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Abstract 46 
The world’s oldest known stone tools discovered at the Pliocene site of Lomekwi 3 47 
(LOM3) in the Nachukui Formation, northern Kenya, signals a prodigious behavioral 48 
change in the hominin lineage. LOM3, dated to 3.3 Ma, is significantly earlier than the 49 
first appearance of genus Homo and coincides with the onset of the Mid-Pliocene Warm 50 
Period, warranting new phylogenetic and environmental explanations for the origins of 51 
hominin stone tool making behaviors. Here we examined Pliocene paleoenvironments 52 
(4.3-3.0 Ma) within the Omo-Turkana Depression (OTD) with paleosol pedogenic 53 
carbonate (PC) and faunal enamel carbonate (EC) 13C and 18O values. Amidst the 54 
gradual shift toward more grassy environments, intranodular 13CPC and 18OPC variation 55 
slightly increased through time. Three of fourteen ungulate herbivore taxa yielded 56 
statistically significant increases in 13CEC values. When all ungulate herbivore 13CEC 57 
values are grouped by feeding categories (C3-browsers, C3-C4-mixed feeders, C4-grazers) 58 
there is evidence that the C3-C4-mixed feeding niche contracted and shifted toward the 59 
C4-grazing niche as hominins expanded their dietary breadth during the middle Pliocene. 60 
Only one of nine taxa showed a significant decrease in 18OEC values across the study 61 
interval. Abrupt, significant environmental perturbations are not evident during LOM3 62 
times in the OTD, casting doubt on variability selection or pulsed humidity as selective 63 
forces for middle Pliocene technological innovations. We propose that a long-term 64 
feedback system involving gradual environmental changes and biotic dietary competition 65 
influenced a suite of hominin adaptations to a broad dietary niche, culminating in the 66 
origins of stone tool making behaviors.  67 



1. Introduction 68 

1.1 Repositioning the adaptive milestones of early African hominins 69 

 Stone tool making is characterized as a critical adaptive threshold, which once 70 

crossed, paved the way toward language, complex social interactions and global dispersal 71 

(Ambrose, 2001). The ability to make stone tools was originally thought to be one of the 72 

defining characteristics of genus Homo; its earliest member, Homo habilis (“handy 73 

man”), was named for the adaptation (Leakey et al., 1964). The origin and evolution of 74 

stone tool technologies associated with genus Homo have been linked to environmental 75 

perturbations (Clark, 1960; Potts, 1996, 1998, 2012, 2013; Potts et al., 2017; Ziegler et 76 

al., 2013). Potts and Faith (2015) showed that early members of genus Homo were 77 

bombarded with near consecutive periods of environmental instability during the late 78 

Pliocene-early Pleistocene associated with global climatic forcing factors via 79 

teleconnections to the tropics. Global climatic and large-scale environmental changes 80 

emphasizing the increasing presence of open and variable (“mosaic”) landscapes were 81 

traditionally and continue to be evoked as primary selective pressures for hominin 82 

speciation events (Alemseged et al., 2020; Brain, 1981; Bromage and Schrenk, 1995; 83 

deMenocal, 1995, 2004; Stanley, 1992; Trauth et al., 2005, 2007, 2009; Vrba, 1985, 84 

1995, 1999) and influences of specific adaptations including thermoregulation (Ruff, 85 

1991, 1993; Ruff and Walker, 1993; Wheeler, 1991, 1992a, 1992b, 1994), energetic 86 

efficiency (Aiello and Wheeler, 1995; Aiello and Wells, 2002; Bramble and Leiberman, 87 

2004; Leonard and Robertson, 1997; Wheeler, 1993), and encephalization (Ash and 88 

Gallop, 2007; Bailey and Geary, 2009; Shultz and Maslin, 2013).  89 



 Published in 2015 (Harmand et al., 2015) the Lomekwi 3 archaeological site, 90 

(LOM3; Figure 1) located in the Nachukui Formation of the Omo-Turkana Depression 91 

(OTD; northern Kenya-southern Ethiopia; Figure 2) and dated to 3.3 Ma, revealed that 92 

Pliocene hominins made stone tools substantially earlier than previously thought. As 93 

compared to the evidence of stone tool use with the discovery of cutmarked bone at 94 

Dikika dated to 3.4 Ma (McPherron et al., 2010), LOM3 provided evidence of stone tool 95 

manufacturing. Prior to the discovery of LOM3, the earliest known stone tool making 96 

behaviors were preserved at Gona (Ethiopia) and dated to 2.6-2.5 Ma (Semaw et al., 97 

1997). The LOM3 site and the surrounding paleontological collecting area are 98 

substantially older than the known origins of genus Homo dated to 2.8 Ma from Ledi-99 

Geraru (Ethiopia) (Villmoare et al. 2015). Genus Homo identified as the first, and 100 

perhaps only, stone toolmaker in the earliest Pleistocene has been questioned for some 101 

time (e.g., Panger et al., 2002; Susman, 1991), but these finds likely place the tools in the 102 

hands of australopithecine-like hominins. In eastern and north-central Africa, hominin 103 

species that date to the middle Pliocene have been designated as Australopithecus 104 

afarensis (Kimbel and Delezene, 2009), A. deyiremeda (Haile-Selassie et al., 2015), A. 105 

bahrelghazali (Brunet et al., 1996) and Kenyanthropus platyops (Leakey et al., 2001). 106 

Although specimens were initially identified as A. afarensis (Brown et al., 2001; Kimbel, 107 

1988; Ward et al., 1999a), the majority of middle Pliocene hominin specimens found in 108 

the OTD has been designated as K. platyops (Wood and Leakey, 2011).  109 

 From excavations in 2011, 2012, and 2014, the West Turkana Archaeological 110 

Project (WTAP) recovered 165 surface and in situ artifacts at LOM3 (Harmand et al., 111 

2015; Lewis and Harmand, 2016). WTAP excavations recovered cores and flakes that are 112 



significantly larger than those from the Early Oldowan (Braun et al., 2019; Harmand et 113 

al., 2015; Roche et al., 1999; Stout, 2010) and include heavy anvils, percussors, and 114 

worked and split cobbles made predominantly from local basalts. Although the LOM3 115 

artifacts do not indicate a mastery of stone knapping demonstrated by Oldowan 116 

toolmakers, as detailed in Lewis and Harmand (2016), they provide evidence of 117 

sensorimotor performance and an effective control of elementary percussive gestures 118 

beyond what has been observed in chimpanzees either in the wild or during experiments 119 

in captivity.  120 

 Stone tool making and use were not the only novel behaviors of Pliocene African 121 

hominins. Several species show evidence for a significant dietary shift with the 122 

incorporation of C4 foods as revealed by stable carbon isotopic values of enamel 123 

carbonate (denoted here as 13CEC) (Cerling et al., 2013b; Lee-Thorp et al., 1994; 124 

Sponheimer and Lee-Thorp, 1999a). Middle Pliocene hominin 13CEC values grouped by 125 

identified species and/or separated into temporal bins (e.g., Patterson et al., 2019) show a 126 

directional shift toward consumption of C4 foods, which may have included C4 sedges 127 

and grass seeds, underground storage organs, termites and other arthropods, bird’s eggs, 128 

as well as C3-C4-mixed- and C4-feeding vertebrates (Peters and Vogel, 2005; Sponheimer 129 

and Lee-Thorp, 2003; Yaekel et al., 2007). There is also an increase in 13CEC variance, 130 

which has been interpreted to indicate dietary niche expansion relative to the earliest 131 

hominins (i.e., Ardipithecus and A. anamensis) and extant chimpanzees (Antón et al., 132 

2014; Levin et al., 2015; Lee-Thorp et al., 2003, 2010; Sponheimer et al., 2013; van der 133 

Merwe et al., 2003). The earliest mixed C3-C4 feeding hominins with measured 13CEC 134 

values and identified to species are A. bahrelghazali at 3.6 Ma (Lee-Thorp et al., 2012), 135 



A. afarensis at 3.4 Ma (Wynn et al., 2013), and in the OTD, K. platyops at 3.4 Ma 136 

(Cerling et al., 2013b) (Figure 3). Consumption of C4 food resources by hominins has 137 

been found as early as 3.7 Ma at Woranso-Mille (Ethiopia); these hominin specimens 138 

were not identified to species but are likely australopithecines (Levin et al., 2015).  139 

 140 

1.2 Searching for environmental forces of hominin evolution  141 

 Finding evidence for stone tool making behaviors at 3.3 Ma potentially by 142 

australopithecine-like hominins complicates hypotheses of temporally discrete 143 

environmental perturbations as primary selective pressures for this adaptive milestone 144 

(Figure 4A-D). The formation of deep lakes forced by eccentricity-modulated precession 145 

has been proposed as a mechanism for environmental change influencing human 146 

evolution (Donges et al., 2011; Maslin et al., 2014; Trauth et al., 2005, 2007, 2009). Deep 147 

African lakes are interpreted to have occurred throughout the Pliocene (e.g., Trauth et al., 148 

2005), but an identified lake phase in the OTD, Lake Lokochot (Feibel, 2011), ends 149 

approximately 200 Ka prior to the LOM3 site date (Figure 4D). Potts (1996, 1998) links 150 

high environmental variability to several hominin speciation events and technological 151 

innovations, but the middle Pliocene appears to encompass a long period of low climatic 152 

variability (Potts and Faith, 2015) (Figure 4C). Modeled global pCO2 concentrations by 153 

Stap et al. (2016) (Figure 4A) suggests a steady decrease through time aligning with 154 

trends in sea level, temperature, and global ice volume (Figure 4B).  155 

 The LOM3 site is coincident with the start of the mid-Pliocene Warm Period 156 

(mPWP: 3.264–3.025 Ma: Dowsett et al., 2010; Haywood et al., 2010), which is 157 

commonly used as an analogue for anthropogenic conditions of today (Burke et al., 158 



2018). The mPWP is characterized as “a warm blip,” potentially ~2-3C degrees warmer 159 

in the tropics than present day (Haywood et al., 2013), high atmospheric CO2 levels, and 160 

low seasonal variability in rainfall (Pagani et al., 2010; Raymo et al., 1996). The warm 161 

and wet Pliocene world (Salzmann et al., 2011) is often used to contrast environmental 162 

proxy records of the late Pliocene when Earth begins its major climatic reorganization 163 

near the onset of the Quaternary ice age (Maslin et al., 1998; Mudelsee and Raymo, 2005; 164 

