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1 AUTOMATIC DETECTION AND CLASSIFICATION OF HONEY BEE COMB 

2 CELLS USING DEEP LEARNING

3 ___________________________________________________________________

4 Thiago S. Alves1,2 *, M. Alice Pinto3, Paulo Ventura3, Cátia J. Neves3, David G. 

5 Biron4, Arnaldo C. Junior2, Pedro L. De Paula Filho2, Pedro J. Rodrigues1*

6
7 ABSTRACT: In a scenario of worldwide honey bee decline, assessing colony 

8 strength is becoming increasingly important for sustainable beekeeping. Temporal 

9 counts of number of comb cells with brood and food reserves offers researchers data 

10 for multiple applications, such as modelling colony dynamics, and beekeepers 

11 information on colony strength, an indicator of colony health and honey yield. 

12 Counting cells manually in comb images is labour intensive, tedious, and prone to 

13 error. Herein, we developed a free software, named DeepBee©, capable of 

14 automatically detecting cells in comb images and classifying their contents into seven 

15 classes. By distinguishing cells occupied by eggs, larvae, capped brood, pollen, 

16 nectar, honey, and other, DeepBee© allows an unprecedented level of accuracy in 

17 cell classification. Using Circle Hough Transform and the semantic segmentation 

18 technique, we obtained a cell detection rate of 98.7%, which is 16.2% higher than the 

19 best result found in the literature. For classification of comb cells, we trained and 

20 evaluated thirteen different convolutional neural network (CNN) architectures, 

21 including: DenseNet (121, 169 and 201); InceptionResNetV2; InceptionV3; 
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22 MobileNet; MobileNetV2; NasNet; NasNetMobile; ResNet50; VGG (16 and 19) and 

23 Xception. MobileNet revealed to be the best compromise between training cost, with 

24 ~9s for processing all cells in a comb image, and accuracy, with an F1-Score of 

25 94.3%. We show the technical details to build a complete pipeline for classifying and 

26 counting comb cells and we made the CNN models, source code, and datasets 

27 publicly available. With this effort, we hope to have expanded the frontier of 

28 apicultural precision analysis by providing a tool with high performance and source 

29 codes to foster improvement by third parties (https://github.com/AvsThiago/DeepBee-

30 source).

31 KEYWORDS: cell classification; Apis mellifera L.; semantic segmentation; machine 

32 learning; deep learning; DeepBee software.

33

34 1 INTRODUCTION

35 In a scenario of worldwide honey bee (Apis mellifera L.) decline, assessing 

36 colony strength is becoming increasingly important as it can assist apiary 

37 management strategies and provide valuable information for research purposes. 

38 Counts of comb cells with brood and food reserves offer beekeepers information on 

39 colony nutritional status, colony health status, queen quality, honey yield, etc. The 

40 same data collected across time can be used by researchers in multiple applications, 

41 including assessment of queen genotypes, assessment of new treatments against 

42 parasites and pathogens, modelling colony dynamics in response to abiotic 

43 (pesticides) or biotic (parasites, pathogens, predators) stressors, among others.

44 Delaplane et al. (2013) reviewed the methods for assessing colony strength, 

45 among which is the Liebefeld method. This method has been included in the 

46 HEALTHY-B toolbox compiled by EFSA (European Food Safety Authority) for 
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47 harmonising data collection on the health status of honey bees in Europe (EFSA 

48 AHAW Panel, 2016). The Liebefeld method is based on direct observations of comb 

49 frames in the apiary. Estimates are made with the help of an eight-quadrant grid 

50 placed in front of each frame. With the grid in place, the observer estimates the 

51 surface occupied by the targeted class (e.g., honey or capped brood) in every 

52 quadrant. This method is prone to error, time-consuming and produces data with a 

53 high level of subjectivity. Additionally, at least two well-trained observers are required 

54 for gathering the data and for obtaining better estimates through averaging the two 

55 subjective evaluations (Delaplane et al., 2013). In this context, semi-automatic or 

56 automatic methods offer a better alternative for assessing colony strength as 

57 subjectivity is eliminated.

58 Herein we developed a free software, DeepBee©, that can be readily 

59 employed by honey bee researchers and apiculturists to assess colony strength 

60 through analysis of comb images. DeepBee© is capable of automatically detecting 

61 cells in comb images and classifying their contents with an unprecedented 

62 discriminating power and level of accuracy.  DeepBee© evaluates a set of comb 

63 images at a high speed, allows edition of the automatic predictions, if needed, and 

64 produces a spreadsheet file for downstream analysis. While developing this tool, we 

65 further contributed to a wider community including machine learning, image 

66 processing and other software developers (i) by providing a method in the 

67 segmentation process to automatically readjust the scale of the images driven by the 

68 size of the cells, (ii) by testing different neural network architectures related to 

69 performance and quality of results, (iii) by providing datasets that can be employed 

70 by  others when testing new methods, and (iv) by making available the source codes 

71 enabling the reproducibility of our results. 
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72 1.1 Motivation

73 Several semi-automatic methods for assessing colony strength using digital 

74 images of comb frames have been proposed in the last years (reviewed below). 

75 When compared with manual methods, post-hoc analysis of comb images reduces 

76 the time of information collection, provides more accurate data, and assures 

77 reproducibility of results even with different users. Furthermore, the images 

78 themselves are permanent records of the data, representing an important step 

79 towards more accountable and objective assessment of colony strength, as no 

80 record is usually available after the commonly used visual estimation of combs. 

81 Developing tools for analysis of comb images requires pre-defining the cell 

82 classes that will be targeted. The higher the number of cell classes to be 

83 distinguished in a comb image, the greater the complexity of the classification model. 

84 During a colony lifetime, comb cells may be (i) momentarily empty, (ii) occupied by 

85 the honey bee in its different immature stages (egg, larva, pupa), or (iii) filled with 

86 food resources (pollen, nectar, honey) required for colony development and 

87 maintenance (Fig. 1). To reflect the high level of cell-content diversity, at least seven 

88 different classes should be pre-defined when developing models for cell 

89 classification. In addition to class diversity, there might be a wide array of colours and 

90 textures within each class, making cell classification a challenging endeavour.

91 Previous works (reviewed below) have addressed this challenge by 

92 developing tools for assessing only the number of capped brood cells (Fig. 1c), a 

93 task that is greatly facilitated by the striking visual differences between capped brood 

94 and the remaining cells. Here, we developed a tool capable of assigning cell contents 

95 to seven different classes, which represents an unprecedented level of accuracy in 

96 classification of comb images.
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98 Fig. 1: Comb cell classes considered in this study: (a) egg, (b) larva (uncapped 
99 brood), (c) pupa (capped brood), (d) other (e.g. empty), (e) pollen, (f) nectar, (g) 

100 honey (bee-processed nectar).

101

102 1.2 Related works

103 Early works developed semi-automatic tools for assessing colony strength by 

104 measuring the comb area occupied by brood (Emsen, 2006; Yoshiyama et al., 2011). 

