural features of
the peptide chain [for more details see (Fuchs et al., 2001)].

Pyoverdines chelate iron with a 1:1 stoichiometry and
an affinity of 1032 M−1 for ferric iron has been determined
for PVDI produced by P. aeruginosa PAO1 (Albrecht-
Gary et al., 1994). The chelating groups always involve
the catechol and two bidentate ligands from the peptide
moiety (Fig. 1A). As for most siderophores, pyoverdines
are able to chelate many metals other than iron (Braud
et al., 2009b; Hannauer et al., 2012a) and stability con-
stants have been determined for PVD–Ni2+

(Ka = 1010.9 M−1), PVD–Cd2+ (Ka = 108.2 M−1) and PVD-
Cu2+ (Ka = 1020.1 M−1) (Ferret et al., 2014).

Other siderophores produced by Pseudomonads

Almost all fluorescent Pseudomonads produce another
siderophore in addition to pyoverdine, often called the
secondary siderophore because of a lower affinity for fer-
ric iron relative to that of pyoverdine (Cornelis and
Matthijs, 2002; Mossialos and Amoutzias, 2007; Matthijs
et al., 2008; Matthijs et al., 2009). Such secondary side-
rophores can have diverse chemical structures (Fig. 1B).
In addition to pyoverdines, P. aeruginosa strains produce
PCH. PCH chelates ferric iron with a 2:1 stoichiometry
and an affinity of 1018 M−2 (Cox et al., 1981; Tseng et al.,
2006; Brandel et al., 2012). Pseudomonas fluorescens
produces enantio-pyochelin (E-PCH)—the optical anti-
pode of PCH—(Youard et al., 2007; Hoegy et al., 2009),
P. syringae DC3000 yersiniabactin (also produced by
Yersinia) (Jones et al., 2007; Petermann et al., 2008) and
P. syringae B728a achromobactin (also produced by
Erwinia chrysanthemi) (Franza et al., 2005; Berti and
Thomas, 2009). This list shows that secondary side-
rophores are not always specific to Pseudomonads but
are sometimes also produced by other bacterial species.
Pyridine-2,6-bis(thiocarboxylate) (PDTC) has been
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shown to be produced by P. stutzeri (Lee et al., 1999)
and P. putida (Ockels et al., 1978) and is capable of
transporting iron (Lewis et al., 2004). The role of second-
ary siderophores is not clear, but they are often produced

in lower iron-restricted conditions than pyoverdines
(Cunrath et al., 2016). Like pyoverdines, secondary side-
rophores are able to chelate metals other than iron. PCH
has been shown to form complexes with many metals
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A. General structure of pyoverdines and the structure of PVDI, the pyoverdine produced by P. aeruginosa PAO1. The chromophore is in
green, the side chain in black and the peptide moiety in blue. The sequences of the peptide moiety of the four pyoverdines produced by P.
aeruginosa strains are also shown.
B. Structures of the secondary siderophores produced by fluorescent Pseudomonads. Pyochelin (PCH) is produced by Pseudomonas
aeruginosa, Enantio-pyochelin (E-PCH) by Pseudomonas fluorescens (Youard et al., 2007; Hoegy et al., 2009), Yersiniabactin and
Achromobactin by Pseudomonas syringae (Jones et al., 2007; Petermann et al., 2008), Pseudomonine by Pseudomonas fluorescens and Pseu-
domonas entomophila (Mercado-Blanco et al., 2001; Matthijs et al., 2009), Quinolobactin and Thio-quinolobactin by Pseudomonas fluorescence
ATCC17400 (Matthijs et al., 2004; Matthijs et al., 2007), PDTC (Pyridine-2,6-bis(thiocarboxylate)) by Pseudomonas stutzeri (Lee et al., 1999)
and Pseudomonas putida (Ockels et al., 1978) and Corrugatin by Pseudomonas acorrugata (Matthijs et al., 2008).
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(Baysse et al., 2000; Braud et al., 2009a) and the stability
constant has been determined for Zn2+ (Ka = 1026.0 M−2)
and Cu2+ (Ka = 1025.0 M−2) (Brandel et al., 2012).

Biosynthesis

The biosynthetic pathways of PVDI and PCH produced by
P. aeruginosa PAO1 have been extensively investigated
and all steps and enzymes involved have been identified
and characterized. An overall description of these two bio-
synthetic schemes is presented below. As the biosynthesis
of other pyoverdines must be very similar to that of PVDI,
we also discuss the gene organization of pyoverdine bio-
synthesis among fluorescent Pseudomonads in general.
Much less, and sometimes nothing, is known about the
biosynthesis of the other secondary siderophores produced
by fluorescent Pseudomonads: hypothetical or incomplete
biosynthetic pathways have been proposed for PDTC,
quinolobactin, thioquinolobactin and achromobactin (sum-
marized below). The biosynthesis of yersiniabactin has
been described in detail in Y. pestis (Ahmadi et al., 2015)
but not in P. syringae, but probably very similar enzymes
and biological mechanisms are involved (Ahmadi
et al., 2015).

Pyoverdine biosynthesis

Knowledge of the various steps of PVDI biosynthesis, the
pyoverdine produced by P. aeruginosa PAO1, is very
complete and precise. PVDI synthesis starts in the bacte-
rial cytoplasm, with the assembly of an 11-amino-acid
peptide with an unformed chromophore and a myristic or
myristoleic acid chain at its N-terminal end (Hannauer
et al., 2012b). This cytoplasmic peptide undergoes matu-
ration in the periplasm to yield PVDI (Yeterian et al.,
2010; Hannauer et al., 2012b). Its biosynthesis involves
the coordinated action of several enzymes, including four
non-ribosomal peptide synthesis (NRPS) enzymes, three
enzymes that generate atypical amino acids present in
the peptide moiety of the siderophore, and several
enzymes involved in the maturation of this siderophore in
the bacterial periplasm before secretion.
The PVDI peptide backbone contains two unusual