Shackleton and Opdyke, 1977; Willeit et al., 2015). Compared to the early Pliocene, 165 

however, mPWP climatic proxy records appear to indicate relatively constant conditions 166 

(Haywood et al., 2016). Permanent El Niño conditions are interpreted for the early and 167 

middle Pliocene due to a deep eastern Pacific thermocline and shallow sea-surface-168 

temperature gradient across the equatorial Pacific (Fedorov et al., 2006; Molnar and 169 

Cane, 2002; Wara et al., 2005).  170 

 Characterization of the LOM3 site environment with the pedogenic carbonate 171 

13C-based paleo-shade proxy of Cerling et al. (2011) positioned the site in C3-dominated 172 

environments in the grassy woodland/bushland/shrubland category (fraction of woody 173 

canopy cover, WC =60-40%) (Harmand et al., 2015). WC comparisons to other middle 174 

Pliocene (3.4-3.2 Ma) eastern African hominin locales from the Awash Basin (Ethiopia), 175 

Tugen Hills (Kenya), and elsewhere in the OTD found that none were significantly 176 

different from one another, but all were woodier than the earliest Oldowan site of Gona 177 

(Harmand et al., 2015). Study of the Fe oxides in paleosols from the northeast Turkana 178 

Basin at 3.3 Ma indicate a mean annual rainfall estimate of 500-1000 mm/year (Lepre, 179 

2019). These estimates are comparable to those interpreted for the middle Pliocene OTD 180 

based on faunal ecomorphic analysis (Fortelius et al., 2016) and the 18OEC-based aridity 181 



index (Blumenthal et al., 2017). Current OTD middle Pliocene environmental 182 

reconstructions imply that stone tool making occurred in more humid and closed 183 

environments than widely found for genus Homo (e.g., Plummer et al., 2009; Reed, 1997; 184 

Sikes, 1994; Sikes et al., 1999). 185 

 Additionally, through-time records show little evidence for substantial 186 

environmental shifts from the early to middle Pliocene, especially compared to the late 187 

Pliocene (Figure 5). From the compiled pedogenic carbonate (subscript PC) 13C datasets 188 

of the OTD, there is a gradual increase in grassy environments from 4-1 Ma (Figure 5A); 189 

however the largest increase occurs after 2 Ma (Cerling et al., 2011a,b; Levin et al., 190 

2011). The compiled herbivore ungulate OTD 13CEC database demonstrates a relatively 191 

steady increase in C4-grazers from 4-1 Ma (Figure 5B); although sample sizes are not 192 

uniform and some time periods have small sample sizes, the trend appears gradual. 193 

Faunal abundance data of Bobe and Behrensmeyer (2004) from the Lower Omo Valley 194 

shows a major shift in grassland indicators after 3 Ma; the middle Pliocene appears stable 195 

(Figure 5C). Passey et al. (2010) estimated Plio-Pleistocene OTD soil temperatures with 196 

pedogenic carbonate clumped isotopes and found consistently high temperatures but no 197 

directional trend from 4-1 Ma (Figure 5D). Fortelius et al. (2016) estimated air 198 

temperatures in the OTD from 7-1 Ma via ecomorphic proxies and similarly found no 199 

directional shift through time. Blumenthal et al. (2017) found that aridity does not 200 

increase from 4-1 Ma, but rather variable water deficits are found throughout the OTD 201 

(Figure 5E). Fortelius et al. (2016) found a general decreasing trend in mean annual 202 

precipitation in the OTD based on ecometric analysis, but the largest decrease in rainfall 203 

was in the upper portion of the record from 3-1 Ma.  204 



 Detecting environmental change relevant to questions of human evolutionary 205 

milestones depends on the scale of each proxy record (e.g., Behrensmeyer, 2006; 206 

Kingston, 2007). Kingston (2007) and Potts (2012, 2013) suggested that, in order to test 207 

if key evolutionary events in the hominin lineage occurred during intervals of high 208 

(global/regional) climatic variability or in response to significantly increased aridity or 209 

humidity, climate proxy records from terrestrial hominin environments at resolutions of 210 

seasonal- to orbital-scale should be evaluated. The search for high-resolution records of 211 

environmental change relevant to patterns and processes of human evolution motivated 212 

the Hominin Sites and Paleolakes Drilling Project (HSPDP; Campisano et al., 2017; 213 

Cohen et al., 2009, 2016). The drill project comprised several fossil hominin locales in 214 

eastern Africa. In the OTD, however, the target interval was focused on the younger part 215 

of the record (Lupien et al., 2018; Sier et al., 2017) during the tenure of Homo erectus 216 

(Lepre and Kent, 2015). HSPDP environmental reconstructions reported to date suggest 217 

changes in vegetation structure and aridity were associated with the both high- and low-218 

latitude climate forcing and coincide with major evolutionary events in genus Homo (e.g., 219 

Lupien et al., 2019; Potts et al., 2017). HSPDP cores from the Awash and Baringo Basins 220 

reached maximum depths that date to the middle/late Pliocene (Deino et al., 2019; Lupien 221 

et al., 2019; Westover et al., 2019), which are highly relevant for the environments during 222 

the rise of genus Homo but postdate the complete time interval of interest for Pliocene 223 

hominin diet change and stone tool making origins. 224 

 225 

1.3. Approach of study 226 

 The early flickering of environmental interactions with unmodified or minimally 227 



worked stones has not likely been discovered given the subtle archaeological traces and 228 

current modes of field-based artifact search and recovery methods (e.g., McPherron et al., 229 

2011; Thompson et al., 2019). To date, LOM3 is the earliest known evidence for stone 230 

tool making behaviors by early African hominins and represents an important datum to 231 

identify selective pressures for this adaptation. Our approach in this study relies on 232 

current data suggesting that hominin tool making behaviors arose within the 4-3 Ma 233 

interval. Naturally, future archaeological discoveries may change the supposed time 234 

period of interest, similar to the evidence that has come to light within the last decade 235 

(Harmand et al., 2015; McPherron et al., 2010).  236 

 Since the original publication of the LOM3 site only included pedogenic 237 

carbonate 13C-based vegetation reconstructions and vertebrate specimen identification to 238 

characterize the environment, we examined other proxy records to detect environmental 239 

changes during the middle Pliocene. Paleosol 13CPC values provide spatially limited (~1 240 

m2) and time averaged (~101-103 years) estimates of vegetation structure (Birkeland, 241 

1999; Srivastava, 2001) and may not have the resolution to reveal the vegetation 242 

structural diversity available with 13CEC values of fauna (Du et al., 2019). Here we 243 

contribute new 18OPC data of paleosols and faunal 13CEC and 18OEC values of 244 

specimens collected at LOM3 and in the surrounding paleontological collecting areas.  245 

 We focus on the interval of 4.3-3.0 Ma, which is before a major 246 

paleohydrographic reconfiguration of the OTD (Lepre, 2014) and the detected significant 247 

environmental changes there and across eastern Africa after 3 Ma (Cerling et al., 2011a,b; 248 

Levin et al, 2011). At present and even with this study, sampling across the time 249 

bracketing the rise of hominin tool making behaviors and dietary changes (4.3-3.0 Ma) is 250 



not uniformly distributed, neither temporally nor spatially, primarily due to differential 251 

preservation of paleosols and fossil material suitable for isotopic analyses. Research 252 

focus has also impacted sample density. Much environmental research has historically 253 

focused on the rise and evolution of Homo. Early and middle Pliocene environments in 254 

eastern African hominin locales have been used as the “before” interval to emphasize the 255 

magnitude of directional shifts and changes in climatic variability in the “after” interval 256 

during the late Pliocene and early Pleistocene. We shifted the comparison to the early and 257 

middle Pliocene by examining isotopic proxy records in two 400-kya intervals of time 258 

(4.3-3.9 Ma and 3.4-3.0 Ma). These relatively large temporal bins are comparable to 259 

those used by Cerling et al. (2015) and have considerable sample sizes of paleosols 260 

(Harmand et al., 2015; Levin et al., 2011; Quinn and Lepre, 2020; Wynn, 2000, 2004) 261 

and faunal enamel datasets (Blumenthal et al., 2017; Cerling et al., 2015; Manthi et al., 262 

2020; Negash et al., 2020; this study), including those of hominins (Cerling et al., 2013b). 263 

Australopithecus anamensis occurs in the OTD during 4.3-3.9 Ma (Leakey et al., 1995, 264 

1998; Ward et al., 1999b, 2001), thus we use this species and time period as a comparison 265 

to gauge potentially new or different selective pressures on stone tool making behaviors 266 

preserved in the 3.4-3.0 Ma.  267 

 Although a comparison of all middle Pliocene eastern African hominin sites is a 268 

useful endeavor for looking at large-scale environmental shifts (e.g., Drapeau et al., 2014; 269 

Kingston and Harrison, 2007; Trauth et al., 2005), we focus our study on records in the 270 

OTD to minimize confounding influences on the proxy records used here as a function of 271 

the idiosyncratic geography and hydrology of different rift basins. Eastern African basins 272 

are variable with respect to temperature (Gebrechorkos et al., 2019), elevation (Junginger 273 



and Trauth, 2013), and meteoric water sources (Levin et al., 2009), which in turn 274 

influence vegetation 13C and 18O values (Blumenthal et al., 2016; Sparks and 275 

Ehleringer, 1997; Tieszen, 1991; Yakir et al., 1990) and soil pore and surface water 18O 276 

values (Cerling, 1984; Dansgaard, 1964; Gat, 1996; Kim and O’Neil, 1997). 277 

 Taphonomic and collector biases are also concerns when reconstructing 278 

vegetation structures with isotopic analyses of faunal remains (e.g., Robinson et al., 279 

2017). Moreover, considering modern mammalian speciosity in Kenya alone (309 280 

species, Musila et al., 2019) and herbivore ungulate population sizes (e.g., 102-104; 281 

Georgiadis, 2011), the number of enamel samples analyzed to date from eastern African 282 

fossil locales is miniscule. Due to preservation in and around the LOM3 site, we 283 

contribute a modest faunal enamel sample in order to make better comparisons to the 284 

early Pliocene OTD databases, but emphasize that larger sample sizes from many species 285 

are warranted to gauge the environmental context of Pliocene hominins. 286 

   287 

2. The Omo-Turkana Depression  288 

 The OTD, also known as the Turkana Depression and the Turkana-Omo rift, 289 

extends across northern Kenya and southern Ethiopia (Figure 2) and lies within the 290 

eastern branch of the East African Rift System (EARS) between the Kenyan and 291 

Ethiopian domes (Ebinger et al., 2000; Knapp et al., 2020). The OTD is composed of 292 

several structural sub-basins within the tectonic complex associated with the development 293 

of the EARS (Feibel, 2011). The OTD presently contains one of the largest rift lakes, 294 