105 Emsen (2006) performed the segmentation using mainly the selection tools of the 

106 software Adobe Photoshop® CS2. Yoshiyama et al. (2011) developed an approach 

107 similar to that of Emsen (2006) by using a tool similar to Adobe Photoshop® to create 

108 a semi-supervised segmentation. The novelty was the plugin called LarvaeArea 

109 created for the image processing software ImageJ 

110 (https://imagej.nih.gov/ij/index.html). With this plugin, the user is able to open the 

111 previously segmented image and calculate automatically the area occupied by both 

112 capped and uncapped cells.

113 Cornelissen et al. (2009) further advanced comb image assessment by 

114 developing a semi-automatic method that counted the number of capped brood cells, 

115 instead of measuring occupied area. This method was on average 23s slower than 

116 the Liebefeld method, as it required human intervention during segmentation. 

117 However, the estimates of capped cells were more accurate with the semi-automatic 
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118 method (correlation with the actual number of cells = 0.99) than with the Liebefeld 

119 method (correlation with the actual number of cells = 0.91).

120 One of the first digital methods capable of detecting and counting individual 

121 cells was developed by Liew et al. (2010). The authors used pre-processing methods 

122 to highlight the edges and applied the Circle Hough Transform (CHT) to detect the 

123 cells. They obtained a detector with a cell detection rate of 82.6%.

124 More recently, Rodrigues et al. (2016) developed a method for automatic 

125 detection and counting of capped brood cells using circular convolution. The circular 

126 mask has the same size of a comb cell, it stops in each cell position, and it calculates 

127 the contrast between the pixels of the cell edge and its interior. From this contrast, it 

128 is possible to know whether there is a cell, and according to established thresholds, it 

129 is possible to know whether the cell is capped or uncapped.

130 Meanwhile, various software packages have been developed for comb 

131 assessment. In a presentation of the HoneybeeComplete, Wang & Brewer (2013) 

132 showed the ability of this commercial software to correctly classify capped brood cells 

133 97.4% of the time, with the rate increasing up to 99.5% when the user pre-selects the 

134 search area. The developers did not provide methodological details on software 

135 development, only reporting the use of an unspecified set of pattern algorithms.

136 The commercial HiveAnalyzer software, developed by Höferlin et al. (2013), 

137 represented an important step forward in comb assessment by classifying cells other 

138 than capped brood. The developers categorised the comb cells into seven classes by 

139 using a cascade of classifiers based on linear Support Vector Machines. The 

140 accuracy of the classifier was 94%, as measured on a subset of cells classified with 

141 high confidence.
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142 More recently, Colin et al. (2018) developed the software CombCount to 

143 assess capped brood and capped honey. Although the software is able to detect both 

144 classes, it requires a user to distinguish the contents using selection tools.

145 To the best of our knowledge, none of the studies published so far has 

146 employed Neural Networks such as CNNs in honey bee comb image analysis. 

147 Furthermore, most of the available methods are limited to detecting capped brood, 

148 with only two of them being capable of assessing food resources (Colin et al., 2018; 

149 Höferlin et al., 2013). As such, there is an excellent opportunity for innovation using 

150 new methods to address a major challenge in honey bee research, which is 

151 assessing brood and food resources in the hive in a time- and cost-effective manner 

152 and with a high degree of accuracy.

153

154 1.3 Goal

155 The goal of this study is threefold: (i) to develop a pipeline capable of detecting 

156 all cells in a comb image, (ii) to reliably classify the cells into seven different classes, 

157 and (iii) to encapsulate this pipeline in a free software. In accomplishing this goal, the 

158 following research questions will be addressed: (i) Is it possible to develop an image 

159 processing method to detect cells in comb images, even when the edges are hard to 

160 identify? (ii) Is it possible to develop computational models capable of reliably 

161 classifying the contents of comb images using Deep Learning? (iii) What are the 

162 implementation details to achieve the best functional performance? (iv) Which neural 

163 models provide the best results for our problem among many Deep Learning 

164 architectures available? Finally, (v) How does the proposed approach compare to the 

165 related published works?

166 2 IMAGES CAPTURE AND ANALYSIS
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167 To assure image capture standardization, we developed a wooden tunnel 

168 sealed for external light and with optimized dimensions (Fig. 2). This tunnel had a 

169 retractable architecture for easy transportation, having a length of 247cm, when fully 

170 opened, and 92cm, when retracted. The comb frame and the camera were placed at 

171 the opposite sides of the tunnel. The comb frame was positioned in two holders (Fig. 

172 2b). The holders had an angle of 11° (to make up for to the 9-13° natural inclination 

173 of comb cells) for a better image capturing of the interior of the comb cells (see the 

174 3D model file in https://github.com/AvsThiago/DeepBee-source). Close to the comb 

175 frame (40cm from the top), there was pair of Light-Emitting Diode (LED) sources, with 

176 7 Watts of power. The LEDs were turned to the walls at 45° to provide homogeneous 

177 light conditions and to avoid shadows during image acquisition. The camera was 

178 fixed with a screw on the opposite side of the tunnel (Fig. 2c). Further details about 

179 the tunnel features are shown in Appendix B. 

(a) (b) (c)

180 Fig. 2: (a) Details of the interior of the tunnel. (b) Tunnel installed in an apiary 
181 showing the comb frame placed on holders. (c) Researcher adjusting the camera 
182 before shooting.

183

184 In this study we used a digital camera Nikon D3300, with lens AF-S DX VR 

185 Zoom-Nikon ED 55-200mm F4-5.6G, and the following settings: aperture - 10; ISO - 

186 100; shutter speed - 1/60; autofocus - on; flash - no; compression – JPEG; white 

187 balance - on. During image capturing, the tunnel was closed on both sides and the 

188 camera was activated by an external trigger. The images captured had a resolution 

189 of 24MPixels (6000x4000px). Using these settings, 1,102 comb frames were 
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190 photographed on both sides making a total of 2,204 images. The image dataset is 

191 available online at https://cloud.ipb.pt/d/aa29c989ab1944aaa222/?p=/DS-COMB-PT.

192

193 3 SCALE INVARIANT DETECTION AND FALSE DETECTION REMOVAL 

194 After obtaining the 2,204 images, we searched for a method capable of 

195 reliably detecting individual comb cells, a task that precedes cell classification. 

196 Below, the different approaches and steps followed in this study are described.

197

198 3.1 Circle Hough Transform

199 Duda and Hart (1972) developed the classical Hough Transform method 

200 currently available. This method was originally developed for detecting lines in 

201 images. Later on, it was discovered that it could also be used for identifying arbitrary 

202 shapes, such as circles and ellipses, even when they were partially occluded.