amino acids, L-2,4-diaminobutyrate (L-Dab) and L-N5-for-
myl-N5-hydroxyornithine (L-fOHOrn). L-Dab is synthesized
by the enzyme PvdH, an aminotransferase that catalyses
the formation of L-Dab from L-aspartate β-semialdehyde
(Vandenende et al., 2004) (Fig. 2A). L-fOHOrn is synthe-
sized from L-ornithine by hydroxylation and formylation
catalysed by PvdA and PvdF respectively (Visca et al.,
1994; McMorran et al., 2001; Ge and Seah, 2006). Other
unusual amino acids can be found in pyoverdine
sequences of Pseudomonas strains, such as β-hydroxy
aspartic acid, β-hydroxy histidine, ornithine, cyclo-N5-

hydroxy ornithine, N5-acetyl-N5-hydroxy ornithine and N5-
hydroxybutyryl-N5-hydroxy ornithine (Cezard Q4and Sonnet,
2014). Some of the enzymes involved in such modifica-
tions have been identified. For example, PvdY is the
enzyme responsible for the acetylation of hydro-
xyornithine in the biosynthesis of type II pyoverdine
(PVDII) in P. aeruginosa strains (Lamont et al., 2006).
PvdY is only present in strains that make PVDII.

The peptide backbone of P. aeruginosa PVDI is com-
posed of 11 amino acids, which are assembled by NRPS
enzymes (Fig. 2A), multi-modular enzymes that activate
amino acids and assemble them into peptide chains.
Each module of one NRPS enzyme activates and mod-
ifies a specific amino acid for addition to the growing pep-
tide chain that is then elongated with another amino acid
activated and modified by an adjacent module. Conse-
quently, the number and order of the NRPS modules
directly dictate the linear sequence of the final peptide
chain. A typical module contains three domains: an
adenylation (A) domain, a condensation (C) domain and
a peptidyl-carrier protein (PCP) domain. The A domain
recognizes a specific amino acid and activates the acid
by an ATP-dependent adenylation. Then, the acid is
transferred to a free thiol of a covalently bound phos-
phopantetheine cofactor of the adjacent PCP domain by
thioesterification to form an acyl-S-PCP domain interme-
diate. Finally, the C domain catalyses the condensation
between upstream and downstream PCP-thioesterified
substrates, forming the peptide bond between the two
amino acids. A more detailed description of the biochem-
istry of NRPS enzymes is provided in reviews by Hur
et al. (2012), Gulick (2017), and Süssmuth and Mainz
(2017). The last NRPS of the assembly line usually has a
thioesterase domain, adjacent to the terminal PCP
domain, which catalyses hydrolysis of the peptide chain
from the NPRS, leading to its release (Izoré and Cryle,
2018). The biosynthesis of the PVDI precursor requires
four NPRS enzymes: PvdL, PvdI, PvdJ and PvdD
(Fig. 2A). The synthesis starts with PvdL, an NRPS
enzyme composed of four modules (Mossialos et al.,
2002). The first module of PvdL is unusual and consists
of an acyl coenzyme A ligase domain that catalyses the
acylation of a myristic acid or a myristoleic acid. It has
been suggested that this acylation occurs to maintain the
peptide precursor at the membrane and prevent its diffu-
sion during assembly of the peptide (Hannauer et al.,
2012b). The second module of PvdL catalyses the activa-
tion of L-Glu and its condensation to the myristic acid-coA
formed in the first module. The third module binds an L-
Tyr amino residue. An epimerization domain embedded
in this module isomerizes the L-Tyr residue to the D-Tyr
form. Finally, the fourth module adds the L-Dab amino
acid to form the acylated tripeptide L-Glu/D-Tyr/L-Tab. The
second NRPS involved, PvdI, is composed of four
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modules and adds the amino acids D-Ser, L-Arg, D-Ser
and L-hfOrn to the precursor peptide formed by PvdL.
PvdI contains epimerization domains in modules 2 and
4 to generate D-Ser from L-Ser (Lehoux et al., 2000). The
two following NRPS enzymes are PvdJ and PvdD, which
are bimodular and add L-lys and L-hfOrn and two L-Thr
residues respectively (Merriman et al., 1995; Ackerley
et al., 2003). The last module of PvdD has a final
thioesterase domain that catalyses the hydrolysis of the
peptide chain from the NRPS. Two genes, PA2411 and

PA2425 (pvdG), are predicted to encode thioesterase
enzymes and are embedded in the PVDI biosynthetic
gene cluster, suggesting a role in PVDI biosynthesis.
Whether these thioesterases have overlapping functions,
act in trans to release the in-forming peptide, or have
another function in PVDI biosynthesis is still not clear. Of
note, genetic inactivation of PvdG blocks the synthesis of
PVDI (Lamont and Martin, 2003). The last enzyme sup-
posedly involved in PVDI synthesis is MbtH. MbtH-like
proteins are small auxiliary proteins that interact with the
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Biosynthesis pathways of PVDI in P. aeruginosa PAO1. A. Synthesis of the pyoverdine precursor in the bacterial cytoplasm. Each of the
four NRPS (PvdL, PvdI, PvdJ and PvdD) involved in the synthesis is divided into modules (M). Each module is composed of a condensation
domain (C), an acetylation domain (A) and a peptidyl carrier protein (PCP) domain. PvdL and PvdI contain epimerization domains (E) and PvdD
a thioesterase domain (Te). The amino acids incorporated in the chain are indicated below each module, depicted by the corresponding colour
and represented by coloured circles in the final precursor.
B. Maturation of pyoverdine precursor into PVDI isoforms in the bacterial periplasm. After translocation of pyoverdine precursor from the cyto-
plasm into the periplasm via PvdE, pyoverdine precursor undergoes a maturation process involving five enzymes (PvdQ, PvdP, PvdO, PvdN and
PtaA). The green and red circles on pyoverdine isoforms represent succinic acid and α-ketoglutaric acid respectively. For more details on PVDI
biosynthesis see the text.
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A domain to enhance its activity (Felnagle et al., 2010;
Boll et al., 2011). The crystal structure of P. aeruginosa
MbtH has been solved (Drake et al., 2007). Although
direct involvement of MbtH in NRPS activity has not been
demonstrated, biochemical studies have provided evi-
dence for a role in the production and secretion of PVDI
(Drake et al., 2007).
Once assembled, the acetylated precursor peptide is