Lake Turkana, with an area of 7000 km2 and a catchment surface of 130,800 km2 (UNEP, 295 

2004; Frostick, 1997). Today, the lake is a saline-alkaline and closed-basin lake that 296 



receives over 90% of its water from rainfall over the Ethiopian Highlands, via the Omo 297 

River, with minor inputs from the Turkwel and Kerio river systems (Yuretich, 1979; 298 

Cerling, 1986). The general climate within the rift is arid to semi-arid and receives 250-299 

500 mm of rainfall annually (Nicholson, 1996). Air temperatures are hot, averaging 29C 300 

today, and have been estimated to 30-40C during the Plio-Pleistocene (Passey et al., 301 

2010). The Omo River meander belt and delta, now situated in the Omo Valley and 302 

northern Turkana Basin respectively, has gallery forests along its banks with depths of 303 

about ~1 km, which transition to open grasslands along the floodplains (Carr, 1998). 304 

Mudflats and grasslands surround present day Lake Turkana, and woody vegetation is 305 

largely restricted to the deltaic systems and thin margins of perennial and ephemeral 306 

tributaries (Mbaluka and Brown, 2016).  307 

 Holocene and late Pleistocene lacustrine proxy records demonstrate that Lake 308 

Turkana’s water levels and temperatures were responsive to regional-scale climatic 309 

events such as the African Humid Period and precession-paced variations in solar 310 

insolation (Halfman and Johnson, 1988; Forman et al., 2014; Garcin et al., 2012; Bloszies 311 

et al., 2015; Morrissey et al., 2018; Morrissey and Scholz, 2014; Nutz and Schuster, 312 

2016). A rich archaeological record of early pastoralists and fishing peoples suggests a 313 

dynamic livelihood on these changing lakeshores (Ashley et al., 2011; Hildebrand et al., 314 

2018; Mirazón Lahr et al., 2016; Owen et al., 1982; Prendergast and Beyin, 2018; Wright 315 

et al., 2015;). 316 

 Plio-Pleistocene sedimentary strata in the OTD, designated as the Omo Group (de 317 

Heinzelin, 1983), begins circa 4.3 Ma when the region shifts from the volcanic activity of 318 

mostly flood basalts to a depositional regime dominated by sedimentary clastic detritus 319 



(Brown and McDougall, 2011; Bruhn et al., 2011). Omo Group Plio-Pleistocene 320 

environmental proxy records include those from the Kanapoi and Lothagam formations 321 

in the southwestern portion of the Turkana Basin, the Mursi Formation located in the 322 

Omo River Valley, the Koobi Fora Formation exposed along the northeast and southeast 323 

side of the Turkana Basin, and the Nachukui Formation along the northwest and 324 

southwest basin (Feibel et al., 1991; Feibel, 2003a, 2003b; Harris et al., 1988). Pliocene 325 

mudstones, sandstones, and conglomerates comprise the bulk of the Nachukui 326 

Formation’s Lomekwi Member, which preserves the LOM3 site (Harmand et al., 2015). 327 

The Omo Group formations have been dated and correlated through a combination of 328 

tephrastratigraphy, radioisotopic ages, and paleomagnetic stratigraphy (Brown and 329 

Feibel, 1986, 1991; Feibel et al., 1989; Hillhouse et al., 1986; Lepre, 2014; Lepre and 330 

Kent, 2010, 2015; Lepre et al., 2011; McDougall, 1985; McDougall and Brown, 2006, 331 

2008; McDougall et al., 2012), which has afforded a high degree of temporal resolution 332 

for several long records of terrestrial environments (Figure 5).  333 

 Late Pliocene and early to middle Pleistocene sedimentary records indicate the 334 

presence of large lakes. The longest in duration is Lake Lorenyang (Feibel, 1997) 335 

beginning at 2.14 Ma (Lepre, 2014) and extending to ~1.5 Ma (Feibel, 2011) and likely 336 

caused by the damning of the basin with the eruption of Mt. Kulal during the early 337 

Pleistocene (Bruhn et al., 2011). Fluctuations in lake levels during the early Pleistocene 338 

may have been influenced by orbitally-paced variations in water delivery to the Omo 339 

River source region in the Ethiopian Highlands (Boës et al., 2019; Joordens et al., 2011; 340 

Lepre et al., 2007; Nutz et al., 2017). The increasing abundance of C4 grasslands in the 341 

basin during the early Pleistocene may have been partially influenced by paleogeographic 342 



variations as the basin transitioned from fluvial- to lacustrine-dominated depositional 343 

systems (Levin et al., 2011; Quinn et al., 2007; Wynn, 2004). 344 

 Early to middle Pliocene depositional environments in the OTD are largely 345 

characterized as fluvial and dominated by the proto-Omo, -Kerio and -Turkwel rivers 346 

(Feibel, 2011). Prior to the eruption of Mt. Kulal, the hydrological configuration is 347 

reconstructed as an open system with an outlet to the Indian Ocean via the Turkana River 348 

(Feibel, 1994). Short-term lakes of various sizes punctuated the Pliocene fluvial 349 

landscapes as a function of accommodation space and sedimentation in the half-graben 350 

basin. The estimated largest and deepest lake, Lake Lonyumun, reached an aerial expanse 351 

of 9000 km2 circa 4.1 Ma; another lake, Lake Lokochot, was likely shallower but nearly 352 

reached a comparable aerial extent circa 3.5 Ma (Feibel, 1997). These large lakes show 353 

evidence for deltaic sediments at the interface of emptying perennial rivers such as the 354 

proto-Omo, -Kerio, and -Turkwel, similar to the modern deltas at the north and south 355 

ends of Lake Turkana. Adjacent to the LOM3 site, the local paleogeography of the 356 

northwest Turkana Basin included alluvial fans and other transverse drainages that likely 357 

intersected at times with axial depositional systems, such as the proto-Omo River and 358 

small ephemeral lakes (Harmand et al., 2015; Harris et al., 1988; Leakey et al., 2001). 359 

 The OTD preserves one of the most complete fossil and archaeological records of 360 

Plio-Pleistocene hominin evolution. Sediments capture several key evolutionary 361 

landmarks in the hominin lineage including the first appearance datum (FAD) of genus 362 

Australopithecus (Leakey et al. 1995), FAD and the last appearance datum (LAD) of K. 363 

platyops (Leakey et al., 2001), an early Homo sp. candidate FAD (Prat et al., 2005), H. 364 

rudolfensis FAD (Leakey, 1973), H. habilis FAD and LAD (Spoor et al., 2007; Wood, 365 



1991), the earliest Acheulean industry (Lepre et al., 2011), numerous Pleistocene sites 366 

preserving Oldowan industry diversity through time (Braun et al., 2010; Delagnes and 367 

Roche, 2005; Isaac, 1997; Harmand, 2007, 2009a,b; Mana et al., 2019; Roche et al., 368 

1999, 2003), and the focus of this study, the earliest lithic technology, known as the 369 

Lomekwian (Harmand et al., 2015). 370 

 371 

3. Isotopic proxy records of terrestrial African environments 372 

3.1 Pedogenic carbonate 13C and 18O analyses  373 

 For nearly forty years, African terrestrial vegetation communities have been 374 

reconstructed with measurements of 13CPC and 18OPC values preserved in paleosols 375 

(Cerling, 1984, 1992a; Cerling et al, 1988). Thorough descriptions of these methods are 376 

available elsewhere (e.g., Cerling et al., 2011a; Koch, 1998; Levin, 2015); here we briefly 377 

describe the methods and data interpretation used in this study.  378 

 Globally C3 and C4 plants show normal and non-overlapping distributions (Sage 379 

and Monson, 1999). C3 plants (trees, shrubs, few sedges, and cool growing season 380 

grasses) utilize the Calvin-Benson three-carbon photosynthetic pathway and discriminate 381 

against the heavier of the two stable isotopes of carbon, 13C. C4 plants (most sedges and 382 

warm season growing grasses) utilize the Hatch-Slack four carbon photosynthetic 383 

pathway and allow some incorporation of 13C. In eastern Africa, C3 dicots from closed 384 

and open canopy forests have lower δ13C values (-31.4 ± 0.5 ‰, -27.8 ± 0.3 ‰, 385 

respectively) than those of savanna and bushlands (-27.0 ± 0.2 ‰; Cerling et al., 2003c). 386 

Mesic C4 grasses (NADP subpathway) have an average δ13C value of -11.8 ± 0.2‰; xeric 387 

C4 grasses utilizing the NAD and PCK subpathways have average δ13C values of -13.1 ± 388 



0.3‰ and -12.9 ± 0.1‰, respectively (Cerling et al., 2003c) in eastern African savanna 389 

environments. Vegetation δ13C values are inferred from those measured in pedogenic 390 

carbonate nodules (Cerling et al., 1992b; Cerling and Quade, 1993). 391 

 Pedogenic carbonates at depths greater than 30 cm in soils with relatively high 392 

respiration rates incorporate CO2 of decaying organic matter derived from surface 393 

vegetation during soil development with an offset of 14-17‰ (Cerling, 1984, 1992b; 394 

Cerling and Quade, 1993; Quade et al., 1989). Thus the 13CPC values preserved in 395 

paleosols are used to quantitatively measure the relative amounts of C3 and C4 vegetation 396 

on the land surface during soil carbonate formation (Cerling, 1992a). Pedogenic 397 

carbonates form in warm, dry periods and have been shown to overestimate C4 398 

contributions to paleovegetation (Breeker et al., 2009). Cerling et al. (2011b) derived a 399 

regression equation to calculate the fraction of woody canopy cover (WC) from paleosol 400 

carbonate 13CPC values in order to categorize structure based on UNESCO 401 

classifications of African vegetation. Cerling et al. (2015) describe the classification as 402 

follows: 1) grassland: WC = 0-10%, 2) open wooded grassland: WC = 10-20%, 3) 403 

wooded grassland: WC = 20-40%, 4) grassy woodland/bushland/shrubland: WC = 40-404 

60%, 5) woodland/bushland/shrubland: WC = 60-80%, 6) forest/closed forest: WC = 80-405 