203 The Circle Hough Transform (CHT) method uses a voting process to calculate the 

204 probability that a set of pixels form a circle. There are several implementations of the 

205 method. Herein, we used the implementation contained in the OpenCV v.4.0 library 

206 (https://github.com/opencv/opencv/releases/tag/4.0.0). The parameters expected by 

207 this method are: a grayscale image, size of an internal accumulator that will store 

208 intermediate results, minimum distance between two detections centre, threshold to 

209 be applied to the internal Canny operator, number of votes that a circle must have in 

210 the accumulator to be set as true, minimum circle radius, and maximum circle radius.

211

212 3.2 Using CHT to detect cells

213 Prior to detecting comb cells using CHT, we applied a pre-processing method 

214 to normalise illumination, remove noise, and enhance cell edges. The pre-processing 
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215 pipeline was developed using empirical tests, as follows: (i) extract only the red 

216 channel from the image; (ii) apply a Contrast Limited Adaptive Histogram 

217 Equalization (CLAHE) (Zuiderveld, 1994) with 8x8 tiles and clip limit of 2.0; (iii) 

218 remove the noise keeping the edges by using the bilateral filter (Tomasi & Manduchi, 

219 1998) with diameter 5, sigma colour 50, and sigma space 50.

220 Having the pre-processing method defined, we started looking for the best 

221 parameters combination for CHT. Typically, comb cells have well-behaved diameters 

222 and distances and do not overlap. These features greatly facilitated cell detection by 

223 the CHT method. On the other hand, finding a combination of parameters to make 

224 CHT capable of detecting uncapped and capped brood and honey cells revealed to 

225 be a challenging task to be done by guessing and checking. Therefore, we used a 

226 grid search-based algorithm to find the optimal combination. The best result obtained 

227 from our images was: internal accumulator size – 3, minimum distance – 51, Canny 

228 threshold – 100, minimum number of votes – 25, minimum radius – 31, and 

229 maximum radius - 37.

230 With this combination of parameters, we were able to successfully detect all 

231 different types of cells. However, setting fixed values for the minimum distance, 

232 minimum radius and maximum radius makes detection less generalist, requiring that 

233 images are acquired using a setup like that described above. Therefore, to 

234 generalize the method, we developed a scale-invariant detection method, which has 

235 two main stages. First, the average cell size and the mean distance between them 

236 are sought. Second, all cells are detected using the other parameters discovered by 

237 the grid search. The detailed operation involved the following steps (the distances 

238 are in pixels):



11

239 I. Detect cells with radius belonging to different ranges. In this step, we only 

240 considered detections by the CHT method with high levels of confidence (Fig. 3a). 

241 The fixed parameters were: internal accumulator - 2, Canny - 145, minimum 

242 number of votes (confidence) – 55, and minimum distance - 12. We also iterated 

243 a loop with i ranging from 5 to 50 and step 5. At each iteration, the CHT method 

244 was executed with the parameters minRadius = i+1 and maxRadius = i+5. After 

245 running this method, a list with the number of detections made for each radius i 

246 was returned (Fig. 3b). 

247 II. Find the most frequent radius. In this step, we selected the most frequent 

248 radius from the detections made on the given image with different radius i. Fig. 3b 

249 shows how many radius-based circles were found in the image. Most of the 

250 circles were detected with the radius 18, since it is the most frequent cell size for 

251 this image.

252 III. Define the minimum distance between two detections. Due to different cell 

253 sizes and imperfections made by honey bees during comb construction, in this 

254 step, we had to choose values for the minimum distance parameter smaller than 

255 2×radius. After analysing the average distance between two cells of numerous 

256 frame images of different sizes, we found that usually the minimum distance fits 

257 the equation 1, where r stands for radius.

258  ,              (Equation 1)      𝑚𝑖𝑛𝐷𝑖𝑠𝑡(𝑟) = 1.65𝑟 ‒ 3

259 IV. Find the parameters minRadius and maxRadius for a given radius. To deal 

260 with the natural variation of comb cell size and with images taken from different 

261 distances, in this step, we created a range based on the average cell radius. The 

262 range is defined by equation 2.

263  ,                      (Equation 2)      𝑟𝑎𝑛𝑔𝑒(𝑟) =  𝑟 ± { 0.1𝑟,  𝑖𝑓 0.1𝑟 > 1
1,        𝑖𝑓 0.1𝑟 ≤ 1
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264 V. Perform CHT with the obtained parameters. After obtaining the parameters 

265 needed, we processed the images again with the CHT method, but this time using 

266 the remaining parameters found by the grid search (accumulator size, Canny 

267 threshold, minimum number of votes).

(a) (b)

268 Fig. 3: (a) Detection of cells with high confidence by the CHT method. (b) Number of 
269 cells detected f radius size.

270

271 Using parameters that accept more detections as true increases the power of 

272 detecting different types of cells, even those with fuzzy edges like honey cells (Fig. 

273 3). However, by reducing the threshold for detecting all true cells there is a risk of 

274 false detections (Fig 4). To alleviate this problem, we developed a method based on 

275 CNNs, which is described in the ensuing section.

276

277 Fig. 4: Comb cells, with different contents (honey, pollen, capped brood), detected by 
278 our approach. Detected cells, including false detections outside of the comb, are 
279 marked by a green hexagon. The close-up square shows honey cells (on the left half) 
280 with fuzzy edges.

281

282 3.3 Removing false detections using semantic segmentation
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283 Semantic image segmentation, also called pixel-level classification, is the task 

284 of clustering parts of an image together, which belong to the same object class 

285 (Thoma, 2016). We used this technique for detecting comb cells in the image and 

286 from this segmentation remove false cells falling outside the comb area (Fig. 4). To 

287 that end, we used a CNN encoder-decoder architecture based on U-Net 

288 (Ronneberger et al., 2015).

289

290 3.3.1 Dataset creation for comb segmentation

291 We created the annotations using the Quick Selection Tool from the software 

292 Adobe Photoshop® CS6. To define the classes, we painted white the comb area and 

293 black the remaining area. We labelled 61 comb images (Alves et al., 2019), which 

294 were selected to represent a high diversity of cell content (e.g. honey, pollen, capped 

295 and uncapped brood) and age (the older the comb the darker it gets). Fig. 5 

296 illustrates annotations made on those images. The annotations were split in three 

297 sets: training (85%); validation (10%), and testing (5%).

298  Using the strategy proposed in Ronneberger et al. (2015), we divided the input 

299 images and the labels in tiles, as shown in Fig. 6. Prior to transforming each image in 

300 tiles, a mirrored border with size 184px (top-bottom) by 148px (left-right) was added 

301 to create more space for the tiles, and the images were resized to a constant size of 

302 1000x1500px. During tiles extraction, overlaps between tiles were taken into account 

303 to reduce border problems in the reassembly phase. Using these processes, we 

304 transformed the 61 images into 7,137 tiles.

(a) (b)
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305 Fig. 5: Samples from the dataset created for semantic segmentation: (a) original 
306 image; (b) label.