transported to the periplasm by the ATP-binding-cassette
(ABC) inner membrane transporter, PvdE. The involve-
ment of PvdE in periplasmic transport was unravelled by
the study of a pvdE mutant that led to undetectable
PVDI-related fluorescence in cultures of P. aeruginosa
cells (Yeterian et al., 2010). Consequently, it was con-
cluded that PvdE exports the non-fluorescent PVDI pre-
cursor from the cytosol to the periplasm but is not
involved in its extracellular secretion (Yeterian et al.,
2010). Once in the periplasm, the PVDI precursor is sub-
jected to modifications that ultimately lead to the final
siderophore (Fig. 2B). The first modification is
deacetylation of the precursor, performed by the enzyme
PvdQ and leading to the removal of the myristic or
myristoleic acid moiety from the peptide and formation of
a pyoverdine precursor, called ferribactin (Drake and
Gulick, 2011; Hannauer et al., 2012b). This precursor
then enters an oxidative cyclization cascade that results
in chromophore cyclisation from the L-Dab and D-Tyr resi-
dues, the second and third residues of the PVDI precur-
sor (Dorrestein et al., 2003; Dorrestein and Begley,
2005), involving the copper-dependent tyrosinase PvdP
(Nadal-Jimenez et al., 2014; Poppe et al., 2018). This
enzyme catalyses the conversion of ferribactin into
dihydropyoverdine in three steps: (i) hydroxylation of the
D-tyrosine moiety of the tetrahydropyrimidine ring,
resulting in a catechol functionality, (ii) formation of a third
ring in the chromophore, and (iii) restoration of the cate-
chol functionality (Nadal-Jimenez et al., 2014; Poppe
et al., 2018). The final oxidation of dihydropyoverdine into
PVDI has recently been assigned to PvdO (Yuan et al.,
2017; Ringel et al., 2018). Ringel et al. (2018) showed
that a mutant strain of P. fluorescens A506 lacking PvdO
only produces the dihydropyoverdine form of PVDI. The
authors raised the possibility that PvdO must be associ-
ated with another enzyme or a specific cofactor to be
active, as the enzyme was inactive in vitro.
The first residue of the pyoverdine peptide backbones

among fluorescent Pseudomonads is always a glutamic
acid (Hohlneicher et al., 2001). This L-Glu residue, bound
at position C3 of the chromophore, undergoes modifica-
tions that allow its conversion into a range of variants,
including succinamide, succinic acid, α-ketoglutaric acid,
malamide and malic acid residues (Budzikiewicz, 2004).
These structural variations do not have a direct impact on
pyoverdine function but rather on the adaptation to

environmental conditions. The two enzymes involved in
these modifications have recently been identified and
their function assigned. PvdN is an enzyme that contains
a pyridoxal phosphate cofactor as a prosthetic group and
requires cytoplasmic cofactor assembly for folding (Drake
and Gulick, 2016). Ringel et al. showed by mass spec-
trometry that the only pyoverdine produced by a pvdN
mutant is the α-ketoglutarate form, indicating that trans-
formation to the succinamide derivatives does not
occur and must be carried out by PvdN (Ringel et al.,
2018; Ringel and Brüser, 2018). PtaA (PflA506_4424)
is also a pyridoxal phosphate-dependent transaminase
and requires cytoplasmic cofactor assembly for folding
and transport to the periplasm (Ringel et al., 2017). As
for PvdN, PtaA is not essential for pyoverdine produc-
tion or function. However, a P. fluorescens A506
mutant deleted for ptaA was unable to produce the
α-ketoglutaric acid variant, suggesting that this enzyme
is responsible for the alternative modification of the L-
Glu side chain (Ringel et al., 2017). The ΔptaA/ΔpvdN
double-deletion strain produced neither the
succinamide variant (and further derivatives) nor the
α-ketoglutaric-acid variant of PVDA506. The only detect-
able products were the chromophore-containing pre-
cursor with the original glutamic acid residue and
ferribactin. Some Pseudomonas strains carry both
ptaA and pvdN in their genome, leading to strains that
are able to produce different variants of pyoverdine. On
the other hand, some Pseudomonas strains have only
pvdN or ptaA and consequently only produce the
corresponding variant (α-ketoglutaric acid or
succinamide derivative variants) (Ringel and Brüser,
2018). PtaA can act on several different substrates,
i.e. ferribactin, dihydropyoverdine and pyoverdine,
which raises the question of when these enzymes
operate in the periplasm (Ringel et al., 2017). The only
enzyme for which the function is unknown is PvdM,
which is predicted to be a dipeptidase.

Once PVDI is formed, it is secreted from the periplasm
into the bacterial environment by the ATP-dependent
efflux pump PvdRT-OpmQ (Hannauer et al., 2010). How-
ever, the deletion of this efflux pump does not completely
abolish PVDI secretion, highly suggesting that another
efflux system is involved in this process. In P. putida
KT2440, both PvdRT-OpmQ and MdtABC-OpmB have
been proposed to be involved in pyoverdine secretion
(Henríquez et al., 2019). However, at least one additional
efflux system participates in the export of this side-
rophore, as double deletion mutants for these efflux
pumps still secrete pyoverdine. In P. taiwanensis type VI
secretion system also appears to be involved in
pyoverdine secretion, suggesting the participation of
alternative secretion pathways in the export of this side-
rophore (Chen et al., 2016).
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Organization and diversity of the pyoverdine genomic
region among P. aeruginosa strains and fluorescent
Pseudomonads