100%. 406 

 18OPC values are controlled by soil pore water 18O values, temperature-407 

dependent isotopic fractionation during carbonate formation, evaporation rates and soil 408 

moisture (Cerling, 1984; Kim and O’Neil, 1997). At depths greater than 30 cm, soil pore 409 

water 18O values track those of meteoric water (Amundson and Wang, 1996; Cerling, 410 

1984; Cerling and Quade, 1993). Soil pore water 18O values are controlled by several 411 



factors including 1) evaporation relative to precipitation (i.e., aridity) (Cerling, 1984; 412 

Cerling and Quade, 1993), 2) rainfall source 18OMW values (Dansgaard, 1964; Ferretti et 413 

al., 2003; Gazis and Feng, 2004), 3) air and soil temperatures (Breecker et al., 2009; 414 

Cerling, 1984; Kim and O’Neil, 1997), or 4) some combination of these factors. 415 

 Advances in mass spectrometry have reduced the amount of carbonate required to 416 

obtain reliable 13CPC and 18OPC results, thus it is common for a single pedogenic nodule 417 

to be drilled and analyzed multiple times (e.g., database of Levin, 2013). Pedogenic 418 

nodules form by accretion (Retallack, 2005; Wieder and Yaalon, 1982) and therefore 419 

record several episodes of environmental conditions depending on nodule growth rate 420 

and size. Sampling one nodule multiple times for 13CPC and 18OPC values potentially 421 

reveals variability in vegetation structure and soil water during nodule formation. By no 422 

means is this the ideal gauge of environmental variability; however, it has been an 423 

underutilized dataset in paleoenvironmental research in eastern African hominin localities 424 

that reflects aspects of past vegetation structure and climatic conditions not visible with 425 

measures of bulk carbonate of one pedogenic nodule. 426 

 427 

3.2 Faunal 13CEC and 18OEC analyses  428 

 Faunal enamel carbonate δ13CEC and δ18OEC values record δ13C values of whole 429 

diet and 18O values of body water, respectively, and thus have been used for some time 430 

to reconstruct continental paleoenvironments (e.g., Koch, 1998). Fossil faunal δ13CEC 431 

values have been extensively used to estimate vegetation structures at Plio-Pleistocene 432 

hominin locales relative to modern eastern African environments (Cerling et al., 2015; 433 

Drapeau et al., 2014; Kingston and Harrison, 2007; Manthi et al., 2020; Wynn et al., 434 



2016; Negash et al., 2020). Based on δ13CEC values of herbivorous ungulate taxa, 435 

specimens are assigned to one of three dietary groups: C3-browsers, C3-C4-mixed feeders, 436 

and C4-grazers (Cerling et al., 2015). Relative percentages of the three feeding categories 437 

are used to characterize the faunal community composition (e.g., Manthi et al., 2020; 438 

Robinson et al., 2017). δ13CEC values of carnivores reflect the feeding category(ies) of 439 

their prey, and of omnivores, a mixture of plant and prey δ13C values (Lee-Thorp et al., 440 

1989). 441 

 δ13CEC-based dietary reconstructions and by extension environmental 442 

reconstructions are not without methodological assumptions. Cerling et al. (2015) 443 

proposed the following δ13CEC values to delineate the three feeding categories of the 444 

Artiodactyla, Perissodactyla and Proboscidea (APP) orders: C3-browsers, 13CEC <-8‰; 445 

C4 grazers, 13CEC >-1‰; C3-C4-mixed feeders, 13CEC between -8 and -1‰, which were 446 

based on the large modern 13CEC database of APP taxa, a pre-industrial CO2 
13C offset 447 

of 1.5‰, a ε*enamel-diet value of 14‰. In fossil organisms, the ε*enamel-diet value is based on 448 

modern analogs. The use the ε*enamel-diet value of +14‰ (e.g., Cerling et al., 2013b, 449 

Manthi et al., 2020), is based on large ruminant and nonruminant mammals (Cerling and 450 

Harris, 1999; Cerling et al., 2003a; Passey et al., 2005). Alternatively, Kellner and 451 

Schoeninger (2007) suggested that the ε*enamel-diet value for a non-fermenting-gut 452 

omnivore is +10‰; however, this ε*enamel-diet value may be more applicable to members 453 

of genus Homo than Pliocene hominins (Schoeninger, 2014). An ε*enamel-diet value of 454 

+13‰ (Cerling et al., 2004; Passey et al., 2005) has been utilized to characterize extant 455 

primates (e.g., Loudon et al., 2016; Smith et al., 2010). Tejada-Lara et al. (2018) 456 

suggested the ε*enamel-diet value of mammalian herbivores is predicted by body mass and 457 



gut physiology, producing ε*enamel-diet values ranges between +9 and +16‰. The use of 458 

specific ε*enamel-diet values can impact dietary reconstructions (Quinn, 2019).  459 

 Notably, global CO2 
13C values have changed through time (Tipple et al., 2010), 460 

and thus through-time analyses of faunal 13CEC values must consider specific CO2 
13C 461 

offsets when differentiating diet categories (Uno et al., 2011; Garrett et al., 2015; Faith et 462 

al., 2018). Vegetation structure also impacts dietary reconstructions by altering the end 463 

members of C3 and C4 diets (Garrett et al., 2015). Moreover, Robinson et al. (2017) have 464 

suggested that the methods of Cerling et al. (2015) artificially skew δ13CEC-based 465 

interpretations of feeding categories and general community structures because they do 466 

not account for differential species abundances present in collector- and taphonomic-467 

biased faunal assemblages. 468 

 δ18O values are preserved in both the carbonate (subscript EC) and phosphate 469 

(subscript EP) phases of enamel and have been shown to resist diagenetic alteration 470 

(Wang and Cerling, 1994); consequently faunal δ18OEP/EC analyses have been widely 471 

employed for environmental reconstructions in deep time (Ayliffe and Chivas, 1990; 472 

Ayliffe et al., 1992; Bryant et al., 1994, 1996; Kingston and Harrison, 2007; Koch et al., 473 

1989; Wang et al., 2007; Wang and Deng, 2005; Wynn et al., 2016). Mammalian 18OEC 474 

values are derived primarily from drinking water, atmospheric O2, and water consumed in 475 

food (Bryant and Froelich, 1995; Kohn, 1996; Kohn and Cerling, 2002; Podlesak et al., 476 

2008).  477 

 In eastern African savanna environments, obligate drinkers have been shown to 478 

have lower but overlapping 18OEP/EC values than non-obligate drinkers (Bocherens et al., 479 

1996; Cerling et al., 2003b). Eastern African C3-browsing and C3-C4-mixed-feeding 480 



herbivore ungulates were found to have lower bone phosphate 18O values than C4-481 

grazing ungulates (Kohn et al., 1996). As recently reviewed by Faith (2019), C3-browsers 482 

obtain substantial amounts of water from C3 vegetation. C4 grasses offer little water 483 

content and therefore C4-grazers typically obtain water from surface water sources, which 484 

generally have lower 18O values than that of C3 vegetation.  485 

 Sponheimer and Lee-Thorp (1999b, 2001) suggested that trophic level is 486 

correlated with 18OEC values in a modern sample of the Morea Estate mammals and 487 

fossil fauna from Swartkrans and Equus Cave (South Africa). Few studies have aimed to 488 

further test this prediction in modern eastern African ecosystems. One jackal from 489 

Turkana (Cerling et al., 2003b) yielded a lower 18OEC value than measured herbivores 490 

but comparable values as elephant and black rhino. Lake Turkana hippos (Cerling et al., 491 

2003b), but not those inhabiting rivers (Blumenthal et al., 2017), yielded higher 18OEC 492 

values than the one isotopically analyzed jackal. At Tsavo, lions (n=9) yielded lower 493 

18OEC values than several herbivorous species, but showed no difference from those of 494 

elephant and black rhino (Cerling et al., 2008).  495 

 Several studies in African forested environments have shown that 18OEC values 496 

of forest-living fauna vary with canopy height. For example, high canopy primates 497 

achieve higher 18OEC values than low canopy or ground dwellers in closed environments 498 

(Cerling et al., 2004; Krigbaum et al., 2016; Nelson, 2013). This is because high canopy 499 

leaves experience higher evapotranspiration than vegetation at low canopy and ground 500 

levels in a forest (Sternberg et al., 1989), and those different vegetation 18O values are 501 

transferred to consumers (Carter and Bradbury, 2016; Nelson, 2013). Additionally, 502 

woodland- and grassland-dwellers achieve higher δ18OEC values than those living in 503 



forests (Cerling et al., 2003a). This can result from drinking open habitat evaporative 504 

surface waters (Cerling et al., 2003a), but is also influenced by ingesting open habitat 505 

vegetation, which experiences higher rates of evapotranspiration (Belsky et al., 1989).  506 

 The number of variables controlling faunal 18OEC values impacts the method’s 507 

usefulness for assessing environmental change. For example, water dependency and 508 

behavioral variables (Kohn et al., 1996) also influence 18OEC values, which act to reduce 509 

18OEC distinctions between herbivore feeding categories (Bocherens et al., 1996; Cerling 510 

et al., 2003b). Moreover, Kohn (1996), Kohn et al. (1996), and Schoeninger et al. (2000) 511 

emphasize that behavioral variables unknown, and perhaps unknowable, in fossil species 512 

such as activity times, night feeding, and shade-seeking behaviors can influence 18OEC 513 

values.  514 

 Several studies from eastern African hominin sites have shown that analyzing 515 

13CEC and 18OEC values of mammalian taxa from discrete stratigraphic intervals 516 

captures a large range of available resources via different dietary behaviors practiced by 517 

various species (Du et al., 2019; Kingston and Harrison, 2007; Lehmann et al., 2016; 518 

Patterson et al., 2019; Robinson et al., 2016; Wynn et al., 2016). If diagenetic alteration 519 

of tooth enamel is negligible, 13CEC and 18OEC analyses of individual specimens record 520 

diet and water intake over the duration of enamel formation (100-101 years), which 521 

represents a small amount of time in contrast to the formation times of pedogenic 522 

carbonates (101-103 years). Spatially, however, faunal 13CEC and 18OEC values record 523 

information from across the range of animal movements, which vary by species and span 524 

101-102 km2 (Estes, 1991). In a similar approach to measuring intranodular variability, 525 

faunal isotopic variation measured in several specimens from individual taxonomic 526 



groups serves as a proxy of dietary selectivity or flexibility (methods of Groenewald et 527 

al., 2020). Combining the two distinct yet complementary proxy records from paleosols 528 

and faunal specimens makes visible different aspects of the local and regional 529 

environments. 530 

   531 

4. Materials and Methods 532 

4.1. Pliocene OTD 13CPC and 18OPC analyses 533 

 We present new 18OPC values (nodules=23, analyses=47) from LOM3 (see 534 

sampling described in Harmand et al., 2015; Supplementary Table 1). We combine 535 