307

308 Fig. 6: Tiles created from the original images and respective labels.

309

310 3.3.2 Semantic segmentation architecture and training policy

311 The architecture had a depth of 5 convolutions with 3×3 filters and layers of 

312 maximum pooling with 2×2 filters and a stride of 2, as proposed by Ronneberger et 

313 al. (2015). Our modifications to the original model, made to obtain the best results in 

314 our semantic segmentation dataset, were tuned using a trial-error approach and the 

315 following settings: input image with 128×128 resolution, dropout (Srivastava et al., 

316 2014) ranging from 0.1 to 0.3 between the convolution layers, use of Exponential 

317 Linear Units (ELU) activation function (Clevert et al., 2015), and use of 16 filters 

318 (channels) in the first layer, doubling the amount at each inner level and returning 16 

319 filters in the penultimate layer with the last layer only having two dimensions. The 

320 CNN architecture is shown in Fig. 7.

321 We normalised the input images by dividing each pixel by 255. As we only had 

322 two regions to be classified, we used the binary cross-entropy as loss function. The 

323 network weights were initialised using the He Normal initialisation (He et al., 2015). 

324 For the output layer, we chose a sigmoid function, so we could easily transform the 

325 output in a binary image applying a threshold, where values < 0.5 became zero and 

326 the remaining became one. The best training was carried out using the Adam 
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327 optimiser (Kingma & Ba, 2014) with parameters β1 = 0.9 and β2 = 0.999. The 

328 Learning Rate (LR) was 10−3, which was preserved during 50 epochs. Due to the 

329 Early Stopping method used here, the training may last less than 50 epochs. This 

330 method can halt the training if a chosen metric does not improve after a pre-defined 

331 number of epochs (6, in this study). The architecture was built using the framework 

332 Keras 2.1.4 with TensorFlow 1.4 as backend. The configurations of the computer 

333 used for training were two GPUs: NVIDIA GeForce GTX 1080Ti and NVIDIA 

334 GeForce GTX 1070; RAM: 16GB; CPU: Intel® Core™ i7-7700K CPU @ 4.20GHz×8; 

335 operating system: Ubuntu 17.10. All tests were performed in this computer.

336 Fig. 7: CNN architecture based on U-Net to handle comb segmentation.

337

338 3.3.3 Post-processing of comb segmentation

339 A post-processing step was undertaken so that the segmented image could be 

340 used to minimize false detections. To have a binary output after the CNN 

341 computation, we applied a threshold of 0.5 and the tiles were reassembled. 

342 Subsequently, we found the largest contour using an OpenCV method for finding 

343 contours and draw it filled using a method to draw polygons (Fig. 8). Filtering using 

344 the largest contour helped removing false segmentations inside and outside the 

345 comb, as shown in Section 5.1.2.
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346
347 Fig. 8: Process developed to reduce the number of false segmented areas.

348

349 3.4 Semantic segmentation experiments

350 In the first experiment, we assessed the quality of detections on an 

351 independent set of 10 comb images, which were downloaded from the Internet. This 

352 set was submitted to the scale-invariant cell detection algorithm and the false 

353 detections removal method.

354 In the second experiment, we measured the cells detection rate of our 

355 algorithm and compared with that proposed by Liew et al. (2010). Following the 

356 methodology of Liew et al. (2010), we selected 10 images from our dataset to be 

357 analysed by our detection algorithm. Subsequently, we evaluated manually the false 

358 positive (FP) and false negative (FN) detections. From these annotations, we 

359 collected the following metrics: number of cells identified by humans; number of cells 

360 detected by the algorithm; true positive (TP) detections; true cells detected correctly; 

361 FP detections on inexistent cells; and FN cells undetected by the algorithm. Finally, 

362 as in Liew et al. (2010), we calculated for each image the cells detection rate using 

363 equation 3. This metric is based on the total number of cells automatically detected, 

364 excluding the falsely identified cells, divided by the manual count.

365

366 , (Equation 3)CellDetectionRate =  
DetectionCount ‒  F P

ManualCount  × 100% 

367

368 4. CELLS CLASSIFICATION
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369 The cell classification was carried out using CNNs. This supervised approach 

370 gained momentum after the release of Krizhevsky et al. (2012) work. At the time, this 

371 work was considered the state-of-the-art in the ImageNet Large Scale Visual 

372 Recognition Challenge, where the goal was to accurately classify more than a million 

373 images into 1000 distinct classes. After this seminal work, important advances have 

374 been made in CNN architectures, with major consequential breakthroughs in various 

375 fields of study such as agriculture (Kamilaris & Prenafeta-Boldú, 2018). A key feature 

376 for training a CNN architecture is the massive amount of data needed. Following, we 

377 show how we gathered the cells images for our dataset.

378

379 4.1 Dataset gathering for cells classification

380 The dataset created for classification should contain cells representing all 

381 different classes in different comb images. In this study, the annotations were made 

382 by an experienced beekeeper, assuring the high quality required for developing the 

383 models. A piece of software was developed to facilitate the beekeeper’s work. The 

384 software allowed choosing a label corresponding to each class (nectar, honey, 

385 pollen, egg, larva, capped brood, and other) and, at the same time, pointing the 

386 centre of the cells, adjusting the contrast, brightness and gamma of the images. A 

387 total of 71,915 cells were annotated on 1,202 comb images, with an average of 25 

388 cells per image. The number of annotations by class is shown in Fig. 9.

389 We divided the annotations in three sets for the training as follows: 80% of the 

390 original dataset for training, 20% of the training set for validation, and 20% of the 

391 original dataset for testing. Then, we selected 15 additional comb images and 

392 annotated all the cells. We made a total of 39,533 new annotations and added them 

393 to the test set.
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394
395 Fig. 9: Number of annotations per class.

396

397 4.2 Transfer learning for cells classification

398 Using the transfer learning technique, it is possible to transfer the weights of 

399 feature extraction layers (e.g. convolutions) from a trained model over a dataset to 

400 another model that will be trained in a new dataset (Oquab et al., 2014). Because the 

401 new model received kernels already trained to recognise generic features, like lines 

402 and curves, it will be easier for the model to generalise a new dataset being 

403 unnecessary to learn the filters from scratch. We made a sanity check and trained an 

404 architecture in our dataset with and without the transfer learning before applying this 

405 approach to the next experiments. In this experiment, we used the same policy in 

406 both trainings. We transferred the weights from a pre-trained model on the ImageNet 

407 dataset (Deng et al., 2009). We used the architecture InceptionV3 (Szegedy et al., 

408 2015) and, as shown in Fig. 10, the model converged faster, in a lower number of 

409 epochs and with a higher accuracy with the transfer learning than with training from 

410 scratch.
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411
412 Fig. 10: Comparison between models trained in our dataset from scratch and using 
413 pre-trained weights from ImageNet.