The pyoverdine region in P. aeruginosa strains corre-
sponds to the region of the genome that contains all the
genes involved in PVDI biosynthesis, secretion, iron
acquisition and recycling (Fig. 3). This region covers
approximately 50 kb and contains more than 30 genes.
The genes are present on both DNA strands and are
separated by regulator genes. Smith et al. (2005) have
analysed the degree and patterns of diversity of the
PDVI, PVDII and PVDIII genes in P. aeruginosa. They
showed that there are three different types of gene orga-
nization, corresponding to the three structural types of
pyoverdines. In addition, they found that the pyoverdine
region is the most highly divergent region in the P.
aeruginosa genome (Spencer et al., 2003; Smith et al.,
2005). Interestingly, this region has unusual codon and
oligonucleotide usage, indicating its acquisition by hori-
zontal gene transfer. Among the NRPS-encoding genes,
pvdL is always isolated from the three other NRPS
genes, pvdI, pvdJ and pvdD, located in the central part
of the region and forming a cluster. Moreover, pvdL is
the only NPRS enzyme that is highly conserved, whereas
pvdD, pvdI and pvdJ display high divergence among
strains, with no sequence similarity between strains. This
genetic pattern directly reflects the organization of the

peptide backbone of PVDI, which is always composed of
two parts. The first consists of the conserved three resi-
dues L-Glu, D-Tyr and L-Dab, assembled by PvdL, with D-
Tyr and L-Dab giving the chromophore and L-Glu the side
chain, structures common to all pyoverdines. The second
part is the variable peptide chain assembled by PvdD,
PvdI and PvdJ. Two other genes also display high diver-
gence between strains in the pyoverdine region, pvdE
[the ABC transporter involved in the transport of the
pyoverdine precursor from the cytoplasm into the peri-
plasm (Yeterian et al., 2010)] and fpvA [the outer mem-
brane transporter involved in the uptake of ferric loaded
pyoverdine (Poole et al., 1991)]. Smith et al. (2005) dem-
onstrated that fpvA shows evidence of positive selection,
suggesting that fpvA drives the diversity of the
pyoverdine locus. Indeed, the transporter and pyoverdine
peptide must coevolve to maintain mutual specificity and
recognition; the evolution of fpvA subsequently led to
NRPS gene recombination (Ruangviriyachai et al., 2001).
Finally, some genes, usually specific for the type of
pyoverdine produced, are only present in certain types of
P. aeruginosa strains. This is the case for pvdYII, which
is only present in type II P. aeruginosa strains (Lamont
et al., 2006).

The organization and diversity of the pyoverdine geno-
mic region among fluorescent Pseudomonads was stud-
ied by Ravel and Cornelis (2003) by comparing the
pyoverdine regions of P. aeruginosa, P. syringae

Fig. 3.
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Organization of PVDI genes
(A) and PCH genes (B) on P.
aeruginosa PAO1 genome. In both
panels, coloured boxes represent the
genes coding for enzymes involved in
the biosynthesis of the siderophores.
Dashed boxes represent the genes
coding for siderophore transporters
(export across the inner and outer
membranes). Grey boxes represent
genes involved in iron import via PVDI
or PCH (ferri-siderophore import as
well as mechanism of iron release
from the siderophore and or side-
rophore recycling). White boxes are
for genes coding for proteins of
unknown function. The genes
encoding the transcription regulators
are represented by black boxes.
Genes are represented according to
their size. Double vertical lines repre-
sent an interruption in the genome of
the indicated length.

© 2020 Society for Applied Microbiology and John Wiley & Sons Ltd., Environmental Microbiology

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

Biosynthesis of siderophores in Pseudomonas 7



DC3000, P. fluorescens Pf0-1 and P. putida KT2440.
The authors highlighted the similarities in the organization
of the pyoverdine region between fluorescent Pseudomo-
nads. Homologous genes involved in pyoverdine path-
ways are found in every species but the overall
organization of the region is different: the pyoverdine
region can form a single contiguous cluster (Owen and
Ackerley, 2011) or be dispersed in the genome in three
or four clusters separated by long stretches of DNA
encoding genes for other functions (Ravel and Cornelis,
2003; Moon et al., 2008). In addition, the genetic context
of certain genes is not conserved between Pseudomo-
nads. For example, the ptaA gene in P. aeruginosa is
located upstream of the pyoverdine region, which sug-
gests that the PtaA enzyme may have additional func-
tions (Ringel et al., 2017).

PCH and Enantio-pyochelin biosynthesis

PCH, which is produced by all P. aeruginosa strains, and
E-PCH, which is produced by P. fluorescens strains Pf-5
and CHA0, are both condensation products of salicylate
and two molecules of cysteine, with the only difference
between PCH and E-PCH being the stereochemical con-
figuration of the two incorporated cysteines. Conse-
quently, E-PCH is the optical antipode or enantiomer of
PCH (Youard et al., 2007). PCH biosynthesis involves
seven cytoplasmic enzymes (two of them being NRPS),
with their corresponding genes organized into two
operons, pchDCBA and pchEFGHI (Fig. 3) (Serino et al.,
1997; Reimmann et al., 1998). PCH biosynthesis (Fig. 4)
begins with salicylate synthesis: chorismate is first trans-
formed into isochorismate and subsequently into salicy-
late by the enzymes PchA (isochorismate synthase) and
PchB (isochorismate-pyruvate lyase) respectively (Gaille
et al., 2003; Meneely et al., 2013). Salicylate is then acti-
vated by PchD and transferred to the NRPS enzyme
PchE for coupling to a molecule of cysteine under the
control of PchC (Serino et al., 1997; Reimmann et al.,
2004). PchC is a thioesterase that removes wrongly
charged molecules from the peptidyl carrier protein
domains of PchE and PchF (see below) (Reimmann
et al., 2004). PchE also ensures L-Cys epimerization into
D-Cys, generating dihydroaeruginoique (Dha) (Patel
et al., 2003). A second molecule of cysteine is coupled to
Dha by another NRPS enzyme, PchF, again under the
control of PchC (Reimmann et al., 2004). This second
cysteine undergoes cyclisation by the cycling module of
PchF, to form nor-pyochelin, and methylation on the sec-
ond thiazolidine cycle by the methylation module of PchF
(Patel et al., 2003; Ronnebaum et al., 2019). The synthe-
sized PCH is then released by the reductase PchG
(Patel and Walsh, 2001; Reimmann et al., 2001). PCH
biosynthesis occurs in the cytoplasm and nothing is

currently known about PCH secretion or the proteins and
mechanisms involved. More details concerning PCH bio-
synthesis can be found in an excellent recent review by
Ronnebaum and Lamb (2018).