13CPC and 18OPC data and compare across two 400-kyr intervals, 4.3-3.9 Ma (n=70) and 536 

3.4-3.0 Ma (n=77). Published δ13CPC and δ18OPC values from the OTD are drawn from the 537 

Kanapoi Formation (data from Quinn and Lepre, 2020; Wynn, 2000), the Koobi Fora 538 

Formation (data from Cerling et al., 1988; Levin et al., 2011), and the Nachukui 539 

Formation (data from Harmand et al., 2015; Levin et al., 2011; Wynn, 2004). OTD 540 

δ13CPC and δ18OPC data used in this study have been compiled into a publicly available 541 

database (Levin, 2015). WC values were estimated after methods of Cerling et al. (2011). 542 

We utilized standard variation of intranodular 13CPC and 18OPC values from these two 543 

intervals, 4.3-3.9 Ma (n=38) and 3.4-3.0 Ma (n=33), to represent environmental 544 

variability (data from Harmand et al., 2015; Levin et al., 2011; Quinn and Lepre, 2020; 545 

this study).  546 

 547 

4.2. Pliocene OTD faunal δ13CEC and δ18OEC analyses  548 



 We add faunal δ13CEC and δ18OEC values (taxa =8, n =28) from LOM3 to 549 

published OTD faunal δ13CEC and δ18OEC values. We limited enamel sampling to APP 550 

specimens identifiable at taxonomic levels of tribe or lower. We also analyzed 551 

crocodylians from the site for δ18OEC values to proxy meteoric water δ18O values (e.g., 552 

Amiot et al., 2007). We combine δ13CEC and δ18OEC data of specimens collected from five 553 

geologic formations in the Omo Group: Kanapoi Formation (data from Cerling et al., 554 

2013b; Manthi et al., 2020 and references therein), Koobi Fora Formation (data from 555 

Blumenthal et al., 2017 and references therein; Cerling et al., 2013b, 2015 and references 556 

therein; Schoeninger et al., 2003), Shungura Formation (data from Cerling et al., 2015; 557 

Negash et al., 2020), Mursi Formation (data from Drapeau et al. 2014), and the Nachukui 558 

Formation (data from Blumenthal et al., 2017 and references therein; Cerling et al., 559 

2013b, 2015 and references therein) and compare data of taxonomic groups. Fourteen 560 

ungulate herbivore taxa (4.3-3.9 Ma, n=212; 3.4-3.0 Ma, n=197) were utilized for 561 

assessing change in δ13CEC values, and 8 ungulate herbivore taxa and Crocodylia (4.3-3.9 562 

Ma, n=134; 3.4-3.0 Ma, n=139) for comparing δ18OEC values (Table 1). After Cerling et 563 

al. (2015) we distinguish two Rhinocerotidae taxa based on bimodal δ13CEC values, 564 

Rhinocerotidae (G) and Rhinocerotidae (B), to denote grazing (cf. Ceratotherium) and 565 

browsing (cf. Diceros) forms, but without the proper morphological indicators for 566 

taxonomic designations. 567 

 Given the small sample sizes of individual taxa and the lack of representation by 568 

numerous species in the sample, we use pairwise non-parametric comparisons of δ13CEC 569 

and δ18OEC values grouped by taxon present in both time intervals. We assess variability 570 

in food and water inputs by comparing interquartile ranges of δ13CEC and δ18OEC values 571 



of each taxonomic group separated into the two temporal bins. After Cerling et al. (2015), 572 

we place the taxonomic and temporal groups along the spectrum of δ13CEC values 573 

designated as separate feeding categories. However, we also consider canopy effects on 574 

vegetation 13C values (Kohn, 2010) and separate the C3 browser category into “forest” 575 

C3 browsers and “woodland” C3 browsers. We define forest C3-browsers when 13CEC 576 

values drop below -14‰. This is based on the average plant 13C value of five lowland 577 

tropical closed canopy forests in Africa (-30.6‰) (data from: Loango National Park, Côte 578 

d’Ivoire, -30.5±3.5‰, Oelze et al., 2014; Tai Natural Park, Côte d’Ivoire, -30.8±4.1‰, 579 

Fahy et al., 2013; Ituri Forest, DRC, -31.2±2.8‰, Cerling et al., 2004; Salonga National 580 

Park, DRC, -29±2.7‰, Oelze et al., 2011; Kakamega Forest, Kenya, -31.4±0.5‰, 581 

Cerling et al, 2003c) and a correction for the Pliocene atmospheric CO2 
13C offset of 582 

2.3‰ (Tipple et al., 2010). We use the term “woodland” for C3-feeders exploiting the 583 

more open C3 biome resources; 13CEC values range from -8‰ to -14‰. Based on Tipple 584 

et al. (2010), the time periods compared in this study vary only by 0.2‰ and therefore we 585 

do not change our feeding category demarcations through time. We also compare feeding 586 

categories through time by combining δ13CEC values and gauge change in mean δ13CEC 587 

values and variance (similar to methods of Sealy et al., 2020). 588 

 589 

4.3. Mass Spectrometry 590 

 Pedogenic nodules were cross-sectioned and sampled for microcrystalline calcite 591 

with a 0.5 mm carbide drill bit (Foredom Series), avoiding surface and sparry calcite. We 592 

subsampled nodules twice and averaged the subsample values. Enamel samples from 593 

LOM3 were also sampled with a rotary drill affixed with a diamond drill bit (Foredom 594 



Series). We eroded the outer layer of enamel prior to collecting enamel powders, 595 

avoiding discolorations/inclusions and taking advantage of natural breaks. Enamel 596 

samples were pretreated with a buffered acetic acid, pH = 5.0 (after Cerling et al., 2013b; 597 

Koch et al., 1997). All analyses were conducted at the Stable Isotope Laboratory at 598 

Rutgers University on a FISIONS Optima Mass Spectrometer with an attached Multi-599 

Prep device. All samples were reacted in 100% phosphoric acid at 90°C for 13 minutes. 600 

Values for 18OPC are reported in delta notation (per mil, ‰) versus V-PDB through 601 

analysis of NBS-19; error for 18OPC is  <0.05‰. Enamel samples that yielded >10% 602 

carbonate content were excluded from the study due to the likelihood of the presence of 603 

non-structural carbonate (methods after Cerling et al., 2013b, 2015).  604 

 605 

5. Results 606 

5.1. Pliocene OTD δ13CPC and δ18OPC values  607 

 Summary data for the compiled Pliocene OTD δ13CPC and δ18OPC values for the 608 

two time intervals are shown in Figures 6-8. 13CPC values show a slight (0.9‰) but 609 

statistically significant (t test, p<0.05) increase from the 4.3-3.9 Ma interval to the 3.4-3.0 610 

Ma interval. Using the methods of Cerling et al. (2011b), the average δ13CPC increase of 611 

0.9‰ equates to an 8% decrease in WC. The dominant vegetation structural category is 612 

reconstructed as grassy woodlands/ bushland/shrubland in both time periods. δ18OPC 613 

values show a change by only 0.1‰ between the 4.3-3.9 Ma and the 3.4-3.0 Ma intervals, 614 

and this is not statistically significant (Figure 7). Intranodular δ13CPC and δ18OPC standard 615 

deviations and interquartile ranges are slightly higher in the 3.0-3.4 Ma interval than in 616 



the 4.3-3.9 Ma interval, averaging 0.1 and 0.3 respectively (Figure 8), and both are 617 

statistically significant (t test, p<0.05).  618 

 619 

5.2. Pliocene OTD faunal 13CEC and 18OEC values  620 

 Pliocene OTD faunal 13CEC and 18OEC values are listed in Table 1, and box plots 621 

are illustrated in figures 9 and 10. Pairwise comparisons of 13CEC values for each of the 622 

14 herbivore ungulate taxonomic groups examined across the two time intervals yielded 623 

statistical significance for three taxa (Mann-Whitney U, p<0.05, Figure 9). Antilopini, 624 

Aepycerotini and Notochoerus shift within the C3-C4 mixed feeding category toward 625 

more C4-feeding. None of the herbivorous species yielded statistically significant changes 626 

in interquartile range (f test, p=0.10) in the 3.4-3.0 Ma interval. Figure 11 plots 627 

probability densities of all herbivore ungulate 13CEC values separated into the three 628 

feeding categories (C3-browsers, C3-C4-mixed feeders, C4-grazers). The position and 629 

shape of the plots illustrate a slight directional shift toward more C4 consumption 630 

especially within the C3-C4-mixed-feeding category. C3-C4-mixed feeders show 631 

significant changes in mean and median 13CEC values (t test, p<0.000; Mann-Whitney U, 632 

p<0.01) and variance (f test, p=0.04).  633 

 Pairwise comparisons of 18OEC values for each of the 10 herbivore ungulate 634 

taxonomic groups examined across the two time intervals yielded statistical significance 635 

for only one taxa (Mann-Whitney U, p<0.05, Figure 10). Alcelaphini yielded a 636 

statistically significant decrease in 18OEC values (Mann-Whitney U, p<0.01). Giraffidae 637 

and Aepycerotini yielded lower 18OEC mean values, but do not achieve statistical 638 



significance (Mann-Whitney U, p<0.08). Pairwise 18OEC interquartile ranges vary 639 

widely, but none were significantly different from one another (f test, p>0.05).  640 

 641 

6. Discussion  642 

6.1. Environmental change during the origins of stone tools 643 

 Environmental proxy data from the Pliocene OTD confirms the modest 644 

directional shift to higher abundances of C4 vegetation through time. Average WC 645 

decreased by 8%, and three herbivore ungulate taxa showed increases in C4 consumption. 646 

Modern species opportunistically shift their diets in response to resource availability 647 

(e.g., Cromsigt and Olff, 2006; du Toit, 2003; Illius and O’Connor, 2000; Kartzinel et al., 648 

2015; Owen-Smith, 1997) and therefore can track changes in vegetation structure. Three 649 

Pliocene fossil taxa consuming more C4 plants may indicate a higher abundance of C4 650 

grasslands during the 3.4-3.0 Ma interval in general agreement with WC estimates. 651 

However, faunal 13CEC values are also a reflection of species interactions (Buschke et 652 

al., 2015) and resource partitioning of C3 and C4 vegetation by herbivore competitors 653 