414

415 4.3 Finding the best region of interest (ROI) size to crop the cells 

416 Before we defined the CNN architecture for the classifier, we needed to find at 

417 which window size around the cells the image should be cropped. If we had cropped 

418 only the interior of the cells, our classifier could have had difficulty in distinguishing 

419 between capped brood and honey cells, as these classes typically exhibit a similar 

420 texture (Fig. 11). To select the best input size, we created and tested 16 datasets, all 

421 of them with the same annotations but with different ROI size. We defined each 

422 dataset with 10% of the annotations from the main dataset. The sizes (pixels) of the 

423 squared crops were 40, 50, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 280, 298, 

424 400 and 500.

425

                   (a1)           (a2)                    (b1)           (b2)
426 Fig. 11: Comparison between (a) honey and (b) capped brood classes. In addition to 
427 the cells interior (a1, b1), the cells neighbourhood (a2, b2) was taken into 
428 consideration to better define the two classes.

429
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430 The training framework for the tests was the Keras version 2.2 and the 

431 InceptionV3 architecture (Szegedy et al., 2015). For the feature extraction layers, we 

432 used weights pre-trained on the ImageNet dataset using the transfer learning 

433 technique. The architecture and trained weights were provided by Keras library. This 

434 architecture does not allow inputs lower than 139×139px. Image datasets lower than 

435 139×139px were resized to the minimum input size. We added three layers at the 

436 end of the architecture to create the specific learning on the classifier. The first one 

437 was a flattening layer applied to the network output. Afterwards, we included two 

438 Dense layers (fully-connected) with the last one having 7 neurons and a Softmax 

439 activation function to represent our classes in a linear probabilistic domain. Details 

440 about the architecture are shown in Fig. 12.

441
442 Fig. 12: Developed architecture based on InceptionV3.

443

444 The classifiers were compiled using the Categorical Cross Entropy loss 

445 function. We chose Adam with default parameters β1 = 0.9 and β2 = 0.999 as the 

446 optimiser. The training started with the LR at 10−3 and using the technique Reduce 

447 Learning Rate on Plateau (He et al., 2015a). We defined that the LR would be halved 

448 after 3 epochs without improvement in the Loss metric, being the minimum value 

449 10−6. We established 50 for the maximum number of epochs. Again, we used the 

450 Early Stopping technique with the maximum number of epochs, without 

451 improvement, set at 5. We saved the model with the lowest validation Loss in each 
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452 dataset. The best results were provided by a window size of 224x224px. We opted 

453 for 224x224px rather than 220x220px, for the reasons pointed out in Section 5.2.1.

454

455 4.4 Tests with different CNN architectures

456 After obtaining the best window size, as described previously, we trained 

457 different CNN architectures with the input size 224x224px to identify which one 

458 produced the best results on our dataset. We trained 13 distinct architectures 

459 selected by their superior performance in image classification competitions in the 

460 past years. These architectures included DenseNet 121, DenseNet 169, 

461 DenseNet201 (Huang et al., 2016), InceptionResNetV2 (Szegedy et al., 2016), 

462 InceptionV3 (Szegedy et al., 2015), MobileNet (Howard et al., 2017), MobileNetV2 

463 (Sandler et al., 2018), NasNet; NasNetMobile (Zoph et al., 2017), ResNet50 (He et 

464 al., 2015a), VGG 16, VGG 19 (Simonyan & Zisserman, 2014), and Xception.

465 Each architecture was trained using all training and validation images from the 

466 core dataset. The images were extracted with the cell centralised 224x224px. Before 

467 starting training each model, we made some modification in the CNN architectures. 

468 We added a set of fully-connected layers, as shown in Fig. 12. Prior to processing by 

469 the model, the images were normalised by subtracting the ImageNet Mean Image 

470 (103.939, 116.779, 123.68). The weights were transferred from previous ImageNet 

471 trainings. The training was performed with batches of 40 images. We defined the 

472 initial LR at 10−3 and used the Early Stopping and Reduce LR on Plateau, as in 

473 Section 4.3. For comparing the model, we extracted some information and metrics, 

474 including total architecture parameters (weights), time to process an image batch, 

475 training time, accuracy, loss, precision, recall and F1-score.

476
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477 4.4 Data augmentation

478 It is not always possible to obtain large datasets for training CNNs, either due 

479 to difficulties in gathering images with the object or in affording human resources to 

480 annotate the datasets. One way to enlarge the working dataset is through the Data 

481 Augmentation (DA) technique (Krizhevsky et al., 2012). Using DA, it is possible to 

482 create virtual examples from a set of images. Different transformations with random 

483 values are applied to these images and new ones are generated. Examples of 

484 transformations include changes in brightness, contrast, translates, rotations, zoom, 

485 and perspective.

486 Based on the models with the best metrics discovered in the experiment 

487 described in Section 4.3, we made a new training with additional data. We generated 

488 the new images using DA. Flips, brightness changes, rotations, shift, and zoom were 

489 applied in the newly created images. As a result, we generated a dataset of 250,000 

490 images evenly spread across the 7 different classes. These images were used in the 

491 training set. Validation and test sets were kept with the original images. We 

492 compared the resultant models using the metrics described in Section 4.3. Fig. 13 

493 shows several examples generated using DA.

494
495 Fig. 13: Augmented examples generated from an original image.
496

497 5 RESULTS AND DISCUSSION

498 5.1 Cells detection and false detection removal

499 5.1.1 Cells detection
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500 In the first cell detection experiment, we assessed the performance of the 

501 developed algorithm in a set of independent images downloaded from the internet. 

502 After selecting images that were captured under a wide range of conditions, we 

503 generated the results, some of which are illustrated in Fig. 14. 

(a) (b) (c)
504 Fig. 14: Cells detected with (a) radius 18 (leahybeekeeping.com), (b) radius 8 
505 (mudsongs.org), and (c) radius 48 (beekeepercenter.com).
506

507 The algorithm successfully detected most comb cells of the selected images 

508 (Fig. 14). These images represented a wide range of hive frame type, cell size, cell 

509 content (e.g. honey, capped and uncapped brood), and even varying illumination, 

510 texture and resolution, suggesting that the algorithm developed in this study is 

511 robust.

512

513 5.1.2 False detection removal

514 The training of the CNN for segmentation was carried out with 23 epochs in 

515 3.45 min on the computational architecture referred in section 3.3. Fig. 15 shows the 

516 evolution of accuracy and loss metrics in the training and validation sets along the 

517 epochs. The model loss improved quickly before the 10th epoch; after that, only small 

518 improvements were achieved, even with the constant learning rate.
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(a) (b)
519 Fig. 15: Evolution of (a) accuracy and (b) loss during training of the comb semantic 
520 segmentation model. The vertical dashed line over the 20th epoch represents the 
521 best calculated results (lowest loss).
522

523 Using a CNN to segment the comb proved to be a robust solution, as it 

524 delivered great results even on the independent set of images. Fig. 16 shows some 

525 examples of segmentations performed in the independent and in our image sets. The 

526 downside is that CNN may have difficulty in segmenting when the comb cells have 

527 not yet been developed (there is only wax foundation) and when honey cells are very 

528 bright. The decision of selecting only the largest polygon and fill it to create a mask 

529 contributed to removing false segmentations inside and outside the comb area, as 

530 illustrated in Fig. 16. This approach has a poorer performance on combs that are 

531 broken (see bottom image of Fig. 16a) or have objects on front (see the thermohygro 

532 sensor on the top image of Fig. 16a), for example. However, these comb defects are 

533 unusual.