The biosynthesis of E-PCH in P. fluorescens has not
yet been biochemically investigated but is probably quite
similar to the PCH pathway in P. aeruginosa. A closely
related gene cluster is present in the chromosome of the
P. fluorescens strains Pf-5 and CHA0, although the
arrangement of the individual genes is different from that
in P. aeruginosa and there is no gene with obvious
sequence homology to pchG (Paulsen et al., 2005;
Youard et al., 2007, 2011).

Quinolobactin and thioquinolobactin biosynthesis

Quinolobactin, an 8-hydroxy-4-methoxy-2-quinolone
carboxylic acid, is produced by P. fluorescens
ATCC17400 from xanthurenic acid. The biosynthetic
pathway is still quite speculative (Fig. 4), involves at
least four enzymes, and starts from xanthurenic acid
(Matthijs et al., 2004). The first step requires the AMP-
ligase QbsL, which activates the carboxylic group of
xanthurenic acid via its N-terminal domain and methyl-
ates the hydroxyl group in the fourth position via its N-
terminal methylase domain. Then, QbsCDE enzymes
transfer sulphur from an unknown sulphur donor molecule
to form 8-hydroxy-4-methoxy-2-quinoline thiocarboxylic
acid (thioquinolobactin). The formation of this compound
probably also involves the putative oxidoreductase QbsK.
Quinolobactin is probably then formed by spontaneous
hydrolysis of thioquinolobactin.

PDTC biosynthesis

PDTC is produced by P. stutzeri (Lee et al., 1999) and P.
putida (Ockels et al., 1978) and its currently proposed
biosynthetic pathway involves three major steps and five
enzymes (Fig. 4) (Sepúlveda-Torre et al., 2002). It starts
with the reduction of 2,3-dihydro-dipicolinic acid by the
reductase OrfI into diplicolinic acid, which is then acti-
vated by OrfJ. The activated compound undergoes
sulfation, probably involving the three enzymes OrfFGH,
to give PDTC. The exact role of each of the three
enzymes OrfFGH is still unknown.

Achromobactin biosynthesis

Achromobactin is produced by P. syringae and results
from the condensation of one citrate molecule and one
each of ethanolamine, 2,4-diaminobutyrate and
α-ketoglutarate (Fig. 4). The currently proposed scheme
for the biosynthesis of achromobactin involves four
enzymes and starts from citrate (Berti and Thomas,
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2009). The first step consists of the conversion of cit-
rate to O-citryl-serine by the synthetase AcsD, followed
by decarboxylation by AcsE to obtain O-citryl-ethanolamine

(Schmelz et al., 2009). Then, AcsC synthetase transforms
diaminobutyryl-citryl-ethanolamine into O-citryl-ethanol-
amine. The last step consists of the addition of twomolecules

Fig. 4. Biosynthesis pathways of pyochelin, quinolobactin, thioquinolobactin, PDTC and achromobactin. See the text for details of each biosyn-
thesis pathway.
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of α-ketoglutarate by the synthetase AcsA to give
achromobactin.

Cellular organization of siderophore (PVDI)
biosynthesis

Many biosynthetic pathways are based on networks of
enzymes that are able to form multi-enzyme complexes
(Schmitt and An, 2017), with their spatial organization
depending on their protein–protein interactions. More-
over, the amount and activity of each enzyme in these
biosynthetic pathways have evolved to be carefully regu-
lated to minimize their production cost to the cells and
maximize their efficiency. In P. aeruginosa PAO1, the
enzymes involved in the cytoplasmic biosynthesis of
PVDI and PCH have been proposed to assemble into
siderosomes, i.e. siderophore-specific assemblies of
enzymes involved in the synthesis of specific side-
rophores (Guillon et al., 2012; Imperi and Visca, 2013;
Cunrath et al., 2015; Gasser et al., 2015). Siderosomes
were first hypothesized for the cytoplasmic PVDI
enzymes on the basis of pull-down assays using a
recombinant 6His-PvdA protein as bait to capture low
amounts of the NRPS enzymes PvdJ and PvdL (Imperi
and Visca, 2013). The small fraction of PvdJ and PvdL
trapped by PvdA suggested transient and dynamic inter-
actions between these proteins. PvdA was also shown to
interact with the isolated M2 module of PvdJ in yeast
two-hybrid experiments (Imperi and Visca, 2013). By fluo-
rescence microscopy, PVDI-related proteins appear to be
spatially organized in live cells, with clusters of PvdA co-
localizing with PvdD, PvdL and PvdJ (Guillon et al.,
2012; Imperi and Visca, 2013). These clusters appear as
fluorescent spots located at the cell poles and are linked
to iron-restriction and high levels of PVDI production
(Guillon et al., 2012; Imperi and Visca, 2013). In the con-
text of the PVDI cytoplasmic precursor, for which its bio-
synthesis occurs through the sequential addition of
amino acids by NRPS enzymes, the interactions and
spatial organization of these enzymes are thought to opti-
mize the transfer of siderophore precursors between
them and avoid their diffusion throughout the cytoplasm
to prevent deleterious intra-cell metal chelation. Similar
spatial patterns were observed for the PCH pathway, with
the NRPS enzyme PchE colocalizing with PchA (Cunrath
et al., 2015). PchE clustering at the bacterial poles was
found to be dependent on PchA expression, whereas
PchA clustering and association with the membrane was
PchE-independent. This suggests a complex interplay
between the various partners that form siderosomes
(Cunrath et al., 2015). Classical fluorescence microscopy
is constrained by the diffraction of light, which limits its
spatial resolution to approximately 250–300 nm. Given
the size of Pseudomonas bacteria (rod shaped with long

and short axes of approximately 1.5–2 and 0.6–0.8 μm
respectively), the ability of fluorescence microscopy to
provide precise and accurate information on the localiza-
tion of proteins is limited. At this diffraction-limited level of
resolution, proteins can localize to the same subcellular
region without interacting, rendering colocalization experi-
ments difficult to interpret.