(e.g., Codron et al., 2011; Davis et al., 2017; Feranac et al., 2007; Malindie et al., 2020), 654 

which makes quantifying C4 grass abundance with faunal 13CEC values a difficult task. 655 

As shown by Uno et al. (2011), Patterson and others (2017, 2019), and Negash et al. 656 

(2020) in different portions of the OTD, dietary shifts by herbivore ungulates toward 657 

greater C4 consumption were highly variable in tempo and mode. Moreover, through-658 

time faunal 13CEC data show that the dietary niches of many individual taxa were 659 

relatively constant during the Pliocene and did not undergo significant transitions into the 660 

C4 biome until after 3 Ma (Negash et al., 2020). Although none achieve statistical 661 



significance, Aepycerotini and Notochoerus may have become more dietarily selective 662 

during the middle Pliocene, whereas Tragelaphini, like hominins, may have become more 663 

opportunistic (e.g., Groenewald et al., 2020) (Figure 9). Based on the combined ungulate 664 

herbivore 13CEC values, it appears that the C3-C4 mixed feeding niche contracted over 665 

this study interval (Figure 11), which may have been due to reductions in C3 resource 666 

availability and/or increased competition.   667 

 Unchanging 18OEC values in taxa whose modern descendants tend to be water 668 

dependent (e.g., Hippopotamidae, Crocodylia, Deinotheriidae, Elephantidae) suggests 669 

that meteoric water 18O values did not significantly change over the two time intervals. 670 

Hippopotamidae 18OEC values reflect the 18O values of the water in which they swim 671 

and thus have been suggested as faithful records of meteroric water 18O values (Cerling 672 

et al., 2008; Levin et al., 2006). Crocodylia 18OEC values, which also mirror meteoric 673 

water 18O values (Amiot et al., 2007), are comparable to those of Hippopotamidae. OTD 674 

Deinotheriidae and Elephantidae, perhaps similar to elephants today (Estes, 1991), likely 675 

spent a significant portion of time in surface waters as well. Notably, Elephantidae 676 

18OEC values are significantly higher than those of Deinotheriidae, which may reflect 677 

differences in diet (e.g., Faith, 2019), gut physiology (Hempson et al., 2015), or body size 678 

(Bryant and Froelich, 1995; Longinelli, 1984; Luz et al., 1984), but neither revealed 679 

change in pairwise comparisons.  680 

 Of the taxa that yielded lower 18OEC values in the 3.4-3.0 Ma interval, (e.g., 681 

Giraffidae, Alcelaphini, Aepycerotini), only Giraffidae was categorized as evaporation-682 

sensitive (ES) in the 18OEC-based aridity index of Levin et al. (2006) and refined by 683 

Blumenthal et al. (2017). But notably, the decrease in Giraffidae 18OEC values was not 684 



statistically significant. As mentioned, Faith (2019) cautions that 18OEC-based water 685 

deficit estimates based on herbivore ungulate species with changing diets, such as 686 

Tragelaphini, may mimic changes in water deficits as more C4-grazing triggers more 687 

surface water drinking. The relatively lower 18OEC values of Aepycerotini may have 688 

been a by-product of higher C4 consumption (e.g., Faith, 2019). The drop in 18OEC 689 

values in Alcelaphini is accompanied by a slight decrease in 13CEC values, which is 690 

opposite of that predicted for changes in drinking behavior. Modern Alcelaphini taxa 691 

vary in water dependency and tolerance for arid habitats and are not identified as ES taxa 692 

(Levin et al., 2006). According to Estes (1991), few species live in arid areas without 693 

access to water; those that do (e.g., hartebeests in the Kalahari) dig up roots and tubers or 694 

feed on melons to access water. As a C4-grazer, OTD Alcelaphini likely obtained their 695 

water from surface sources due to the low water content in grasses. Reduced 18OEC 696 

values imply that surface drinking water sources shifted to lower 18O values. 697 

Alcelaphini 18OEC values may have tracked changes in local water sources such as 698 

floodplain lakes and small distributaries that are more susceptible to evaporative 699 

fluctuations than large rivers.  700 

 Using the criterion of Faith (2019), Giraffidae, which does not change its diet 701 

over the two time intervals, is ostensibly a good candidate for accurate water deficit 702 

calculations. Although our pairwise comparison did not yield statistical significance, 703 

Blumenthal et al.’s (2017) aridity index based on the Hippopotamidae-Giraffidae 704 

equation yielded water deficits from Kanapoi (~4.1 Ma, 1315±994 mm/year), Allia Bay 705 

(3.9 Ma, 500±1315 mm/year) and the Lomekwi member (3.4 Ma, 1±892 mm/year), 706 

demonstrating increasingly more humid conditions across 4.3-3.0 Ma study interval. 707 



Whether this potential humidity trend was caused by local or regional climatic forcing is 708 

unknown. Donges et al. (2011) found that the interval of 3.33-3.28 Ma shows evidence 709 

for decreasing sea-surface temperatures, lower surface air temperatures and changes in 710 

the evaporation-precipitation balance. They suggest that under these conditions, eastern 711 

Africa underwent a significant humid period, pointing to the Awash Basin’s lacustrine 712 

phase as evidence for increased rainfall. As mentioned, the OTD does not show evidence 713 

for a lacustrine phase during LOM3 times; however, Giraffidae 18OEC values may 714 

indicate slightly more humid conditions. Clearly additional enamel samples of Giraffidae 715 

are needed from the early and middle Pliocene in the OTD to further test this finding.  716 

 It is noteworthy that OTD 18OEC values appear to track changes in humidity that 717 

were not recorded in 18OPC values, which may indicate that changes in humidity were 718 

minor. However, 18OPC values have several influences, which may have acted in concert 719 

to blur environmental signals. Koch (1998) suggested that increased 18OPC values can be 720 

a by-product of grassland expansion. Relatively more C4 vegetation in grass form results 721 

in increased light stress and less soil moisture relative to soils formed under tree cover. 722 

As a result, a decrease in soil moisture caused by a reduction in woody cover could have 723 

counteracted the increase in precipitation on 18OPC values during the middle Pliocene.  724 

 Increasing standard deviations of 13CPC and 18OPC values within nodules 725 

suggest that variations in vegetation structure and climatic conditions marginally 726 

increased across the two time intervals. While intranodular isotopic variability is not a 727 

seasonal proxy, higher environmental variability on the order of nodule formation times 728 

(100s-1000s years) may indicate more fluctuating environments during the 3.4-3.0 Ma 729 

interval. This pattern of increasing variability is not predicted based on the African dust 730 



records (Potts and Faith, 2015) and may suggest other controls on climatic variability in 731 

the region during the middle Pliocene such as sea-surface temperature (Fedorov et al., 732 

2013) or the Indian Ocean Dipole (Marchant et al., 2007). The increase in standard 733 

deviation, however, is ≤0.3‰ for both isotopic systems, which is negligible with respect 734 

to significant changes in OTD environments. For example, variations in 13CPC values of 735 

0.3‰ would not result in significant changes in vegetation structure with the paleoshade 736 

proxy (Cerling et al., 2011b). Although HSPDP did not target the Pliocene sediments in 737 

the OTD, increase sampling density throughout the Pliocene sequence and additional 738 

climate proxy records on seasonal and other short-term time scales (e.g., Ascari et al., 739 

2018; Blumenthal et al., 2019; Macho et al., 2003) are warranted to further test if 740 

environmental variability increased through time by amplitudes impacting environmental 741 

conditions. 742 

 We interpret subtle changes in C4 abundances and potentially a slight increase in 743 

humidity in the OTD for the middle Pliocene compared to the early Pliocene, which 744 

provides support for decoupling the link between aridity and C4 grassland spread (e.g., 745 

Blumenthal et al., 2017; Levin, 2015; Polissar et al., 2019). The increasing trend of 746 

eastern African C4 vegetation appears related to the long-term decrease in atmospheric 747 

pCO2 (Faith et al., 2018; Polissar et al., 2019). Observably, vegetation communities are 748 

not passive responders to changing environmental conditions, but rather compete with 749 

one another for substrate, water, and sunlight (Bond, 2008; Bond et al., 2003; Ludwig et 750 

al., 2004). In the OTD, the hydrological regime was dominated by the large meander belt 751 

of the proto-Omo River and punctuated with lake phases, which in turn provided 752 

changing conditions of water availability, substrate, and sedimentation. Avulsing river 753 



and fluctuating lake margin landscapes may have offered a competitive advantage for C4 754 

vegetation during the Pliocene without an increase in aridity per se.    755 

 756 

6.2. Pliocene hominin dietary niche expansion and stone tool origins 757 

 Modern savannas support a higher secondary productivity than woodlands and 758 

forests (data compiled in Leonard et al., 2003). Reasons for this relationship are 759 

multifaceted and involve the interplay of vegetation structure, effective rainfall, feeding 760 

behaviors, and fire, among others (Hempson et al., 2015; Sankaran et al., 2005). The 761 

Pliocene OTD C3-C4 feeding niche sustained a high number of herbivore ungulate species 762 

(Cerling et al., 2015; Manthi et al., 2020; Negash et al., 2020) similar to other eastern 763 

African Pliocene hominin locales (Kingston and Harrison, 2007; Robinson et al, 2017). 764 

The move by many eastern African mammalian species into open woodlands and 765 

grasslands was variable (Negash et al., 2020; Ségalen et al., 2007; Uno et al., 2011) but 766 

perhaps represents responses by some herbivores to reduce competition (e.g., Kartzinel et 767 

al., 2015; Malindie et al., 2020). OTD hominins’ diets generally followed the trend of 768 

increasing C4 resources locally, which implies opportunistic foraging with changing food 769 

abundances. Recently, however, Wynn et al. (2020) interpreted that the varied timing of 770 

dietary shifts by hominins, non-hominin primates, and herbivore ungulates in the OTD 771 

toward C4 consumption signals behavioral changes rather than the tracking of C4 resource 772 

abundances per se. The increasing database of OTD faunal 13CEC values supports the 773 

hypothesis that hominins experienced a “protracted” adaptation to the widespread 774 

presence of C4 resources available by the late Miocene and early Pliocene (Ségalen et al., 775 

2007). 776 



 Biotic competition for the broad C3-C4 feeding niche may have been one of the 777 

selective pressures for stone tool making behaviors. As viewed in the temporal bins, K. 778 

platyops shared its general diet shift toward a greater reliance on C4 plants with three 779 

ungulate herbivore C3-C4 mixed feeders in the OTD (Figure 9). Several ungulate 780 

herbivores and Theropithecus, the large-bodied baboon, had occupied the C4 biome for 781 

some time (Cerling et al., 2013a; Uno et al., 2011). As many researchers have suggested, 782 

stone tools may have offered enhanced efficiency for processing vegetation (e.g., Brain, 783 