534
535              (a)                 (b)                (c)                 (d)                (e)
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536 Fig. 16: (a) Original image, (b) segmentation mask provided by the CNN without 
537 post-processing, (c) segmentation mask applied to the original image, (d) largest 
538 contour used as a mask, (e) largest contour applied to the original image.
539
540 5.1.3 Comparative analysis

541 To measure the quality of the detections using the segmentation, we 

542 performed several tests, similar to those of Liew et al. (2010), on 10 selected images. 

543 The results of these tests are shown in Table 1. False cell-related or noise-related 

544 detections were negligible in our tests, as found by Liew et al. (2010). A factor that 

545 had a negative impact on the results of Liew et al. (2010) work was the low contrast 

546 in some cells. As detailed on Section 3.2, we dealt with this problem by applying the 

547 CLAHE filter to our images before detecting the cells.

548

549 Table 1: Comparison between cells detected automatically and cells detected 
550 automatically and manually corrected.

Image 
name

Manual 
count

Automatic 
count TP TP (%) FP FP (%) FN FN (%) CDR (%)

DSC_1940.JPG 3024 2949 2944 97.35 5 0.17 80 2.65 97.35
DSC_1992.JPG 2795 2742 2735 97.85 7 0.26 60 2.15 97.85
DSC_2832.JPG 2869 2833 2794 97.39 39 1.38 75 2.61 97.39
DSC_2839.JPG 3082 3062 3041 98.67 21 0.69 41 1.33 98.67
DSC_2864.JPG 2961 2982 2948 99.56 34 1.14 13 0.44 99.56
DSC_2951.JPG 2910 2889 2857 98.18 32 1.11 53 1.82 98.18
DSC_2443.JPG 2077 2088 2075 99.90 13 0.62 2 0.10 99.90
DSC_3475.JPG 2875 2876 2852 99.20 24 0.83 23 0.80 99.20
DSC_4326.JPG 3061 3092 3054 99.77 38 1.23 7 0.23 99.77
DSC_4496.JPG 3072 3056 3044 99.09 12 0.39 28 0.91 99.09

551 CDR – Cell detection rate; FP False Positive; FN False Negative; TP True Positive.
552

553 As in Liew et al. (2010), we calculated the cell detection rate for each image 

554 using Equation 3. The resulting detection rates varied between 97.35% and 99.9%, 

555 with an average of 98.7% (Table 2). These rates were substantially higher than those 

556 reported by Liew et al. (2010). However, the method of Liew et al. (2010) produced a 

557 lower number of FP (5.1) than our method (22.5). This difference can be explained 
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558 by the fact that Liew et al. (2010) used more stringent parameters for CHT, allowing 

559 only detections with a high level of confidence. On the other hand, when we 

560 examined the number of FN, our approach produced substantially better results (38.2 

561 compared with 274.7; Table 2). Overall, the method developed in this study revealed 

562 to be well balanced regarding FP and FN and these metrics had a small impact on 

563 cell detection rate (98.7%).

564

565 Table 2: Performance metrics for the detection methods developed in this study and 
566 in Liew et al. (2010).

Method Min FP Max FP Avg FP Min FN Max FN Avg FN Avg CDR (%)
Liew et al. 1 11 5.1 139 530 274.7 82.5

Ours 5 39 22.5 2 80 38.2 98.7
567 CDR – Cell detection rate; FP False Positive; FN False Negative.
568
569 5.2 Cells Classification

570 5.2.1 Finding the optimal input image size

571 After training 16 different classification models, we obtained a plot relating ROI 

572 size with cell classification accuracy (Fig 17). The trending line shows a steady 

573 increase in the accuracy as the ROI size increases up to 300px; after that point the 

574 quality decreases. Accordingly, input images with sizes between 200px and 300px 

575 should be preferred as they tend to produce better results.

576
577 Fig. 17: Testing accuracy according to the ROI size. The dashed green line 
578 represents the trend.
579
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580 We chose 224×224px as the default input size for all the following tests. We 

581 based this choice on the computational cost. Additionally, although the best result in 

582 the test set was the one trained with 220×220px images, it was not possible to use 

583 this input size because architectures like MobileNetV2 only had pre-trained weights 

584 in the ImageNet dataset for sizes 128, 160, 192, or 224px (https://bit.ly/2DhnLRb). To 

585 avoid the hassle of comparing models trained with varying input sizes, we opted for 

586 using only 224×224px across all tests.

587

588 5.2.2 Comparing different CNN architectures

589 During the training of different architectures with the 224×224px input size, we 

590 faced some difficulties. We noticed that models VGG 16 and 19 were unable to 

591 converge over the used dataset (10% of our original dataset), even after trying 

592 different LRs, loss functions and optimisers. Therefore, we decided to remove these 

593 two models from the tests. Another model that caused problems during the training 

594 stage was NasNet (Large). This model suffers from a known bug (see 

595 https://github.com/keras-team/keras/issues/8711#issuecomment-354585187) and 

596 there are bypasses for it, but we decided to discard it due to the large amount of time 

597 required for retraining.

598 Table 3 presents some metrics for the computational performance of 11 

599 models. The MobileNet model produced the best results regarding the number of 

600 epochs required for reaching convergence and the average time per epoch. 

601 MobileNet weights number was also among the lowest, only behind of its second 

602 version.

603 To better understand the performance of the models, we also analysed the 

604 loading time and the time to predict a batch of 100 images (Fig. 17). These additional 

https://github.com/keras-team/keras/issues/8711#issuecomment-354585187
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605 analyses were important to predict how the models behave, regarding time-efficiency 

606 performance, when used after training. Once again, MobileNet showed the best 

607 performance when compared with the other models. Even though MobileNet had 

608 fewer parameters than most models (Table 3), it was still the fast one to be loaded 

609 into memory.

610

611 Table 3 Comparison among models regarding the training time and weights number.

Model name Epochs to 
converge

Average time/epoch 
(min)

Number of 
weights

DenseNet121 16 362.77 8,094,279
DenseNet169 22 450.16 14,355,015
DenseNet201 21 577.14 20,296,263

InceptionResNetV2 19 606.31 55,917,799
InceptionV3 18 253.63 23,908,135
MobileNet 11 211.58 4,285,639

MobileNetV2 31 235.98 3,576,903
NASNet 28 2332.04 89,053,785

NasNetMobile 21 393.81 5,359,259
ResNet50 25 343.45 25,693,063
Xception 14 503.87 22,966,831

612

(a) (b)
613 Fig. 17: (a) Comparison among models regarding (a) time to process 100 images of 
614 224×224px and (b) time to be loaded in memory.
615
616 To evaluate the functional quality of the classifications, we first compared the 

617 loss and accuracy of each model in their best epochs (Table 4). The model 

618 ResNet50 showed a higher capacity to predict training examples, but performed 

619 worse on the other sets, probably due to overfitting. DenseNet201 exhibited the best 

620 accuracy in the validation and test sets, but its predictions were made with less 



29

621 confidence when compared with MobileNet, which had the lowest loss score in the 

622 validation and test sets.