Protein interactions in living cells can be indirectly
inferred from diffusion properties, as large complexes dif-
fuse more slowly than smaller ones or free unbound pro-
teins. FRAP, a technique that measures the repopulation
of fluorescently labelled proteins in a photobleached
area, is able to quantify the two-dimensional lateral diffu-
sion of proteins in situ (Axelrod et al., 1976) and provides
information about possible interactions between proteins.
FRAP has been used to characterize the diffusion prop-
erties of proteins of the PVDI siderophore pathway
(Guillon et al., 2012). PvdA was found to diffuse homoge-
neously in the cytoplasm, with an average diffusion rate
that was slightly lower than that predicted from its molec-
ular weight and a free diffusion model. The accumulation
of PvdA at the cell pole was found to be reversible, as
the fluorescence of a bleached out-of-spot area in the
cytoplasm completely recovered due to diffusion of fluo-
rescent PvdA coming from the fluorescent spots (Guillon
et al., 2012).

More recently, the diffusion of PvdA has been investi-
gated using sptPALM (Gasser et al., 2020). sptPALM
enables the characterization of the diffusion trajectories
of single proteins with nanometric precision and high tem-
poral resolution (Manley et al., 2008). The statistical
description of thousands of single PvdA traces in live
cells showed that PvdA diffuses throughout the cyto-
plasm, without any evident spatial constraints or struc-
tural organization at �40-nm resolution (Fig. 5), with the
exception of preferential accumulation at one pole in
some cells. Heterogeneous velocities of PvdA displace-
ments corresponded to two diffusing populations,
assigned to a trapped (or restrained) fraction of PvdA
(approximately 15%) and diffusing PvdA (Fig. 5). Consis-
tent with the transient nature of siderosomes, which asso-
ciate and dissociate in vivo, these two populations were
found to be exchangeable, and transition from diffusing
to restrained or restrained to diffusing was observed in
single traces within the time-scale of observation. Finally,
the diffusion rate of the diffusing PvdA was in very good
agreement with that characterized by FRAP, leading to
the hypothesis that PvdA is mostly bound to complexes
that can slowly diffuse throughout the cytoplasm of the
cells.

Finally, the interactions of PvdA with the NRPS
enzymes of the PVDI pathway were explored using För-
ster resonance energy transfer measured by fluores-
cence lifetime imaging (FLIM-FRET). FLIM-FRET
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enables the monitoring of protein–protein interactions
and the mapping of their spatial organization in a living
cell with diffraction-limited spatial resolution (Duncan
et al., 2004). However, two labelled proteins that undergo
FRET have to physically interact because of the strong
inter-dye distance dependence required for FRET to
occur and the relatively large size of fused fluorescent
proteins. FRET-FLIM was used to characterize the inter-
actions of PvdA with the four different NRPS enzymes of
the PVD pathway (Gasser et al., 2020). Surprisingly,
FRET-FLIM clearly showed that PvdA physically interacts

with all four NRPS enzymes of the PVDI pathway in the
cellular context and not only with PvdJ and/or PvdI, the
two NRPS enzymes that use fOHOrn, the molecule pro-
duced by PvdA, as a building block. Even more interest-
ingly, the stoichiometry of the interacting complex was
not the same depending on the NRPS enzyme bound by
PvdA. Several PvdA molecules interacted with PvdI,
whereas PvdA formed one-to-one (or close to one-to-
one) complexes with PvdJ. The M2 module of PvdJ, pre-
viously identified by two-hybrid studies to be an inter-
acting partner of PvdA (Imperi and Visca, 2013) and
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Single-molecule tracking of PvdA-PAmCherry.
A. Raw fluorescence signal (upper) and focus on an ROI (lower) of a single PvdA-PAmCherry molecule in a live cell (yellow) observed over time
at 62.5 Hz. Five frames from the temporal stack of images separated by approximately 50 ms are represented. The contour of the bacterial cell
(red overlay) was determined from the corresponding phase-contrast microscopy image. The localization of single PvdA-PAmCherry molecules
is highlighted by the blue or purple overlaid circles. The size of the circle approximately corresponds to the diffraction limit (~250 nm). The preci-
sion, which determines the uncertainty of the estimated position of the PvdA-PAmCherry, is approximately 40 nm. The time-trace linking the local-
ization at different time points for a given PvdA-PAmCherry molecule is represented by the cyan segments. Scale bar = 1 μm.
B. PvdA-PAmCherry diffusion map in a single representative cell. Approximately 2500 localizations, generating approximately 400 fluorescence
traces, are represented. Each displacement step is colour coded according to the displacement jump distance since the previous frame
(in micrometre).
C. Amplitude of the constrained and diffusing species of PvdA-PAmCherry as a function of their diffusion coefficients averaged per cell (n = 23
cells, N = 3 independent experiments) (data from Gasser et al., 2020).
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responsible for fOHOrn insertion, is a good candidate to
harbour the binding site for PvdA. In contrast to PvdJ,
multiple binding of PvdA to PvdI likely fulfils the necessity
for an excess of locally available substrate to optimize
the activity of PvdI. These observations also suggest
that, in addition to physical coordination between active
sites of tailored enzymes and NRPS modules, the
colocalization of such enzymes may be sufficient to pro-
mote metabolic efficiency, making siderosomes even
more relevant for efficient siderophore production.
PvdA has also been shown to have a hydrophobic,

inner-membrane-anchoring domain at the N terminus
(Meneely et al., 2009; Imperi and Visca, 2013). This
association of PvdA with the inner membrane and the
presence of a myristic acid chain attached to the first
amino acid of the PVDI backbone (Hannauer et al.,
2012b) also led to the suggestion that PVDI is synthe-
sized on the cytoplasmic face of the inner membrane,
with siderosomes associated with the inner membrane
leaflet. Imperi et al. analysed isolated inner membranes
of P. aeruginosa by matrix-assisted laser desorption/ioni-
zation time-of-flight and reported that a fraction of each of
the four NRPS enzymes (PvdL, PvdI, PvdJ and PvdD)
involved in PVDI biosynthesis was associated with the
inner membrane (Imperi and Visca, 2013), this was also
confirmed by cell fractionation assays using fluorescent
labelled NRPS of the PVDI and PCH pathways (Imperi
and Visca, 2013; Cunrath et al., 2015; Gasser et al.,
2015). These observations led to the hypothesis that
siderosomes can exist in the bacterial cytoplasm, but
they may also associate with the inner leaflet of cytoplas-
mic membranes (Fig. 6). Many questions about side-
rosomes remain unanswered, including how they interact
with the inner membrane, the role of the myristic chain
present in the PVDI precursor, whether and how NRPS
enzymes interact with each other in siderosomes, how
the organization of siderosomes affect the activity of the
enzymes, whether they are always active in producing
PVDI molecules and whether the enzymes involved in
the biosynthetic pathways of any siderophores are orga-
nized in siderosomes.