1985; Dominguez-Rodrigo et al., 2001; Goren-Inbar et al., 2002; Hardy et al., 2015; 784 

Keeley and Toth, 1981; Panger et al., 2002; Schick and Toth, 1993; Sept, 1986, 1994). 785 

Notably, the combined ungulate herbivore 13CEC data show evidence for dietary niche 786 

contraction within the C3-C4 mixed feeding niche in the 3.4-3.0 Ma interval. In contrast, 787 

hominins expand dietary breadth from a woodland C3-browser to a broad C3-C4-mixed 788 

feeder, possibly filling the dietary niche left vacated by some of the C3-C4-mixed feeders, 789 

especially Antilopini, Aepycerotini, and Notochoerus (Figures 9 and 11).  790 

 Hominins, like humans and primates today, are thought to have been obligate 791 

drinkers (Grine et al. 2012; Lee-Thorp et al., 2010) and thus the average 2‰ decrease in 792 

18OEC values between A. anamensis and K. platyops suggest drinking behaviors 793 

changed. In the OTD, Quinn (2015) suggested that the presence of Lake Lonyumun 794 

during A. anamensis’ times might have provided an 18O-enriched source of drinking 795 

water resulting in higher 18OEC values for A. anamensis. In contrast, K. platyops was 796 

imbibing primarily from the relatively unevaporated proto-Omo River and tributaries due 797 

to the OTD’s hydrological configuration in the middle Pliocene. The lack of significant 798 

changes in Hippopotamidae 18OEC values through time in the OTD (Harris et al., 2008) 799 



and also shown here with other water dependent taxa (Crocodylia, Deinotheridae, 800 

Elephantidae) implies that 18O values of meteoric waters did not significantly shift over 801 

the two time intervals (Figure 10) and thus changing water sources appears a less likely 802 

scenario for the middle Pliocene. It appears that humidity increased over the study 803 

interval, which may have influenced the change in hominin 18OEC values if a substantial 804 

amount of ingested water was derived from plant resources similar to other water-805 

independent taxa (Figure 10). 806 

 Dietary changes could have lowered K. playtops’ 18OEC values such as feeding 807 

on ground level food resources in closed woodland settings (e.g., Nelson, 2013) or on 808 

wetland sedges and underground storage organs (e.g., Lee-Thorp, 2011). Changes in 809 

feeding and activity times could have also impacted K. playtops’ 18OEC values (e.g., 810 

Kohn, 1996; Schoeninger et al., 2000). Additionally, lower 18OEC values indicate that K. 811 

platyops may have increased its water dependency by drinking a higher proportion of 812 

surface waters than ingesting water contained in vegetation. The relationship between 813 

lower 18OEC values and increasing C4 grass consumption as shown for Tragelaphini by 814 

Faith (2019) and here with Aepycerotini aligns with the dietary increase of C4 resources 815 

by hominins.  816 

 Prior to the LOM3 publication (Harmand et al. 2015), Macho (2014) proposed 817 

that the increase in C4 food consumption by Pliocene hominins was in part selected by an 818 

increase in predation as evident by an increasing speciosity of members of the Order 819 

Carnivora in the OTD and other eastern African hominin locales circa 3.6 Ma (data from 820 

Werdelin and Lewis; 2005, 2013). More frequent terrestriality practiced by habitual 821 

bipeds in the context of increased predation risk was thought to have been a prime mover 822 



of diet change. Likewise, predation pressure could be viewed as an influence for the 823 

origins of stone tool making. However, Werdelin clarified the increase in speciosity 824 

during the middle Pliocene was caused by the “Laetoli effect” (commentary section of 825 

Thompson et al., 2019), a by-product due to a high preservation rate at one site. 826 

Moreover, Faurby and others (2020) recently demonstrated that Plio-Pleistocene 827 

Carnivora, specifically large-bodied species, across eastern Africa underwent a reduction 828 

in abundance, which they argue was influenced by competition with hominins (but see 829 

Faith et al., 2018). This decreasing trend in Carnivora began as early as 4 Ma, and 830 

notably, much of these data derive from the OTD. Faurby et al. (2020) assert that 831 

carnivores were outcompeted for animal food resources by hominins who engaged in 832 

scavenging of carcasses, stealing from carnivore kills (kleptoparasitism), or hunting 833 

behaviors. The authors suggest that hunting is a less likely explanation until hominins 834 

achieve body size and morphology for endurance hunting like that observed in genus 835 

Homo (e.g., Bramble and Lieberman, 2004) and/or the use of stone tools.  836 

 Tool-related activities by Homo (Blumenschine and Selvaggio, 1988; Braun et al., 837 

2010; Bunn, 1981, 1994; Bunn and Kroll, 1986; Dominguez-Rodrigo et al., 2005; 838 

Pobiner et al., 2008; Potts and Shipman, 1981) and Australopithecus (de Heinzelin et al., 839 

1999 McPherron et al., 2010) have been associated with animal carcass nutrient 840 

acquisition. Thompson et al. (2019) proposed that the Human Predatory Pattern (HPP) 841 

involving the scavenging of animals of equal or greater body size arose in Pliocene 842 

hominins with percussion-based marrow extraction of animal carcasses, rather than flake-843 

tool assisted meat procurement like that interpreted for early Homo. The timing in the 844 

decrease of carnivore speciosity in the OTD is suggestive of direct competition between 845 



carcass-scavenging hominins and sympatric predators beginning with A. anamensis and 846 

increasing throughout the Plio-Pleistocene (Faurby et al., 2020). Recent 44Ca/42Ca 847 

analysis, typically a proxy used to distinguish herbivory from carnivory, did not 848 

distinguish A. anamensis from K. platyops, and both species have 44Ca/42Ca values 849 

overlapping those of Homo sp., Theropithecus, and some eastern African carnivores 850 

(Martin et al., 2020). Indeed, discerning different dietary components of omnivorous 851 

primates requires multiple lines of evidence; we suggest that an increase in faunivory by 852 

K. platyops is consistent with the decrease of 18OEC values relative to those of A. 853 

anamensis (e.g., Sponheimer and Lee-Thorp, 1999b, 2001). Although many variables 854 

could have influenced Pliocene hominin 18OEC values (Faith, 2019; Lee-Thorp et al., 855 

2010; Quinn, 2015), we cannot discount the possibility that faunivory via scavenging 856 

behaviors was one of several potential 18OEC-lowering factors.  857 

 Temporally discrete and sizable environmental events between 3-2 Ma are well 858 

documented in eastern Africa (Alemseged et al., 2020; Levin et al., 2011; Robinson et al., 859 

2017; Wynn et al., 2016), but the adaptive morphological transitions from genus 860 

Australopithecus to Homo during this time appear less punctuated (Antón et al., 2014; 861 

Kimbel and Villmoare, 2016) than once characterized (McHenry and Coffing, 2000). 862 

Brain size and hand morphology did not cross a significant grade-level threshold with the 863 

first appearance of genus Homo, rather these adaptations were rooted in Australopithecus 864 

(Kimbel and Villmoare, 2016). Dietary niche expansion may have also occurred as a 865 

gradual increase in C4 food consumption beginning with A. anamensis. The initial dietary 866 

interpretations of A. anamensis concluded that the earliest biped consumed 0-10% of C4 867 

foods (Cerling et al., 2013b), similar to that of modern savanna chimps (Loudon et al., 868 



2016). However, unlike savanna chimps, A. anamensis’ dentognathic morphology was 869 

adapted for processing hard/tough foods (Grine et al., 2012; Macho et al., 2005; Ward et 870 

al., 1999b, 2001; White et al., 2006). Although microwear data contrast those of 871 

dentognathic morphology and imply soft foods were regularly consumed (Grine et al., 872 

2012), A. anamensis’ dental microwear patterns are similar to those of the C3-C4 mixed 873 

feeding A. afarensis (Grine et al., 2006; Ungar et al., 2010). Quinn (2019) reanalyzed the 874 

13CEC-based C4 consumption percentage of A. anamensis in the OTD informed by 875 

Pliocene CO2 
13C values and vegetation structural categories and suggested that C4 876 

resources may have been more regular components in the earliest habitual biped (i.e., 877 

~20% C4 diet), constituting an stepwise increase from a purely C3 diet to a C3-C4 mixed 878 

diet. Moreover, Blumenthal et al. (2020) has found high intra- and inter-annual 13CEC 879 

values with laser ablation techniques in specimens of A. anamensis and K. platyops, 880 

suggesting seasonal fluctuations in resource use. Thus hominins’ dietary forays into the 881 

C3-C4 biome may be characterized as incremental increases in dietary breadth throughout 882 

the early Pliocene, reaching the broad C3-C4 mixed diet in the middle Pliocene. 883 

 In a common thread, we suggest a gradual and stepwise but not necessarily abrupt 884 

behavioral shift underpins the earliest known stone tool making behaviors as represented 885 

by LOM3. Tools are used by extant chimpanzees to forage (Boesch and Boesch, 1990; 886 

Haslam, 2014; Haslam et al., 2009; Marchant and McGrew, 2005); thus tool-assisted 887 

foraging may be a shared ape-human behavioral trait also present in the earliest hominins 888 

(Toth and Schick, 2009). As Thompson et al. (2019) proposed, the use of unmodified 889 

stone for carcass marrow extraction might have been practiced throughout the early 890 

Pliocene without visible archaeological traces. Stone tool making (Harmand et al., 2015) 891 



and use (McPherron et al., 2010) became archaeologically visible when hominins began 892 

to knap stones deliberately to produce sharp flakes. Although this step does not meet 893 

Shea’s (2017) criteria of obligatory and repeated-form stone tool making as seen in late 894 