623
624 Table 4: Comparison of loss and accuracy between models in different sets.

Model name Loss train Acc train Loss val Acc val Loss test Acc test
DenseNet121 0.00818 99.75% 0.05213 98.56% 0.25716 93.71%
DenseNet169 0.00159 99.95% 0.06365 98.58% 0.37087 93.12%
DenseNet201 0.00115 99.97% 0.05990 98.66% 0.31397 93.94%

InceptionResNetV2 0.00425 99.89% 0.05986 98.55% 0.29882 93.45%
InceptionV3 0.00415 99.90% 0.05594 98.58% 0.27237 93.47%
MobileNet 0.01563 99.57% 0.05106 98.48% 0.23944 93.31%

MobileNetV2 0.00942 99.69% 0.06468 98.57% 0.37828 93.02%
NasNetMobile 0.00162 99.94% 0.07417 98.56% 0.37836 93.79%

ResNet50 0.00033 99.99% 0.08845 98.44% 0.39329 92.99%
Xception 0.01173 99.73% 0.06574 98.54% 0.36011 92.70%

625

626 Sometimes accuracy can be biased by the majority class. To better 

627 understand this bias, we calculated precision, recall and F1-score for each model on 

628 the test set. As shown in Fig. 18, InceptionResNetV2 had the best performance, 

629 exhibiting a good balance between accuracy and recall. DenseNet201 had the best 

630 accuracy in the test set, yet it was positioned in seventh place for the F1-Score 

631 metric. This result suggests that DenseNet201suffered by overfitting and favoured 

632 the majority class.

633
634

635
636 Fig. 18: Precision, recall and F1-score calculated using different models. The models 
637 are sorted by F1-Score.
638
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639 In the per class analysis, we assessed how well each model classified the 

640 comb cell contents into the seven established classes. As shown in Fig. 19, the egg 

641 class exhibited the highest proportion of incorrect predictions (15.88%) whereas the 

642 capped brood class was very close to 100% correct predictions, based on F1-Score. 

643 This is an expected result as capped brood cells are simpler to classify due to their 

644 striking visual differences when compared with the remaining classes (Fig. 9). The 

645 egg class may have suffered from being the minority class. Eggs are small objects 

646 placed at the bottom of the cells and are easily confused with light reflections. 

647 Moreover, establishing thresholds for egg/empty and egg/young larva cells is a 

648 challenging endeavour. This issue will be further addressed in Section 5.2.5.

649

650
651 Fig. 19: Average F1-score per class.
652
653 5.2.3 Data augmentation for cells classification

654 We chose four models to be trained using data augmentation (DA) for the 

655 following reasons: InceptionResNetV2 and NasNetMobile for having the best F1-

656 score, MobileNet for having the lowest loss in the validation and test sets, and 

657 DenseNet201 for having the best accuracy in the validation and test sets. Fig. 20 

658 presents the F1-score calculated for the selected models trained on the dataset 

659 without and with DA. Except for DenseNet201, all other models showed a higher F1-

660 score after training using DA. MobileNet outperformed more complex models, with an 

661 F1-score over 94%.
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662
663 Fig. 20: Comparison of models trained with and without data augmentation.
664

665 Given that InceptionResNetV2 and MobileNet exhibited the highest F1-score 

666 after training with DA, we decided to employ again the F1-Score to compare the 

667 resources required to train and use these models for each class. As shown in Fig. 21, 

668 while the difference between the two models in the quality of results per class is 

669 modest, MobileNet revealed to be superior for computational resources across all 

670 performance metrics. The superior performance of MobileNet can be attributed to the 

671 lower number of trainable parameters. Hence, the model complexity is reduced, 

672 regarding the number of training examples, counteracting overfitting.

(a)
(b)

673 Fig. 21: Comparison between the models MobileNet and InceptionResNetV2 using 
674 (a) F1-score by class and (b) resources by DA model.
675  

676 5.2.4 Comparison with methods from the literature
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677 Here we compared our method with those reported in the literature, although 

678 this endeavor may not always be fair for three main reasons: (i) we classified a wider 

679 array of cell types, (ii) we do not have the same dataset, and (iii) some works 

680 employed different classifiers.

681 Cornelissen et al. (2009) compared their semi-automatic method of counting 

682 capped brood cells in comb images with the Liebefeld method. While annotations 

683 with the Liebefeld method took 26s per frame, the semi-automatic approach took 19s 

684 for image capturing plus 30s for image processing. This semi-automatic method 

685 consists of manual segmentation of the capped brood area followed by automatic 

686 count of cell number.

687 Fig. 22 presents the time distribution required by each phase of our cell 

688 detection and classification approach. The results were obtained from processing all 

689 61 images of the segmentation dataset using the scaled invariant detection algorithm 

690 and the MobileNet model trained with DA. The time required to fully process an 

691 image varied between ~4 and ~16s, with an average of 9.07s. Considering only the 

692 average value, the time to photograph a frame and process the image was 28.07s 

693 using our setup, which was about 2s slower than the Liebefeld method for capped 

694 brood cells.

695

696
697 Fig. 22: Time distribution to detect and classify all cells in a comb image.
698
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699 Cornelissen et al. (2009) reported a correlation of 99.37% between the actual 

700 and the predicted number of cells, which was substantially higher than the 90.85% 

701 obtained with the Liebefeld method. Our approach correctly detected 98.7% of the 

702 cells. Using CNNs, we obtained an F1-Score of 99.47% and 99.77% for the capped 

703 brood class with the MobileNet-DA model and the InceptionResNetV2-DA model, 

704 respectively.

705 Our approach of cell detection and classification overcomes some important 

706 challenges pointed out by Colin et al. (2018). By using a CNN model, we were able to 

707 distinguish capped honey from capped brood. Furthermore, by using a grid search 

708 for finding good parameters for the CHT and the semantic segmentation, we 

709 dismissed the user interaction for detecting the cells.

710 Rodrigues et al. (2016) obtained a precision of 99.04% and a recall of 97.2% 

711 for the capped brood class. In our analyses, using the MobileNet DA model, we were 

712 able to improve those metrics up to 99.47% and 99.41%, respectively.

713 Wang and Brewer (2013) reported a 97.4% hit rate with the 

714 HoneybeeComplete commercial software developed for counting capped brood cells. 

715 This value increased to 99.5% when the search area was delineated by the user in 

716 the comb image. Herein, the MobileNet DA architecture produced a value for the 

717 capped brood class very close (99.47%) to that obtained by the HoneybeeComplete 

718 software, but without human assistance.