Regulation

Siderophore production is generally highly regulated at
the transcriptional level through regulation of the expres-
sion of the genes encoding the enzymes involved in their
biosynthesis. Expression of these genes is repressed by
the presence of iron and activated under iron-restricted
conditions via molecular mechanisms that require tran-
scriptional regulators (Cornelis et al., 2009).
Negative regulation for the biosynthesis of all the side-

rophores described above involves the transcriptional
regulator Fur (Ferric Uptake Regulator). For a review

dedicated to Fur see Fillat (2014). Fur senses the cyto-
plasmic concentration of Fe2+. Once the concentration of
Fe2+ in the bacterial cytoplasm reaches a certain concen-
tration, it binds to Fur and the Fur-Fe2+ complexes
repress the transcription of any genes involved in iron
acquisition and consequently those encoding siderophore
biosynthetic enzymes (Fig. 7). Such repression involves
the interaction of Fur-Fe2+ with a conserved sequence,
called the Fur-box, in the promoter regions of all iron-
regulated genes (Escolar et al., 1999). When iron
becomes limiting, fewer Fur-Fe2+ complexes form in the
bacterial cytoplasm and the Fur-Fe2+ complexes dissoci-
ate from the Fur-boxes, allowing a basal level of gene
expression (Escolar et al., 1999). Fur-dependent repres-
sion has been shown for the pchDCBA, pchEFGHI
genes of PCH biosynthesis under iron-rich conditions
and for all genes of the PVDI pathways (Ochsner
et al., 1995).

Conversely, under iron-restricted conditions, Fur no
longer acts as a repressor. However, basal expression of
the genes encoding the biosynthetic enzymes is low and
positive activating loops come into play to achieve high
production of pyoverdine and PCH siderophores. The
positive regulation of PCH biosynthesis in P. aeruginosa
involves the AraC transcriptional regulator PchR, which
activates transcription of the pchDCBA and pchEFGHI
genes, encoding enzymes involved in PCH biosynthesis
(Fig. 7) (Heinrichs and Poole, 1993; Heinrichs and Poole,
1996; Reimmann et al., 1998). PCH-Fe3+ complexes and
their uptake into the bacterial cytoplasm are required for
this activation process. They act as effectors of PchR, by
which PchR-PCH-Fe3+ complexes bind to the conserved
PchR-box sequence in the promoter regions of the bio-
synthetic genes (Michel et al., 2005, 2007). Such activa-
tion allows the production of approximately 40 μM of
PCH for a culture of P. aeruginosa PAO1 cells of optical
density at 600 nm of 1, grown under iron restriction condi-
tions (Cunrath et al., 2016). pchR transcription is itself
negatively regulated by Fur and PchR itself, as the PchR
box of pchD is located downstream of the pchR tran-
scription start site (Michel et al., 2005). A similar regula-
tory mechanism involving a PchR regulator is involved in
E-PCH production in P. fluorescens (Lin et al., 2013).

The positive autoregulation loop of PVDI biosynthesis
involves a completely different mechanism than that of
PCH biosynthesis, with transcriptional regulators of
another family (Fig. 7): two cytoplasmic sigma factors
(PvdS and FpvI) and the inner membrane anti-sigma fac-
tor (FpvR) (Visca, 2004; Llamas et al., 2014). PvdS acti-
vates the transcription of PVDI biosynthetic genes, as
well as some that encode virulence factors (Prince et al.,
1993; Cunliffe et al., 1995; Ochsner et al., 1996; Vasil
et al., 1998; Wilson and Lamont, 2000; Wilderman et al.,
2001; Visca, 2004; Gaines et al., 2007), while FpvI
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activates transcription of the fpvA gene, encoding the
outer membrane transporter that imports PVDI-Fe3+ com-
plexes from the environment (Redly and Poole, 2003;
Redly and Poole, 2005). Broadly [for more details see the
reviews (Llamas et al., 2014)], this regulatory mechanism
first requires the binding of PVDI-Fe to the outer mem-
brane transporter FpvA, which leads to the interaction of
the periplasmic domain of FpvA with the inner membrane
anti-sigma factor FpvR (Brillet et al., 2007), resulting in
the release of the sigma factors PvdS and FpvI into the
cytoplasm. They then activate transcription of the genes
that they regulate, such as those that encode PVDI bio-
synthetic enzymes, resulting in an increase in PVDI pro-
duction (Wilson et al., 2001; Redly and Poole, 2003,
2005; Spencer et al., 2008; Draper et al., 2011;
Bastiaansen et al., 2015). If PVDI is unable to chelate
Fe3+ in the bacterial environment, FpvR sequesters most
of the FpvI and PvdS present in the bacterial cells, block-
ing activation of the transcription of the regulated genes
(Redly and Poole, 2005; Minandri et al., 2016). However,
as less FpvR is expressed than sigma factors in P.
aeruginosa cells, basal levels of PvdS and FpvI are still
present in the cytoplasm, resulting in a low level of PVDI
production that can prime activation of the regulatory loop
(Edgar et al., 2017). Such regulation of pyoverdine pro-
duction involving sigma and anti-sigma factors is also
used by other fluorescent Pseudomonads, such as P.
putida and P. protegens (Llamas et al., 2014). Signals
other than the iron concentration, such as the level of bis-

(30-50)-cyclic dimeric guanosine monophosphate, phos-
phate starvation, sulphur availability, biofilm formation,
and alginate production and other transcriptional regula-
tors have been shown to regulate PVDI production in P.
aeruginosa PAO1 cells. However, the molecular mecha-
nisms have not yet been clearly elucidated (Delic-Attree
et al., 1997; Zaborin et al., 2009; Imperi et al., 2010; Bal-
asubramanian et al., 2014; Chen et al., 2015). Under
strong iron-restricted conditions, PVDI production can
reach concentrations of approximately 80 μM for a culture
of P. aeruginosa cells of an optical density at 600 nm of
(iron restriction growth conditions) (Cunrath et al., 2016).