Pleistocene Homo, LOM3 artifacts may mark the beginnings of habitual tool-assisted 895 

foraging behaviors for the purposes of extracting nutrients from a wide range of vegetal 896 

resources as well as animal carcasses. Clearly, additional lines of evidence including 897 

more archaeological occurrences are needed to test this hypothesis. Nevertheless, we 898 

interpret that mounting evidence suggests that hominins may have expanded their dietary 899 

niche in the early Pliocene with an incremental increase in C4 food consumption and 900 

carcass scavenging potentially with unmodified stone tools. The origins of stone tool 901 

making behaviors enabled hominins to increasingly outcompete other C3-C4-mixed 902 

feeders (Figures 9, 11) and perhaps carnivores. We assert that the earliest tool making 903 

was an important step in human evolution but constitutes one of several adaptations for 904 

enhancing foraging efficiency as Pliocene hominins incrementally expanded their dietary 905 

niche into the C3-C4 biome and gradually encroached on the carnivore guild.  906 

 Figure 12 illustrates a (food-centric) feedback loop hypothesizing the adaptive 907 

relationships between the environment, dietary niche expansion, morphological 908 

adaptations and the origins of stone tool making. The construction of the model was 909 

influenced by several contributions to paleoanthropology (Aiello and Wheeler, 1995; 910 

Bromage and Schrenk, 1995; Faurby et al., 2020; Kimbel and Villmoare, 2016; Kingston, 911 

2007; Leonard and Robertson, 1997; Leonard et al., 2003; Shipman and Walker, 1995; 912 

Thompson et al., 2019). Gradual but consistent environmental change and biotic 913 

competition served as selective factors for hominins to expand the dietary niche to 914 



include foraging C3-C4 plants and carcass scavenging. Incremental changes in foraging 915 

across habitats with different and more variable food properties (e.g., hardness, caloric 916 

and macronutrient contents) and procurement requirements (e.g., stone percussion) 917 

influenced a mosaic suite of morphological changes to the body and brain including but 918 

not limited to habitual bipedal locomotion, a masticatory apparatus for hard, tough, and 919 

abrasive foods, hand morphology for object manipulation, and an increased brain size. 920 

(Un)modified stone-assisted percussion-based, food-getting behaviors were also 921 

influenced by food properties and procurement requirements. Moreover, changes in 922 

morphology and stone tool making behaviors, in turn, enhanced foraging efficiency and 923 

continued to increase hominins’ capacity for dietary niche expansion. Gradual 924 

environmental changes in the early Pliocene and occurring throughout the middle 925 

Pliocene did not necessarily evoke abrupt changes to hominin morphology and diet, but 926 

provided consistent changes to resource abundances, shaping biotic competition. 927 

Likewise, stone tool-making behaviors involving rudimentary but deliberate core and 928 

flake technology do not represent the start of a new dietary niche, but the result of a long-929 

term and stepwise adaptive zone throughout the Pliocene.  930 

 931 

7. Conclusions 932 

 OTD environments shifted incrementally toward more open biomes but with 933 

slightly more humid conditions across the early and middle Pliocene. Some aspects of the 934 

environment became marginally more variable as indicated by intranodular 13CPC and 935 

18OPC values, but these changes are modest. Three herbivore ungulate taxa accompanied 936 

hominins in their increasing consumption of C4 resources over the study interval. 937 



Notably, the C3-C4 feeding niche contracted through time, which was then occupied by 938 

broad C3-C4-mixed feeding hominins. No climatic changes are indicated with 18OPC 939 

values from the early to middle Pliocene, but faunal 18OEC values signal a slight increase 940 

in humidity. The drop in hominin 18OEC values suggests an increase in water 941 

dependency as a function of increasing C4 consumption, but also may have tracked the 942 

vegetation 18O decrease and/or the consumption of animal products. The gradual 943 

increase in C4 vegetation detected across this time interval is consistent with the long-944 

term decrease in pCO2; however, the evidence for a slight uptick in humidity suggests 945 

that C4 grassland spread was not accompanied by aridification. To date, OTD proxy 946 

records do not indicate the types of habitat changes predicted by variability or pulsed 947 

selection hypotheses per se (e.g., Maslin et al., 2014; Potts and Faith, 2015; Schultz and 948 

Maslin, 2013), but rather point to gradual, long-term environmental shifts. Making stone 949 

tools to more efficiently and effectively access foods provided the earliest knappers with 950 

a competitive edge relative to the established C3-C4 feeding guild members including 951 

carnivores. We assert that hominin dietary niche expansion in the Pliocene, involving a 952 

wide range of plant foods and possibly carcass scavenging, was not a punctuated event 953 

but rather a series of incremental steps as hominins became increasingly more reliant on 954 

tool-assisted foraging, which culminated in stone tool making origins.  955 
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Table and Figure Captions 2212 
 2213 
Table 1. OTD fossil mammalian mean 13CEC and 18OEC values  (‰) and interquartile 2214 
ranges (data from Blumenthal et al., 2017; Cerling et al., 2013b, 2015; Drapeau et al., 2215 
2014; Manthi et al., 2020; Negash et al., 2020; this study). 2216 
 2217 
Figure 1. The LOM3 archaeological site and artifacts Photos courtesy of the Mission 2218 
Préhistorique au Kenya (MPK)/West Turkana Archaeological Project (WTAP). 2219 
 2220 
Figure 2. A: regional map with location of OTD (after Harmand et al., 2015); B: OTD 2221 
map with locations of the Omo Group Formations mentioned in this study (after Feibel, 2222 
2011). 2223 
 2224 
Figure 3. A: Generalized eastern African Plio-Pleistocene hominin phylogeny 2225 
characterized with three main lineages and representative fossil specimens from the OTD. 2226 
*denotes debate of specimen designation in the OTD. No complete cranial specimens of 2227 
A. afarensis or A. anamensis are preserved in the OTD (Kimbel, 1988; Ward et al., 1999); 2228 
those pictured are from Ethiopia. Permissions of hominin fossil photos: courtesy of 2229 
Human Origins Program, Smithsonian Institution (Homo, Paranthropus, A. afarensis); A. 2230 
anamensis by Dale Omori courtesy of Cleveland Museum of Natural History; K. platyops 2231 
by Fred Spoor copyright National Museums of Kenya. B: OTD hominin 13CEC values 2232 
(data from Cerling et al., 2013b; Wynn et al., 2020). C: Early Stone Age record in the 2233 
OTD represented by single artifacts from assemblage; first appearance (gray box) and 2234 
known duration (gray arrow); ^denotes older Oldowan site occurrences in Ethiopia; 2235 
artifact photos courtesy of the Mission Préhistorique au Kenya (MPK)/West Turkana 2236 
Archaeological Project (WTAP). 2237 
 2238 
Figure 4. Global records of environmental change: A: pCO2 (Stap et al., 2016), B: marine 2239 
benthic 18O values (L04 stack: Lisiecki and Raymo, 2005), C: African dust flux from 2240 
ODP 721/722 (deMenocal, 1995, 2004); shaded bars are proposed intervals of high 2241 
climatic variability (Potts and Faith, 2015); D: Curve depicts ~100-kyr eccentricity cycle 2242 
and hence a proxy of Plio-Pleistocene tropical insolation and monsoonal rainfall 2243 
intensity; shaded bars indicate eastern African lake phases that correlate to the peaks in 2244 
the 405-kyr cycle (Trauth et al., 2005). 2245 
 2246 
Figure 5. Plio-Pleistocene OTD environmental records: A: Exponentially-smoothed 2247 
(alpha = 0.1) 13CPC values (‰) estimates (data from Cerling et al., 1988; Harmand et al., 2248 
2015; Levin et al., 2011; Quinn et al., 2007, 2013; Quinn and Lepre, 2020; Patterson et 2249 
al., 2019; Wynn, 2000, 2004); B: relative abundance of APP taxa (methods after Cerling 2250 
et al., 2015; data from Blumenthal et al., 2017 and references therein; Cerling et al., 2015 2251 
and references therein; Negash et al., 2020; Patterson et al., 2019); C: faunal abundances 2252 
of arid-adapted taxa (Bobe and Behrensmeyer, 2004); D: pedogenic carbonate clumped 2253 
isotope temperatures (C) (Passey et al., 2010); E: 18OEC-based water deficit estimates 2254 
(mm/year) (Blumenthal et al., 2017). 2255 
 2256 



Figure 6. A: Individual data points; B: box and whisker plots of two time intervals (4.3-2257 
3.9 Ma and 3.4-3.0 Ma) and all 13CPC values from the OTD (‰). Large black box 2258 
denotes 25th and 75th percentiles; black line shows median value; gray line equals mean 2259 
value; whiskers denote 1.5* interquartile range. 2260 
 2261 
Figure 7. A: Individual data points; B: box and whisker plots of two time intervals (4.3-2262 
3.9 Ma and 3.4-3.0 Ma) and all 18OPC values from the OTD (‰). Large black box 2263 
denotes 25th and 75th percentiles; black line shows median value; gray line equals mean 2264 
value; whiskers denote 1.5* interquartile range. 2265 
 2266 
Figure 8. Box and whisker plots of two time intervals (A: 4.3-3.9 Ma and B: 3.4-3.0 Ma) 2267 
superimposed on all intranodular 13CPC and 18OPC standard deviations from the OTD 2268 
(‰). Large black box denotes 25th and 75th percentiles; black line shows median value; 2269 
gray line equals mean value; whiskers denote 1.5* interquartile range. 2270 
 2271 
Figure 9. Box and whisker plots separated in two time intervals (4.3-3.9 Ma=orange, 3.4-2272 
3.0 Ma=blue) of 13CEC values of ungulate herbivore taxonomic groups and hominins 2273 
from the OTD (‰). Large black box denotes 25th and 75th percentiles; black line shows 2274 
median value; gray line equals mean value; whiskers denote 1.5* interquartile range. 2275 
Asterisk denotes significant differences in pairwise comparisons (Mann-Whitney U, 2276 
p<0.05). 2277 
 2278 
Figure 10. Box and whisker plots separated in two time intervals (4.3-3.9 Ma=orange, 2279 
3.4-3.0 Ma=blue) of 18OEC of ungulate herbivore taxonomic groups, Crocodylia and 2280 
hominins from the OTD (‰). Large black box denotes 25th and 75th percentiles; black 2281 
line shows median value; gray line equals mean value; whiskers denote 1.5* interquartile 2282 
range. Asterisk denotes significant differences in pairwise comparisons (Mann-Whitney 2283 
U, p<0.05). 2284 
 2285 
Figure 11. Probably density function of all ungulate herbivore 13CEC values separated 2286 
into C3-browsers, C3-C4 mixed feeders, C4-grazers (methods described in text). A: 4.3-3.9 2287 
Ma, B: 3.4-3.0 Ma. Hominin 13CEC ranges are shown with bar. 2288 
 2289 
Figure 12. Hypothesized feedback relationships between gradual environmental shifts, 2290 
dietary niche expansion, morphological adaptations and stone tool making behaviors. 2291 
 2292 
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