719 The commercial software HiveAnalyzer (Höferlin et al. 2013), which is able to 

720 classify detected comb cells into seven classes, achieved 94.3% accuracy on cells 

721 that were classified with high confidence (78% of 20,000 analysed cells). In this 

722 study, we achieved 94.31% accuracy (very close to the 94.3% F1-Score value) using 

723 the MobileNet model DA on 100% of the test set (53,914 analysed cells). When we 
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724 selected predictions with confidence >99.6% (corresponding to 42,410 cells and 

725 78.66% of the dataset), we obtained 99.35% accuracy, a substantially higher rate 

726 than that of Höferlin et al. (2013).

727

728 5.2.5 Further analyses on datasets creation and cells classification

729 The task of correctly classifying all the cells in a comb image is not trivial 

730 because of the wide range of colours, shapes, and textures of cell contents and wax 

731 types typically found in a hive. While working with the datasets, we realized that 

732 comb classification is further challenging due to the impact of some factors on the 

733 results quality. One such factor was related with cell contents. Cells with multiple 

734 contents (e.g. pollen and egg) or cells with contents in a transition stage, such as 

735 from larva to pupa (capped cell) or from egg to larva, revealed to be problematic (Fig. 

736 23). 

737

(a) (b) (c) (d)
738 Fig. 23: (a) Transition from egg to young larva; (b) transition from old larva to 
739 moulting, when cells will be capped; (c) transition from nectar to honey, when cells 
740 will be capped; (d) central cell containing pollen and an egg.
741
742 The co-occurrence of different cell contents makes evaluation of the classifier 

743 less precise, as there may be cases where it hits one of the classes but the 

744 alternative class has been defined as the ground truth of the image. This problem 

745 has been handled in competitions of image classification using Top-n accuracy 

746 (Krizhevsky et al., 2012). With this methodology, the model earns credit for correctly 

747 classifying the image in its Top N guesses. We evaluated our model using Top-2 

748 accuracy, which corrected the cell content if the correct class was between the two 
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749 more likely predictions. By reprocessing the test set with the Top-2 accuracy method, 

750 the quality of our results improved 5% on average (Fig. 24).

751

752
753 Fig. 24: Accuracies obtained for the models Top-1, Top-2 and Top-3.
754
755 Another factor affecting the quality of the results is related with the positions 

756 most annotated by the beekeeper. We noticed that there was an inverse relationship 

757 between the areas most frequently labelled by the beekeeper and the areas where 

758 most incorrect predictions occur. Due to the camera-optical behaviour, cells in 

759 different regions of the comb may display different areas of their interior, as illustrated 

760 in Fig. 25. This effect could impact cell classification if certain regions of the images 

761 were favoured during the annotation process. One way to alleviate this problem is to 

762 place the camera far from the frame and use a uniform light to diminish shadows 

763 during image capture.

(a)
 

(b)
 

(c) (d) (e)
764 Fig. 25: Different cells interior captured in different regions due to lens effects (a) 
765 Upper left cell; (b) Upper right cell; (c) Central cell; (d) Lower left cell; (e) Lower right 
766 cell.
767
768 To test this effect, we assessed the distribution of the annotations across 

769 comb regions. To that end, using the annotations of the main dataset, we generated 

770 a heatmap plot displaying the areas of the comb that were preferentially annotated. 
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771 As shown in Fig. 26a, annotations were more concentrated in the upper left area of 

772 the comb, suggesting that models trained in this dataset would have a better 

773 classifying performance in that region. Next, we predicted all cells that were 

774 homogeneously annotated in the test set and generated a new heatmap showing the 

775 location of most of the wrong predictions (Fig. 26b).

776

(a)                            (b)
777 Fig. 26: Distribution of annotations in the comb. Comparison between (a) most 
778 annotated areas and (b) with more errors.
779
780 According to both heatmaps, incorrect predictions occurred mostly in the 

781 lower-right regions of the comb, and this pattern was inversely related with the 

782 regions where more annotations were made. This spatial pattern of annotations 

783 becomes more striking in the heatmaps generated by class (Fig. 27). Altogether, 

784 these results suggest that training a good classifier requires not only a large number 

785 of annotations but also a homogeneous distribution across the comb. Only then the 

786 annotations can inform the model, during the training, about the different angles that 

787 cells can present and help in the generalisation.

788
789 Fig. 27: Comparison among the most annotated areas and with more errors by class.
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790
791 5.3 DeepBee© software
792
793 With all the methods developed and presented herein we built a software that 

794 we named DeepBee© (Fig. 28). This software allows the user to automatically 

795 process a batch of comb images. After processing the images, the user can view the 

796 results, change prediction labels, if needed, add and remove new detections, and 

797 export all results for further analysis into a spreadsheet like excel. DeepBee© is 

798 freely available at https://avsthiago.github.io/DeepBee/.

799
800 Fig. 28: DeepBee© software developed for the interaction of the users with the 
801 predictions.

802

803 6 FINAL REMARKS

804 In this study we developed a free software, DeepBee©, capable of 

805 automatically detecting and classifying comb cells. We demonstrated how we found a 

806 pre-processing pipeline able to enhance cells edges, filtering colour channels and 

807 equalizing small image regions using the CLAHE method. We demonstrated how we 

808 found parameters for the Circle Hough Transform that enables the method to detect 

809 cells in a comb even when it is difficult to visually distinguish the edges. We 

810 demonstrated that by applying the semantic segmentation technique it is possible to 
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811 remove false detections that may occur on the background. Although we obtained a 

812 cell detection rate of 98.7%, we believe that the false positive rate may decrease by 

813 training the semantic segmentation model with an input larger than 128×128px.

814 After we trained over thirty CNN models with different training techniques, 

815 such as transfer learning and data augmentation, and comparing them using different 

816 perspectives, we recommend MobileNet. While InceptionResNetV2 showed the best 

817 results in our dataset, the time performance of MobileNet was superior, due to 93% 

818 fewer weights. Using MobileNet, we achieved 94.3% of correctness with the metric 

819 F1-score weighted over the seven classes. We believe this rate can be further 

820 improved using annotations more evenly spread across comb images. The model 

821 learned some human biases during the training and became better in classifying cells 

822 in some comb regions in detriment of others.

823 To the best of our knowledge, the cell detection rate and the cell classification 

824 accuracy of our model outperformed similar works reported in the literature. Future 

825 work will focus on development of a service that enables users to process images 

826 remotely. Using this web service, even devices with less power, such as 

827 smartphones, will be able to run DeepBee©. To deal with low resolution images from 

828 smartphones, we intend to create one composition of many images taken near to the 

829 comb frame. With this web service, it will be possible to use detection corrections of 

830 the users to improve future results by retraining the classifier.
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