Moreover, several studies have shown that the pres-
ence of metals other than iron in the bacterial environ-
ment can also modulate the bacterial production of
siderophores (Huyer and Page, 1988; Hofte et al., 1993;
Hu and Boyer, 1996). In P. aeruginosa, no metals are
able to significantly activate PVDI or PCH production
above that induced by iron restriction (Carballido Lopez
et al., 2019). However, PCH synthesis in P. aeruginosa
is repressed by Co2+ and Ni2+, with the same efficiency
as that by Fe3+ for Co2+ (Carballido Lopez et al., 2019).
As described above, the transcriptional repressor Fur
becomes loaded with ferrous iron in the presence of
increasing Fe3+ concentrations and represses the
expression of all pch genes. Fur is not involved in the
decrease of PCH production in the presence of increas-
ing Co2+ or Ni2+ concentrations, but rather the transcrip-
tional activator PchR (Carballido Lopez et al., 2019). This
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Scheme of the siderosome involved in PVDI biosynthesis. The seven enzymes involved in the cytoplasmic biosynthesis of the PVDI pre-
cursor are represented. The four NRPS (PvdL, PvdI, PvdJ and PvdD) are responsible for the synthesis of the 11 amino acid peptides, and PvdH,
PvdA and PvdF are the accessory proteins involved in the synthesis of L-Dab and L-fOH Orn. Enzyme diameters are proportional to their molecu-
lar weight (MW). On the right of the figure a schematic view of the enzymatic complex called siderosome (for more details see the text).
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regulator becomes loaded with PCH-Co and PCH-Ni, as
both complexes can enter bacterial cells. Consequently,
PchR is no longer able to activate transcription of the
pch genes due to a decrease in the intracellular concen-
tration of PchR-PCH-Fe complexes. The repression of
PCH production in the presence of Co2+, and probably
that of Ni2+, is due to a non-specific interaction of PCH-
Co with PchR, which is no longer able to activate PCH
production.
At last, once all the enzymes involved in the biosynthesis

of a siderophore are expressed, the regulation of their
enzymatic activity may also be regulated. However, noth-
ing is known yet about such a possible regulation. The
organization in siderosomes could play such a regulating
role. Moreover, bacteria live in communities with some pro-
ducing siderophores and some acting as cheater (do not
produce siderophores but use those produced by other
bacteria); such social interactions in communities also

affect the regulation of siderophore production (Butaitė
et al., 2017; Granato and Kümmerli, 2017; Butaitė et al.,
2018; Özkaya et al., 2018; Stilwell et al., 2018). This ques-
tion needs to be investigated further in the future at the
level of diverse communities involving different Pseudomo-
nads but also other bacterial species since P. aeruginosa
is able to use many different siderophores produced by
other bacteria (exosiderophores) (Cornelis and Matthijs,
2002; Cornelis and Dingemans, 2013). It has been shown
that the presence of exosiderophores clearly impacts the
expression levels of the proteins of the different iron uptake
pathways of P. aeruginosa (Llamas et al., 2006, 2008;
Perraud et al., 2020).

Conclusions

Siderophore biosynthetic pathways can be highly com-
plex, involving highly diverse enzymes. We now have

Fig. 7.C
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Transcriptional regulation of genes coding for proteins involved in the PVDI and PCH iron-uptake pathways. Under iron-restricted condi-
tions, transcription of the genes of the PCH pathway is activated via the transcriptional regulator PchR. This protein, in a complex with PCH-Fe3+,
activates the transcription of all the genes of the PCH pathway, except pchR, by interacting with the PchR box. In the PVDI pathway, two sigma
factors, PvdS and FpvI, are involved in activation of the transcription of the genes of the pvd locus. FpvI activates the transcription of only fpvA,
the outer membrane importer of ferri-PVDI. PvdS activates the transcription of all other genes, except pvdS, fpvI and fpvR (FpvR being the anti-
sigma factor of PvdS and FpvI). In the presence of iron, gene transcription in both pathways is repressed by the transcriptional regulator Fur in a
complex with Fe2+. The Fur-Fe2+ complex binds to the Fur box in the promoter region of the various genes and operons encoding the enzymes
involved in PVD and PCH biosynthesis and also represses transcription of the transcriptional regulators PvdS, FpvI and PchR. For more details
see the text.

© 2020 Society for Applied Microbiology and John Wiley & Sons Ltd., Environmental Microbiology

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

14 I. J. Schalk, C. Rigouin and J. Godet



precise knowledge of the various enzymatic steps
involved in the PVDI and PCH pathways. However, many
questions remain for most of the biosynthesis pathways
of the other siderophores produced by fluorescent Pseu-
domonads and a major effort is also necessary to unravel
all the existing subtleties and variations in the biosynthe-
sis of the divers pyoverdines produced by these bacteria.
The cellular organization of these enzymes, their distribu-
tion in the bacterial cells, the existence of siderosomes
and the diverse protein interactions involved in these
potential enzymatic complexes also still raise many ques-
tions and concerns. Having precise knowledge of the bio-
synthetic pathways of siderophores can be a true asset
in biotechnology. Indeed, because of the strong metal
chelating properties of these compounds and their impor-
tance in bacterial iron homeostasis, siderophores have
many applications in either biomedical (Bedford et al.,
2013; Mislin and Schalk, 2014; Schalk and Mislin, 2017;
Schalk, 2018) or bioremediation (Cornu et al., 2014; Fer-
ret et al., 2014; Hazotte et al., 2018) approaches.
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